
1

Lambda: The Ultimate Declarative

Guy L. Steele, Jr.

1976

Exported from Wikisource on October 25, 2021



2

Abstract

1. A Different View of LAMBDA



3

This work is licensed under the Creative
Commons Attribution 3.0 Unported License.

This page must provide all available authorship information.

 

https://en.wikisource.org/wiki/Creative_Commons_Attribution_3.0_Unported


4

== Abstract ==

In this paper, a sequel to LAMBDA: The Ultimate
Imperative, a new view of LAMBDA as a renaming
operator is presented and contrasted with the usual
functional view taken by LISP. This view, combined with
the view of function invocation as a kind of generalized
GOTO, leads to several new insights into the nature of the
LISP evaluation mechanism and the symmetry between
form and function, evaluation and application, and control
and environment. It also complements Hewitt's actors
theory nicely, explaining the intent of environment
manipulation as cleanly, generally, and intuitively as the
actors theory explains control structures. The relationship
between functional and continuation-passing styles of
programming is also clarified.

This view of LAMBDA leads directly to a number of
specific techniques for use by an optimizing compiler:

1. Temporary locations and user-declared variables may
be allocated in a uniform manner.

2. Procedurally defined data structures may compile into
code as good as would be expected for data defined by
the more usual declarative means.

3. Lambda-calculus-theoretic models of such constructs
as GOTO, DO loops, call-by-name, etc. may be used
directly as macros, the expansion of which may then

https://en.wikisource.org/wiki/Lambda:_The_Ultimate_Imperative
https://en.wikipedia.org/wiki/Carl_Hewitt


5

compile into code as good as that produced by
compilers which are designed especially to handle
GOTO, DO, etc.

The necessary characteristics of such a compiler designed
according to this philosophy are discussed. Such a compiler
is to be built in the near future as a testing ground for these
ideas.

Keywords
environments, lambda-calculus, procedurally defined
data, data types, optimizing compilers, control
structures, function invocation, temporary variables,
continuation passing, actors, lexical scoping, dynamic
binding

This report describes research done at the Artificial
Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the laboratory's artificial
intelligence research is provided in part by the Advanced
Research Projects Agency of the Department of Defense
under Office of Naval Research contract N00014-75-C-
0643.

https://en.wikipedia.org/wiki/MIT_Computer_Science_and_Artificial_Intelligence_Laboratory
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Advanced_Research_Projects_Agency
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/Office_of_Naval_Research


6

Environment operations
Formal procedure parameters
Declarations within blocks
Assignments to local variables
Pattern matching

Side effects
Assignments to global (or COMMON) variables
Input/output
Assignments to array elements
Assignments to other data structures

Process synchronization
Semaphores
Critical regions
Monitors
Path expressions

Often attempts are made to reduce the number of operations
of each type to some minimal set. Thus, for example, there
have been proofs that sequential blocks, IF-THEN-ELSE, and
WHILE-DO form a complete set of control operations. One
can even do without IF-THEN-ELSE, though the technique for
eliminating it seems to produce more rather than less
complexity. {Note No IF-THEN-ELSE} A minimal set
should contain primitives which are not only universal but
also easy to describe, simple to implement, and capable of
describing more complex constructs in a straightforward
manner. This is why the semaphore is still commonly used;
its simplicity makes it easy to describe more complex



7

synchronization operators. The expositors of monitors and
path expressions, for example, go to great lengths to
describe them in terms of semaphores [Hoare 74]
[Campbell 74]; but it would be difficult to describe either of
these "high-level" synchronization constructs in terms of
the other.

With the criteria of simplicity, universality, and expressive
power in mind, let us consider some choices for sets of
control and environment operators. Side effects and process
synchronization will not be treated further in this paper.

Function Invocation: The Ultimate Imperative

The essential characteristic of a control operator is that it
transfers control. It may do this in a more or less disciplined
way, but this discipline is generally more conceptual than
actual; to put it another way, "down underneath, DO, CASE,
and SELECT all compile into IFs and GOTOs". This is why
many people resist the elimination of GOTO from high-level
languages; just as the semaphore seems to be a fundamental
synchronization primitive, so the GOTO seems to be a
fundamental control primitive from which, together with
IF, any more complex one can be constructed if necessary.
(There has been a recent controversy over the nested IF-
THEN-ELSE as well. Alternatives such as repetitions of tests
or decision tables have been examined. However, there is
no denying that IF-THEN-ELSE seems to be the simplest



8

conditional control operator easily capable of expressing all
others.)

One of the difficulties of using GOTO, however, is that to
communicate information from the code gone from to the
code gone to it is necessary to use global variables. This
was a fundamental difficulty with the CONNIVER
language [McDermott 74], for example; while CONNIVER
allowed great flexibility in its control structures, the passing
around of data was so undisciplined as to be completely
unmanageable. It would be nice if we had some primitive
which passed some data along while performing a GOTO.

It turns out that almost every high-level programming
language already has such a primitive: the functional call!

This construct is almost always completely ignored by
those who catalog control constructs; whether it is because
function calling is taken for granted, or because it is not
considered a true control construct, I do not know.

One might suspect that there is a bias again function calling
because it is typically implemented as a complex, slow
operation, often involving much saving of registers,
allocation of temporary storage, etc.

{Note Expensive Procedures}

Let us consider the claim that a function invocation is
equivalent to a GOTO which passes some data.



9

But what about the traditional view of a function call which
expects a returned value?

The standard scenario for a function call runs something
like this:

[1] Calculate the arguments and put them where the
function expects to find them.

[2] Call the function, saving a return address (on the PDP-
10, for example, a PUSHJ instruction is used, which
transfers control to the function after saving a return address
on a pushdown stack).

[3] The function calculates a value and puts it where its
caller can get it.

[4] The function returns to the saved address, throwing the
saved address away (on the PDP-10, this is done with a
POPJ instruction, which pops an address off the stack and
jumps to that address).

It would appear that the saved return address is necessary to
the scenario.

If we always compile a function invocation as a pure
GOTO instead, how can the function know where to return?

To answer this we must consider carefully the steps
logically required in order to compute the value of a



10

function applied to a set of arguments.

Suppose we have a function BAR defined as

(DEFINE BAR

(LAMBDA (X Y)

(F (G X) (H Y))))

In a typical LISP implementation, when we arrive at the
code for BAR we expect to have two computed quantities,
the arguments, plus a return address, probably on the
control stack.

Once we have entered BAR and given the names X and Y
to the arguments, we must invoke the three functions
denoted by F, G, and H.

When we invoke G or H, it is necessary to supply a return
address, because we must eventually return to the code in
BAR to complete the computation by invoking F.

But we do not have to supply a return address to F; we can
merely perform a GOTO, and F will inherent the return
address originally supplied to BAR.

Let us simulate the behavior of a PDP-10 pushdown stack
to see why this is true.



11

If we consistently used PUSHJ for calling a function and
POPJ for returning from one, then the code for BAR, F, G,
and H would look something like this: BAR: ...

PUSHJ G

BAR1: ...

PUSHJ H

BAR2: ...

PUSHJ F

BAR3: POPJ

F: ...

POPJ

G: ...

POPJ

H: ...

POPJ

We have labeled not only the entry points to the functions,
but also a few key points within BAR, for expository
purposes.



12

We are justified in putting no ellipsis between the PUSHJ F
and the POPJ in BAR, because we assume that no cleanup
other than the POPJ is necessary, and because the value
returned by F (in the assumed RESULT register) will be
returned from BAR also.

Let us depict a pushdown stack as a list growing towards
the right.

On arrival at BAR, the caller of BAR has left a return
address on the stack.

..., <return address for BAR>

On executing the PUSHJ G, we enter the function G after
leaving a return address BAR1 on the stack:

..., <return address for BAR>, BAR1

The function G may call other functions in turn, adding
other return addresses to the stack, but these other functions
will pop them again on exit, and so on arrival at the POPJ in
G the stack is the same.

The POPJ pops the address BAR1 and jumps there, leaving
the stack like this:

..., <return address for BAR>



13

In a similar manner, the address BAR2 is pushed when H is
called, and H pops this address on exit.

The same is true of F and BAR3.

On return from F, the POPJ in BAR is executed, and the
turn address supplied by BAR's caller is popped and
jumped to.

Notice that during the execution of F the stack looks like
this:

..., <return address for BAR>, BAR3, ...

Suppose that at the end of BAR we replaced the PUSHJ F,
POPJ by GOTO F.

Then on arrival at the GOTO the stack would look like this:

..., <return address for BAR>

The stack would look this way on arrival at the POPJ in F,
and so F would pop this return address and return to BAR's
caller.

The net effect is as before.

The value returned by F has been returned to BAR's caller,
and the stack was left the same.



14

The only different was that one fewer stack slot was
consumed during the execution of F, because we did not
push the address BAR3.

Thus we see that F may be invoked in a manner different
from the way in which G and H are invoked.

This fact is somewhat disturbing.

We would like our function invocation mechanism to be
uniform, not only for aesthetic reasons, but so that functions
may be compiled separately and linked up at run time with
a minimum of special-case interfacing.

Uniformity is achieved in some LISPs by always using
PUSHJ and never GOTO, but this is as the expense of using
more stack space than logically necessary.

At the end of every function X the sequence "PUSHJ Y;
POPJ" will occur, where Y is the last function invoked by
X, requiring a logically unnecessary return address pointing
to a POPJ.

{Note Debugging}

An alternate approach is suggested by the implementation
of the SCHEME interpreter.

We note that the textdual difference between the calls on F
and G is that the call on G is nested as an argument to



15

another function call, whereas the call to F is not.

This suggests that we save a return address on the stack
when we begin to evaluate a form (function call) which is to
provide an argument for another function, rather than when
we invoke the function.

(The SCHEME interpreter works in exactly this way.)

This discipline produces a rather elegant symmetry:
evaluation of forms (function invocation) pushes additional
control stack, and application of functions (function entry
and the consequent binding of variables) pushes additional
environment stack.

Thus for BAR we would compile approximately the
following code:

BAR: PUSH [BAR1] ;save return address for (G X)

<set up arguments for G>

GOTO G ;call function G

BAR1: <save result of G>

PUSH [BAR2] ;save return address for (H Y)

<set up arguments for H>



16

GOTO H ;call function H

BAR2: <set up arguments for F>

GOTO F ;call function F

The instruction PUSH [X] pushes the address X on the
stack.

Note that no code appears in BAR which ever pops a return
address off the stack; it pushes return addresses for G and
H, but G and H are responsible for popping them, and BAR
passes its own return address implicitly to F without
popping it.

The point is extremely important, and we shall return to it
later.

Those familiar with the MacLISP compiler will recognize
the code of the previous example as being similar to the
"LSUBR" calling convention.

Under this convention, more than just return addresses are
kept on the control stack; a function receives its arguments
on the stack, above the return address.

Thus, when BAR is entered, there are (at least) three items
on the stack: the last argument, Y, is on top; below that, the
previous (and in fact first) one, X; and below that, the return
address.



17

The complete code for BAR might look like that:

BAR: PUSH [BAR1] ;save return address for (G X)

PUSH -2(P) ;push a copy of X

GOTO G ;call function G

BAR1: PUSH RESULT ;result of G is in RESULT register

PUSH [BAR2] ;save return address for (H Y)

PUSH -2(P) ;push a copy of Y

GOTO H ;call function H

BAR2: POP -2(P) ;clobber X with result of G

MOVEM RESULT,(P) ;clobber Y with result of H

GOTO F ;call function F

There is some tricky code at point BAR2: on return from H
the stack looks like:

..., <return address for BAR>, X, Y, <result from G> After
the POP instruction, the stack looks like:

..., <return address for BAR>, result from G>, Y



18

That is, the top item of the stack has replaced the one two
below it.

After the MOVEM (move to memory) instruction:

..., <return address for BAR>, <result from G>, <result
from H>

which is exactly the correct setup for calling F.

Let us not here go into the issue of how such clever code
might be generated, but merely recognize the fact that it
gets the stack into the necessary condition for calling F.)

Suppose that the saving of a return address and the setting
up of arguments were commutative operations.

(This is not true of the LSUBR calling convention, because
both operations use the stack; but it is true of the SUBR
convention, where the arguments are "spread" [McCarthy
62] [Moon 74] in registers, and the turn address on the
stack.)

Then we may permute the code as follows (from the
original example):

BAR: <set up arguments for G in registers>

PUSH [BAR1] ;save return address for (G X)



19

GOTO G ;call function G

BAR1: <save result of G>

<set up arguments for H in registers>

PUSH [BAR2] ;save return address for (H Y)

GOTO H ;call function H

BAR2: <set up arguments for F in registers>

GOTO F ;call function F

As it happens, the PDP-10 provides an instruction, PUSHJ,
defined as follows:

L1:

PUSH [L1]

GOTO G

is the same as

L1:

PUSHJ G

except that the PUSHJ takes less code.



20

Thus we may write the code as:

BAR: <set up arguments for G in registers>

PUSHJ G ;save return address, call G

<save result of G>

<set up arguments for H in registers>

PUSHJ H ;save return address, call H

<set up arguments for F in registers>

GOTO F ;call function F

This is why PUSHJ (and similar instructions on other
machines, whether they save the turn adress on a stack, in a
register, or in a memory location) works on a subroutine
call, and, by extension, why up to now many people have
thought of pushing the return address at function call time
rather than at form evaluation time.

The use of GOTO to call a function "tail-recursively"
(known around MIT as the "JRST hack", from the PDP-10
instruction for GOTO, though the hack itself dates back to
the PDP-1) is in fact not just a hack, but rather the most
uniform method for invoking functions.



21

PUSHJ is not a function calling primitive per se, therefore,
but rather than optimization of this general approach. 1.3.
LAMBDA as a Renaming Operator

Environment operators also take various forms.

The most common are assignment to local variables and
binding of arguments to functions, but there are others, such
as pattern-matching operators (as in COMIT [MITRLE 62]
[Yngve 72], SNOBOL [Forte 67], MICRO-PLANNER
[Sussman 71], CONNIVER [McDermott 74], and
PLASMA [Smith 75]).

It is usually to think of these operators as altering the
contents of a named location, or of causing the value
associated with a name to be changed.

In understanding the action of an environment operator it
may be more fruitful to take a different point of view, which
is that the value involved is given a new (additional) name.

If the name had previously been used to denote another
quantity, then that former use is shadowed; but this is not
necessarily an essential property of an environment
operator, for we can often use alpha-conversion
("uniquization" of variable names) to avoid such
shadowing.

It is not the names which are important to the computation,
but rather the quantities; hence it is appropriate to focus on



22

the quantities and think of them as having one or more
names over time, rather than thinking of a name as having
one or more values over time.

Consider our previous example involving BAR.

On entry to BAR two quantities are passed, either in
registers or on the stack.

Within BAR these quantities are known as X and Y, and
may be referred to by those names.

In other environments these quantities may be know by
other names; if the code in BAR's caller were (BAR W (+ X
3)), then the first quantity is known as W and the second
has no explicit name.

{Note Return Address}

On entry to BAR, however, the LAMBDA assigns the
names X and Y to those two quantities.

The fact that X means something else to BAR's caller is of
no significance, since these names are for BAR's use only.

Thus the LAMBDA not only assigns names, but determines
the extent of their significance (their scope).

Note an interesting symmetry here: control constructs
determine constraints in time (sequencing) in a program,



23

while environment operators determine constraints in space
(textual extent, or scope).

One way in which the renaming view of LAMBDA may be
useful is in allocation of temporaries in a compiler.

Suppose that we use a targeting and preferencing scheme
similar to that described by in [Wulf 75] and [Johnsson 75].

Under such a scheme, the names used in a program are
partitioned by the compiler into sets called "preference
classes".

The grouping of several names into the same set indicates
that it is preferable, other things being equal, to have the
quantities referred to by those names reside in the same
memory location at run time; this may occur because the
names refer to the same quantity or to related quantities
(such as X and X+1).

A set may also have a specified target, a particular memory
location which is preferable to any other for holding
quantities named by members of the set.

As an example, consider the following code skeleton:

((LAMBDA (A B) <body>) (+ X Y) (* Z W))

Suppose that within the compiler the names T1 and T2 have
been assigned to the temporary quantities resulting from the



24

addition of multiplication.

Then to process the "binding" of A and B we need only add
A to the preference class of T1, and B to the preference
class of T2.

This will have the effect of causing A and T1 to refer to the
same location, wherever that may be; similarly B and T2
will refer to the same locaiton.

If T1 is saved on a stack and T2 winds up in a register, fine;
references to A and B within the <body> will automatically
have this information.

On the other hand, suppose that <body> is (FOO 1 A B),
where FOO is a built-in function which takes its arguments
in registers 1, 2, and 3.

Then A's preference class will be targeted on register 2, and
B's on register 3 (since these are the only uses of A and B
within <body>); this will cause T1 and T2 to have the same
respective targets, and at the outer level an attempt will be
made to perform the addition in register 2 and the
multiplication in register 3.

This general scheme will produce much better code than a
scheme which says that all LAMBDA expressions must,
like the function FOO, take their arguments in certain
registers.



25

Note too that no code whatsoever is generated for the
variable bindings as such; the fact that we assign names to
the results of the expressions (+ X Y) and (* Z W) rather
than writing

(FOO 1 (* Z W) (+ X Y))

makes no difference at all, which is as it should be.

Thus, compiler temporaries and simple user variables are
treated on a completely equal basis.

This idea was used in [Johnsson 75], but without any
explanation of why such equal treatment is justified.

Here we have some indication that there is conceptually no
difference between a user variable and a compiler-generated
temporary.

This claim will be made more explicit later in the
discussion of continuation-passing.

Names are merely a convenient textual device for indicating
the various places in a program where a computed quantity
is referred to.

If we could, say, draw arrows instead, as in a data flow
diagram, we would not need to write names.



26

In any case, names are eliminated at compile time, and so
by run time the distinction between user names and the
compiler's generated names has been lost.

Thus, at the low leve, we may view LAMBDA as a
renaming operation which has more to do with the internal
workings of the compiler (or the interpreter), and with a
notation for indicating where quantities are referred to, than
with the semantics as such of the computation to be
performed by the program.

1.4. An Example: Compiling a Simple Function

(DEFINE FACT

(LAMBDA (N)

(LABELS ((FACT1

(LAMBDA (M A)

(IF (= M 0) A

(FACT1 (- M 1)

(* MA))))))

(FACT1 N 1))))



27

Let us step through a complete compilation process for this
function, based on the ideas we have seen.

(This scenario is intended only to exemplify certain ideas,
and does not reflect entirely accurately the targeting and
preferencing techniques described in [Wulf 75] and
[Johnsson 75].)

First, let us assign names to all the intermediate quantities
(temporaries) which will arise: FACT: <set up arguments
for FACT1>

GOTO FACT1 ;call FACT1

FACT1: <if quantity names M is non-zero go to FACT1A>

<return quantity named A in register RESULT>

POPJ

FACT1A: <do subtraction and multiplication>

GOTO FACT1 ;FACT1 calling itself

Filling in the arithmetic operations and register assignments
gives:

On arrival here, quantity named N is in register ARG.

FACT: MOVEI RESULT,1 ;N already in ARG; set up 1



28

GOTO FACT1 ;call FACT1

On arrival here, quantity named M is in ARG,

and quantity named A is in RESULT.

FACT1: JUMPN ARG,FACT1A

POPJ ;A is already in RESULT!

FACT1A: MOVE R1,ARG ;must do subtraction in R1

SUBI R1,1

IMUL RESULT,ARG ;do multiplication

MOVE ARG,R1 ;now put result of subtraction in ARG

GOTO FACT1 ;FACT1 calling itself

This code, while not perfect, is not bad.

The major deficiency, which is the use of R1, is easily cured
if the compiler could know at some level that the
subtraction and multiplication can be interchanged (for
neither has side effects which would affect the other),
producing:

FACT1A: IMUL RESULT,ARG

SUBI ARG,1



29

GOTO FACT1

Similarly, the sequence:

FACT1:

GOTO FACT1

could be optimized by removing the GOTO.

These tricks, however, are know by any current reasonably
sophisticated optimizing compiler.

What is more important is the philosophy taken in
interpreting the meaning of the program during the
compilation process.

The structure of this compiled code is a loop, not a nested
sequence of stack-pushing function calls.

Like the SCHEME interpreter or the various PLASMA
implementations, a compiler based on these ideas would
correctly reflect the semantics of lambda-calculus-based
models of high-level constructs. === Who Pops the Return
Address? ===

Earlier we showed a translation of BAR into "machine
language", and noted that there was no code which
explicitly popped a return address; the buck was always
passed to another function (F, G, or H). This may seem



30

surprising at first, but it is in fact a necessary consequence
of our view of function calls as "GOTOs with a message". We
will show by induction that only primitive functions not
expressible in our language (SCHEME) perform POPJ;
indeed, only this nature of the primitives determines the fact
that our language is functionally oriented!

What is the last thing performed by a function? Consider
the definition of one:

(DEFINE FUN (LAMBDA (X1 X2 ... XN) <body>))

Now <body> must be a form in our language. There are
several cases:

1. Constant, variable, or closure. In this case we actually
compiled a POPJ in the case of FACT above, but we
could view constants, variables, and closures (in
general, things which "evaluate trivially"in the sense
described in [Steele 76]) as functions of zero
arguments if we wished, and so GOTO a place which
would get the value of the constant, variable, or
closure into RESULT. This place would inherit the
return address, and so our function need not pop it.
Alternatively, we may view constants, etc. as
primitives, the same way we regard integer addition as
a primitive (note that CTA2 above required a POPJ,
since we had "open-coded" the addition primitive).



31

2. (IF <pred> <exp1> <exp2>). In this case the last
thing our function does is the last thing <exp1> or
<exp2> does, and so we appeal to this analysis
inductively.

3. (LABELS <defns> <exp>). In this case the last thing
our function does is the last thing <exp> does. This
may involve invoking a function defined in the
LABELS, but we can consider them to be separate
functions for our purposes here.

4. A function call. In this case the function called will
inherit the return address.

Since these are all the cases, we must conclude that our
function never pops its return address! But it must get
popped at some point so that the final value may be
returned.

Or must it? If we examine the four cases again and analyze
the recursive argument, it becomes clear that the last thing a
function that we define in SCHEME eventually does is
invoke another function. The functions we define therefore
cannot cause a return address to be popped. It is, rather, the
primitive, built-in operators of the language which pop
return addresses. These primitives cannot be directly
expressed in the language itself (or, more accurately, there
is some bases set of them which cannot be expressed). It is
the constants (which we may temporarily regard as zero-
argument functions), the arithmetic operators, and so forth
which pop the return address. (One might note that in the



32

compilation of CURRIED-TRIPLE-ADD above, a POPJ

appeared only at the point the primitive "+" function was
open-coded as ADD instructions.)



33



34

About this digital edition
This e-book comes from the online library Wikisource[1].
This multilingual digital library, built by volunteers, is
committed to developing a free accessible collection of
publications of every kind: novels, poems, magazines,
letters...

We distribute our books for free, starting from works not
copyrighted or published under a free license. You are free
to use our e-books for any purpose (including commercial
exploitation), under the terms of the Creative Commons
Attribution-ShareAlike 3.0 Unported[2] license or, at your
choice, those of the GNU FDL[3].

Wikisource is constantly looking for new members. During
the transcription and proofreading of this book, it's possible
that we made some errors. You can report them at this
page[4].

The following users contributed to this book:

Pi Delport
Lithis
Jesscmcmxc
Mpaa
Billinghurst
ShakespeareFan00

https://en.wikisource.org/wiki/Main_Page
https://www.creativecommons.org/licenses/by-sa/3.0
https://www.gnu.org/copyleft/fdl.html
https://en.wikisource.org/wiki/Wikisource:Scriptorium


35

Hesperian
CalendulaAsteraceae
Kwj2772
Santoposmoderno

1. ↑ https://en.wikisource.org
2. ↑ https://www.creativecommons.org/licenses/by-sa/3.0
3. ↑ https://www.gnu.org/copyleft/fdl.html
4. ↑

https://en.wikisource.org/wiki/Wikisource:Scriptorium


	Title page
	Lambda: The Ultimate Declarative
	Abstract
	A Different View of LAMBDA
	About

