
Mitigation of Flooding and Slow DDoS Attacks in
a Software-Defined Network

Thomas Lukaseder1, Shreya Ghosh2, Frank Kargl1

1Institute of Distributed Systems
Ulm University, Germany

{firstname}.{lastname}@uni-ulm.de

2Department of Electronics and Communication Engineering
Heritage Institute of Technology, India
shreya.ghosh.ece19@heritageit.edu.in

I. INTRODUCTION

Distributed denial of service (DDoS) attacks are a constant
threat for services in the Internet. This year, the record for
the largest DDoS attack ever observed was set at 1.7 Tbps.
Meanwhile, detection and mitigation mechanisms are still
lacking behind. Many mitigation systems require the assistance
by the victim — or the victim’s administrator themself has to
become active to mitigate attacks. We introduced a system that
can detect attacks, identify attackers, and mitigate the attacks
purely within the network infrastructure. With the improved
flexibility of software-defined networks, new possibilities to
mitigate such attacks can be implemented. In addition to our
short paper on the mitigation of reflective DDoS attacks on
LCN 2018 [3], we also like to demonstrate our work on
mitigating flooding attacks presented at LCN 2017 [1] and
our mitigation of slow DDoS attacks [2]. In our demo, we
show how these systems can be combined and how they work
when faced with such different attacks.

This paper is organized as follows: Section II describes the
attacks that will be mitigated in this demo while Section III
contains information about the mitigation system as a concept.
Section IV explains the inner workings of the implementa-
tion while Section V illustrates the procedure of the demo
from an observer perspective followed by the requirements in
Section VI.

II. ATTACK DESCRIPTION

There is a large variety of DDoS attacks. For the purpose
of this demo, we narrow it down to a variety of flooding
attacks and some slow attacks. For one, the SYN flooding
attack. This attack exploits the connection limit of a server.
When TCP connections are initiated by a client with a SYN
packet, the server needs to save the state of the connection
in a table. As soon as the connection is established this entry
can be removed. The table to save these connections is of a
fixed size, therefore, only a set amount of connections can be
opened at the same time. During normal operation, this is not
a problem as the time for connections to be opened is rather
short. However, during a SYN flooding attack, vast amounts of

connections are opened by sending SYN packets with spoofed
source IP addresses. By not sending a SYN-ACK packet, these
connections are never fully established and remain in the table
until their regular time out, effectively blocking the server from
benign connection attempts.

In a TLS flooding attack, the attacker exploits the fact that
in older TLS and SSL versions, the handshake — based on
the Diffie-Hellmann key exchange protocol — is quite resource
intensive on the server with a much lower load on the client.
Therefore, mass renegotiations of TLS sessions overloads the
server.

HTTP flooding attacks are a classical example of a brute
force attack. The attacker looks for a costly operation at the
victim that can be triggered by a simple HTTP request, e.g.
an operation requiring database access, search operation, or
running a pathfinding algorithm. We simulate this on our
demo site with the calculation of a bcrypt hash. When such
a resource intensive request possibility is found, the attackers
send as many requests as possible.

The slow attacks are working very differently. Instead of
sending requests as fast as possible, they send as slow as
possible. The slowloris or slow header attack sends HTTP
get requests in as many packets as possible (by splitting the
header in several packets) and then sending these at a very low
packet rate (e.g. 0.5 Hz; 30s between packets). The attacker
needs to keep as many concurrent connections open as the
server provides. As the attacker only needs to send a few
packets per minute per connection, only little resources are
necessary to render the server inaccessible. The slow body
attack or slow POST attack works in similar ways. However,
instead of sending the header as slow as possible the body of
a POST message is split into as many packets as possible.

Slow attacks are hard to detect in the network without access
to the victim machine as the attackers are behaving according
to specification and could easily be mistaken for clients with
bad network connections.

ar
X

iv
:1

80
8.

05
35

7v
1 

 [
cs

.C
R

] 
 1

6 
A

ug
 2

01
8



III. DEFENSE ARCHITECTURE

To defend against DDoS attacks, several steps have to be
undertaken. For one, the attack has to be observed. Then,
the attack has to be classified to find the matching defense
mechanism. In a third step, the individual attackers need to be
identified and in a last step, the attackers need to be excluded
from the network (blocked) to mitigate the attack.

The first step can be done by the victim reporting the attack.
However, in many networks the attack victim and the service
provider running the mitigation system do not necessarily
cooperate. Furthermore, an attack victim that is unreachable
due to an attack might not be able to report the attack anymore.
Therefore, we observe the attack target from the outside by
measuring the round trip time (RTT) of regular requests to the
victim. If the RTT consistently exceeds a threshold typical for
that service, the attack classification is launched.

In the attack classification phase, several outcomes are
possible. For one, the rise in RTT can be due to unrelated
issues on the server and no attack can be found or the attack
is not known to the system. However, if the traffic can be
attributed to typical attack patterns (e.g. high amounts of
SYN packets combined with a traffic spike (SYN flooding)
or many evenly spaced packets sent with a very low packet
rate (slowloris), the attack can be found and classified.

In the identification phase, attackers need to be identified
dependent on the classified attack. This is done by observing
the typical behavior of attackers.

In the last step — the mitigation phase — the list of now
identified attackers is sent to the SDN controller that in turn
sets rules in the switch to block these clients.

It is imperative to keep on running all steps in parallel and
to update the later phases with newfound insights. The first
step needs to run to recognize the successful mitigation of the
attack, the second step needs to run to recognize if a second
attack type might be running and needs to be mitigated and
the third step needs to keep on running to see if new attackers
can be found in the network. More details on the mitigation
architecture can be found in the original publications.

IV. SETUP

The original setup running in real hardware in our research
network was ported to a portable implementation based on
virtual machines and virtual network equipment.

The emulations setup can be seen in Figure 1 and has
been conducted using a Linux Virtual Machine packaged with
Mininet 2.2.2. It is configured with a Host-only adapter and
a NAT Adapter, and has two network interfaces. The RYU
Controller is used as SDN controller. It is connected to an
OpenVSwitch (SDN Switch) version 2.5.0. The protocol used
is OpenFlow1.3. To emulate the real attacker scenario, three
hosts are connected to the OpenVSwitch. Each host is provided
with Internet connectivity. They are all connected by 13 Gbit/s
links.

Host 1 runs the Bro Network Security Monitor in version
2.5.4, that is configured to observe all traffic on the network
interface and detect flooding or slow attacks according to our

TABLE I: Attacks and tools used in the demo.

Attack group Attack Tool

Slow Attacks Slow Header slowloris
Slow Body slowHTTPTest

Flooding Attacks
HTTP Flooding

hping3SYN Flooding
SSL-TLS Flooding

Fig. 1: Setup in Mininet.

previous publications [1], [2], and is connected to the Open-
VSwitch. Bro communicates its events to the RYU controller
via the Bro Communication Library (BROCCOLI) API.

Host 2 is the target host that runs the Apache web server
and the application. The running application calculates the
response time of the server when it receives GET requests.

Host 3 is used to emulate an attacker and attacks target
machine Host 2. All packets that are transferred from the
attacker host to the target host is mirrored to Host 1 running
Bro. This enables Bro to observe all the packets inside the
network and differentiate between benign traffic and harmful
traffic.

The attacking tools in use can be seen in Table I. We use
slowloris, slowHTTPtest and hping3. Where necessary, these
tools were adapted to enable spoofing of different source IP
addresses. This way, several hundred attack clients can be
simulated per attack.

V. DEMO

Figure 2 shows the demo from the observer perspective. In
the demo, the performance of the victim server is observable
using a website on this very server (upper left corner). Within
this website, the response time for the GET requests are
being visualized by the length of lines in the diagram. The
measurement is done by javascript AJAX requests in the
background. The requests go to a second page that calculates
a bcrypt hash to show a considerable response time even when
the server is not under attack for visualization purposes. The
lower left corner shows the terminal window of the attacker



Victims's website
Protection

System

Victim
Monitoring

Attacker
C&C

Fig. 2: Demo from the observer perspective.

command and control system. Here, the attacks will be started.
Right next to it is the monitoring of the victim’s machine.
On the right, the protection system is shown. The different
windows of the protections system show (from top left to
lower right) the output of Bro (including the message whether
an attack was observed or not), the output of Ryu (including
the list of blocked IP addresses), the system monitor of the
protection system and an output of the internal parameters
used by the protection system.

In a first run, the attacks will be run without the protection
system active to show their impact on the victim. The different
attacks show different results. While a SYN flooding attack
or a slowloris attack will result in a sudden unreachability
of the server as soon as the maximum amount of concurrent
connections is reached, an HTTP flooding attack will lead to a
slow rise of the response time. Meanwhile, the system monitor
of the victim shows very different impact on the CPU usage.
While the SYN flooding and slowloris attack leads to the CPU
usage to go down (as legitimate connection attempts are not
patched through to the CPU anymore) the HTTP flooding
attack shows maximum CPU usage which in turn leads to
the unreachability of the victim. The server is flooded with
requests from the attacker (Host 3) that leads to considerable
stress on the CPU of the server. The server is unable to respond
to these requests due to the huge traffic load. As a result, the
response time increases which is reflected by the increased
lengths of the lines on the diagram. It can also be observed
that the different attacks take different times to be effective
and the server takes different times to recover.

Before the second run, the protection system is activated.
When the protection system is triggered, it starts the miti-

gation. For any identified attacker, it sends an event to the
RYU controller that blocks the attacker from sending any
more data packets. The attackers cannot reach the target at this
stage. As a result, the server becomes available again and the
response time improves. This is also reflected in the diagram
as the length of the lines indicating the response time become
shorter. Thus, the victim is no longer affected by the attack
demonstrating the in-network security provided to the victim.

VI. REQUIREMENTS FOR THE DEMO

• A table with space for one laptop and one monitor
• Power supply for the laptop and monitor
• A monitor with VGA or Mini DisplayPort
• Internet connection
• Poster board
• Setup-time: 1 hour

ACKNOWLEDGMENT

This work was supported in the bwNET100G+ project
by the Ministry of Science, Research and the Arts Baden-
Württemberg (MWK). The authors alone are responsible for
the content of this paper.

REFERENCES

[1] T. Lukaseder, A. Hunt, C. Stehle, D. Wagner, R. v. d. Heijden, and
F. Kargl, “An Extensible Host-Agnostic Framework for SDN-Assisted
DDoS-Mitigation,” in IEEE LCN, 2017.

[2] T. Lukaseder, L. Maile, B. Erb, and F. Kargl, “SDN-Assisted Network-
Based Mitigation of Slow DDoS Attacks,” in EAI SecureComm, Aug
2018.

[3] T. Lukaseder, K. Stölzle, S. Kleber, B. Erb, and F. Kargl, “An SDN-
based Approach For Defending Against Reflective DDoS Attacks,” in
IEEE LCN, 2018.


	I Introduction
	II Attack Description
	III Defense Architecture
	IV Setup
	V Demo
	VI Requirements for the Demo
	References

