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Preface

This book gives a comprehensive account of Maude, a language and system
based on rewriting logic. Many examples are used throughout the book to
illustrate the main ideas and features of Maude, and its many possible uses.
Maude modules are rewrite theories. Computation with such modules is effi-
cient deduction by rewriting. Because of its logical basis and its initial model
semantics, a Maude module defines a precise mathematical model. This means
that Maude and its formal tool environment can be used in three, mutually
reinforcing ways:

• as a declarative programming language;
• as an executable formal specification language; and
• as a formal verification system.

Maude’s rewriting logic is simple, yet very expressive. This gives Maude
good representational capabilities as a semantic framework to formally repre-
sent a wide range of systems, including models of concurrency, distributed al-
gorithms, network protocols, semantics of programming languages, and mod-
els of cell biology. Rewriting logic is also an expressive universal logic, making
Maude a flexible logical framework in which many different logics and in-
ference systems can be represented and mechanized. This makes Maude a
useful metatool to build many other tools, including those in its own formal
tool environment. Thanks to the logic’s simplicity and the use of advanced
semi-compilation techniques, Maude has a high-performance implementation,
making it competitive with other declarative programming languages.

The introduction (Chapter 1) gives a high-level overview of Maude’s main
concepts and underlying philosophy, and of its various applications. Since this
book gives a very complete account of Maude in its various aspects, Section 1.7
gives specific suggestions on different reading “paths” within the book, that
can be chosen depending on the degree of prior familiarity with the main ideas
and the various uses intended, for example, as a programming language or as
a formal specification and verification tool.
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c© Maude 2 is copyright 1997-2015 SRI International, Menlo Park,
CA 94025, USA.
The Maude system is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
The Maude system is distributed in the hope that it will be
useful, but without any warranty; without even the implied
warranty of merchantability or fitness for a particular purpose.
See the GNU General Public License for more details.
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1

Introduction

This introduction tries to give the big picture on the goals, design philoso-
phy, logical foundations, applications, and overall structure of Maude. It is
written in an impressionistic, conversational style, and should be read in that
spirit. The fact that occasionally some particular technical concept mentioned
in passing (for example, “the Church-Rosser property”) may be unfamiliar
should not be seen as an obstacle. It should be taken in a relaxed, sporting
spirit: those things will become clearer in the body of the book; here it is just
a matter of gaining a first overall impression.

1.1 Simplicity, expressiveness, and performance

Maude’s language design can be understood as an effort to simultaneously
maximize three dimensions:

• Simplicity : programs should be as simple as possible and have clear mean-
ing.

• Expressiveness: a very wide range of applications should be naturally
expressible: from sequential, deterministic systems to highly concurrent
nondeterministic ones; from small applications to large systems; and from
concrete implementations to abstract specifications, all the way to logical
frameworks, in which not just applications, but entire formalisms, other
languages, and other logics can be naturally expressed.

• Performance: concrete implementations should yield system performance
competive with other efficient programming languages.

Although simplicity and performance are natural allies, maximizing ex-
pressiveness is perhaps the key point in Maude’s language design. Languages
are after all representational devices, and their merits should be judged on the
degree to which problems and applications can be represented and reasoned
about generally, naturally, and easily. Of course, domain-specific languages
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also have an important role to play in certain application areas, and can offer
a useful “economy of representation” for a given area. In this regard, Maude
should be viewed as a high-performance metalanguage, through which many
different domain-specific languages can be developed.

1.1.1 Simplicity

Maude’s basic programming statements are very simple and easy to under-
stand. They are equations and rules, and have in both cases a simple rewriting
semantics in which instances of the lefthand side pattern are replaced by cor-
responding instances of the righthand side.

A Maude program containing only equations is called a functional mod-
ule. It is a functional program defining one or more functions by means of
equations, used as simplification rules. For example, if we build lists of quoted
identifiers (which are sequences of characters starting with the character ‘’’
and belong to a sort1 Qid) with a “cons” operator denoted by an infix period,

op nil : -> List .

op _._ : Qid List -> List .

then we can define a length function and a membership predicate by means
of the operators and equations

op length : List -> Nat .

op _in_ : Qid List -> Bool .

vars I J : Qid .

var L : List .

eq length(nil) = 0 .

eq length(I . L) = s length(L) .

eq I in nil = false .

eq I in J . L = (I == J) or (I in L) .

where s_ denotes the successor function on natural numbers, _==_ is the
equality predicate on quoted identifiers, and _or_ is the usual disjunction on
Boolean values. Such equations (specified in Maude with the keyword eq and
ended with a period) are used from left to right as equational simplification
rules. For example, if we want to evaluate the expression

length(’a . ’b . ’c . nil)

we can apply the second equation for length to simplify the expression three
times, and then apply the first equation once to get the final value s s s 0:

1 In Maude, types come in two flavors, called sorts and kinds (see Section 3, and
the discussion of user-definable data in Section 1.1.2 below).
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length(’a . ’b . ’c . nil)

= s length(’b . ’c . nil)

= s s length(’c . nil)

= s s s length(nil)

= s s s 0

This is the standard “replacement of equals by equals” use of equations in
elementary algebra and has a very clear and simple semantics in equational
logic. Replacement of equals by equals is here performed only from left to
right and is then called equational simplification or, alternatively, equational
rewriting. Of course, the equations in our program should have good properties
as “simplification rules” in the sense that their final result exists and should
be unique. This is indeed the case for the two functional definitions given
above.

In Maude, equations can be conditional ; that is, they may only be applied
if a certain condition holds. For example, we can simplify a fraction to its
irreducible form using the conditional equation

vars I J : NzInt .

ceq J / I = quot(J, gcd(J, I)) / quot(I, gcd(J, I))

if gcd(J, I) > s 0 .

where ceq is the Maude keyword introducing conditional equations, NzInt
is the sort of nonzero integers, and where we assume that the integer quo-
tient (quot) and greatest common divisor (gcd) operations have already been
defined by their corresponding equations.

A Maude program containing rules and possibly equations is called a sys-
tem module. Rules are also computed by rewriting from left to right, that is,
as rewrite rules, but they are not equations; instead, they are understood as
local transition rules in a possibly concurrent system. Consider, for example,
a distributed banking system in which we envision the account objects as
floating in a “soup,” that is, in a multiset or bag of objects and messages.
Such objects and messages can “dance together” in the distributed soup and
can interact locally with each other according to specific rewrite rules. We
can represent a bank account as a record-like structure with the name of the
object, its class name (Account) and a bal(ance) attribute, say, a natural
number. The following are two different account objects in our notation:

< ’A-001 : Account | bal : 200 >

< ’A-002 : Account | bal : 150 >

Accounts can be updated by receiving different messages and changing
their state accordingly. For example, we can have debit and credit messages,
such as

credit(’A-002, 50)

debit(’A-001, 25)
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We can think of the “soup” as formed just by “juxtaposition” (with empty
syntax) of objects and messages. For example, the above two objects and two
messages form the soup

< ’A-001 : Account | bal : 200 >

< ’A-002 : Account | bal : 150 >

credit(’A-002, 50)

debit(’A-001, 25)

in which the order of objects and messages is immaterial. The local interaction
rules for crediting and debiting accounts are then expressed in Maude by the
rewrite rules

var I : Qid .

vars N M : Nat .

rl < I : Account | bal : M > credit(I, N)

=> < I : Account | bal : (M + N) > .

crl < I : Account | bal : M > debit(I, N)

=> < I : Account | bal : (M - N) >

if M >= N .

where rules are introduced with the keyword rl and conditional rules (like
the above rule for debit that requires the account to have enough funds) with
the crl keyword.

Note that these rules are not equations at all : they are local transition
rules of the distributed banking system. They can be applied concurrently to
different fragments of the soup. For example, applying both rules to the soup
above we get the new distributed state:

< ’A-001 : Account | bal : 175 >

< ’A-002 : Account | bal : 200 >

Note that the rewriting performed is multiset rewriting, so that, regardless
of where the account objects and the messages are placed in the soup, they can
always come together and rewrite if a rule applies. In Maude this is specified
in the equational part of the program (system module) by declaring that
the (empty syntax) multiset union operator satisfies the associativity and
commutativity equations:

X (Y Z) = (X Y) Z

X Y = Y X

This is not done by giving the above equations explicitly. It is instead
done by declaring the multiset union operator with the assoc and comm equa-
tional attributes (see Section 4.4.1 and Section 1.1.2 below), as follows, where
Configuration denotes the multisets or soups of objects and messages.

op __ : Configuration Configuration -> Configuration [assoc comm] .
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Maude then uses this information to generate a multiset matching algorithm,
in which the multiset union operator is matched modulo associativity and
commutativity.

Again, a program involving such rewrite rules is intuitively very simple,
and has a very simple rewriting semantics. Of course, the systems specified by
such rules can be highly concurrent and nondeterministic; that is, unlike for
equations, there is no assumption that all rewrite sequences will lead to the
same outcome. For example, depending on the order in which debit or credit
messages are consumed, a bank account can end up in quite different states,
because the rule for debiting can only be applied if the account balance is
big enough. Furthermore, for some systems there may not be any final states:
their whole point may be to continuously engage in interactions with their
environment as reactive systems.

1.1.2 Expressiveness

The above examples illustrate a general fact, namely, that Maude can express
with equal ease and naturalness deterministic computations, which lead to a
unique final result, and concurrent, nondeterministic computations. The first
kind is typically programmed with equations in functional modules, and the
second with rules (and perhaps with some equations for the “data” part) in
system modules.

In fact, functional modules define a functional sublanguage2 of Maude. In
a functional language true to its name, functions have unique values as their
results, and it is neither easy nor natural to deal with highly concurrent and
nondeterministic systems while keeping the language’s functional semantics.
It is well known that such systems pose a serious expressiveness challenge
for functional languages. In Maude this challenge is met by system modules,
which extend the purely functional semantics of equations to the concurrent
rewriting semantics of rules.3 Although certainly declarative in the sense of
having a clear logical semantics, system modules are of course not functional:
that is their entire raison d’être.

Besides this generality in expressing both deterministic and nondetermin-
istic computations, further expressiveness is gained by the following features:

• equational pattern matching,
• user-definable syntax and data,
• types, subtypes, and partiality,
• generic types and modules,
• support for objects, and

2 This sublanguage is essentially an extension of the OBJ3 equational language
[174], which has greatly influenced the design of Maude.

3 As explained in Section 1.2, mathematically this is achieved by a logic inclusion,
in which the functional world of equational theories is conservatively embedded
in the nonfunctional, concurrent world of rewrite theories.
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• reflection.

We briefly discuss each of these features in what follows.

Equational pattern matching

Rewriting with both equations and rules takes place by matching a lefthand
side term against the subject term to be rewritten. The most common form
of matching is syntactic matching, in which the lefthand side term is matched
as a tree on the (tree representation of the) subject term (see Section 4.7).
For example, the matching of the lefthand sides for the equations defining the
length and _in_ functions above is performed by syntactic matching. But we
have already encountered another, more expressive, form of matching, namely,
equational matching in the bank accounts example: the lefthand side

< I : Account | bal : M > credit(I, N)

has the (empty syntax) multiset union operator __ as its top operator, but,
thanks to its assoc and comm equational attributes, it is matched not as a
tree, but as a multiset. Therefore, the match will succeed provided that the
subject multiset contains instances of the terms < I : Account | bal : M >

and credit(I, N) in which the variable I is instantiated the same way in
both terms, regardless of where those instances appear in the multiset, that is,
modulo associativity and commutativity.

In general, a binary operator declared in a Maude module can be defined
with any4 combination of equational attributes of: associativity, commutativ-
ity, left-, right-, or two-sided identity, and idempotency. Maude then generates
an equational matching algorithm for the equational attributes of the differ-
ent operators in the module, so that each operator is matched modulo its
equational attributes. This book will illustrate with various examples the ex-
pressive power afforded by this form of equational matching (see Section 4.8).

User-definable syntax and data

In Maude the user can specify each operator with its own syntax, which can
be prefix, postfix, infix, or any “mixfix” combination. This is done by indi-
cating with underscores the places where the arguments appear in the mixfix
syntax. For example, the infix list cons operator above is specified by _._, the
(empty syntax) multiset union operator by __, and the if-then-else operator
by if_then_else_fi. In practice, this improves readability (and therefore un-
derstandability) of programs and data. In particular, for metalanguage uses, in
which another language or logic is represented in Maude, this can make a big
difference for understanding large examples, since the Maude representation
can keep essentially the original syntax. The combination of user-definable
syntax with equations and equational attributes for matching leads to a very
expressive capability for specifying any user-definable data. It is well known

4 Except for any combination including both associativity and idempotency, which
is not currently supported.
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that any computable data type can be equationally specified [21]. Maude
gives users full support for this equational style of defining data which is not
restricted to syntactic terms (trees) but can also include lists (modulo asso-
ciativity), multisets (modulo associativity and commutativity), sets (adding
an idempotency equation), and other combinations of equational attributes
that can then be used in matching. This great expressiveness for defining data
is further enhanced by Maude’s rich type structure, as explained below.

Types, subtypes, and partiality

Maude has two varieties of types: sorts, which correspond to well-defined
data, and kinds, which may contain error elements. Sorts can be structured
in subsort hierarchies, with the subsort relation understood semantically as
subset inclusion. For example, for numbers we can have subsort inclusions

Nat < Int < Rat

indicating that the natural numbers are contained in the integers, and these
in turn are contained in the rational numbers. All these sorts determine a kind
(say the “number kind”) which is interpreted semantically as the set contain-
ing all the well-formed numerical expressions for the above number systems
as well as error expressions such as, for example, 4 + 7/0. This allows sup-
port for partial functions in a total setting, in the sense that a function whose
application to some arguments has a kind but not a sort should be consid-
ered undefined for those arguments (but notice that functions can also map
undefined to defined results, for example in the context of error recovery).
Furthermore, operators can be subsort-overloaded, providing a useful form of
subtype polymorphism. For example, the addition operation _+_ is subsort
overloaded and has typings for each of the above number sorts. A further fea-
ture, greatly extending the expressive power for specifying partial functions,
is the possibility of defining sorts by means of equational conditions. For ex-
ample, a sequential composition operation _;_ concatenating two paths in a
graph is defined if and only if the target of the first path coincides with the
source of the second path. In Maude this can be easily expressed with the
“conditional membership” (see Section 4.3):

vars P Q : Path .

cmb (P ; Q) : Path if target(P) = source(Q) .

Generic types and modules

Maude supports a powerful form of generic programming that substantially
extends the parameterized programming capabilities of OBJ3 [174]. The anal-
ogous terminology to express these capabilities in higher-order type theory
would be parametric polymorphism and dependent types. But in Maude the
parameters are not just types, but theories, including operators and equations
that impose semantic restrictions on the parameterized module instantiations.
Thus, whereas a parametric LIST module can be understood just at the level
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of the parametric type (sort) of list elements, a parameterized SORTING mod-
ule has the theory TOSET of totally ordered sets as its parameter, including the
axioms for the order predicate, that must be satisfied in each correct instance
for the sorting function to work properly. Types analogous to dependent types
are also supported by making the parameter instantiations depend on specific
parametric constants in the parameter theory, and by giving membership ax-
ioms depending on such constants. For example, natural numbers modulo n
(see Section 21.8), and arrays of length n, can be easily defined this way.
The fact that entire modules, and not just types, can be parametric provides
even more powerful constructs. For example, TUPLE[n] (see Section 19.3.1)
is a “dependent parameterized module” that assigns to each natural num-
ber n the parameterized module of n-tuples (together with the tupling and
projection operations) with n parameter sorts.

Support for objects

The bank accounts example illustrates a general point, namely, that in Maude
it is very easy to support objects and distributed object interactions in a com-
pletely declarative style with rewrite rules. Although such object systems are
just a particular style of system modules in which object interactions (through
messages or directly between objects) are expressed by rewriting, Maude pro-
vides special support for object-based programming and for fair execution of
object-based applications (see Chapter 11). Furthermore, the Full Maude ex-
tension provides special syntax in object-oriented modules (see Chapter 21).
Such modules directly support object-oriented concepts like objects, messages,
classes, and multiple class inheritance. Moreover, the support for communica-
tion with external objects (see Section 11.4) allows Maude objects to interact
by message passing with internet sockets and, through them, with all kinds
of other external objects, such as files, databases, graphical user interfaces,
sensors, robots, and so on. All this is achieved without compromising Maude’s
declarative nature: interaction with normal Maude objects and with external
objects can both be programmed with rewrite rules. Using internet sockets
as external objects, it is also easy to develop distributed implementations in
Maude, where a “soup” of objects and messages is not realized just as a multi-
set data structure in a single sequential machine, but as a “distributed soup,”
with objects and messages in different machines or in transit (see Chapter 17
for a mobile language application of this kind).

Reflection

This is a very important feature of Maude. Intuitively, it means that Maude
programs can be metarepresented as data, which can then be manipulated and
transformed by appropriate functions. It also means that there is a systematic
causal connection between Maude modules themselves and their metarepre-
sentations, in the sense that we can either first perform a computation in
a module and then metarepresent its result, or, equivalently, we can first
metarepresent the module and its initial state and then perform the entire
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computation at the metalevel. Finally, the metarepresentation process can it-
self be iterated giving rise to a very useful reflective tower. Thanks to Maude’s
logical semantics (more on this in Section 1.2), all this is not just some kind
of “glorified hacking,” but a precise form of logical reflection with a well-
defined semantics (see Chapter 14 and [77, 78]). There are many important
applications of reflection. Let us mention just three:

• Internal strategies. Since the rewrite rules of a system module can be
highly nondeterministic, there may be many possible ways in which they
can be applied, leading to quite different outcomes. In a distributed object
system this may be just part of life: provided some fairness assumptions
are respected, any concurrent execution may be acceptable. But what
should be done in a sequential execution? Maude does indeed support two
different fair execution strategies in a built-in way through its rewrite

and frewrite commands (see Section 6.4). But what if we want to use
a different strategy for a given application? The answer is that Maude
modules can be executed at the metalevel with user-definable internal
strategies5 (see Section 14.6). Such internal strategies can be defined by
rewrite rules in a metalevel module that guides the possibly nondeter-
ministic application of the rules in the given “object level” module. This
process can be iterated in the reflective tower. That is, we can define
meta-strategies, meta-meta-strategies, and so on.

• Module algebra. The entire module algebra in which parameterized mod-
ules can be composed and instantiated becomes expressible within the
logic, and extensible by new module operations that transform existing
modules metarepresented as data. This is of more than theoretical inter-
est: Maude’s module algebra is realized exactly in this way by Full Maude,
a Maude program defining all the module operations and easily extensible
with new ones (see Part II of this book).

• Formal tools. The verification tools in Maude’s formal environment must
take Maude modules as arguments and perform different formal analyses
and transformations on such modules. This is again done by reflection
in tools such as Maude’s inductive theorem prover, the Church-Rosser
checker, the Maude termination tool, the Real-Time Maude tool, and so
on (see Chapter 23).

1.1.3 Performance

Achieving expressiveness in all the ways described above without sacrificing
performance is a nontrivial matter. Successive Maude implementations have
been advancing this goal while expanding the set of language features. More
work remains ahead, but it seems fair to say that Maude, although still an
interpreter, is a high-performance system that can be used for many non-toy

5 That is, internal to Maude’s logic, in the sense of being definable by logical axioms.
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applications with competitive performance and with many advantages over
conventional code. Without in any way trying to extrapolate a specific expe-
rience into a general conclusion, a concrete example from the Maude user’s
trenches may illustrate the point. A formal tool component to check whether a
trace of events satisfies a given linear temporal logic (LTL) formula was writ-
ten in Maude at NASA Ames by Grigore Roşu in about one page of Maude
code. The component had a trivial correctness proof—the Maude module was
based on the equational definition of the LTL semantics for the different con-
nectives. This replaced a similar component having about 5,000 lines of Java
code that had taken over a month to develop by an experienced colleague.
The Java tool used a translation of LTL formulas into Büchi automata (the
usual method to efficiently model check an LTL formula) and run about three
times more slowly than the Maude code. It would have been very difficult to
prove the correctness of the Java tool and, having a better and clearly correct
alternative in the Maude implementation, this was never done.

Generally and roughly speaking, the current Maude implementation can
execute syntactic rewriting with typical speeds from half a million to several
million rewrites per second, depending on the particular application and the
given machine. Similarly, associative and associative-commutative equational
rewriting with term patterns used in practice6 can be performed at the typical
rate of one hundred thousand to several hundred thousand rewrites per second.

These figures must be qualified by the observation that, until recently,
the cost of an associative or associative-commutative rewriting step depended
polynomially on the size of the subject term, even with the most efficient al-
gorithms. In practice this meant that this kind of rewriting was not practical
for large applications, in which the lists or multisets to be rewritten could
have millions of elements. This situation has been drastically altered by a re-
cent result of Steven Eker [136] providing new algorithms for associative and
associative-commutative rewriting that, for patterns typically encountered in
practice, can perform one step of associative rewriting in constant time, and
one associative-commutative rewriting step in time proportional to the log-
arithm of the subject term’s size. Maude supports equational rewriting with
these new algorithms.

The reason why the Maude interpreter achieves high performance is that
the rewrite rules are carefully analyzed and are then semicompiled into ef-
ficient matching and replacement automata [134] with efficient matching al-
gorithms. One important advantage of semicompilation is that it is possible
to trace every single rewriting step. More performance is of course possible

6 In its fullest generality, it is well known that associative-commutative rewriting is
an NP-complete problem. In programming practice, however, the patterns used as
lefthand sides allow much more efficient matching, so that the theoretical limits
only apply to “pathological” patterns not encountered in typical programming
practice.
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by full compilation. Maude has an experimental compiler for a subset of the
language which can typically achieve a fivefold speedup over the interpreter.

Four other language features give the user different ways of optimizing
the performance of his/her code. One is profiling, allowing a detailed analy-
sis of which statements are most expensive to execute in a given application
(see Section 24.1.4). Another is evaluation strategies (see Section 4.4.7), giv-
ing the user the possibility of indicating which arguments to evaluate and
in which order before simplifying a given operator with the equations. This
can range from “no arguments” (a lazy strategy) to “all arguments” (an eager
bottom-up strategy) to something in the middle (like evaluating the condition
before simplifying an if-then-else expression). Evaluation strategies control the
positions in which equations can be applied. But what about rules? The anal-
ogous feature for rules is that of frozen argument positions; that is, declaring
certain argument positions in an operator with the frozen attribute (see Sec-
tion 4.4.9) blocks rule rewriting anywhere in the subterms at those positions.
A fourth useful feature is memoization (see Section 4.4.8). By giving an op-
erator the memo attribute, Maude stores previous results of function calls to
that symbol. This allows trading off space for time, and can lead in some cases
to drastic performance improvements.

One nagging question may be reflection. Is reflection really practical from
a performance perspective? The answer is yes. In Maude, reflective computa-
tions are performed by descent functions that move metalevel computations
to the object level whenever possible (see Section 14.5). This, together with
the use of caching techniques, makes metalevel computations quite efficient.
A typical metalevel computation may perform millions of rewrites very ef-
ficiently at the object level, paying a cost (linear in the size of the term) in
changes of representation from the metalevel to the object level and back only
at the beginning and at the end of the computation.

1.2 The logical foundations of Maude

The foundations of a house do not have to be inspected every day: one is
grateful that they are there and are sound. This section describes the logi-
cal foundations of Maude in an informal, impressionistic style, not assuming
much beyond a cocktail party acquaintance with logic and mathematics. The
contents of this section may be read in two ways, and at two different mo-
ments:

• before reading the rest of the book, to obtain a bird’s-eye view of the
mathematical ideas underlying Maude’s design and semantics; or
• after reading the rest of the book, to gain a more unified understanding

of the language’s design philosophy and its foundations.

Readers with a more pragmatic interest may safely skip this section, but
they may miss some of the fun.
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Maude is a declarative language in the strict sense of the word. That is,
a Maude program is a logical theory, and a Maude computation is logical
deduction using the axioms specified in the theory/program. But which logic?
There are two, one contained in the other. The seamless integration of the
functional world within the broader context of concurrent, nondeterministic
computation is achieved at the language level by the inclusion of functional
modules as a special case of system modules. At the mathematical level this
inclusion is precisely the sublogic inclusion in which membership equational
logic [248, 31] is embedded in rewriting logic [243, 36].

A functional module specifies a theory in membership equational logic.
Mathematically, we can view such a theory as a pair (Σ,E ∪ A). Σ, called
the signature, specifies the type structure: sorts, subsorts, kinds, and over-
loaded operators. E is the collection of (possibly conditional) equations and
memberships declared in the functional module, and A is the collection of
equational attributes (assoc, comm, and so on) declared for the different op-
erators. Computation is of course the efficient form of equational deduction
in which equations are used from left to right as simplification rules.

Similarly, a system module specifies a rewrite theory, that is, a theory
in rewriting logic. Mathematically, such a rewrite theory is a 4-tuple R =
(Σ,E∪A, φ,R), where (Σ,E∪A) is the module’s equational theory part, φ is
the function specifying the frozen arguments of each operator in Σ, and R is
a collection of (possibly conditional) rewrite rules. Computation is rewriting
logic deduction, in which equational simplification with the axioms E ∪ A is
intermixed with rewriting computation with the rules R.

We can of course view an equational theory (Σ,E ∪ A) as a degenerate
rewrite theory of the form (Σ,E ∪ A, φ∅, ∅), where φ∅(f) = ∅, that is, no
argument of f is frozen, for each operator f in the signature Σ. This de-
fines a sublogic inclusion from membership equational logic (MEqLogic) into
rewriting logic (RWLogic) which we can denote

MEqLogic ↪→ RWLogic.

In Maude this corresponds to the inclusion of functional modules into the
broader class of system modules. However, Maude’s inclusion is more general:
the user can give the desired freezing information for each operator in the
signature of a functional module, not just the φ∅ above.

Another important fact is that each Maude module specifies not just a
theory, but also an intended mathematical model. This is the model the user
has intuitively in mind when writing the module. For functional modules such
models consist of certain sets of data and certain functions defined on such
data, and are called algebras. For example, the intended model for a NAT mod-
ule is the natural numbers with the standard arithmetic operations. Similarly,
a module LIST-QID may specify a data type of lists of quoted identifiers, and
may import NAT and BOOL as submodules to specify functions such as length
and _in_. Mathematically, the intended model of a functional module spec-
ifying an equational theory (Σ,E ∪ A), with Σ the signature defining the
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sorts, subsorts, and operators, E the equations and memberships, and A the
equational attributes like assoc, comm, and so on, is called the initial algebra
of such a theory and is denoted TΣ/E∪A.

In a similar way, a system module specifying a rewrite theory R = (Σ,E∪
A, φ,R) has an initial model, denoted TR, which in essence is an algebraic
(labeled) transition system.7 The states and data of this system are elements of
the underlying initial algebra TΣ/E∪A. The state transitions are the (possibly
complex) concurrent rewrites possible in the system by application of the
rules R. For our bank accounts example, these transitions correspond to all
the possible concurrent computations that can transform a given “soup” of
account objects and messages into another soup. Again, this is the model the
programmer of such a system has in mind.

How do the mathematical models associated with Maude modules and the
computations performed by them fit together? Very well, thanks. This is the
so-called agreement between the mathematical semantics (the models) and
the operational semantics (the computations). In this introduction we must
necessarily be brief; see Sections 4.6 and 4.7 and [31] for the whole story in the
case of functional modules, and Section 6.3 and [377] for the case of system
modules. Here is the key idea: under certain executability conditions required
of Maude modules, both semantics coincide. For functional modules we have
already mentioned that the equations should have good properties as simpli-
fication rules, so that they evaluate each expression to a single final result.
Technically, these are called the Church-Rosser and termination assumptions.
Under these assumptions, the final values, called the canonical forms, of all
expressions form an algebra called the canonical term algebra. By definition,
the results of operations in this algebra are exactly those given by the Maude
interpreter: this is as computational a model as one can possibly get. For
example, the results in the canonical term algebra of the operations

length(’a . ’b . ’c . nil)

’b in (’a . ’b . ’c . nil)

are, respectively,

s s s 0

true

Suppose that a functional module specifies an equational theory (Σ,E∪A)
and satisfies the Church-Rosser and termination assumptions. Let us then
denote by CanΣ/E∪A the associated canonical term algebra. The coincidence
of the mathematical and operational semantics is then expressed by the fact
that we have an isomorphism

TΣ/E∪A ∼= CanΣ/E∪A.

7 With additional operations, including a sequential composition operation for la-
beled transitions.
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In other words, except for a change of representation, both algebras are iden-
tical.

For system modules, the executability conditions center around the notion
of coherence between rules and equations (see [377] and Section 6.3). The
equational part E ∪A should be Church-Rosser and terminating as before. A
reasonable strategy (the one adopted in Maude by the rewrite command, see
Chapter 6) is to first apply the equations to reach a canonical form, and then
do a rewriting step with a rule in R. But is this strategy complete? Couldn’t we
miss rewrites with R that could have been performed if we had not insisted on
first simplifying the term to its canonical form with the equations? Coherence
guarantees that this kind of incompleteness cannot happen (see Section 6.3).

1.3 Programming, specification, and verification

The observations in the previous section about the agreement between math-
ematical and operational semantics in Maude programs are of enormous im-
portance for reasoning about them and verifying their correctness. The key
point is that there are three different uses of Maude modules:

1. As programs, to solve some application. In principle we could have pro-
grammed such an application in some other programming language, but
we may have chosen Maude because its features make the programming
task easier and simpler.

2. As formal executable specifications, that provide a rigorous mathematical
model of an algorithm, a system, a language, or a formalism. Because
of the agreement between operational and mathematical semantics, this
mathematical model is at the same time executable. Therefore, we can
use it as a precise prototype of our system to simulate its behavior. The
system itself could be implemented in a conventional language, or perhaps
in Maude itself (as in (1) above) as a more detailed Maude program, or
maybe our specification is already detailed and efficient enough to be
directly used as its own implementation.

3. As models that can be formally analyzed and verified with respect to dif-
ferent properties expressing various formal requirements. For example, we
may want to prove that our Maude module terminates; or that its equa-
tions have the Church-Rosser property; or that a given function, equa-
tionally defined in the module, satisfies some properties expressed as first-
order formulas. Similarly, given a system module we may want to model
check some properties about it, such as the satisfaction of some invariants
or, more generally, of some temporal logic formulas.

Note that the distinction between uses (1) and (2) is, for the most part,
in the eyes of the beholder. In fact, there is a seamless integration of spec-
ifications and code. The same Maude module can simultaneously be viewed
as an executable formal specification and as a program. Furthermore, certain
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kinds of formal requirements needed for verification in (3) can be expressed
at the Maude level, either in Maude theories (see Section 8.3.1), or by in-
cluding some nonexecutable statements in a Maude module giving them the
nonexec attribute (see Section 4.5.3). This can be very useful in several ways.
For example, we may include lemmas that we have proved about a module,
either in theories or as nonexecutable statements in the module itself. Simi-
larly, we may begin with some nonexecutable specifications in a Maude theory,
and then refine them using views (see Section 8.3.2) into the desired Maude
module satisfying them.

There is, however, no need for all the properties that we wish to formally
verify in (3) to be in the logic of Maude, that is, to be statements in member-
ship equational logic or in rewriting logic. More generally, properties can be
expressed, for example, as arbitrary first-order logic formulas, or as temporal
logic formulas. An interesting issue is then to explain precisely what it means
for a Maude module, defined in membership equational logic or in rewriting
logic, to satisfy a formula in one of those logics. Here is where the Maude
initial model semantics explained in Section 1.2 becomes crucial. Such a se-
mantics means that what a Maude module denotes is a specific mathematical
model, namely, the initial one. Satisfaction of any property, expressed as some
kind of formula, means satisfaction of that formula in the initial model. This
is an important observation, even when the formula in question is expressed
in Maude’s native logic. Let us explain this idea in more detail.

Consider, for example, that we have defined natural number addition in a
Maude functional module with Peano notation, so that zero is represented as
the constant 0, and there is a successor function s_ so that, for example, 2
is represented as s s 0. Natural number addition can then be defined by the
equations

op _+_ : Nat Nat -> Nat .

vars N M K : Nat .

eq N + 0 = N .

eq N + (s M) = s (N + M) .

The initial model of these equations is precisely the algebra of the natural
numbers with zero, successor, and the usual addition function. For example,
using the canonical term algebra representation (see Section 1.2), when we
add s s 0 and s s 0 in this algebra we obtain the result s s s s 0.

Consider now two relevant properties of natural number addition, namely,
associativity and commutativity. These properties are precisely described by
the respective equations

eq N + M = M + N [nonexec] .

eq N + (M + K) = (N + M) + K [nonexec] .

where we have used the nonexec attribute to emphasize that these equations
are not part of our natural number addition module, and are not meant to
be executed (in fact, if executed the first equation would loop). They may,
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for example, be stated in a separate Maude theory as properties we wish to
verify.

The first thing to observe is that the above associativity and commuta-
tivity equations are not provable by equational deduction, that is, they do
not follow by replacing equals by equals from the two equations defining the
addition function. They are in fact inductive properties of the addition func-
tion. Therefore, in order to prove them, using for example Maude’s inductive
theorem prover (ITP, see Section 23.1.1), we need to use a stronger proof
method, namely, Peano induction. But for any equational specification, being
an inductive property and being a property satisfied by its initial model are
one and the same thing [253]. Therefore, what we mean when we say that our
natural number addition module satisfies the associativity and commutativity
equations is precisely that its initial model does.

Of course, associativity and commutativity are properties expressible in
Maude’s native logic (in fact, just in its equational sublogic). But the case
of arbitrary first-order formulas is entirely similar. Consider, for example, the
property that any even number is the sum of two odd numbers, which can be
expressed as the first-order formula

∀n : Nat (even(n) =⇒ ∃x, y : Nat (odd(x) ∧ odd(y) ∧ n = x+ y)).

Let us assume, for argument’s sake, that we had also defined the odd and even
predicates in our Maude natural number module. What does it mean for our
module to satisfy the above formula? Just as before, it exactly means that the
initial model denoted by our Maude specification satisfies the formula. The
point is that membership equational logic is a sublogic of many-kinded first-
order logic with equality (MKFOL=) that we can represent with a sublogic
inclusion

MEqLogic ↪→ MKFOL=.

Therefore, our initial model is also a first-order logic model, and it is perfectly
clear what it means for it to satisfy a first-order formula.

In a similar way, if we have a Maude system module and choose an initial
state for it, we may be interested in verifying that it satisfies a given temporal
logic formula. Defining satisfaction in this case is not as direct as for first-
order formulas, because we do not have a sublogic inclusion from rewriting
logic into temporal logic. However, the meaning of satisfaction in this case is
also fairly straightforward. The point is that to such a system module, that
is, to a rewrite theory in which we have defined some atomic state predicates
equationally, we can naturally associate a Kripke structure (see Section 13.2).
Since Kripke structures are the standard models of temporal logic, satisfaction
of the given temporal logic formula exactly means that the Kripke structure
associated to the module satisfies the formula. In fact, such a Kripke structure
and the initial model of the rewrite theory are intimately related, so that
the initial model can be used to define the corresponding Kripke structure.
As explained in Chapters 12 and 13, if our system module is such that the



1.4 A high-performance logical framework 17

set of states reachable from the initial state is finite, we can use Maude’s
search command and Maude’s model checker for linear temporal logic (LTL)
as decision procedures to verify, respectively, the satisfaction of invariants and
of LTL properties.

Besides being able to use Maude’s inductive theorem prover (ITP) to verify
inductive properties of functional modules, and the above-mentioned built-
in support for verifying invariants and LTL formulas through the search

command and Maude’s LTL model checker, we can use the following Maude
tools to formally verify other properties:

• the Maude Termination Tool (MTT) [117] can be used to prove termina-
tion of functional modules (see Sections 23.1.2, 12.4, and 13.4);

• the Maude Church-Rosser Checker (CRC) [73, 120] can be used to check
the Church-Rosser property of unconditional functional modules (see Sec-
tions 23.1.3, 12.4, and 13.4);

• the Maude Coherence Checker (ChC) can be used to check the coher-
ence (or ground coherence) of unconditional system modules (see Sec-
tions 23.1.4, 12.4, and 13.4); and

• the Maude Sufficient Completeness Checker (SCC) [190] can be used to
check that defined functions have been fully defined in terms of construc-
tors (see Sections 23.1.5, 4.4.3, 12.4, and 13.4).

Furthermore, if we are dealing with rewriting logic specifications of real-time
and hybrid systems, we can use the Real-Time Maude tool (see Section 23.1.6)
to both simulate such specifications and to perform search and model-checking
analysis of their LTL properties.

In summary, therefore, Maude supports three seamlessly integrated tasks:
programming, executable formal specification, and formal analysis and verifi-
cation. For analysis and verification purposes, the Maude interpreter itself is
the first and most obvious tool. It is in fact a high-performance logical engine
that can be used to prove certain kinds of logical facts about our theories.
For example, we can use the Maude interpreter as a decision procedure for
equational deduction if the desired theory has good properties (see the ex-
ample in Section 5.6). Similarly, as already mentioned, we can use it also
to verify invariants and LTL properties of finite-state system modules. More
generally, we can use other tools in Maude’s formal environment, such as the
ITP, MTT, CRC, ChC, and SCC tools (or Real-Time Maude for real-time
systems) to formally verify a variety of other properties.

1.4 A high-performance logical framework

Our previous discussion of the programming, executable specification, and
formal verification uses of Maude makes clear that we can distinguish two dif-
ferent levels of formal specification: a system specification level, and a property
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specification one. In a system specification we are after an unambiguous spec-
ification of a given system and how it actually works. Ideally this specification
should be both formal and executable, and should therefore provide an exe-
cutable mathematical model of the system we are interested in. This is exactly
what Maude modules provide.

By contrast, when specifying properties of a system we are not necessarily
after an executable model of our system. Instead, we assume it, as either al-
ready given or to be developed later, and specify such properties in a typically
nonexecutable manner: for example in first-order logic, higher-order logic, or
some temporal logic. That is, the properties we specify have an intended model,
namely the system design captured by a system specification, and we are in-
terested in verifying by different methods that the intended model satisfies
the properties stated in our property specification. In the context of Maude,
such property specifications can be given in a variety of ways:

• as nonexecutable equations, memberships, and rules in Maude’s native
logics;
• as first-order logic formulas; or
• as invariants or, more generally, linear temporal logic formulas.

We can then use Maude itself and its formal tool environment to try to verify
that a given system specified as a Maude module satisfies the desired proper-
ties.

Since Maude system specifications should be both formal and executable,
Maude native logics, namely, membership equational logic and its rewrit-
ing logic extension, should be computational logics, that is, logics in which
computation and deduction coincides, and simple enough to allow a high-
performance implementation as a declarative programming language. This is
what the Maude implementation provides. Of course, as mentioned in Sec-
tion 1.2 and further explained in Sections 4.6 and 6.3, Maude modules should
be theories that satisfy some reasonable executability requirements, making
possible not only their efficient execution, but also the already-mentioned co-
incidence between mathematical and operational semantics.

However, not all computational logics are equally expressive. For exam-
ple, equational logics (in either first-order or higher-order versions) are very
well suited to specify deterministic systems under the Church-Rosser assump-
tion, but poorly equipped to specify concurrent and highly nondeterministic
systems. The whole point of extending membership equational logic to rewrit-
ing logic is to seamlessly integrate the specification of deterministic systems,
through equational specifications in functional modules, and of concurrent
and nondeterministic systems, through rewriting logic specifications in system
modules, within the same language. Experience has shown that this makes
rewriting logic a very expressive semantic framework for system specifica-
tion. Chapter 22 explains in detail many semantic framework applications of
Maude. Here we can only hint at them by mentioning some of the relevant
areas:
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• Models of computation. As explained in Section 22.1, many models of
computation, including a very wide range of concurrency models, can be
naturally specified as different theories within rewriting logic, and can be
executed and analyzed in Maude.

• Programming languages. As explained in Section 22.2, and illustrated
for a simple language in Section 13.6.1, rewriting logic has very good
properties—combining in a sense the best features of denotational seman-
tics’ equational definitions with the strengths of structural operational
semantics—to give formal semantics to a programming language. Fur-
thermore, in Maude such semantics definitions become the basis of inter-
preters, model checkers, and other program analysis tools for the language
in question.

• Distributed algorithms and systems. As explained in Section 22.4, because
of its good features for concurrent, object-based specification, many dis-
tributed algorithms and systems, including, for example, network proto-
cols and cryptographic protocols, can be easily specified and analyzed in
Maude. Furthermore, making use of Maude’s external object facility to
program interactions with internet sockets, one can not just specify but
also program various distributed applications in a declarative way (see
Section 11.4 and Chapter 17).

• Biological systems. Cell dynamics is intrinsically concurrent, since many
different biochemical reactions happen concurrently in a cell. By modeling
such biochemical reactions with rewrite rules, one can develop useful sym-
bolic mathematical models of cell biology. Such models can then be used
to study and predict biological phenomena such as, for example, biopaths
(see Section 22.7).

Furthermore, other application areas can be naturally supported in appro-
priate extensions of rewriting logic and Maude. For example, real-time and
hybrid systems can be specified as real-time rewrite theories. Such specification
can be executed and analyzed in the Real-Time Maude tool (see Sections 22.5
and 23.1.6). Similarly, probabilistic systems can be specified as probabilistic
rewrite theories, and can be simulated in PMaude and analyzed in the VeStA
tool (see Section 22.6).

The fact that in a computational logic computation and deduction coin-
cide, so that they are like two sides of the same coin, can be used in two
ways: we can use the logic as a semantic framework to specify different com-
putational entities as just explained; or we can use it as a logical framework
to represent many other logics in it. That is, if our computational logic has
good representational features, it can be used as a universal logic which can
faithfully express the inference systems of many other logics.

Since the logic is computational and presumably has an efficient imple-
mentation, this is not just a purely theoretical exercise: we can use such an
implementation to mechanize deduction in any logic that we can faithfully rep-
resent inside our logical framework. Experience has shown that rewriting logic
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has very good properties as a logical framework in precisely this sense. This
experience is summarized in Section 22.3. An important practical consequence
is that it becomes quite easy to use Maude to develop a variety of formal tools
for different logics. The point is that any such tool has an associated inference
system, so it is just a matter of representing such an inference system as a
rewrite theory and guiding the application of the inference rules with suitable
strategies (see Section 14.6). In addition, since such formal tools often manip-
ulate and transform not only formulas but also theories, Maude’s reflective
capabilities, which allow manipulating theories as data, become enormously
useful. Section 22.3 and Chapter 23 explain and illustrate with examples how
Maude can be used in this way as a metatool to build many other tools for
Maude itself and for many other logics. For an example illustrating this idea
in full detail in the case of a unification tool see Sections 16.1 and 19.7.

Reflection and the existence of initial models (and therefore of induction
principles for such models) have one further important consequence, namely,
that rewriting logic has also good properties as a metalogical framework. A
metalogical framework is a logical framework in which we can not only repre-
sent and simulate many other logics: we can also reason within the framework
about the metalogical properties of the logics thus represented. As explained
in [19], this is exactly what can be done in rewriting logic using Maude and
Maude’s inductive theorem prover (ITP).

1.5 Core Maude vs. Full Maude

We call Core Maude the Maude 2 interpreter implemented in C++ and provid-
ing all of Maude’s basic functionality. Part I explains in detail all the aspects
of Core Maude, including its syntax and parsing, functional and system mod-
ules, module hierarchies, module parameterization with theories and module
instantiation with views, its suite of predefined modules, the model-checking
capabilities, object-based programming, reflection, and metalanguage uses.

Full Maude is an extension of Maude, written in Maude itself, that endows
the language with an even more powerful and extensible module algebra than
that available in Core Maude. As in Core Maude, modules can be parameter-
ized and instantiated with views, but in addition views can also be parameter-
ized. Full Maude also provides generic modules for n-tuples. Object-oriented
modules (which can also be parameterized) support notation for objects, mes-
sages, classes, and inheritance.

Full Maude itself can be used as a basis for further extensions, by adding
new functionality. It is possible both to change the syntax or the behavior
of existing features, and to add new features; for example, we can add new
commands, as we explain in Section 19.7. In this way Full Maude becomes a
common infrastructure on top of which one can build tools, such as, e.g., the
Church-Rosser and coherence checkers (see Sections 23.1.3 and 23.1.4), as well
as environments for other languages, such as, e.g., the Real-Time Maude tool
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for specifying and analyzing real-time systems [289, 291] (see Section 23.1.6),
and the Maude MSOS tool for modular structural operational semantics [55]
(see Section 23.2.2).

1.6 Book structure

This book documents Maude 2, and explains Maude’s basic concepts in a
leisurely and mostly informal style. The material is basically presented fol-
lowing a “grammatical” order; for example, all features related with operators
are discussed together. Concepts are introduced by concrete examples, that
in general are complete modules, although in some cases may be fragments
of modules. Chapters describing the features of the language are interleaved
with chapters containing additional examples and explanations that should
be useful for readers interested in more details about a particular subject.
The complete source code of all the examples is available in the companion
cd-rom and also in http://maude.cs.uiuc.edu.

The book is divided in four parts: Part I is devoted to Core Maude, Part II
is devoted to Full Maude, Part III summarizes applications and tools, and
Part IV is a reference manual. Here is a brief summary of what can be found
in the remaining chapters:

Part I. Core Maude.

Chapter 2 explains how to get Maude, how to install the system on
the different platforms supported, and how to run it. It also includes
pointers on how to get additional information and support.

Chapter 3 describes the basic syntactic constructs of the language, in-
cluding what is an identifier, a sort, and an operator. The different
kinds of declarations that can be included in the different types of
modules are explained here, in addition to fundamental concepts such
as kinds or terms, and a discussion on parsing.

Chapter 4 introduces functional modules, and the different statements
that can be found in this kind of modules, namely equations and
membership axioms. Operator and statement attributes are also intro-
duced. The final part of this chapter is devoted to the use of functional
modules for equational simplification, for which matching modulo ax-
ioms is a fundamental feature.

Chapter 5 describes a hierarchy of data types (non-empty binary trees,
lists, multisets, and sets) obtained by imposing on a binary operator
various equational properties such as associativity, identity, commu-
tativity, and idempotency.

Chapter 6 introduces system modules, and is mainly devoted to rules,
term rewriting, and the search command.

Chapter 7 is an introduction to rule-based programming in Maude by
means of a collection of puzzles that are solved by rewriting and
searching over system modules.

http://maude.cs.uiuc.edu
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Chapter 8 explains the support for modularity provided by Core Maude.
It describes first the different modes of module importation, namely
protecting, extending, and including. Then it introduces the module
summation and renaming operations. Finally, this chapter explains
the powerful form of parameterized programming available in Core
Maude, based on theories and views.

Chapter 9 provides detailed descriptions of the different predefined data
types available, including Booleans, natural numbers, integers, ratio-
nals, floating-point numbers, strings, and quoted identifiers. It also
describes the generic containers provided by Maude, namely lists, sets,
maps, and arrays. The chapter finishes with a description of a built-in
linear Diophantine equation solver.

Chapter 10 describes the equational specification in Maude of typical
generic (i.e., parameterized) data structures, such as stacks, queues,
lists, multisets, binary trees, and general trees, and also more complex
data types, such as sorted lists and search, AVL, 2-3-4, and red-black
trees, whose definitions require membership axioms.

Chapter 11 explains the basic support for object-based programming,
with special emphasis on the standard notation for object systems. It
also describes how communication with external objects is supported
in Core Maude through sockets.

Chapter 12 explains how to use the search command to model check
invariant properties of concurrent systems specified as system modules
in Maude.

Chapter 13 introduces linear temporal logic (LTL) and describes the fa-
cilities for LTL model checking provided by the Maude system. This
procedure can be used to prove properties when the set of states reach-
able from an initial state in a system module is finite. When this is not
the case, it may be possible to use an equational abstraction technique
for reducing the size of the state space.

Chapter 14 presents the reflective capabilities of the Maude system.
The concept of reflection is introduced, and the effective way of sup-
porting metalevel computation is discussed. The predefined module
META-LEVEL and its submodules are presented, with special emphasis
on the descent functions provided. The chapter ends with an intro-
duction to the notion of internal strategies.

Chapter 15 describes Core Maude support of order-sorted unification
modulo axioms such as either commutativity or associativity and
commutativity. The importance of this feature is made explicit in
an overview of several interesting applications of unification, includ-
ing narrowing and symbolic reachability analysis. This chapter also
includes a discussion on endogenous vs. exogenous order-sorted unifi-
cation algorithms.

Chapter 16 shows the power of programming at the metalevel by means
of several metaprogramming applications, including a metalevel imple-



1.7 How to read this book 23

mentation of commutative order-sorted unification and theory trans-
formations for adding instrumentation and for making a system mod-
ule deadlock free.

Chapter 17 introduces Mobile Maude, a mobile agent language extend-
ing Maude and supporting mobile computation, and then describes
its distributed implementation based on sockets.

Chapter 18 explains the way of using the facilities provided by the mod-
ules META-LEVEL and LOOP-MODE for the construction of user interfaces
and metalanguage applications. It also explains how to endow Maude
with interactive capabilities.

Part II. Full Maude.

Chapter 19 explains the nature of Full Maude, and how to use it. This
chapter includes information on how to load Core Maude modules into
Full Maude, on the additional module operations (supported by tuple
generation and parameterized views), and on the facilities available in
Full Maude for moving up and down between reflection levels.

Chapter 20 describes an implementation of narrowing in Full Maude
based on the unification facilities introduced in Chapter 15.

Chapter 21 introduces object-oriented modules, which provide a syn-
tax more convenient than that of system modules for object-oriented
applications, with direct support for the declaration of classes, in-
heritance, and useful default conventions in the definition of rules.
Such object-oriented modules can also be parameterized. This chap-
ter includes several extended examples that illustrate the power of
combining the additional features available in Full Maude.

Part III. Applications and tools.

Chapter 22 gives an overview of some areas of application of rewriting
logic and Maude, emphasizing the applications for which Maude seems
particularly well suited.

Chapter 23 describes some existing Maude-based tools, either for the
analysis of Maude specifications, or for formal analysis in several do-
mains but making use of Maude in some way.

Part IV. Reference.

Chapter 24 discusses debugging and troubleshooting, considering the
different debugging facilities provided: tracing, term coloring, the de-
bugger, and the profiler. A number of traps and known problems are
also commented.

Chapter 25 gives a complete list of the commands available in Maude.
Chapter 26 includes the grammar of Core Maude.

1.7 How to read this book

This book is quite true to its title: it gives a fairly complete account of Maude
in all its aspects. It is almost a Maude encyclopedia. This is in principle a good
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thing, but must be borne in mind when reading the book. Usually, one does not
read an encyclopedia cover to cover. Instead, one is interested in certain topics
and goes directly to the entries for those topics. This style of reading should,
up to a point, be also possible here. However, the complete independence
between voices such as Byzantium and topology in an encyclopedia does not
hold to the same extent between the different parts of this book: there are,
indeed, some obvious inter-relations. Nevertheless, the chapters are written
in as self-contained a manner as possible. Furthermore, they contain cross
references to specific topics in other chapters that are either needed for a
better understanding of the given chapter, or useful to further extend one’s
understanding of it. Therefore, it should often be possible to dive into a given
chapter, using those cross references to fill in just the minimum background
information needed to understand it.

How then should this book be read? The answer should be: as it best fits
your preferences and needs. Since there are many such preferences, we cannot
give an exhaustive list of suggestions for each of them. We can, however, give
some concrete suggestions for three possible, perhaps fairly common, types of
readers:

1. a reader just getting acquainted with Maude may wish to get a first in-
troduction to its main ideas and to get started using Maude as soon as
possible;

2. a reader already familiar with Maude’s basic ideas may then be primarily
interested in using Maude as a programming language, and only secondar-
ily interested in its formal specification and verification aspects;

3. such a reader may instead have the opposite set of preferences: may be
primarily interested in the formal specification and verification aspects of
Maude, and only secondarily in using Maude as a programming language.

Of course, a type (2) or (3) reader may first have been a type (1) reader.
Also, types (2) and (3) may be only caricatures, or just initial biases, since
the whole Maude philosophy is to seamlessly integrate the programming and
formal specification and verification aspects. Therefore, we very much hope
that, no matter what your initial interests were, in the end you will come to
appreciate and use the intimate interplay between programming and formal
reasoning that Maude supports. However, we think that the best way to help
you get there is precisely to help you use this book in a way that addresses your
current needs and interests first. For this purpose, we give below some reading
suggestions corresponding to these three types of readers. These suggestions
are summarized in the diagram of Figure 1.1 in page 29.

Beginners

We try to give you in what follows what we think may be the shortest way for
you to gain a first acquaintance with Maude and to become a Maude user. You
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may want to begin by taking a first quick look at the introduction (this chap-
ter) and the applications chapter (Chapter 22) to get a first bird’s eye view.
Then, we recommend a quick first look at Chapter 2 to get Maude running
on your computer. This could be followed by a quick reading of Sections 3.1–
3.8 in Chapter 3 to get a first acquaintance with Maude syntactic entities.
In a first reading you may skip Section 3.9 on parsing. You may compensate
for your temporary ignorance of parsing details by using two simple rules of
thumb when you run into parsing troubles:

• make sure that each declaration inside a Maude module is ended with a
space followed by a period; and

• add extra parentheses to terms in equations, memberships, and rules (or
to terms for evaluation) to avoid parsing ambiguities.

After reading Sections 4.1–4.3 on functional modules and taking a quick
look at uses of the reduce command in Section 4.9, you should be able to
write some simple functional modules on your own. Try defining some simple
data structures such as lists or trees yourself, and defining also various func-
tions manipulating such data structures by giving the appropriate equations
in a functional module. Then, after getting Maude to accept your module and
solving any parsing errors, test the correctness of your function definitions
by evaluating appropriate expressions with the reduce command. In a first
reading you may skip most of Section 4.4, except for Section 4.4.1 on equa-
tional attributes. Then, you could read Sections 4.7 and 4.8 to gain a better
understanding of the matching and simplification processes involved in evalu-
ating terms with the reduce command, particularly when they are performed
modulo axioms such as associativity, commutativity, and identity. Again, you
should then experiment defining new functional modules of your own that
use some of the assoc, comm, and id: attributes. You may then wish to read
Section 4.11 to gain a better feeling for the use of subsorts.

After this, you may want to read Sections 6.1, 6.2, and 6.4 to learn
the basics about system modules and their computations with the rewrite,
frewrite, and search commands. You may follow this up with a look at some
more examples in Section 6.5. You should again develop several system mod-
ules of your own, and test them by entering them in Maude and performing
several rewrite, frewrite, and search commands.

Chapter 9 should be read as a reference: sooner or later you will need to
use some of Maude’s predefined modules, so you can read about each of them
when the need arises.

If you have done all this, something achievable in a relatively short time,
you will already be a Maude user, and you will have gained a pretty good
basic understanding of what Maude is and how to use it. Hopefully, you will
also be itching to learn many other things about it.
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Maude programmers

Let us assume that you passed the beginner level, either by following our
suggestions above or in some other way. Let us also assume that your main
interest is in using Maude as a programming language. What should you read
next? You may now want to go back and read Section 3.9 on parsing. You
may also want to read all the sections of Chapter 4 that you skipped in a first
reading. In fact, Chapter 4 is very important and you should understand it
inside and out. This can be followed by a look at Chapter 5; this may give
you a chance to compare your own solutions to develop Maude programs for
common data structures with some solutions presented there. Likewise, you
may want to read all the sections you skipped in a first reading of Chapter 6
(presumably this was just Section 6.3) to gain a full understanding of the
basics of system modules. This can be followed by a reading of Chapter 7,
which may hopefully stimulate you to develop some other games of your own.

After this, a careful reading of Chapter 8 on module operations should
be quite profitable. In particular, the parameterized programming supported
in Maude—which from a type-theoretic perspective combines so-called para-
metric polymorphism and the parametricity of dependent types, and from a
software perspective corresponds to so-called generic programming—is a very
powerful feature and can be used to greatly increase program modularity and
reuse. This can be followed by a reading of Sections 9.11–9.13, to become fa-
miliar with a useful library of predefined parameterized modules. This may be
a good moment to try defining various parameterized modules on your own,
for example for other advanced data structures, comparing your solutions with
those in Chapter 10, which may also help your appreciation of using subsorts
and membership axioms to handle partial operations. Chapter 11 is a must,
both to understand how Maude supports object-based programming, and to
become familiar with the programming of external objects such as internet
sockets. Again, developing some object-based modules on your own should
help you consolidate your understanding.

The next big topic is Chapter 14 on reflection. From the programming
point of view this is one of Maude’s most powerful features, but also one of
the most demanding. Therefore this chapter, and the examples in it and in
the followup Chapter 16 should be studied carefully; then you can experiment
developing powerful reflective applications yourself. To complete your train-
ing as an advanced Maude programmer, we recommed studying Chapter 17,
which combines techniques of distributed programming in Chapter 11 with re-
flection techniques in Chapter 14, and Chapter 18 on how to build interactive
applications.

Formal methods users

If you have already passed the beginner level but your main interest is in for-
mal specification and verification, you may want to take a look at Chapter 23
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to get a first impression of the tools available in the Maude environment and
also to get a feeling for other tools that you might want to develop yourself,
not just for Maude, but for other languages and logics as well. Then you should
go back to Chapter 4 and read it in full detail, making sure you understand
the more theoretical sections. Likewise, you should go back to Chapter 6 and
understand more theoretical sections like 6.3 that you may have skipped in a
first reading.

Chapter 8 on module operations is also important. Specifications should be
as modular and as generic as possible, because this can greatly reduce the ver-
ification effort. In particular, you should become familar with parameterized
modules, and with the use of theories and views to assert possibly nonexe-
cutable specifications. After this, you may wish to study how object-oriented
specification is supported in Maude. For this, we recommed that you read
Chapter 11, complementing it with a reading of Chapter 21 on Full Maude’s
object-oriented modules.

After this, a next possible step would be studying Chapters 12 and 13
on model checking of invariants and of general LTL properties. Of course,
all along you should have developed examples of your own: both executable
specifications of interesting systems, and verification of properties such as
invariants and LTL properties. If you are interested in the verification of pro-
grams in conventional languages, you might take Section 13.6 as an invitation
and starting point for developing the semantics of a programming language
of your choice in Maude yourself. In this way, you can get powerful program
analysis tools for such a language essentially for free. You may wish to benefit
from the experience already gained for Java and the JVM, which is reported
in Sections 23.2.5 and 23.2.6. The next natural step would be to get familiar
with other tools in Maude’s formal environment by re-reading Section 23.1,
downloading some of the tools described there and their documentation, and
performing various verification efforts supported by those tools.

If you are interested not only in using formal tools, but also in developing
new formal tools of your own using Maude, you may want to become a Maude
programmer. For tool-building purposes reflection is likely to be a very useful
and powerful technique to master; therefore, studying carefully Chapter 14
on reflection and Chapter 16 on metaprogramming applications should be a
must. You will also need to learn about developing user interfaces by study-
ing Chapter 18. Other than that, all we have already suggested for Maude
programmers should also be useful to you sooner or later.

Teaching

The reading paths suggested above can also be a good basis for using this book
as a textbook in various courses at the undergraduate or graduate levels. For
example, a declarative programming course could be organized by selecting
material from the “Maude programmers” path. Similarly, the “formal meth-
ods” path can be used as a basis for courses on program verification and
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formal methods. Indeed, one of us (Meseguer) has essentially followed this
path—complemented with more theoretical material on the deductive and
model-theoretic aspects—in one-semester graduate courses on these subjects
at the University of Illinois at Urbana-Champaign, and for shorter courses at
the University of Pisa and various summer schools.
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Using Maude

2.1 Getting Maude

The Maude system is available, free of charge, under the terms of the GNU
General Public License as published by the Free Software Foundation, at the
Maude home page (a snapshot is shown in Figure 2.1)

http://maude.cs.uiuc.edu

There you can also find documentation about Maude, including a Maude
primer, some papers on Maude and rewriting logic, and several Maude appli-
cations, including a set of proving tools for Maude specifications and Maude
case studies.

Maude binaries are provided for selected architectures and operating sys-
tems, including Linux and MacOS X. Detailed information on this can be
found in the Maude web site, where installation instructions are also avail-
able.

The companion cd-rom contains the latest version of Maude available at
the time of writing, together with the complete source code of all the examples
in this book.

2.2 Running Maude

A Maude session can be started by calling the maude.linux binary in the
maude-linux/bin directory in a Linux shell window (and similarly for other
platforms). For example, we can move into that directory and then invoke
Maude, obtaining a banner similar to the following, where we can see the ver-
sion of the system being executed, the date it was built, copyright information,
and the current date.
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Fig. 2.1. Maude home page at maude.cs.uiuc.edu

~/maude-linux/bin$ ./maude.linux

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.7 built: Mar 3 2014 18:07:27

Copyright 1997-2014 SRI International

Tue Jul 15 22:57:15 2014

Maude>

The Maude system is now ready to accept Maude modules and commands
(see Chapter 25 for a complete list of Maude commands). During a Maude
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session, the user interacts with the system by entering a request at the Maude
prompt. For example, one can quit:

Maude> quit

q may be used as an abbreviation of the quit command. But please, do not
leave us so soon! One can also enter modules and use other commands. For
example, we can enter the following module SIMPLE-NAT, which specifies the
natural numbers in Peano notation with a plus operation _+_ on them.1

Maude> fmod SIMPLE-NAT is

sort Nat .

op zero : -> Nat .

op s_ : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

vars N M : Nat .

eq zero + N = N .

eq s N + M = s (N + M) .

endfm

Fortunately, we do not need to write our modules in the prompt. We can input
one or several modules by saving them in a file and then entering the file with
the in or load commands (the only difference between both commands is that
the latter does not produce detailed output as modules are entered). Assuming
that the file my-nat.maude contains the module SIMPLE-NAT above, we can
do the following to enter it:

Maude> load my-nat.maude

After entering the module SIMPLE-NAT into Maude, we can, for example, re-
duce the term s s zero + s s s zero (which is the equivalent in Peano
notation of the more usual 2 + 3) as follows:

Maude> reduce in SIMPLE-NAT : s s zero + s s s zero .

reduce in SIMPLE-NAT : s s zero + s s s zero .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Nat: s s s s s zero

It is not necessary to give the name of the module in which to reduce a term
explicitly. All commands that require a module refer to the current module
by default, unless a module is explicitly given. The current module is usually
the last module entered or used, although we can use the select command
to select a module to be the current one (see Section 25.13).

Maude> reduce s s zero + s s s zero .

reduce in SIMPLE-NAT : s s zero + s s s zero .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Nat: s s s s s zero

1 We do not display the ‘>’ symbol that Maude adds at the beginning of each line.
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Any action happening in the Maude system can be interrupted by typing
control-C. In particular, by hitting control-C during a reduction in progress,
such reduction is interrupted and the system gets into debugging mode (see
Section 24.1.3).

Although it is not the case in the simple examples above, sometimes we
get a very big term as output from Maude. In some cases, in order to make it
easier to read and understand, we edit the presentation of the outputs given
by Maude.

When you execute maude.linux, the file prelude.maude, which includes
several predefined modules (see Chapter 9), is automatically loaded. To find
prelude.maude, the Maude interpreter checks for it in several directories, in
the following order:

1. the directories specified in the MAUDE_LIB environment variable,
2. the directory containing the executable, and
3. the current directory.

It is a good idea to include the path to prelude.maude in the MAUDE_LIB

environment variable to be sure that it will always be found, because the
executable finding code may not find the directory containing the executable.

Among the predefined modules included in prelude.maude we find a mod-
ule STRING that declares sorts and operations for manipulating strings. In
particular, STRING introduces the operation _+_ to concatenate two strings.
Then, to concatenate the strings “hello”, “ ”, and “world”, you can type at the
Maude prompt the following red (which is the abbreviated form of reduce)
request:

Maude> red in STRING : "hello" + " " + "world" .

reduce in STRING : "hello" + " " + "world" .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result String: "hello world"

Actually, although STRING is not the current module right after starting
the system, it is imported by the current one, CONVERSION. Thus, we can type
the following, just after starting Maude:

Maude> red "hello" + " " + "world" .

reduce in CONVERSION : "hello" + " " + "world" .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result String: "hello world"

Notice that Maude makes explicit the module in which the term is reduced,
even when no module name is given by the user.

As said above, to load for example a user-defined module HELLO-WORLD for
a Maude session, you can either type at the Maude prompt the whole module
or simply type the following in-troduce request:

Maude> in hello-world
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where hello-world is a text file in the current directory containing the module
HELLO-WORLD.

For files specified by a bare file name, Maude also checks for files with
.maude, .fm, and .obj extensions. Maude can also be told using the MAUDE_LIB
environment variable about other directories to use to search for files. Thus
to find a file specified in the in command, Maude searches, in order:

1. the current directory,
2. the directories in the MAUDE_LIB environment variable, and
3. the directory containing the executable.

If the desired file is in none of these places you must type its full path name.
As for user-defined modules, user requests such as the above can either be

typed at the Maude prompt or simply in-troduced with a text file containing
them. In fact, many users run Maude inside an Emacs-like editor, since this
provides both text editing facilities for creating Maude modules and saving
them in files, and also UNIX shell interaction to start a Maude session and to
in-troduce during the session modules and commands created and saved in
files, as shown in Figure 2.2.

Note that text files entered in Maude can contain not only modules, but
also any command. Actually, a file can contain as many modules and com-
mands as one wishes. When entering it with an in or load command, Maude
will read them one after another as if they were written at the prompt of
the system. Another important issue worth pointing out is that we can write
single line and multiline comments anywhere inside a module or a file. Single
line comments are started by either *** or ---, and ended by the end of line.
Multiline comments are started by ***( and ended by ). Parentheses must
balance within multiline comments.

2.3 Getting support and more information

We maintain the following mailing lists related to Maude:

• maude-users@maude.cs.uiuc.edu. A moderated list for the discussion
of topics of general interest to all Maude users. This list is typically low-
traffic, and contains items such as calls for papers, announcements of new
Maude related papers, and notifications of new releases of Maude. It is
important that you subscribe to this list if using Maude, as this is the
mechanism by which we will make important announcements about the
system. To subscribe, or to view the archived messages, please go to

http://maude.cs.uiuc.edu/mailman/listinfo/maude-users/

• maude-help@maude.cs.uiuc.edu. This is an alias for submitting ques-
tions about any aspect of the use of Maude. Messages are distributed to
a group of experienced users who have offered to provide help. This list is
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Fig. 2.2. Running Maude inside Emacs

not open for subscription, but you can send messages to this list at any
time. Questions posted here will be automatically archived at

http://maude.cs.uiuc.edu/pipermail/maude-help/

• maude-bugs@maude.cs.uiuc.edu. A list for reporting any problems you
experience with Maude (see below), and also any suggestions for enhance-
ments and improvements.

2.4 Reporting bugs in Maude

As already mentioned, bug reports should be sent to

maude-bugs@maude.cs.uiuc.edu

When submitting a bug report, please include the following information:

1. Example to reproduce the bug. Ideally this should be a single file that
reproduces the bug by loading it. If your example is large and spread
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out in multiple files, have a file top.maude that loads files and executes
commands as necessary to reproduce the bug. Send all the files as a tar
archive, optionally compressed with gzip.
If Maude’s output is not obviously wrong (for example, an “internal error”
message), include an explanation of why the output is wrong.
If you choose to simplify the example, note that a short runtime to expose
the bug is desirable. A small example text is mostly unimportant unless
it is necessary to understand such example text in order to understand
why Maude’s output is incorrect.

2. Version of Maude used. Make sure you provide information of the concrete
release of Maude (and Full Maude if it is the case). If you are not using
one of the ready-made binaries released by the Maude team, also give the
versions of the compiler and tools used to build it and the libraries linked
against.

3. Platform. Include the operating system type and version number, as well
as the processor type.
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Syntax and Basic Parsing

This chapter introduces the basic syntactic ingredients of all Maude specifica-
tions: identifiers, module names, sort names, and operator declarations. Other
syntactic parts of Maude specifications, like equations and rules, will appear
in the following chapters.

Some syntax is presented in an informal way by means of general schemes;
a formal BNF grammar of the language can be found in Chapter 26.

The chapter finishes explaining some features that can be used to reduce
parsing ambiguities in the user-definable syntax, including mixfix operator
declarations, supported by Maude.

3.1 Identifiers

In Core Maude, identifiers are the basic syntactic elements, used to name
modules and sorts, and to form operator names. For example, NAT, Nat, and
hello-world are identifiers. In general, an identifier in Maude is any finite
sequence of ASCII characters such that:

• It does not contain any white space. For example, the sequence ‘abc def’
is not one identifier, but two.
• The characters ‘{’, ‘}’, ‘(’, ‘)’, ‘[’, ‘]’ and ‘,’ are special, in that they

break a sequence of characters into several identifiers. For example, the
sequence ab{c,d}ef counts as seven identifiers, namely, ab, {, c, ,, d, },
and ef.
• The backquote character ‘‘’ is used as an escape character to indicate

that a blank space or the special characters do not break the sequence.
Consequently, backquotes can only appear immediately before any of the
special characters, or between two non-empty strings of characters—with
neither the ending of the first string nor the beginning of the second
string being another backquote—for exactly these purposes. For example,
1‘ab‘{c‘,d‘}ef is a single identifier. Maude’s pretty printer will display
such an identifier in the form 1 ab{c,d}ef.
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Nonprinting characters in strings use C backslash conventions [206, Section
A2.5.2].

3.2 Modules

In Maude the basic units of specification and programming are called mod-
ules.1 A module consists of syntax declarations, providing appropriate lan-
guage to describe the system at hand, and of statements, asserting the prop-
erties of such a system. The syntax declaration part is called a signature and
consists of declarations for:

• sorts, giving names for the types of data,
• subsorts, organizing the data types in a hierarchy,
• kinds, that are implicit and intuitively correspond to “error supertypes”

that, in addition to normal data, can contain “error expressions,” and
• operators, providing names for the operations that will act upon the data

and allowing us to build expressions (or terms) referring to such data.

We use symbols Σ,Σ′, etc. to denote signatures.
In Core Maude there are two kinds of modules: functional modules and

system modules. Signatures are common for both of them. The difference
between functional and system modules resides in the statements they can
have:

• functional modules admit equations, identifying data, and memberships,
stating typing information for some data, while

• system modules also admit rules, describing transitions between states, in
addition to equations and memberships.

We use E,E′, etc. to denote sets of equations and memberships, and R,R′,
etc. to denote sets of rules.

From a programming point of view, a functional module is an equational-
style functional program with user-definable syntax in which a number of
sorts, their elements, and functions on those sorts are defined. From a spec-
ification viewpoint, a functional module is an equational theory (Σ,E) with
initial algebra semantics. Functional modules are described in detail in Chap-
ter 4, here we just discuss some of their top-level syntax. Each functional
module has a name, which is a Maude identifier. Any Maude identifier can be
used, but the preferred style for module names is an all capitalized identifier,
and in the case of a compound name the different parts are linked with hy-
phens. For example, a module defining numbers and operations on them can
be called NUMBERS. The top-level syntax will then be

1 As explained in Section 8.3.1, specifications can also be given in theories, with a
syntax entirely similar to that of modules, but theories, unlike modules, need not
be executable.



3.3 Sorts and subsorts 43

fmod NUMBERS is

...

endfm

with ‘. . .’ corresponding to all the declarations of submodule importations,
sorts, subsorts, operators, variables, equations, and so on.

From a programming point of view, a system module is a declarative-
style concurrent program with user-definable syntax. From a specification
viewpoint, it is a rewrite theory (Σ,E, φ,R) (where φ specifies the frozen
arguments of operators in Σ; see Section 4.4.9) with initial model semantics.
Again, each system module has a name, which is a Maude identifier. And as
for functional modules, the preferred style is an all capitalized name, with
consecutive parts linked with hyphens in the case of compound names. For
example, a module specifying the behavior of a vending machine may be called
VENDING-MACHINE. It will then be introduced with the following top-level syn-
tax:

mod VENDING-MACHINE is

...

endm

where again ‘. . .’ corresponds to all the declarations of submodule importa-
tions, sorts, subsorts, operators, variables, equations, rules, and so on. System
modules are described in detail in Chapter 6.

In the rest of the chapter we will describe the ingredients of signatures, that
is, the syntactic elements common to both functional and system modules,
such as sorts, subsorts, kinds, operators, variables, and the terms that can be
built on a signature, postponing the discussion about the syntax specific to
functional and system modules to Chapters 4 and 6, respectively.

3.3 Sorts and subsorts

The first thing a specification needs to declare are the types (that in the
algebraic specification community are usually called sorts) of the data being
defined and the corresponding operations. Sorts can be partially ordered via
a subsort relation.

A sort is declared using the sort keyword followed by an identifier (the
sort name), followed by white space and a period, as follows:

sort 〈Sort 〉 .

and multiple sorts may be declared using the sorts keyword, as follows:

sorts 〈Sort-1 〉 ... 〈Sort-k 〉 .
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The period at the end of the sort declaration, as for the other types of
declarations, is crucial. Note that if either the period is missing or no space is
left before and after the period, there can be parsing problems or unintended
behavior. For example, the following declaration is syntactically correct but
causes an unintended interpretation because of a missing ‘.’, since this way
sorts A, B, sort, and C are declared.

sorts A B

sort C .

Note also that the keywords sort and sorts are synonyms. One may use
sort for multiple sort declarations and sorts for single ones, although we do
not encourage this style.

For example, we can declare sorts Zero, NzNat, and Nat in the NUMBERS

module, either one at a time

sort Zero .

sort NzNat .

sort Nat .

or all at once

sorts Zero Nat NzNat .

The identifiers <, ->, and ~> cannot be used as sort names. Moreover,
identifiers used for sorts cannot contain any of the characters ‘:’, ‘.’, ‘[’, or
‘]’. The reasons for these restrictions will become clear below in this section
and in Sections 3.4, 3.5, and 14.2.1. The use of ‘{’, ‘}’, and ‘,’ is only allowed
in structured sort names (see below). Although any so restricted identifier
is a legal sort name, the preferred style is to capitalize the first letter of
the name. Furthermore, in the case of a compound name, such as a sort of
nonzero naturals, the names (each with the first letter capitalized) or suitable
abbreviations will be juxtaposed without spaces or hyphens, like, for example,
NzNat.

A sort name can also be structured. Structured sort names are used in
parameterized modules; for example, we may use List{X} for a parameterized
list sort with parameter X and List{Nat} for its instantiation to lists of natural
numbers (see Section 8.3.3). A structured sort name contains at least one pair
of curly brace symbols ‘{’ and ‘}’, and is constructed according to the following
BNF grammar, without any white space between terminals:

〈Sort 〉 ::= 〈sort identifier 〉
| 〈Sort 〉 { 〈SortList 〉 }

〈SortList 〉 ::= 〈Sort 〉
| 〈SortList 〉 , 〈Sort 〉

Notice that structured sorts are allowed to contain ‘{’, ‘,’ and ‘}’ but only
in accordance with the above grammar. Thus all the following are structured
sort names:
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a{X}

a{X, Y}

a{b, c{d}}{e}

a{(}

while the following are not legal sort names:

{X} (lacks sort identifier prefix)
a(X, Y) (‘,’ not inside braces)
a{b, {d}}{e} ({d} lacks sort identifier prefix)
a({) (‘{’ without closing ‘}’)

Structured sort names can be written in an equivalent single-identifier
form by using backquotes. For example, the sort a{b, c{d}}{e} may be
written as a‘{b‘,c‘{d‘}‘}‘{e‘}. Hybrid notation such as in a{b‘,c} is not
allowed. When backquotes are omitted, the sort name becomes a sequence
of tokens according to Maude’s usual tokenization rules and arbitrary white
space may be inserted between tokens. For example, Foo‘{X‘,Y‘}, Foo{X,Y},
and Foo{X, Y} are three equivalent forms for the same structured sort name.

Structured sort names must be written in their equivalent single-identifier
form inside operator hooks (see Chapter 9) or in metasyntax (see Chapter 14).

Apart from their special syntax and their use as parameterized sorts in
parameterized modules (see Section 8.3.3), structured sort names behave just
like sort identifiers.

The subsort relation on sorts parallels the subset relation on the sets of
elements in the intended model of these sorts. Subsort inclusions are declared
using the keyword subsort. The declaration

subsort 〈Sort-1 〉 < 〈Sort-2 〉 .

states that the first sort is a subsort of the second. For example, the declara-
tions

subsort Zero < Nat .

subsort NzNat < Nat .

specify that the sorts Zero (containing only the constant 0) and NzNat (the
nonzero natural numbers) are subsorts of Nat, the natural numbers. More
than one subsort relationship can be declared using the keyword subsorts,
as follows:

subsorts 〈Sort-1 〉 ... 〈Sort-j 〉 < ... < 〈Sort-k 〉 ... 〈Sort-l 〉 .

Then, the above declarations can be given in a single declaration as follows:

subsorts Zero NzNat < Nat .

If we extend NUMBERS with sorts Int and NzInt we can express the addi-
tional subsort relationships compactly by
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sorts NzInt Int .

subsorts NzNat < NzInt Nat < Int .

A set of subsort declarations must define a partial order among the set of
sorts. For this to be true, the user is required to avoid cycles in the subsort
declarations. For example, if a sort A is declared as a subsort of B, and B is
declared as a subsort of A, we would have a cycle.

Note that the partial order of subsort inclusions partitions the set of sorts
into connected components, that is, into sets of sorts that are directly or indi-
rectly related in the subsort ordering. For example, all the above sorts Zero,
Nat, NzNat, NzInt, and Int belong to the same connected component in the
subsort ordering, whereas a sort Bool would clearly belong to a different con-
nected component and could have other sorts, for example a supersort Prop

of propositions, related to it in the same component. Intuitively, connected
components gather together related sorts of data such as numerical data,
truth-value data, and so on. Graphically, we can visualize the partial order of
subsort inclusions as an acyclic graph (the corresponding Hasse diagram), and
then the connected components are exactly those of the underlying graph, as
in the following example:

Zero NzNat

Nat NzInt

Int

Bool

Prop

�� @@ ��

�� @@

3.4 Operator declarations

In a Maude module, an operator is declared with the keyword op followed by
its name, followed by a colon, followed by the list of sorts for its arguments
(called the operator’s arity or domain sorts), followed by ->, followed by
the sort of its result (called the operator’s coarity or range sort), optionally
followed by an attribute declaration (the discussion of operator attributes is
postponed to Section 4.4), followed by white space and a period. Thus the
general scheme has the form

op 〈OpName 〉 : 〈Sort-1 〉 ... 〈Sort-k 〉 -> 〈Sort 〉 [〈OperatorAttributes 〉] .

Here are some operator declarations for our NUMBERS module.

op zero : -> Zero .

op s_ : Nat -> NzNat .

op sd : Nat Nat -> Nat .

ops _+_ _*_ : Nat Nat -> Nat .
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If the argument list is empty, the operator is called a constant. Thus zero
is a constant.

The name of the operator is a string of characters that may consist of
several identifiers, due to the presence of blanks or other special characters.
Underscores (_) play a special role in these strings. If no underscore character
occurs in the operator string—as in the case of the operator sd above—then
the operator is declared in prefix form. If underscore characters occur in the
string, then their number must coincide with the number of sorts declared
as arguments of the operator (in particular, constant names cannot include
any underscore character). The operator is then in mixfix form, with the n-th
underscore indicating the place where arguments of the n-th sort must be
placed in expressions formed with that operator. In the above example the
operators s_, _+_, and _*_ are in mixfix form.

There may or may not be any other characters before or after any of the
underbars. If no other characters appear, we say that the operator has been
declared with empty syntax. For example, we could declare a sort NatSeq of
sequences of natural numbers formed with empty syntax as follows:

sort NatSeq .

subsort Nat < NatSeq .

op __ : NatSeq NatSeq -> NatSeq [assoc] .

where assoc is an attribute declaring that sequence concatenation is associa-
tive (see Section 4.4.1). With this operator declaration we can write number
sequences such as

zero (s zero) (s s zero)

Operators having the same arity and coarity can be declared simultane-
ously by using the keyword ops and giving the non-empty list of their cor-
responding names after the ops keyword and before the :, as is done for the
declarations of _+_ and _*_ in the example above.

An operator can also be declared using several identifiers. This can be due
to the presence of special characters, or to blank spaces, or both. Consider for
example the operator declaration

op [_] and then [_] : Command Command -> Command .

that may allow a natural language style in the syntax of a programming lan-
guage. It uses eight identifiers in the Maude sense, but declares a single binary
operator, with the underscores indicating the place of the arguments in the
mixfix notation. Internally, Maude also associates to this operator a corre-
sponding single-identifier form by using backquotes. We could have equiva-
lently defined the operator using the single-identifier form, namely,

op ‘[_‘]and‘then‘[_‘] : Command Command -> Command .
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Of course, both variants are equivalent and have the same mixfix display, but
the version without backquotes is obviously more convenient.2

The declaration of an operator requires an extra pair of parentheses if we
already use parentheses as part of the syntax of the operator. Suppose we had
in a programming language a binary operator (_ only after _). Then, we
have to declare it as follows:

op ((_ only after _)) : Command Command -> Command .

Since an operator may be declared using several identifiers, in an ops dec-
laration involving several operators each operator declaration can be enclosed
in parentheses if necessary, to indicate where the syntax of each operator
begins and ends. We could have declared both operators together, as follows:

ops ([_] and then [_]) ((_ only after _)) :

Command Command -> Command .

Thus, one or several Maude identifiers can be used in operator decla-
rations. Regarding style, the preferred one, particularly for single-identifier
operators with prefix syntax, is to use lower case names. However, for a com-
posed name such as a meta parse operator, the subsequent names will be
juxtaposed and will typically begin with a capital letter to enhance readabil-
ity, e.g., metaParse.

3.5 Kinds

The equational logic underlying Maude is membership equational logic [248,
31]. In this logic sorts are grouped into equivalence classes called kinds. For
this purpose, two sorts are grouped together in the same equivalence class if
and only if they belong to the same connected component. Maude sorts are
user-defined, while kinds are implicitly associated with connected components
of sorts and are considered as “error supersorts.” Terms (see Section 3.8) that
have a kind but not a sort are understood as undefined or error terms.

In Maude modules, kinds are not independently and explicitly named.
Instead, a kind is identified with its equivalence class of sorts and can be
named by enclosing the name of one or more of these sorts in square brackets
[...]; when using more than one sort, they are separated by commas.

For example, suppose we add a partial predecessor function to our NUMBERS
module,

op p : NzNat -> Nat .

2 In Full Maude, operator names in operator declarations must be given as sin-
gle identifiers. Multiple-identifier names are also supported, but their equivalent
single-identifier form must be used in their declarations.
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Then Maude will parse the term p(zero) and assign it the kind [Nat], or
equivalently [NatSeq] or also [Nat, NatSeq], since the sorts Nat and NatSeq

belong to the same connected component. Although any sort, or list of sorts
in the connected component, can be enclosed in brackets to denote the corre-
sponding kind, Maude uses a canonical representation for kinds; specifically,
Maude prints the kind using a comma-separated list of the maximal elements
of the connected component.

The Maude system also lifts automatically to kinds all the operators in-
volving sorts of the corresponding connected components to form error ex-
pressions. Such error expressions allow us to give expressions to be evaluated
the benefit of the doubt : if, when they are simplified, they have a legal sort,
then they are okay; otherwise, the fully simplified error expression is returned,
which the user can interpret as an error message. Equational simplification
can also occur at the kind level, so that operators can map error terms to
defined terms, which may be useful for error recovery.

It is also possible to explicitly declare operators at the kind level. This
corresponds to declaring a partial operation, which is defined for those ar-
gument values for which Maude can determine that the resulting term has a
sort. Note that the operation is considered to be total at the kind level. As
an example, consider the following fragment of a graph specification:

sorts Node Edge .

ops source target : Edge -> Node .

sort Path .

subsort Edge < Path .

op _;_ : [Path] [Path] -> [Path] .

The sorts Node and Edge, along with the source and target operators
mapping edges to nodes, axiomatize the basic graph concepts. The sort Path is
intended to be the paths through the graph, sequences of edges with the target
of one edge being the source of the next edge. Edges are singleton paths, and
_;_ denotes the partial concatenation operation, indicated by giving kinds
rather than sorts in the argument list. Later, in Section 4.3, we will see how
to specify when a sequence of edges has sort Path.

To emphasize the fact that an operator defined at the kind level in gen-
eral defines only a partial function at the sort level, Maude also supports a
notational variant in which an (always total) operator at the kind level can
equivalently be defined as a partial operator between sorts in the correspond-
ing kinds, with syntax ‘~>’ instead of ‘->’ to indicate partiality. For example,
the above operator declaration can be equivalently specified by

op _;_ : Path Path ~> Path .

More generally, the partial operator declaration

op 〈OpName 〉 : 〈Sort-1 〉 ... 〈Sort-k 〉 ~> 〈Sort 〉 .

is equivalent to the total operator declaration at the kind level
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op 〈OpName 〉 : [〈Sort-1 〉] ... [〈Sort-k 〉] -> [〈Sort 〉] .

3.6 Operator overloading

Operators in Maude can be overloaded, that is, we can have several operator
declarations for the same operator with different arities and coarities. Con-
sider extending our number module with a new sort Nat3 (of natural numbers
modulo 3), constants 0, 1, and 2 of sort Nat3, and two further operator dec-
larations for _+_.

op _+_ : NzNat Nat -> NzNat .

sort Nat3 .

ops 0 1 2 : -> Nat3 .

op _+_ : Nat3 Nat3 -> Nat3 .

Now _+_ is overloaded, having three declarations. However, there are two
different kinds of overloading present in the example. The additional declara-
tion of _+_ with first argument NzNat is an example of subsort overloading.
Here the two _+_ operators on Nat and NzNat are supposed to have the same
behavior on their shared argument values, that is, the operator on the subsort
NzNat is the restriction of the operator on the larger sort Nat. The main point
of such declarations is to give more sort information, for example that the re-
sult of adding a nonzero natural number to any natural number is nonzero.
Many more examples of this form of overloading can be found in the prede-
fined data modules for the number hierarchy (Chapter 9) and in other modules
throughout the book.

In contrast, the sorts Nat and NzNat on the one hand, and the sort Nat3

on the other belong to two different connected components in the subsort
ordering and therefore natural number addition and addition modulo 3 are
semantically unrelated. This form of overloading is called ad-hoc overload-
ing. Both subsort and ad-hoc overloading of operators are allowed in Maude.
However, to avoid ambiguous expressions we require that if the sorts in the
arities of two operators with the same syntactic form are pairwise in the same
connected components, then the sorts in the coarities must likewise be in the
same connected component.

Strictly speaking, this requirement would rule out ad-hoc overloaded con-
stants. For this reason, we have declared two different constants zero and 0 for
the corresponding zero elements. However, this requirement can be relaxed,
and it is often natural to do so. For example, the constants of a parameterized
module (see Chapter 8.3) can appear in many different connected components
for different instances of the module, and it may be cumbersome to rename
them all. To allow this relaxation, constants—and, more generally, terms (see
Section 3.8)—can be qualified by their sort, by enclosing them in parenthe-
ses followed by a dot and the sort name. In this way, we could have instead
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declared 0 as an ad-hoc overloaded constant for natural numbers and for nat-
ural numbers modulo 3, and could then disambiguate the expression 0 + 0 by
writing, for example, 0 + (0).Nat and 0 + (0).Nat3, or (0 + 0).Nat and
(0 + 0).Nat3.

3.7 Variables

A variable is constrained to range over a particular sort or kind. Variables can
be declared on-the-fly in Maude with syntax consisting of an identifier (the
variable name), a colon, and another identifier (its sort) or kind expression
(its kind). For example, N:Nat declares a variable named N of sort Nat, and
X:[Nat] declares a variable named X of kind [Nat].

The scope of an on-the-fly variable declaration is the declaration’s occur-
rence. Thus each such variable must be accompanied by its sort or kind.

A variable can also be declared in a module using the keyword var followed
by an identifier (the variable name), followed by a colon with white space
before and after, followed by an identifier (its sort) or kind expression (its
kind), followed by white space and a period.

var N : Nat .

var X : [Nat] .

The scope of such a declaration is the entire module. It has the effect of
replacing occurrences of N and X by the on-the-fly versions N:Nat and X:[Nat].

Multiple variables of the same sort can be declared using the keyword
vars.

vars M N : Nat .

vars X Y : [Nat] .

Both upper and lower case names for variables are possible. However, upper
case variable names are more customary in Maude. The syntactic conventions
for the acceptable names of variables in variable declarations are the same
as those for constant operators, that is, for operators with empty arity. In
particular, the underscore ‘ ’ cannot be used in the name of a variable, but
the colon ‘:’ can; thus the scanning for ‘:’ in order to extract the appropriate
sort or kind from an on-the-fly variable declaration is done from right to left.

3.8 Terms and preregularity

A term is either a constant, a variable, or the application of an operator to
a list of argument terms. The sort of a constant or variable is its declared
sort. In the application of an operator, the argument list must agree with the
declared arity of the operator. That is, it must be of the same length, and



52 3 Syntax and Basic Parsing

each term must have sort (or at least kind) in the connected component of the
corresponding declared argument sort. Using prefix form—which can always
be used for any operator, regardless of having been declared with either prefix
or mixfix syntax—the syntax of operator application is the operator’s name
followed by ‘(’, followed by a list of argument terms separated by commas,
followed by ‘)’. Here are some examples of prefix notation from our numbers
module.

s_(zero)

s_(sd(N:Nat, M:Nat))

p(s_(zero))

_+_(N:Nat, M:Nat)

The application of an operator declared with mixfix form also has a mix-
fix syntax: the operator’s mixfix name with each underscore replaced by the
corresponding term from the argument list. The mixfix form of the above
examples is

s zero

s sd(N:Nat, M:Nat)

p(s zero)

N:Nat + M:Nat

The kind of a term is the result kind of its topmost operator. For exam-
ple, the kind of p(s zero) is [Nat], since Nat is the result sort of p. If a
module’s grammar is unambiguous (see the discussion on parsing in the fol-
lowing section), then each term has a single kind. But we can also associate
sorts to terms. In general, even if the grammar is unambiguous, a term may
have several sorts, due to the subsort ordering. Specifically, constants have
the sort they are declared with and any supersort of it. Given a term of the
form f(t1, . . . , tn), if ti has sort si for i = 1, . . . , n and there is an operator
declaration f : s1 . . . sn → s, then the term f(t1, . . . , tn) has sort s and any of
its supersorts. For example, in our example NUMBERS module the term s s 0

has sorts NzNat and Nat.
A very desirable property of a module is that each term has a least sort that

can be assigned to it. Such a least sort gives us the most detailed information
on how to classify such a term as a data element. For example, the least sort
of the term s s 0 is NzNat, and this gives us the most precise classification of
such a term in the sort hierarchy. Given an arbitrary signature Σ, we can have
terms that fail to have a least sort. However, if Σ satisfies a simple syntactic
property called preregularity [173], we can guarantee that anyΣ-term will have
a least sort. We call Σ preregular if for each n, given an n-argument function
symbol f and sorts s1, . . . , sn such that f(x1 : s1, . . . , xn : sn) is a well-
formed Σ-term, then there is a least sort s among all the sorts s′ appearing in
(possibly overloaded) operator declarations of the form f : s′1, . . . , s

′
n −→ s′

in Σ such that for 1 ≤ i ≤ n we have si ≤ s′i. For example, the signature
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sorts A B C D .

subsorts A < B C < D .

op a : -> A .

op f : B -> B .

op f : C -> C .

fails to be preregular, because for the sort A the term f(X:A) is a well-formed
term, but there is no least sort for the result of f with arguments greater
or equal to A, since either B or C can be chosen as result sorts, and they are
incomparable in the sort hierarchy. As a consequence, both f(X:A) and f(a)

do not have a least sort: they have sorts B, C, and D, and B and C are minimal
sorts among those sorts.

As already mentioned in Section 3.4 for the assoc attribute and further
explained in Section 4.4.1, operators can be declared with equational axioms
such as associativity (assoc), commutativity (comm), and identity (id:). This
means that, if we denote by A the corresponding associativity and/or commu-
tativity, and/or identity equations, we are not really interested in syntactic
terms t, but rather in equivalence classes modulo A, that is, in the equivalence
class [t]A of each term t, since all representatives of the class are viewed as
equivalent representations. Preregularity modulo A now means that we can
assign a least sort not just to any well-formed term t, but also to its equiva-
lence class [t]A. As further explained in Section 24.2.5, Maude assumes that
modules are preregular modulo whatever axioms such as assoc, comm, and id:

have been declared for operators, checks syntactic conditions ensuring prereg-
ularity modulo A, and generates warnings when a module fails to satisfy such
preregularity conditions.

A ground term is a term containing no variables: only constants and oper-
ators. Intuitively, ground terms denote either data in case no equations apply
to the term (for example, s zero is data) or functional expressions indicat-
ing how an equationally defined function is applied to data (for example,
(s zero) + (s zero)). Ground terms modulo equations constitute the ini-
tial algebra associated with a specification, as discussed later in Section 4.3.

3.9 Parsing

As seen in previous sections, the Maude language supports user-definable
syntax including mixfix operator declarations. Parsing is done in stages using
a bison/flex-based parser for Maude’s surface syntax, a grammar generator
which generates the context-free grammar for the user-defined mixfix parts of
a Maude module over the user’s signature, and the MSCP context-free parser
(generator) that generates a parser for the module’s context-free grammar.
MSCP was developed by J. Quesada [310, 309].

With mixfix syntax, the occurrence of ambiguities in the parsing of terms
is very common. Of course, we can always provide unambiguous grammars,
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which are frequently surprisingly large, or use parentheses for breaking the
possible ambiguities. But usually we would like to have a more powerful al-
ternative. Maude reduces such ambiguities by using a mechanism based on
precedence values and gathering patterns.

Let us assume the following declarations for some arithmetic expressions:

sort Nat .

ops 1 2 3 : -> Nat .

ops _+_ _*_ : Nat Nat -> Nat .

An expression like 1 + 2 * 3 is ambiguous, since both (1 + 2) * 3 and
1 + (2 * 3) are valid parses. This kind of ambiguity is usually solved by
assigning a precedence to each of the operators. In Maude, the precedence of
an operator is given by a natural number,3 where a lower value indicates a
tighter binding.

Operator precedence then defines how an expression should be parsed when
several operators are present. We can assign a precedence to an operator with
a precedence (abbreviated prec) attribute, which takes the precedence value
as an argument. For example, one would expect multiplication to be evaluated
before addition. Thus, we can give precedences, e.g., 33 and 31 to the operators
_+_ and _*_, respectively, as follows:

op _+_ : Nat Nat -> Nat [prec 33] .

op _*_ : Nat Nat -> Nat [prec 31] .

The term 1 + 2 * 3 is now unambiguous: its only possible parse is
1 + (2 * 3).

Precedence can be overridden using parentheses; we can always write
(1 + 2) * 3 in case this is the term we are interested in. For those oper-
ators for which the user does not specify a precedence value, a default one is
given (see Section 3.9.1 for a discussion on the default precedence values). For
example, both operators _+_ and _*_ above get 41 as their default precedence,
and hence the ambiguity.

The precedence mechanism is not enough, however. For example, the ex-
pression 1 + 2 + 3 is still ambiguous, because both parses (1 + 2) + 3 and
1 + (2 + 3) are possible. Usually, programming languages define a way of
associating operators to solve this kind of problems, so that the associativ-
ity of the operators determines which is evaluated first. For example, addition
usually is left-associative, and therefore we expect to parse it as (1 + 2) + 3.
In Maude, we can specify not only the associativity of operators, but general
gathering patterns for each operator.

The gathering pattern of an operator restricts the precedences of terms
that are allowed as arguments. We give a (non-empty) sequence of as many
E, e, or & values as the number of arguments in the operator, that is, one of
these values for each argument position:

3 The maximum allowed precedence value is 231 − 1.
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• E indicates that the argument must have a precedence value lower or equal
than the precedence value of the operator,

• e indicates that the argument must have a precedence value strictly lower
than the precedence value of the operator, and

• & indicates that the operator allows any precedence value for the corre-
sponding argument.

In fact, the precedence values work because of their combination with
the gathering patterns. For example, the precedence values given to _+_ and
_*_ work as expected because their default gathering pattern is (E E) (see
Section 3.9.2), which forces them to be applied only to terms of smaller or
equal precedence value. Thus, 1 + (2 * 3) is a valid parse for 1 + 2 * 3.
On the other hand, since the precedence of a term is given by the precedence
of its top operator, (1 + 2) * 3 is not a valid parse for 1 + 2 * 3, because
the term 1 + 2 has precedence value 33, which is greater than the precedence
of _*_.

Moreover, by default, all constants have precedence 0 (see Section 3.9.1),
and therefore they are also valid arguments for both operators.

We can specify _+_ and _*_ as left-associative by giving to them gathering
pattern (E e).

op _+_ : Nat Nat -> Nat [prec 33 gather (E e)] .

op _*_ : Nat Nat -> Nat [prec 31 gather (E e)] .

In this way, we force the second argument of these operators to be of a strictly
lower precedence. Then, a term with _+_ as top operator (or any other op-
erator with the same precedence) like 2 + 3 is nonvalid as second argument
for _+_. But it would be valid as first argument, since terms with equal prece-
dence are allowed. Now the only possible parse for the expression 1 + 2 + 3

is (1 + 2) + 3.
Note that parentheses could be described as an operator (_) with prece-

dence 0 and gathering pattern (&). Thus, any term can appear inside paren-
theses, and any subterm of a term can be enclosed in parentheses.

3.9.1 Default precedence values

Maude associates default precedence values to those operators for which the
user does not specify this information as part of the operator declaration. The
default precedence values are entirely similar to those used by OBJ3 [174]. The
rules for the assignment of default precedence values are:

• Operators with standard form (constants and prefix operators) always
have precedence 0, regardless of user settings. The user cannot change the
precedence value or gathering pattern for operators in standard form.
• Mixfix operators which begin and end with something different from an

underbar have precedence 0. Operators as, for example, (_), <_:_|_>,
and if_then_else_fi follow this rule.
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• Mixfix operators which begin or end with an underbar have precedence
15 for a unary operator and 41 for everything else. Note that this ‘or’ is
exclusive. Operators like, e.g., not_, _!, or to_:_ fall into this category.

• Mixfix operators which begin and end with an underbar have precedence
41. This rule applies, e.g., to the operators __, _+_, _*_, and _?_:_.

3.9.2 Default gathering patterns

As for precedence values, Maude assigns default gathering patterns to all those
operators for which the user does not specify this information as part of the
operator declaration. The default gathering patterns are also entirely similar
to those used by OBJ3 [174]. The rules for the assignment of the default
gathering patterns are:

• All arguments of prefix operators have a gathering value &, regardless of
the user specification.

• If the underbar corresponding to an argument is not adjacent to another
underbar, and it is neither the leftmost nor the rightmost token in the
operator, then the default gathering value for such an argument is &. In
other words, if an underbar appears between tokens different from the
underbar, then its corresponding argument will have this default gather-
ing pattern. For example, the default gathering pattern for the operator
if_then_else_fi is (& & &), the default gathering pattern for the op-
erator [_and then_] is (& &), and the default gathering pattern for the
operator (_) is (&).

• If the underbar corresponding to an argument is adjacent to another un-
derbar, or if it is the leftmost or the rightmost token in the operator, then
the default gathering value for such an argument is E. Thus, e.g., the de-
fault gathering pattern for the operator not_ is (E), the default gathering
pattern for the operator _?_:_ is (E & E), the default gathering pattern
for the operator _+_ is (E E), and the default gathering pattern for the
operator __ is (E E).
Those binary operators which start with an underscore, end with an un-
derscore, and have a precedence greater than 0 are handled as special
cases:

– The operator will have gathering pattern (e E) if it has the assoc

attribute (see Section 4.4.1). For example, the following operators fall
into this category.

op _+_ : Nat Nat -> Nat [assoc] .

op _*_ : Nat Nat -> Nat [assoc] .

op __ : NatList NatList -> NatList [assoc] .

– If the operator does not have the assoc attribute, but its first ar-
gument, its last argument, and its coarity are in the same connected
component of sorts, then:
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1. if the subsort relations allow it to right-associate but not left-
associate, then the first argument’s gathering pattern will change
to e, and

2. if the subsort relations allow it to left-associate but not right-
associate, then the last argument’s gathering pattern will change
to e.

Assuming Int < IntList, then the operators

op _<:_ : Int IntList -> IntList .

op _:>_ : IntList Int -> IntList .

have, by default, gathering patterns (e E) and (E e), respectively.
According to the general rule, since their argument bars are the left-
most and the rightmost tokens, the gathering pattern should be (E E)

for both of them. However, both operators fall into the second spe-
cial case, since they are binary operators which start and end with
underscores, have a precedence greater than 0 (by default 41), and
are not declared associative. Given the subsort relation, the operator
_<:_ may right-associate, but not left-associate, that is, 1 <: 2 <: 3

should be parsed as 1 <: (2 <: 3), but (1 <: 2) <: 3 should not
be a valid parse. Therefore, _<:_ gets default gathering pattern (e E).
And similarly for _:>_, although in this case it can left-associate, and
therefore it gets default gathering pattern (E e).

3.9.3 The extended signature of a module

In addition to the signature defined by the user, parsing of terms takes place
in an extended grammar in which information for handling parentheses, sort
and equality predicates, if_then_else_fi, and qualification operators are
included. These structures belong to the so-called extended signature of a
module. The main structures added in the extended signature of a module
are:

• Sort disambiguation. For each sort S in the signature of a module, Maude
adds to the signature the operator

op (_).S : S -> S .

This helps in the disambiguation of ad-hoc overloaded constants and
terms. As an example, remember from Section 3.6 that if we declare 0

as an ad-hoc overloaded constant for natural numbers and for natural
numbers modulo 3, then we can disambiguate the expression 0 + 0 by
writing, for example, 0 + (0).Nat and 0 + (0).Nat3, or (0 + 0).Nat

and (0 + 0).Nat3. As another example, in the module META-MODULE (see
Section 14.3), the term none is ambiguous, since the operator none is used
as the empty set of operator declarations, equations, rules, etc. We can
disambiguate it by writing (none).OpDeclSet. Of course, these disam-
biguation operators can be used not only for constants, but for any term.
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For example, we can write (2 + 3).Nat as a valid term in the predefined
module NAT.

• Parentheses. The extended signature of a module contains the operator

op (_) : S -> S .

for each sort S in its signature. These operators allow the use of paren-
theses without having to declare a parentheses operator for each sort. For
example, (2 + 3), (2 + 3) + 5, (2 + (3) + 5), (((2 + 3)) + 5), are
all valid terms in NAT, thanks to these declarations.
• Equivalent single-identifier form for all operators. Each declared operator,

including those in mixfix form, may also be used in their equivalent single-
identifier prefix form. For example, in the NAT module, the term _+_(2, 3)

is equivalent to 2 + 3, and the terms if true then 2 + 3 else - 3 fi

and if_then_else_fi(true, _+_(2, 3), -_(3)) are equivalent; any
combination is possible so if_then_else_fi(true, 2 + 3, - 3) is also
valid.

• Flattened associative argument lists. Operators with the attribute assoc

may be used in Maude in a nonparenthesized flattened form (see Sec-
tion 4.8). This is possible thanks to the precedence-gathering values in
mixfix notation, but it is also possible in prefix syntax. For example,
gcd(2, 3, 4) is a valid term in NAT, where gcd is the greater com-
mon divisor operator, which is declared as a binary associative operator.
Of course, this term can always be written in the standard format as
gcd(2, gcd(3, 4)) or gcd(gcd(2, 3), 4). Furthermore, we can com-
bine this possibility with the single-identifier form to write things like
_+_(2, 3, 4) instead of _+_(_+_(2, 3), 4) or _+_(2, _+_(3, 4)),
but of course, since _+_ is declared with the assoc attribute in the pre-
defined module NAT, we can just write 2 + 3 + 4.

• Polymorphic operators and the BOOL module. All the information con-
tained in the predefined modules TRUTH-VALUE, TRUTH, BOOL-OPS, and
BOOL is included in the extended signature of each module (unless this in-
clusion is explicitly disabled). In particular, appropriate instances of the
polymorphic operators contained in TRUTH (that is, if_then_else_fi,
_==_, and _=/=_) are generated for each sort in the module; in addition,
for each sort S, a sort predicate _:: S is also added. All these modules
and operators are fully explained in Section 9.1.

3.9.4 Parsing examples

Maude provides the parse command for parsing terms. The command does
not do anything other than parsing the given term in the extended signature of
the module. This is exactly what is done when a term appears in a command,
before executing such a command. For example, when we try to reduce a
term (2 + 3) * 5, the system first parses it and then reduces it. If the term
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is ambiguous, or there is no parse for it, an error message is given and no
further action takes place.

Maude> reduce in NAT : 2 + true .

Warning: <standard input>, line 1:

didn’t expect token true: 2 + true <---*HERE*

Warning: <standard input>, line 1: no parse for term.

For testing the parsing of terms we can use the parse command.

Maude> parse in NAT : 2 + true .

Warning: <standard input>, line 1:

didn’t expect token true: 2 + true <---*HERE*

Warning: <standard input>, line 1: no parse for term.

As other commands, parsing can take place either in the module explicitly
mentioned in the command or in the current module.

We illustrate the use of the parse command for the examples introduced
in the previous sections. Let us first consider a module PARSING-EX1 with
constants 1, 2, and 3, and binary operators _+_ and _*_.

fmod PARSING-EX1 is

sort Nat .

ops 1 2 3 : -> Nat .

ops _+_ _*_ : Nat Nat -> Nat .

endfm

Since _+_ and _*_ are declared without precedence values, and therefore
both get the default value 41, we obtain the following result.

Maude> parse 1 + 2 * 3 .

Warning: <standard input>, line 13: ambiguous term, two parses are:

1 + (2 * 3) -versus- (1 + 2) * 3

Arbitrarily taking the first as correct. Nat: 1 + (2 * 3)

As a first solution, we may consider using parentheses.

Maude> parse in PARSING-EX1 : 1 + (2 * 3) .

Nat: 1 + (2 * 3)

Maude> parse in PARSING-EX1 : (1 + 2) * 3 .

Nat: (1 + 2) * 3

Let us now consider the module PARSING-EX2, where _+_ and _*_ are
declared with precedences 33 and 31, respectively.

fmod PARSING-EX2 is

sort Nat .

ops 1 2 3 : -> Nat .

op _+_ : Nat Nat -> Nat [prec 33] .

op _*_ : Nat Nat -> Nat [prec 31] .

endfm
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Now, parentheses are not necessary for parsing the term 1 + 2 * 3.

Maude> parse in PARSING-EX2 : 1 + 2 * 3 .

Nat: 1 + 2 * 3

Of course, we may still use parentheses.

Maude> parse in PARSING-EX2 : (1 + 2) * 3 .

Nat: (1 + 2) * 3

Since the default gathering patterns for binary operators like _+_ and _*_

is (E E), a term like 1 + 2 + 3 is ambiguous.

Maude> parse in PARSING-EX2 : 1 + 2 + 3 .

Warning: <standard input>, line 30: ambiguous term, two parses are:

1 + (2 + 3) -versus- (1 + 2) + 3

Arbitrarily taking the first as correct. Nat: 1 + (2 + 3)

As above, we may use parentheses to parse such terms.

Maude> parse in PARSING-EX2 : (1 + 2) + 3 .

Nat: (1 + 2) + 3

Maude> parse in PARSING-EX2 : 1 + (2 + 3) .

Nat: 1 + (2 + 3)

Let us now consider the module PARSING-EX3, where _+_ and _*_ are
declared to be left-associative, that is, with gathering patterns (E e).

fmod PARSING-EX3 is

sort Nat .

ops 1 2 3 : -> Nat .

op _+_ : Nat Nat -> Nat [prec 33 gather (E e)] .

op _*_ : Nat Nat -> Nat [prec 31 gather (E e)] .

endfm

Now, the terms above have unambiguous parses.

Maude> parse in PARSING-EX3 : 1 + 2 * 3 .

Nat: 1 + 2 * 3

Maude> parse in PARSING-EX3 : 1 + 2 + 3 .

Nat: 1 + 2 + 3

Let us now consider the module PARSING-EX4, where _+_ and _*_ are
declared to be associative. Note that in this case, by default, they are assigned
gathering patterns (E e).

fmod PARSING-EX4 is

sort Nat .

ops 1 2 3 : -> Nat .

op _+_ : Nat Nat -> Nat [prec 33 assoc] .

op _*_ : Nat Nat -> Nat [prec 31 assoc] .

endfm
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Maude> parse in PARSING-EX4 : 1 + 2 * 3 .

Nat: 1 + 2 * 3

Maude> parse in PARSING-EX4 : 1 + 2 + 3 .

Nat: 1 + 2 + 3

We illustrate the use of the extended signature in which all terms are
parsed with the following examples.

Maude> parse in PARSING-EX1 : (2 + 3).Nat .

Nat: 2 + 3

Maude> parse in PARSING-EX1 : (2).Nat + 3 .

Nat: 2 + 3

Maude> parse in PARSING-EX1 : (2).Nat + (3).Nat .

Nat: 2 + 3

Maude> parse in PARSING-EX1 : ((1) + ((2) + (3))) .

Nat: 1 + (2 + 3)

Maude> parse in PARSING-EX1 : _+_(1, _+_(2, 3)) .

Nat: 1 + (2 + 3)

Maude> parse in PARSING-EX4 : _+_(1, 2, 3) .

Nat: 1 + 2 + 3

Maude> parse in PARSING-EX4 : if 1 == 2 then 1 + 2 else _+_(1, 2) fi .

Nat: if 1 == 2 then 1 + 2 else 1 + 2 fi

Maude> parse in PARSING-EX4 :

if _==_(1, 2)

then if_then_else_fi(1 + 2 :: Nat, 1 * 1, 2 * 1)

else _+_(1, 2)

fi .

Nat: if 1 == 2

then if (1 + 2) :: Nat

then 1 * 1

else 2 * 1

fi

else 1 + 2

fi
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Functional Modules

Functional modules define data types and operations on them by means of
equational theories. The data types consist of elements that can be named by
ground terms. Two ground terms denote the same element if and only if they
belong to the same equivalence class as determined by the equations. That
is, the mathematical semantics of a functional module is its initial algebra.
Maude’s functional modules are assumed to have the nice property that equa-
tions, considered as simplification rules by using them only in the left to right
direction, are Church-Rosser and terminating (see Section 4.7). This means
that repeated application of the equations as simplification rules eventually
reaches a term to which no further equations apply, and the result, called
the canonical form, is the same regardless of the order of application of the
equations. Thus each equivalence class has a natural representative, its canon-
ical form, that can be computed by equational simplification. As explained in
Section 1.2, this ensures that the initial algebra and the canonical term alge-
bra of the functional module are isomorphic, and therefore that the module’s
mathematical and operational semantics coincide.

The equational logic on which Maude functional modules are based is an
extension of order-sorted equational logic [173] called membership equational
logic [248, 31]. Thus, functional modules support multiple sorts, subsort rela-
tions, operator overloading, and assertions of membership in a sort.

As was mentioned in Section 3.2, a functional module is declared in Maude
using the keywords

fmod 〈ModuleName 〉 is 〈DeclarationsAndStatements 〉 endfm

For example,

fmod NUMBERS is

...

endfm

declares a module named NUMBERS. The dots stand for the actual declarations
and statements that may appear in the functional module. Declarations in-
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clude the importation of other functional modules (see Chapter 8), and sort,
subsort, and operator declarations. Statements include equational and mem-
bership axioms. Declarations were discussed in Chapter 3. What remains to
be explained are equational and membership statements.

4.1 Unconditional equations

Unconditional equations are declared using the keyword eq, followed by a
term (its lefthand side), the equality sign =, then a term (its righthand side),
optionally followed by a list of statement attributes (see Section 4.5 later in
this chapter) enclosed in square brackets, and ending with white space and a
period. Thus the general scheme is the following:

eq 〈Term-1 〉 = 〈Term-2 〉 [〈StatementAttributes 〉] .

The terms t and t’ in an equation t = t’ must both have the same
kind. In order for the equation to be executable, any variable appearing in t’

must also appear in t. Equations not satisfying this requirement can also be
declared (for example, to document a lemma holding true in the module) but
in such a case they should always be specified with the nonexec attribute (see
Section 4.5.3). We can add equations axiomatizing the addition operation in
our NUMBERS module as follows, where we distinguish two cases for the second
argument, according to whether it is zero or not:

vars N M : Nat .

eq N + zero = N .

eq N + s M = s (N + M) .

The following equations define the symmetric difference operation sd on
natural numbers, which returns the result of subtracting the smaller from the
larger of its two arguments.

eq sd(N, N) = zero .

eq sd(N, zero) = N .

eq sd(zero, N) = N .

eq sd(s N, s M) = sd(N, M) .

In general, in a functional module one can specify equations (and also
conditional equations, as explained in Section 4.3) in three different ways:

1. in the style given above, in which case they are assumed to be executable
as simplification rules from left to right;

2. in the same style as above, but with the nonexec attribute (see Sec-
tion 4.5.3), in which case Maude does not use them for simplification
(except at the metalevel with a user-given strategy, see Section 14.6); and

3. as equational attributes of specific operators (see Section 4.4.1).
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For example, a binary operator f can be declared assoc and comm, telling
Maude that it satisfies the associativity and commutativity axioms. Such equa-
tional attributes should not be written explicitly as equations in the specifica-
tion. There are two reasons for this. Firstly, this is redundant, since they have
already been declared as equational attributes. Secondly, although declar-
ing such equations either only explicitly as equations, or twice—one time as
equational attributes and another as explicit equations—does not affect the
mathematical semantics of the specification, that is, the initial algebra that
the specification denotes (see Section 4.3), it does however drastically alter
the specification’s operational semantics. For example, if the comm attribute
for f were to be stated as an equation f(X, Y) = f(Y, X), then using the
equation as a simplification rule applied to the term, say, f(a, b), would lead
to the nonterminating chain of equational simplifications

f(a, b) = f(b, a) = f(a, b) = f(b, a) = ...

This is quite bad, since we want the equations specified by method (1)
to be used as simplification rules and assume them to be terminating and
Church-Rosser, so that they always simplify a term to a unique result that
cannot be further simplified. Instead, if comm is declared as an equational
attribute, the above kind of looping does not happen: Maude then simplifies
terms modulo the declared equational attributes, so that the terms f(a, b)

and f(b, a) would indeed be treated as identical. For more on equational
attributes see Section 4.4.1.

4.2 Unconditional memberships

Unconditional membership axioms specify terms as having a given sort. They
are declared with the keyword mb followed by a term, followed by ‘:’, followed
by a sort (that must always be in the same kind as that of the term), fol-
lowed by a period. As equations, memberships can optionally have statement
attributes (see Section 4.5).

mb 〈Term 〉 : 〈Sort 〉 [〈StatementAttributes 〉] .

To illustrate this, consider the module 3*NAT with the basic Peano number
declarations as in the NUMBERS module and a new sort 3*Nat.

The fact that 3*Nat consists of multiples of 3 is expressed using the
subsort declaration Zero < 3*Nat < Nat and the membership statement
mb (s s s M3) : 3*Nat for M3 a variable of sort 3*Nat.

fmod 3*NAT is

sort Zero Nat .

subsort Zero < Nat .

op zero : -> Zero .

op s_ : Nat -> Nat .
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sort 3*Nat .

subsorts Zero < 3*Nat < Nat .

var M3 : 3*Nat .

mb (s s s M3) : 3*Nat .

endfm

Memberships axioms can interact in undesirable ways with operators that
are declared with the assoc or iter attributes (see later Sections 4.4.1 and
4.4.2, respectively). This is explained and illustrated with examples in Sec-
tions 24.2.8 and 24.2.9.

4.3 Conditional equations and memberships

Equational conditions in conditional equations and memberships are made
up of individual equations t = t′ and memberships t : s. A condition can
be either a single equation, a single membership, or a conjunction of equa-
tions and memberships using the binary conjunction connective /\ which is
assumed to be associative. Thus the general form of conditional equations and
memberships is the following:

ceq 〈Term-1 〉 = 〈Term-2 〉
if 〈EqCondition-1 〉 /\ ... /\ 〈EqCondition-k 〉
[〈StatementAttributes 〉] .

cmb 〈Term 〉 : 〈Sort 〉
if 〈EqCondition-1 〉 /\ ... /\ 〈EqCondition-k 〉
[〈StatementAttributes 〉] .

Furthermore, the concrete syntax of equations in conditions has three vari-
ants, namely:

• ordinary equations t = t’,
• matching equations t := t’, and
• abbreviated Boolean equations of the form t, with t a term in the kind
[Bool], abbreviating the equation t = true.

Any term t in the kind [Bool] can be used as an abbreviated Boolean1

equation. . The Boolean terms appearing most often in abbreviated Boolean
equations are terms using the built-in equality _==_ and inequality _=/=_

predicates, and the built-in membership predicates _:: S with S a sort, in-
cluding Boolean combinations of such terms with not_, _and_, _or_ and other
Boolean connectives (see Section 9.1 for a detailed description of all these

1 By default, any Maude module imports the predefined BOOL module (see Sec-
tion 9.1).
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operators). For example, the following Boolean terms in the NUMBERS mod-
ule (assuming that a “greater than” operator _>_ has also been defined in
NUMBERS),

N == zero

M =/= s zero

not (K :: NzNat)

(N > zero or M =/= s zero)

can appear as abbreviated Boolean equations in a condition, abbreviating,
respectively, the equations:

(N == zero) = true

(M =/= s zero) = true

not (K :: NzNat) = true

(N > zero or M =/= s zero) = true

To illustrate the use of conditional equations and memberships, let us re-
consider the path example from Section 3.5. The following conditional state-
ments express the key membership defining path concatenation and the asso-
ciativity of this operator:

var E : Edge .

vars P Q R S : Path .

cmb E ; P : Path if target(E) = source(P) .

ceq (P ; Q) ; R = P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

The conditional membership axiom (introduced by the keyword cmb) states
that an edge concatenated with a path is also a path when the target node
of the edge coincides with the source node of the path. This has the effect
of defining path concatenation as a partial operation on paths, although it is
total on the kind [Path] of “confused paths.”

Assuming variables P, E, and S declared as above, source and target

operations over paths are defined by means of conditional equations with
matching equations in conditions as follows:2

ceq source(P) = source(E) if E ; S := P .

ceq target(P) = target(S) if E ; S := P .

Matching equations3 are mathematically interpreted as ordinary equa-
tions; however, operationally they are treated in a special way and they must
satisfy special requirements. Note that the variables E and S in the above
matching equations do not appear in the lefthand sides of the corresponding
conditional equations. In the execution of these equations, these new variables

2 Note that the source and target operations can equivalently be declared as
eq source(E ; S) = source(E) .

eq target(E ; S) = target(S) .
3 Similar constructs are used in languages like ASF+SDF [104] and ELAN [27].
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become instantiated by matching the term E ; S against the canonical form
of the subject term bound to the variable P (see Section 4.7). In order for
this match to decide the equality with the ground term bound to P, the term
E ; S must be a pattern. Given a functional module M , we call a term t an
M -pattern if for any well-formed substitution σ such that for each variable x
in its domain the term σ(x) is in canonical form with respect to the equations
in M , then σ(t) is also in canonical form. A sufficient condition for t to be
an M -pattern is the absence of unifiers between its nonvariable subterms and
lefthand sides of equations in M .

Ordinary equations t = t′ in conditions have the usual operational inter-
pretation, that is, for the given substitution σ, σ(t) and σ(t′) are both reduced
to canonical form and are compared for equality, modulo the equational at-
tributes specified in the module’s operator declarations such as associativity,
commutativity, and identity. Finally, abbreviated Boolean equations are just
a special case of ordinary equations once they are expanded out.

The satisfaction of the conditions is attempted sequentially from left to
right. Since in Maude matching takes place modulo equational attributes, in
general many different matches may have to be tried until a match of all the
variables satisfying the condition is found.

The above equations for source and target illustrate the use of matching
equations to bind variables locally, in much the same way that let is used in
some functional programming languages. In this example, since the matching
is purely syntactic, the matching substitution is unique and gives a simple
way to name parts of a structure or to name a complicated expression which
appears multiple times in the main equation.

For M -patterns where some operators are matched modulo some equa-
tional attributes, matching substitutions need not be unique. This provides
another way of using matching equations, namely to perform a search through
a structure without any need to explicitly define a function that does this.
For example, for sequences of natural numbers we can define a predicate
_occurs-inner_ that determines if a number occurs in a sequence other than
at one of the ends. If one only cares about positive results,4 the following will
work.

op _occurs-inner_ : [Nat] [NatSeq] -> [Bool] .

ceq N:Nat occurs-inner NS:NatSeq = true

if (NS0:NatSeq N:Nat NS1:NatSeq) := NS:NatSeq .

Note that this equation could also be written as

eq N:Nat occurs-inner NS0:NatSeq N:Nat NS1:NatSeq = true .

4 Note that, since when the predicate is not true it remains unevaluated, we have
defined it at the kind level, that is, as a partial Boolean function; however, using
the owise attribute (see Section 4.5.4) it is very easy to add an extra equation
making _occurs-inner_ a total Boolean function.
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In both cases we check whether the sequence contains the natural number
N:Nat, but making sure that the sequence contains other elements both before
and after N:Nat.5 With the above definition added to the numbers module,
the term

zero occurs-inner (zero zero zero zero zero)

reduces to true, while the term

zero occurs-inner (zero zero)

does not reduce further.
Matching equations in conditions give great expressive power, but some

care is needed in using them to define operations. Consider adding the follow-
ing to the numbers module, in an attempt to define a test for the presence of
s s zero in a sequence of natural numbers.

op hasTwo : [NatSeq] -> [Bool] .

ceq hasTwo(NS:NatSeq) = N:Nat == s s zero

if NS0:NatSeq N:Nat NS1:NatSeq := NS:NatSeq .

With this addition to the numbers module, hasTwo(zero zero) does not
get reduced, since the condition requires at least three numbers in the se-
quence. The term hasTwo(zero (s s zero) zero) reduces to true. The
term hasTwo(zero (s zero) (s s zero) zero) also gets reduced, although
it may return true or false; probably not what was intended. The problem
is that there are several matches, each giving a different answer, so the condi-
tional equation does not define a function. In fact, this conditional equation
causes the Church-Rosser property to fail, and semantically identifies true

and false, thus leading to an inconsistent theory. In contrast, as will be seen
in Chapter 6, a rule with such a matching condition is not a problem, and
does have the effect of searching a sequence of natural numbers for s s zero.

In summary, all the sort, subsort, and operator declarations and all the
statements in a functional module (plus the functional modules imported if
any) define an equational theory in membership equational logic [248, 31]. Such
a theory can be described in mathematical notation as a pair (Σ,E∪A), where
Σ is the signature, that is, the specification of the sorts, subsorts, kinds, and
operators in the module, E is the collection of statements (equations and
memberships, possibly conditional) and A is the set of equational attributes,

5 Note that here we assume the declaration of the NatSeq concatenation operator
__ as given in page 47, where it is declared to be associative. If we consider the
declaration of this operator given in page 72, which is also declared to have nil

as identity element, then we should write this equation as
op _occurs-inner_: [Nat] [NatSeq] -> [Bool] .

ceq N:Nat occurs-inner NS:NatSeq = true

if (I:Nat NS0:NatSeq N:Nat NS1:NatSeq M:Nat) := NS:NatSeq .

since the variables NS0:NatSeq and NS1:NatSeq might be instantiated to nil.
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such as assoc and comm, declared for some operators (that is, extra equations
that are treated in a special way by the Maude interpreter to simplify modulo
such attributes, see Section 4.4.1).

The family of ground terms definable in the syntax of Σ defines a model
called a Σ-algebra and denoted TΣ . In TΣ , terms syntactically different denote
different elements, so that TΣ will not satisfy the equations in E ∪ A, unless
they are trivial equations such as f(X) = f(X). The question is, what is the
optimal model of the theory (Σ,E ∪ A)? Goguen and Burstall’s answer is:
a model satisfying the axioms E ∪ A and such that it has no junk (that is,
all elements can be denoted by ground Σ-terms), and no confusion (that is,
only elements that are forced to be equal by the axioms E ∪A are identified).
Such a model, called the initial algebra of the equational theory (Σ,E ∪ A),
exists [248], is denoted TΣ/E∪A, and provides the mathematical semantics of
the Maude functional module specifying (Σ,E ∪A).

Mathematically, TΣ/E∪A can be constructed as the quotient of TΣ in which
the equivalence classes are those terms that are provably equal using the ax-
ioms E ∪ A. Operationally, assuming that the axioms E are Church-Rosser
and terminating modulo A (see Section 4.7), there is a much more intuitive
equivalent description of TΣ/E∪A, namely as the family of canonical forms for
the ground Σ-terms modulo A, that is, those terms that cannot be further
simplified by the equations in E modulo A. That is, as explained in Section 1.2,
we have then an isomorphism

TΣ/E∪A ∼= CanΣ/E∪A

between the initial algebra TΣ/E∪A and the canonical term algebra CanΣ/E∪A.
The Maude interpreter computes such canonical forms, which can be

viewed as the values denoted by the corresponding functional expressions,
with the reduce command (see Section 25.2 for details and Section 4.9 for
examples).

4.4 Operator attributes

Operator declarations may include attributes that provide additional infor-
mation about the operator: semantic, syntactic, pragmatic, etc. All such at-
tributes are declared within a single pair of enclosing square brackets, ‘[’ and
‘]’, after the sort of the result and before the ending period. We discuss each
of the categories of operator attributes below.

4.4.1 Equational attributes

Equational attributes are a means of declaring certain kinds of equational
axioms in a way that allows Maude to use these equations efficiently in a
built-in way. Currently Maude supports the following equational attributes:
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• assoc (associativity),
• comm (commutativity),
• idem (idempotency),
• id: 〈Term 〉 (identity, with the corresponding term for the identity ele-

ment),
• left id: 〈Term 〉 (left identity, with the corresponding term for the left

identity element), and
• right id: 〈Term 〉 (right identity, with the corresponding term for the

right identity element).

An operator can be declared with several of these attributes, which may
appear in any order in the attribute declaration. However, these attributes
are only allowed for binary operators satisfying the following requirements:

• For left id:, it is required that the right domain sort and the range sort
belong to the same kind.

• For right id:, it is required that the left domain sort and range sort
belong to the same kind.

• For assoc, comm, id:, and idem, both domain sorts and the range sort
must belong to the same kind.

These requirements are checked at parse time, and if the check fails a warning
is output and the operator loses its attributes.

Furthermore, we have the following additional requirements:

• The attribute idem cannot be used in any combination of attributes that
includes assoc, because the necessary matching and normalization algo-
rithms have not been implemented yet. This requirement is quietly en-
forced by ignoring the attribute idem where necessary.

• Only one identity attribute (left id:, right id:, or id:) is allowed.
This is enforced by a warning and by ignoring all but the first such at-
tribute.

• Combining the attribute comm with either left id: or right id: silently
turns the identity attribute into an id:.

• All subsort-overloaded instances of an operator must have the same at-
tributes. This is further explained in Section 4.4.6.

Semantically, declaring a set of equational attributes for an operator is
equivalent to declaring the corresponding equations for the operator. Opera-
tionally, using equational attributes to declare such equations avoids termina-
tion problems and leads to much more efficient evaluation of terms containing
such an operator. In fact, the effect of declaring equational attributes is to
compute with equivalence classes modulo such equations. This, besides be-
ing very expressive, avoids what otherwise would be insoluble termination
problems. For example, if a commutativity equation like x + y = y + x is
declared as an ordinary equation, then it will easily produce looping, nonter-
minating simplifications. If it is instead declared with an equational attribute
comm, this looping behavior does not happen.
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In our numbers example we can add a constant nil for the empty sequence
and refine the declaration of sequence concatenation so that concatenation is
associative with identity nil.

op nil : -> NatSeq .

op __ : NatSeq NatSeq -> NatSeq [assoc id: nil] .

As another example, we can form lists of Booleans as a supersort BList

of Bool in an extension of the BOOL module (see Section 9.1) with a “cons”
operator _._ having nil as a right identity:

sort BList .

subsort Bool < BList .

op nil : -> BList .

op _._ : Bool BList -> BList [right id: nil] .

Note that, when equational attributes are declared, equational simplifi-
cation using the other equations in the module does not take place at the
purely syntactic level of replacing syntactic equals by equals, but is under-
stood modulo the equational attributes. Therefore, the proper understanding
of the notions of Church-Rosser and terminating equations, and of canonical
forms, is now modulo the equational attributes that have been declared. We
discuss matching and equational simplification modulo axioms in Section 4.8.

For example, by declaring the addition operation on natural numbers mod-
ulo 3 as commutative,

op _+_ : Nat3 Nat3 -> Nat3 [comm] .

it is enough to have the following equations to define its behavior on all
possible combinations of arguments:

vars N3 : Nat3 .

eq N3 + 0 = N3 .

eq 1 + 1 = 2 .

eq 1 + 2 = 0 .

eq 2 + 2 = 1 .

The equations

eq 0 + N3 = N3 .

eq 2 + 1 = 0 .

are not needed, because they are subsumed by the first and third equations
above, due to commutativity of _+_.

Notice that membership axioms and matching modulo associativity can
interact in undesirable ways, as explained in Section 24.2.8.
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4.4.2 The iter attribute

Maude provides a built-in mechanism called the iter (short for iterated op-
erator) theory whose goal is to permit the efficient input, output, and manip-
ulation of very large stacks of a unary operator.

Unary operators may be declared to belong to the iter theory by including
iter in their attributes. After declaring

sort Foo .

op f : Foo -> Foo [iter] .

the term f(f(f(X:Foo))) can be input as f^3(X:Foo) and will be output in
that form. A term such as f^1234567890123456789(X:Foo) is too large to
be input, output or manipulated in regular notation, but can be input and
output in this compact notation and certain (built-in) manipulations may
thus be made efficient.

The precise form of the compact iter theory notation is the prefix name of
the operator followed by ^[1-9][0-9]* (in Lex regular expression notation)
with no intervening white space. Note that f^0123(X:Foo) is not acceptable.
Of course, regular notation (and mixfix notation if appropriate) can still be
used.

Membership axioms may also interact in undesirable ways with operators
declared with the iter attribute; see Section 24.2.9 for details.

4.4.3 Constructors

Assuming that the equations in a functional module are (ground) Church-
Rosser and terminating, then every ground term in the module (that is, every
term without variables) will be simplified to a canonical form, perhaps modulo
some declared equational attributes. Constructors are the operators appear-
ing in such canonical forms. The operators that “disappear” after equational
simplification are instead called defined functions. For example, typical con-
structors in a sort Nat are zero and s_, whereas in the sort Bool, true and
false are the only constructors.

It is quite useful for different purposes, including both debugging (see
Chapter 24) and theorem proving, to specify when a given operator is a con-
structor. This can be done with the ctor attribute. For example, we can
refine our operator declarations in Section 3.4 with constructor information
as follows:

op zero : -> Zero [ctor] .

op s_ : Nat -> NzNat [ctor] .

op nil : -> NatSeq [ctor].

op __ : NatSeq NatSeq -> NatSeq [ctor assoc id: nil] .

Three slightly subtle points should be mentioned, namely the relationships
of constructors to operator overloading, to kinds, and to equations. The first
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key observation is that constructor declarations are local to given sorts for
the arguments and for the result. Nothing prevents an operator from being a
constructor at some level in the subsort ordering but being a defined function
at another. For example, we could have declared a successor function for
integers,

op s_ : Int -> Int .

which is not a constructor. Indeed, we can define the sort Int with a subsort
NzNeg of nonzero negative numbers built up with a unary minus constructor
-_, and we can then specify both unary minus -_ and successor s_ as defined
functions on the integers by giving the equations:

sorts NzNeg Int .

subsorts Nat NzNeg < Int .

op -_ : NzNat -> NzNeg [ctor] .

op -_ : Int -> Int .

op s_ : Int -> Int .

var N : Nat .

eq - zero = zero .

eq - (- (s N)) = s N .

eq s (- (s N)) = - N .

A related observation is that a defined function, which totally disappears
at some level in the subsort ordering, might not go away for terms at the kind
level. For example, even though addition may be a defined function, we may
encounter an arithmetic error expression in a kind of numbers such as

(s s zero) + p zero

because the predecessor function p has been declared on nonzero natural num-
bers.

op p : NzNat -> Nat .

The last point is that constructors may obey certain equations; that is,
they do not have to be free constructors. The equations that they may obey
(even as constructors, not just in other overloaded variants such as the in-
teger successor function above) may be either equational attributes (such as
the assoc attribute in the above concatenation operator for strings of natural
numbers), or ordinary equations, or both. For example, we can add a sort
NatSet of finite sets of natural numbers to our NUMBERS module by declaring
a set union operation _;_ using equational attributes to declare that it is as-
sociative and commutative with identity the empty set, and using an ordinary
equation to express idempotency.6

6 Remember that the idem attribute cannot be specified together with an assoc

attribute; therefore idempotency must in this case be specified explicitly by an
equation.
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sort NatSet .

subsort Nat < NatSet .

op empty : -> NatSet [ctor] .

op _;_ : NatSet NatSet -> NatSet [ctor assoc comm id: empty] .

eq N ; N = N .

Given an equational specification in which several operators have been
declared as constructors by means of the ctor attribute and such that the
equations are terminating, the sufficient completeness problem consists in ver-
ifying that the canonical forms of all well-typed ground terms are constructor
terms. Intuitively, this means that all defined operations (i.e., those that are
not declared as constructors) have been fully defined. Maude’s Sufficient Com-
pleteness Checker (SCC) , described in Section 23.1.5, can be used to ensure
that constructor declarations are really correct, so that all functions are fully
defined relative to those constructors. We can take the NUMBERS module, in-
crementally introduced in Chapter 3 and the previous sections of this chapter,
to illustrate how the SCC can be used to help the specifier in this regard.

fmod NUMBERS is

sort Zero .

sorts Nat NzNat .

subsort Zero NzNat < Nat .

op zero : -> Zero [ctor] .

op s_ : Nat -> NzNat [ctor] .

op sd : Nat Nat -> Nat .

ops _+_ _*_ : Nat Nat -> Nat .

op _+_ : NzNat Nat -> NzNat .

op p : NzNat -> Nat .

vars I N M : Nat .

eq N + zero = N .

eq N + s M = s (N + M) .

eq sd(N, N) = zero .

eq sd(N, zero) = N .

eq sd(zero, N) = N .

eq sd(s N, s M) = sd(N, M) .

sort Nat3 .

ops 0 1 2 : -> Nat3 .

op _+_ : Nat3 Nat3 -> Nat3 [comm] .

vars N3 : Nat3 .

eq N3 + 0 = N3 .

eq 1 + 1 = 2 .

eq 1 + 2 = 0 .

eq 2 + 2 = 1 .

sort NatSeq .

subsort Nat < NatSeq .

op nil : -> NatSeq [ctor].
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op __ : NatSeq NatSeq -> NatSeq [ctor assoc id: nil] .

sort NatSet .

subsort Nat < NatSet .

op empty : -> NatSet [ctor].

op _;_ : NatSet NatSet -> NatSet [ctor assoc comm id: empty] .

eq N ; N = N .

endfm

For expository reasons, since the ctor declaration had not yet been ex-
plained, some operators and constants were declared without the ctor at-
tribute when they were introduced in Section 3.6. The SCC reports the first
term it finds not reducible to a constructor. In this case, the first such report
we get is the following:

Maude> (scc NUMBERS .)

Checking sufficient completeness of NUMBERS ...

Warning: This module has equations that are not left-linear which

will be ignored when checking.

Failure: The term 0 was found to be a counterexample. Since the

analysis is incomplete, it may not be a real counterexample.

We fix this error by adding the ctor attribute to the declaration of the con-
stants 0, 1, and 2 of sort Nat3:

ops 0 1 2 : -> Nat3 [ctor].

After this declaration is corrected, a more serious bug is found by the SCC,
namely,

Maude> (scc NUMBERS .)

Checking sufficient completeness of NUMBERS ...

Warning: This module has equations that are not left-linear which

will be ignored when checking.

Failure: The term zero * zero was found to be a counterexample.

Since the analysis is incomplete, it may not be a real

counterexample.

This message shows that the definition of multiplication is incomplete, because
we have declared the operator without the ctor attribute but we have forgot-
ten the equations defining such operation on natural numbers. For example,
we can add the following equations to make up for this omission:

eq N * zero = zero .

eq N * s M = (N * M) + N .

A further iteration of the SCC on the amended specification shows that the
equations for the predecessor operation p are missing as well. Since p is only
defined on nonzero natural numbers, only one equation needs to be added:

eq p(s N) = N .
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The corrected NUMBERS module after this analysis (together with some
additional declarations introduced in the following sections) is presented in
Section 4.9. Here is the tool output on the corrected module:

Maude> (scc NUMBERS .)

Checking sufficient completeness of NUMBERS ...

Warning: This module has equations that are not left-linear which

will be ignored when checking.

Success: NUMBERS is sufficiently complete under the assumption

that it is weakly-normalizing, confluent, and sort-decreasing.

4.4.4 Polymorphic operators

A number of Maude’s built-in operators are polymorphic in one or more ar-
guments, in the sense that the operator has meaning when these arguments
are of any known sort. Examples include Boolean operators such as the con-
ditional, if_then_else_fi, which is polymorphic in its second and third ar-
guments, and the equality test _==_ which is polymorphic in both arguments
(see Section 9.1). The user can also define polymorphic operators using the
polymorphic attribute (abbreviated poly). This attribute takes a set of natu-
ral numbers enclosed in parentheses that indicates which arguments are poly-
morphic, with 0 indicating the range. For polymorphic operators that are not
constants, at least one argument should be polymorphic to avoid ambiguities.
Since there are no polymorphic equations, polymorphic operators are limited
to constructors and built-ins. Polymorphic operators are always instantiated
with the polymorphic arguments going to the kind level, which further lim-
its their generality. The sort name in a polymorphic position of an operator
declaration is purely a place holder—any legal type name could be used. The
recommended convention is to use Universal.

One reasonable use for polymorphic operators beyond the existing built-
ins is to define heterogeneous lists, as follows, where CONVERSION denotes a
predefined module described in Section 9.9 having types for different num-
bers as well as strings; this module is imported by means of a protecting

declaration, which will be explained in Section 8.1.1.

fmod HET-LIST is

protecting CONVERSION .

sort List .

op nil : -> List .

op __ : Universal List -> List [ctor poly (1)] .

endfm

As an example, we can form the following heterogeneous lists:

Maude> red 4 "foo" 4.5 1/2 nil .

result List: 4 "foo" 4.5 1/2 nil
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Maude> red (4 "foo" nil) 4.5 1/2 nil .

result List: (4 "foo" nil) 4.5 1/2 nil

4.4.5 Format

The format attribute is intended to control the white space between tokens
as well as color and style when printing terms for programming-language-like
specifications. Consider the following mixfix syntax operator:

op (op_:_->_[_].) : Qid TypeList Type AttrSet -> OpDecl .

There are eleven places where white space can be inserted:

op _ : _ -> _ [ _ ] .

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

A format attribute must have an instruction word for each of these places.
For example, the formatting specification for the above operator could be
chosen to be:

[format (d d d d d d s d d s d)]

Instruction words are formed from the following alphabet:

d default spacing
(cannot be part of a larger word: must occur on its own)

+ increment global indent counter
- decrement global indent counter
s space
t tab
i number of spaces determined by indent counter
n newline

Note that, in general, each place may have an entire word combining
several of the above symbols. We can illustrate how this feature is used
in several operators in (submodules of) the META-LEVEL module in the file
prelude.maude (see Chapter 14).

• Each assignment will be printed in a new line, indented one tab.

op _<-_ : Variable Term -> Assignment

[ctor prec 63 format (nt d d d)] .

• Each importation after the first one will be printed in a new line, with the
current indentation.

op __ : ImportList ImportList -> ImportList

[ctor assoc id: nil format (d ni d)] .
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• Each kind of declaration in a module will start in a new line, with the cur-
rent indentation, which is increased by two at the beginning and decreased
by two at the end of the module.

op fmod_is_sorts_.____endfm : Qid ImportList SortSet

SubsortDeclSet OpDeclSet MembAxSet EquationSet -> FModule

[ctor gather (& & & & & & &)

format (d d d n++i ni d d ni ni ni ni n--i d)] .

Whether the format attribute is actually used or not when printing is
controlled by the command:

set print format on/off .

The following additional alphabet can be used to change the text color and
style. These colors, perhaps combined with spacing directives, can greatly ease
readability, particularly in complex terms for which they can serve as markers.
They rely on ANSI escape sequences which are supported by most terminal
emulators, most notably the Linux console, Xterm, and Mac Terminal win-
dows, but not Emacs shell buffers, unless you use ansi-color.el.7

r red
g green
y yellow
b blue
m magenta
c cyan
u underline
! bold
o revert to original color and style

By default ANSI escape sequences are suppressed if the environment vari-
able TERM is set equal to dumb (Emacs does this) or standard output is not a
terminal; they are allowed otherwise. This behavior can be overridden by the
command line options -ansi-color and -no-ansi-color.

You are allowed to give a format attribute even if there is no mixfix syntax.
In this case the format attribute must have two instruction words, indicating
the desired format before and after the operator’s name. For example,

fmod COLOR-TEST is

sorts Color ColorList .

subsort Color < ColorList .

op red : -> Color [format (r! o)] .

op green : -> Color [format (g! o)] .

op blue : -> Color [format (b! o)] .

op yellow : -> Color [format (yu o)] .

7 There is a copy of this Emacs Lisp file with the Maude distribution just in case
your Emacs distribution lacks it.
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op cyan : -> Color [format (cu o)] .

op magenta : -> Color [format (mu o)] .

op __ : ColorList ColorList -> ColorList [assoc] .

endfm

To see the colors in this module, load the COLOR-TEST module into Maude
and execute the command:8

Maude> reduce red green blue yellow cyan magenta .

reduce in COLOR-TEST : red green blue yellow cyan magenta .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result ColorList: red green blue yellow cyan magenta

Let us consider the following module FORMAT-DEMO, where a small pro-
gramming language is defined.

fmod FORMAT-DEMO is

sorts Variable Expression BoolExp Statement .

subsort Variable < Expression .

ops a b c d : -> Variable .

op 1 : -> Expression .

op _+_ : Expression Expression -> Expression [assoc comm] .

op _;_ : Statement Statement -> Statement [assoc prec 50] .

op _<=_ : Expression Expression -> BoolExp .

op while_do_od : BoolExp Statement -> Statement

[format (nir! o r! o++ --nir! o)] .

op let_:=_ : Variable Expression -> Statement

[format (nir! o d d d)] .

endfm

Note the use of the format attribute for operators while_do_od and let_:=_.
Since both represent statements, which should start in a new line, but at
the current indentation level, both include ni in the instruction words for
their first positions; this position also has characters r! in both cases, so
that they start in boldface red font. Since there is a o for the next position,
reverting to original color and style, only the first word (while and let) is
shown in red. In the case of while_do_od, the condition of the loop starts
at the second position. The do word is shown in boldface red, and then the
indentation counter is incremented, so that the body of the while_do_od

statement is indented. For the position marking the beginning of od, the
counter is decremented, so that it appears at the level of while in a new line
(n), in boldface red font (r!). The last position reverts the original color and
style, although notice that the indentation counter remains the same, so that
successive statements will be given the same level of indentation. In the case
of let_:=_, the three last positions contain only d (default spacing), since it

8 Try it in your terminal. The colors are not shown here for obvious reasons.
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is to be presented as a single-line statement in which let is shown in boldface
red.

We can illustrate the difference between using the format attribute and
not using it with the following commands (as before, you should execute the
example in your terminal to see the colors).

Maude> set print format off .

Maude> parse

while a <= d do

let a := a + b ;

while b <= d do

let b := b + c ;

let c := c + 1

od

od

.

Statement: while a <= d do let a := a + b ; while b <= d do let b :=

b + c ; let c := c + 1 od od

Maude> set print format on .

Maude> parse

while a <= d do

let a := a + b ;

while b <= d do

let b := b + c ;

let c := c + 1

od

od

.

Statement:

while a <= d do

let a := a + b ;

while b <= d do

let b := b + c ;

let c := c + 1

od

od

For more examples of format attributes, you can see the operator dec-
larations in the module LTL (in the file model-checker.maude) discussed
in Chapter 13, or in the modules META-TERM and META-MODULE (in the file
prelude.maude), described in Chapter 14.

4.4.6 Ditto

An operator can have several subsort-overloaded instances. Maude requires
that all these instances should have the same attributes, except for the case
of the ctor attribute, that may be present in some instances but absent in
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others (see Section 4.4.3), and/or the metadata attribute (see Section 4.5.2).
It is for example forbidden to have a subsort-overloaded instance in which
an operator is declared assoc only, and another such instance in which it is
declared assoc and comm.

The ditto attribute can be given to an operator for which another subsort-
overloaded instance has already appeared, either in the same module or in a
submodule. The ditto attribute is just a shorthand stating that this operator,
being subsort overloaded, should have the same attributes as those appearing
explicitly in a previous subsort-overloaded version, except for the ctor and
metadata attributes, which are outside the scope of ditto. In this way we
can avoid writing out a possibly long attribute list again and again.

It is not allowed to combine ditto with other attributes, except for ctor

and metadata. That is, an operator given the ditto attribute either has no
other explicitly given attributes, or can only have in addition either the ctor

attribute if it is a constructor, or a metadata attribute, or both the ctor and
metadata attributes. Furthermore, it is forbidden to use ditto on the first
declared instance of an operator, since this is nonsensical.

In our numbers module we can add equational attributes to the declara-
tions of _+_ and _*_, and then use ditto to declare the same attributes in
other subsort-overloaded versions.

ops _+_ _*_ : Nat Nat -> Nat [assoc comm].

op _+_ : NzNat Nat -> NzNat [ditto] .

op _*_ : NzNat NzNat -> NzNat [ditto] .

For an example making extensive use of the ditto attribute see the
LTL-SIMPLIFIER module (in the file model-checker.maude), discussed in
Chapter 13.

4.4.7 Operator evaluation strategies

If a collection of equations is Church-Rosser and terminating, given an expres-
sion, no matter how the equations are used from left to right as simplification
rules, we will always reach the same final result. However, even though the
final result may be the same, some orders of evaluation can be considerably
more efficient than others. More generally, we may be able to achieve the ter-
mination property provided we follow a certain order of evaluation, but may
lose termination when any evaluation order is allowed. It may therefore be
useful to have some way of controlling the way in which equations are applied
by means of strategies.

In general, given an expression f(t1, . . . , tn) we can try to evaluate it to
its reduced form in different ways, such as:

• first obtaining the reduced form of all the ti and then applying equations
for f at the top of the term; this is called a bottom-up, or eager strategy;
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• evaluating only some of the arguments, and then trying to evaluate at the
top with equations for f ; for example, an if_then_else_fi operator will
typically be evaluated by evaluating first the first argument, and then the
if_then_else_fi operator at the top;

• trying to evaluate the top of the term first, and then, if this fails, either
not evaluating the subterms at all, or trying to evaluate only some of
them, that is, some kind of lazy evaluation strategy.

Typically, a functional language is either eager, or lazy with some strictness
analysis added for efficiency, and the user has to live with whatever the lan-
guage provides. Maude adopts OBJ3’s [174] flexible method of user-specified
evaluation strategies on an operator-by-operator basis, adding some improve-
ments to the OBJ3 approach to ensure a correct implementation [135].

For an n-ary operator f an evaluation strategy is specified as a list of
numbers from 0 to n ending with 0. The nonzero numbers denote argument
positions, and a 0 indicates evaluation at the top of the given function symbol.
The strategy then specifies what argument positions must be simplified (in
the order indicated by the list) before attempting simplification at the top
with the equations for the top function symbol. In functional programming
terminology, the argument positions to be evaluated are usually called strict
argument positions, so we can view an evaluation strategy as a flexible, user-
definable way of specifying strictness requirements on argument positions. In
the simplest case, a strategy consists of a list of nonzero numbers followed by a
0, so that some arguments are treated strictly and then the function symbol’s
equations are applied. For example, in Maude, if no strategy is specified,
all argument positions are assumed strict, so that for f with n argument
positions its default strategy is (1 2 ... n 0); this is the “eager evaluation” case.
The opposite extreme is a form of lazy evaluation such as the lazy append
operator in the SIEVE example below. This operator has strategy (0), thus
only equations at the top are tried during evaluation.

The syntax to declare an n-ary operator with strategy (i1 . . . ik 0), where
ij ∈ {0, . . . , n} for j = 1, . . . , k, is

op 〈OpName 〉 : 〈Sort-1 〉 ... 〈Sort-n 〉 -> 〈Sort 〉 [strat (i1 ... ik 0)] .

As a simple example consider the operators _and-then_ and _or-else_

in the module EXT-BOOL, that can be found in the file prelude.maude (see
Section 9.1).

fmod EXT-BOOL is

protecting BOOL .

op _and-then_ : Bool Bool -> Bool

[strat (1 0) gather (e E) prec 55] .

op _or-else_ : Bool Bool -> Bool

[strat (1 0) gather (e E) prec 59] .

var B : [Bool] .

eq true and-then B = B .
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eq false and-then B = false .

eq true or-else B = true .

eq false or-else B = B .

endfm

These operators are computationally more efficient versions of Boolean
conjunction and disjunction that avoid evaluating the second of the two
Boolean subterms in their arguments when the result of evaluating the first
subterm provides enough information to compute the conjunction or the dis-
junction. For example, letting B:[Bool] stand for an arbitrary Boolean ex-
pression

Maude> red false and-then B:[Bool] .

result Bool: false

while if B:[Bool] does not evaluate to true or false, then false and

B:[Bool] does not evaluate to false, and if evaluation of B:[Bool] does
not terminate then neither will evaluation of false and B:[Bool].

If some of the argument positions are never mentioned in some of the
operator strategies, the notion of canonical form becomes now relative to
the given strategies and may not coincide with the standard notion. Let us
consider as a simple example the following two functional modules, which we
have displayed side-by-side to emphasize their only difference, namely, the
evaluation strategy associated to the operator g.

fmod STRAT-EX1 is fmod STRAT-EX2 is

sort S . sort S .

ops a b : -> S . ops a b : -> S .

op g : S -> S . op g : S -> S [strat(0)] .

eq a = b . eq a = b .

endfm endfm

The canonical form of the term g(a) in STRAT-EX1 is g(b), but in
STRAT-EX2 it is g(a) itself, because the equation cannot be applied inside
the term due to the lazy strategy strat(0) of the operator g.

This may be just what we want, since we may be able to achieve ter-
mination to a canonical form relative to some strategies in cases when the
equations may be nonterminating in the standard sense. More generally, op-
erator strategies may allow us to compute with infinite data structures which
are evaluated on demand, such as the following formulation of the sieve of
Eratosthenes, which finds all prime numbers using lazy lists.

The infinite list of primes is obtained from the infinite list of all natural
numbers greater than 1 by filtering out all the multiples of numbers previously
taken. Thus, first we take 2 and delete all even numbers greater than 2; then
we take 3 and delete all the multiples of 3 greater than 3; and so on. The
operation nats-from_ generates the infinite list of natural numbers starting
in the given argument; the operation filter_with_ is used to delete all the
multiples of the number given as second argument in the list provided as
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first argument; and the operation sieve_ is used to iterate this process with
successive numbers.

Of course, since we are working with infinite lists, we cannot obtain as
a result an infinite list. Such an infinite structure is only shown partially by
means of the operation show_upto_, which shows only a finite prefix of the
whole infinite list. Moreover, the generation and filtering processes have to
be done in a lazy way. This is accomplished by giving to the list constructor
_._ a lazy strategy strat(0) that avoids evaluating inside the term, and
using an operation force with an eager strategy strat(1 2 0) to “force”
the evaluation of elements inside the list. Specifically, in order to apply the
first equation, we must evaluate the arguments L and S before reconstructing
the list L . S in the righthand side.

NAT denotes the predefined module of natural numbers and arithmetic
operations on them (see Section 9.2), which is imported by means of a
protecting declaration, explained in Section 8.1.1. Note the use of the sym-
metric difference operator sd (see Section 9.2) to decrement I in the third
equation, and the successor operator s_ to increment I in the sixth equation.

fmod SIEVE is

protecting NAT .

sort NatList .

subsort Nat < NatList .

op nil : -> NatList .

op _._ : NatList NatList -> NatList [assoc id: nil strat (0)] .

op force : NatList NatList -> NatList [strat (1 2 0)] .

op show_upto_ : NatList Nat -> NatList .

op filter_with_ : NatList Nat -> NatList .

op nats-from_ : Nat -> NatList .

op sieve_ : NatList -> NatList .

op primes : -> NatList .

vars P I E : Nat .

vars S L : NatList .

eq force(L, S) = L . S .

eq show nil upto I = nil .

eq show E . S upto I

= if I == 0

then nil

else force(E, show S upto sd(I, 1))

fi .

eq filter nil with P = nil .

eq filter I . S with P

= if (I rem P) == 0

then filter S with P

else I . filter S with P

fi .

eq nats-from I = I . nats-from (s I) .
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eq sieve nil = nil .

eq sieve (I . S) = I . sieve (filter S with I) .

eq primes = sieve nats-from 2 .

endfm

We can then evaluate expressions in this module with the reduce command
(see Sections 4.9 and 25.2). For example, to compute the list of the first ten
prime numbers we evaluate the expression:

Maude> reduce show primes upto 10 .

result NatList: 2 . 3 . 5 . 7 . 11 . 13 . 17 . 19 . 23 . 29

In the case of associative or commutative binary operators, evaluation
strategies might reduce some arguments that the user does not expect to be
reduced. The reason is that in such cases terms represent equivalence classes
and it might be quite hard to say what is the first or the second argument.
The adopted solution is that mentioning either argument implies both.

The paper [135] documents the operational semantics and the implemen-
tation techniques for Maude’s operator evaluation strategies in much more
detail. The mathematical semantics of a Maude functional module having op-
erator evaluation strategies is documented in [188] and is further discussed in
Section 4.7.

Of course, operator evaluation strategies, while quite useful, are by design
restricted in their scope of applicability to functional modules.9 As we shall see
in Chapter 6, system modules, specifying rewrite theories that are not func-
tional, need not be Church-Rosser or terminating, and require much more
general notions of strategy. Such general strategies are provided by Maude
using reflection by means of internal strategy languages, in which strategies
are defined by rewrite rules at the metalevel (see Section 14.6). However, as
discussed in Section 4.4.9, specifying frozen arguments in operators restricts
the rewrites allowed with rules in a system module (as opposed to equations)
in a way quite similar to how operator evaluation strategies restrict the ap-
plication of equations in a functional module.

4.4.8 Memo

If an operator is given the memo attribute, this instructs Maude to memoize
the results of equational simplification (that is, the canonical forms) for those
subterms having that operator at the top. This means that when the canonical
form of a subterm having that operator at the top is obtained, an entry
associating to that subterm its canonical form is stored in the memoization
table for this operator. Whenever the Maude interpreter encounters a subterm
whose top operator has the memo attribute, it looks to see if its canonical form
is already stored. If so, that result is used; otherwise, equational simplification

9 More precisely, the scope of applicability of operator evaluation strategies is re-
stricted to functional modules and to the equational part of system modules.
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proceeds according to the operator’s strategy. Giving to some operators the
memo attribute allows trading off space for time in equational simplifications:
more space is needed, but if subcomputations involving memoized operators
have to be repeated many times, then a computation may be substantially
sped up, provided that the machine’s main memory limits are not exceeded.

An operator’s memo attribute and its user’s specified or default evaluation
strategy (see Section 4.4.7) may interact with each other, impacting the size of
the memoization table. The issue is how many entries for different subterms,
all having the same canonical form, may be possibly stored in the memoiza-
tion table. If the operator has the default, bottom-up strategy, the answer
is: only one such entry is possible. For other strategies, different terms hav-
ing the same canonical form may be stored, making the memoization table
bigger. For example, using the default strategy (1 2 0) for a memoized op-
erator f, only subterms of the form f(v, v’) with v and v’ fully reduced to
canonical form (up to the strategies given for all operators) will be mapped to
their corresponding canonical forms. This is because, with the default strat-
egy, equational simplification at the top of f can only happen after all its
arguments are in canonical form. For other operator strategies this unique-
ness may be lost, even when evaluating just one subterm involving f. For
example, if f’s strategy is (0 1 2 0), then both the starting term f(t, t’)

and the term f(v, v’) (where v and v’ are, respectively, the canonical forms
of t and t’) will be mapped to the final result, since the strategy specifies
rewriting at the top twice. That is, each time the operator’s strategy calls for
rewriting at the top, Maude will add the current version of the term to the
set of terms that will be mapped to the final result. Furthermore, other terms
of the form f(u, u’), with u and u’ having also v and v’ as their canonical
forms may appear in other subcomputations, and will then also be stored in
the memoization table.

In general, whenever an application will perform an operation many times,
it may be useful to give that operator the memo attribute. This may be due to
the high frequency with which the operator is called by other operators in a
given application, or to the highly recursive nature of the equations defining
that operator. For example, the recursive definition of the Fibonacci function
is given as follows, where NAT denotes the predefined module of natural num-
bers and arithmetic operations on them (as described in Section 9.2), which
is imported by means of a protecting declaration (see Section 8.1.1).

fmod FIBONACCI is

protecting NAT .

op fibo : Nat -> Nat .

var N : Nat .

eq fibo(0) = 0 .

eq fibo(1) = 1 .

eq fibo(s s N) = fibo(N) + fibo(s N) .

endfm
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Due to the highly recursive nature of this definition of fibo, the evaluation
of an expression like fibo(50) will compute many calls to the same instances
of the function again and again, and will expand the original term into a whole
binary tree of additions before collapsing it to a number. The exponential
number of repeated function calls makes the evaluation of fibo with the
above equations very inefficient, requiring over 61 billion rewrite steps for
fibo(50):

Maude> red fibo(50) .

reduce in FIBONACCI : fibo(50) .

rewrites: 61095033220 in 132081000ms cpu (145961720ms real)

(462557 rews/sec)

result NzNat: 12586269025

If we instead give the Fibonacci function the memo attribute,

op fibo : Nat -> Nat [memo] .

the change in performance is quite dramatic:

Maude> red fibo(50) .

reduce in FIBONACCI : fibo(50) .

rewrites: 148 in 0ms cpu (0ms real) (~ rews/sec)

result NzNat: 12586269025

Maude> red fibo(100) .

reduce in FIBONACCI : fibo(100) .

rewrites: 151 in 0ms cpu (1ms real) (~ rews/sec)

result NzNat: 354224848179261915075

Maude> red fibo(1000) .

reduce in FIBONACCI : fibo(1000) .

rewrites: 2701 in 0ms cpu (11ms real) (~ rews/sec)

result NzNat: 434665576869374564356885276750406258025646605173717804

024817290895365554179490518904038798400792551692959225930803226347

752096896232398733224711616429964409065331879382989696499285160037

04476137795166849228875

In some cases we may introduce a constant operator as an abbreviation
for a possibly complex expression that may require a substantial number of
equational simplification steps to be reduced to canonical form; furthermore,
the operator may be used repeatedly in different subcomputations. In such
cases one can declare a constant operator, give it the memo attribute, and
give an equation defining it to be equal to the expression of interest. For
example, suppose we have defined a search space with initial state myState

and a function findAnswer to search the space for a state satisfying some
property. Then we can name the search result and use it again without redoing
an expensive computation as follows:

op myAns : -> Answer [memo] .

eq myAns = findAnswer(myState) .



4.4 Operator attributes 89

Maude will then remember the result of rewriting the constant in the memo-
ization table for that operator and will not repeat the work until the memo-
ization tables are cleared. Memoization tables can be cleared explicitly by the
command

do clear memo .

Automatic clearing before each top level rewriting command can be turned
on and off with

set clear memo on .

set clear memo off .

By default, set clear memo is off.

4.4.9 Frozen arguments

The frozen attribute is only meaningful for system modules (see Chapter 6)
that may have both rules and equations. It has no direct effect for functional
modules having only equations and memberships: it can only have an indirect
effect if the functional module is later imported by a system module. For this
reason, examples of the use of frozen operators are postponed to Chapter 6.

Given a system module M, by declaring a given operator, say f, as frozen,
rewriting with rules is always forbidden in all proper subterms of a term having
f as its top operator. However, it may still be possible to rewrite that term at
the top, provided rules having f as the top symbol of their lefthand side exist
in M. To specify that all the arguments of an operator are frozen, one includes
the attribute frozen in the operator’s list of attributes; for example,

op f : S1 ... Sn -> S [frozen] .

The freezing idea can be generalized, so that only specific argument posi-
tions of the operator f are frozen. For example, in a system module specifying
the semantics of a programming language with rewrite rules, we may want to
specify a sequential composition operator _;_ as frozen in its second argu-
ment, but not in the first argument, so as to prevent any execution of the
second program fragment of the composition from happening before the first
fragment has been fully evaluated. We can specify this by stating

op _;_ : Program Program -> Program [frozen (2)] .

More generally, if the list of argument positions in an operator f is 1 . . . n,
then we can freeze any sublist of argument positions, say i1 . . . im, by declaring,

op f : S1 ... Sn -> S [frozen (i1 ... im)] .
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Of course, if the actual list of specified positions is 1 . . . n itself, then this
is equivalent to the first mode of declaring the frozen attribute for f without
listing any positions.

As for operator evaluation strategies (see Section 4.4.7), in the case of
associative or commutative binary operators mentioning either argument in
the list of frozen positions implies both.

4.4.10 Special

Many operators in predefined modules (see Chapters 9 and 14) have the
special attribute in their declarations. This means that they are to be treated
as built-in operators, so that, instead of having the standard treatment of any
user-defined operator, they are associated with appropriate C++ code by
“hooks” which are specified following the special attribute identifier.

For example, the file prelude.maude contains a predefined module NAT

for natural numbers and usual operations on them (see Section 9.2). Among
others, the declarations in the NAT module for the operations of addition and
of quotient of integer division, and for a less than predicate are the following:

op _+_ : NzNat Nat -> NzNat

[assoc comm prec 33

special (id-hook ACU_NumberOpSymbol (+)

op-hook succSymbol (s_ : Nat ~> NzNat))] .

op _+_ : Nat Nat -> Nat [ditto] .

op _quo_ : Nat NzNat -> Nat

[prec 31 gather (E e)

special (id-hook NumberOpSymbol (quo)

op-hook succSymbol (s_ : Nat ~> NzNat))] .

op _<_ : Nat Nat -> Bool

[prec 37

special (id-hook NumberOpSymbol (<)

op-hook succSymbol (s_ : Nat ~> NzNat)

term-hook trueTerm (true)

term-hook falseTerm (false))] .

Notice that the special attribute exists in order to bind Maude syntax
to built-in C++ functionality. It is absolutely not for users to mess with and
it is absolutely not backwards compatible; this is why Maude will sometimes
crash or become unstable if the prelude from a different version is loaded. For
the same reason, other operator attributes that appear together with special

in an operator declaration cannot be modified either.
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4.5 Statement attributes

In a functional module, statements are equations and membership axioms,
conditional or not. Any such statement may have associated attributes. Cur-
rently five attributes are available: label, metadata, nonexec, owise, and
print. The attributes label, metadata, nonexec, and print can also be
used on rules in system modules. Moreover, the attribute metadata can also
be associated to operator declarations.

4.5.1 Labels

The label attribute must be followed by an identifier. Statement labels can
be used for tracing and debugging and at the metalevel to name particular
axioms. In our numbers example we could label the axiom for idempotency
for natural number sets

eq N ; N = N [label natset-idem] .

Syntactic sugar for labels generalizing the Maude 1 style for rule labels is
also supported. Then the above label could have also been written

eq [natset-idem] : N ; N = N .

4.5.2 Metadata

The metadata attribute must be followed by a string (that is, by a data
element in the STRING module, see Section 9.8). The metadata attribute is
intended to hold data about the statement in whatever syntax the user cares
to create/parse. It is like a comment that is carried around with the state-
ment. Usual string escape conventions apply. For example, we could add the
distributive law

eq (N + M) * I = (N * I) + (M * I) [metadata "distributive law"] .

with the comment documenting that this is the distributive law.
The metadata attribute can also be associated to operator declarations.

Note that, like ctor, metadata is attached to a specific operator declaration
and not to the (possibly overloaded) operator itself. Thus:

• two subsorted overloaded declarations may have different metadata at-
tributes,
• a metadata attribute is not copied by the ditto attribute (see Sec-

tion 4.4.6), and
• a declaration may have a metadata attribute as well as a ditto attribute.

Under these conditions, the following ad-hoc example is therefore legal:
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fmod METADATA-EX is

sorts Foo Bar .

subsort Foo < Bar .

op f : Foo -> Foo [memo metadata "f on Foos"] .

op f : Bar -> Bar [ditto metadata "f on Bars"] .

endfm

4.5.3 Nonexec

The nonexec attribute allows the user to include statements in a module that
are ignored by the Maude rewrite engine. For example we could make the
distributive law nonexecutable as follows.

eq (N + M) * I = (N * I) + (M * I)

[nonexec metadata "distributive law"] .

Similarly, a rule can be declared with the nonexec attribute in a system
module.

Although nonexecutable from the point of view of Core Maude, such state-
ments are part of the semantics of the module and can for example be used
at the metalevel for controlled execution or theorem proving purposes.

4.5.4 Otherwise

Sometimes, in the definition of an operation by equations, there are certain
cases that can be easily defined by equations, and then some remaining case
or cases that it is more difficult or cumbersome to define. One would in such
situations like to say, otherwise, that is, in all remaining cases not covered by
the above equations, do so and so.10

Consider, for example, the problem of membership of a natural number in
a finite set of numbers.

op _in_ : Nat NatSet -> Bool .

The easy part is to define when a number belongs to a set:

var N : Nat .

var NS : NatSet .

eq N in N ; NS = true .

It is somewhat more involved to define when it does not belong. A sim-
ple way is to use the otherwise (abbreviated owise) attribute and give the
additional equation:

eq N in NS = false [owise] .

10 Indeed, several languages have conventions of this kind, including ASF+SDF
[104].
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The intuitive operational meaning is clear: if the first equation does not
match, then the number in fact is not in the set, and the predicate should be
false. But what is the mathematical meaning? That is, how can we interpret
the meaning of the second equation so that it becomes a useful shorthand for
an ordinary equation? After all, the second equation, as given, is even more
general than the first and in direct contradiction with it. We of course should
reject any constructs that violate the logical semantics of the language.

Fortunately, there is nothing to worry about, since the owise attribute is
indeed a shorthand for a corresponding conditional equation. We first explain
the idea in the context of this example and then discuss the general construc-
tion. The idea is that, whether an equation, or a set of equations, defining the
meaning of an operation f match a given term, is itself a property defined by
a predicate, say enabledf , which is effectively definable by equations. In our
example we can introduce a predicate enabled-in, telling us when the first
equation applies, by just giving its lefthand side arguments as the predicate’s
arguments:

op enabled-in : [Nat] [NatSet] -> [Bool] .

eq enabled-in(N, N ; NS) = true .

Note that we do not have to define when the enabled-in predicate is false.
That is, this predicate is really defined on the kind [Bool]. Our second owise

equation is simply a convenient shorthand for the conditional equation

ceq N in NS = false if enabled-in(N, NS) =/= true .

This is just a special case of a completely general theory transformation
that translates a specification containing equations with the owise attribute
into a semantically equivalent specification with no such attributes at all.
A somewhat subtle aspect of this transformation11 is the interaction be-
tween owise equations and the operator evaluation strategies discussed in
Section 4.4.7. Suppose that an owise equation was used in defining the se-
mantics of an operator f . If f was (implicitly or explicitly) declared with a
strategy, say,

f : s1 . . . sn → s [strat (i1 . . . ik0)] .

then, the enabledf predicate should be defined with the same strategy,

enabledf : [s1] . . . [sn]→ [Bool] [strat (i1 . . . ik0)] .

This will make sure that the reduction of f ’s arguments prior to applying
equations for f—including the equations that will be introduced in our trans-
formation to replace the owise equations—takes place in exactly the same
way for f and for enabledf , so that failure of matching the normal equations
is correctly captured by the failure of the enabledf predicate. Furthermore,
as we shall see, after the failure of matching the non-owise equations, the

11 We thank Joseph Hendrix for pointing out this subtlety.
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matching substitution obtained when we apply the desugared version of an
owise equation will then properly take into account the evaluation of those
arguments of f specified by f ’s evaluation strategy.

In general, if we are defining the equational semantics of an operation
f : s1 . . . sn → s and we have given a partial definition of that operation by
(possibly conditional) equations

f(u11, . . . , u
1
n) = t1 if C1

. . .

f(um1 , . . . , u
m
n ) = tm if Cm

then we can give one or more owise equations defining the function in the
remaining cases by means of equations of the form

f(v11 , . . . , v
1
n) = t′1 if C ′1 [owise]

. . .

f(vk1 , . . . , v
k
n) = t′k if C ′k [owise]

We can view such owise equations as shorthand notation for corresponding
ordinary conditional equations of the form

f(y1, . . . , yn) = t′1 if enabledf (y1, . . . , yn) 6= true

∧ enabledf (v11 , . . . , v
1
n) := enabledf (y1, . . . , yn)

∧ C ′1

. . .

f(y1, . . . , yn) = t′k if enabledf (y1, . . . , yn) 6= true

∧ enabledf (vk1 , . . . , v
k
n) := enabledf (y1, . . . , yn)

∧ C ′k

where the variables y1, . . . , yn are fresh new variables not appearing in any
of the above owise equations, and with yi of kind [si], 1 ≤ i ≤ n. All this
assumes that in the transformed specification we have declared the predicate
enabledf : [s1] . . . [sn] → [Bool], with the same evaluation strategy as f .
Note the somewhat subtle use of the matching equations (see Section 4.3)
enabledf (vj1, . . . , v

j
n) := enabledf (y1, . . . , yn), 1 ≤ j ≤ k, in the conditions.

Since f and enabledf have the same strategy, after the arguments of the
matching instance of the expression enabledf (y1, . . . , yn) become evaluated

according to the strategy, we are then able to match enabledf (vj1, . . . , v
j
n) to

that result, obtaining the desired substitution for the variables of the lefthand
side of the jth owise equation. That is, we obtain the same substitution as
the one we would have obtained matching f(vj1, . . . , v

j
n) to the same subject

term after its subterms under f had been evaluated according to f ’s strategy.
Of course, the semantics of the enabledf predicate is defined in the ex-

pected way by the equations
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enabledf (u11, . . . , u
1
n) = true if C1 .

. . .

enabledf (um1 , . . . , u
m
n ) = true if Cm .

The possibility of using multiple owise equations allows us to simplify
definitions of functions defined by cases on data with nested structure. Here
is a simple, if silly, example in which the sort R has elements a(n) and b(n),
for natural numbers n, and the sort S has elements g(r) and h(r), with r of
sort R. The operation f treats constructors g and h differently, distinguishing
only whether the subterm of sort R is constructed by a or not. Again, the
predefined module NAT of natural numbers (Section 9.2) is imported by means
of a protecting declaration (Section 8.1.1).

fmod OWISE-TEST1 is

protecting NAT .

sorts R S .

op f : S Nat -> Nat .

ops g h : R -> S .

ops a b : Nat -> R .

var r : R .

vars m n : Nat .

eq f(g(a(m)), n) = n .

eq f(h(a(m)), n) = n + 1 .

eq f(g(r), n) = 0 [owise] .

eq f(h(r), n) = 1 [owise] .

endfm

The four cases are illustrated by the following reductions.

Maude> red f(g(a(0)), 3) .

result NzNat: 3

Maude> red f(g(b(0)), 3) .

result Zero: 0

Maude> red f(h(b(0)), 3) .

result NzNat: 1

Maude> red f(h(a(0)), 3) .

result NzNat: 4

The subtle interaction between owise equations and operator evaluation
strategies can be illustrated by the following example:

fmod OWISE-TEST2 is

sort Foo .

ops a b c d : -> Foo .

op f : Foo -> Foo [strat (0 1 0)] .
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op g : Foo -> Foo [strat (0)] .

var X : Foo .

eq b = c .

eq f(a) = d .

eq f(X) = g(X) [owise] .

endfm

Now consider the term f(b). Intuitively, one could expect that, given that
the first equation for f cannot be applied to this term, the owise equation
is applied obtaining the term g(b), and this is then expected to be the final
result of the reduction, because the strategy (0) for g forbids evaluating its
argument. However, as we can see in the following reduction, this is not the
case.

Maude> red f(b) .

result Foo: g(c)

The result is g(c), because the owise equation is not considered until after
evaluating the final 0 in the strategy for f, and by then f(b) is simplified to
f(c) as instructed by the 1 in such strategy; then, the owise equation applied
to f(c) produces g(c).

It can be interesting to consider the semantically equivalent transformed
specification:

fmod OWISE-TEST2-TRANSFORMED is

sort Foo .

ops a b c d : -> Foo .

op f : Foo -> Foo [strat (0 1 0)] .

op enabled-f : Foo -> Bool [strat (0 1 0)] .

op g : Foo -> Foo [strat (0)] .

vars X Y : Foo .

eq b = c .

eq f(a) = d .

eq enabled-f(a) = true .

ceq f(Y) = g(X)

if enabled-f(Y) =/= true /\ enabled-f(X) := enabled-f(Y) .

endfm

Maude> red f(b) .

result Foo: g(c)

where, as pointed out in our comments on the general transformation, the
fact that enabled-f has the same strategy as f and the use of the matching
equation

enabled-f(X) := enabled-f(Y)

are crucial for obtaining a semantically equivalent specification.
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4.5.5 Print

The print attribute allows the user to specify information to be printed when
a statement (equation, membership axiom, or rule) is executed. A print at-
tribute declaration looks like

eq f(X) = b [print "X = " X] .

The keyword print is followed by a possibly empty list of items where
each item is either a string constant or a variable. Mentioned variables must
actually occur in the statement. If a non-occurring variable appears as a print

item, it will be pruned and Maude will issue a warning.
Here is an example that uses the print attribute to track calls to a recur-

sive function that reverses a list.

fmod PRINT-ATTRIBUTE-EX is

sorts Foo FooList .

ops a b : -> Foo [ctor] .

subsort Foo < FooList .

op nil : -> FooList [ctor] .

op __ : FooList FooList -> FooList [ctor assoc id: nil] .

op reverse : FooList -> FooList .

eq reverse(nil) = nil .

eq reverse(foo:Foo fl:FooList) = reverse(fl:FooList) foo:Foo

[print "first = " foo:Foo ", rest = " fl:FooList] .

endfm

Maude will only use the print attribute in print attribute mode, which is
off by default. Thus to run the above example (after loading it into Maude)
it is necessary to execute the following command (see Section 25.7).

Maude> set print attribute on .

Then reducing the expression reverse(a b a b) results in the following out-
put:

Maude> red in PRINT-ATTRIBUTE-EX : reverse(a b a b) .

reduce in PRINT-ATTRIBUTE-EX : reverse(a b a b) .

first = a, rest = b a b

first = b, rest = a b

first = a, rest = b

first = b, rest = nil

rewrites: 5 in 0ms cpu (0ms real) (18587 rewrites/second)

result FooList: b a b a

The print attribute is an alternative to tracing (see Section 24.1.1) to
find out which statements Maude is executing. It allows the user control of
what information is printed. It is also a nice way to show what is going on in
demos.
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4.6 Admissible functional modules

The nonexec attribute allows us to include arbitrary equations or member-
ships, conditional or not, in a functional module and likewise in a functional
theory (see Section 8.3.1). Any such statement is then disregarded for pur-
poses of execution by the Maude engine: it can only be used in a controlled
way at the metalevel. But what about all the other statements? That is, what
requirements should be imposed on executable equations and memberships so
that they can be given an operational interpretation and can be executed by
the Maude engine?

The intuitive idea is that we want to use such equations as simplification
rules from left to right to reach a single final result or canonical form. For this
purpose, the executable equations and memberships (that is, all statements
not having the nonexec attribute) should be Church-Rosser and terminating
(modulo the equational attributes declared in the module) in the sense ex-
plained in Section 4.7 below. This guarantees that, given a term t, all chains
of equational simplification using those equations and memberships end in
a unique canonical form (again, modulo the equational attributes). Further-
more, under the preregularity assumption (see Section 3.8), such a canonical
form has the smallest sort possible in the subsort ordering.

The traditional requirement in this context is that, given a conditional
equation12 t = t′ if C1∧ . . .∧Cn, the set of variables appearing in t contains
those appearing in both t′ and in the conditions Ci. In Maude, this require-
ment is relaxed to support matching equations in conditions (see Section 4.3)
which can introduce new variables not present in t. Specifically, all executable
conditional equations in a Maude functional module M have to satisfy the fol-
lowing admissibility requirements, ensuring that all the extra variables will
become instantiated by matching:

1. vars(t′) ⊆ vars(t) ∪
n⋃
j=1

vars(Cj).

2. If Ci is an equation ui = u′i or a membership ui : s, then

vars(Ci) ⊆ vars(t) ∪
i−1⋃
j=1

vars(Cj).

3. If Ci is a matching equation ui := u′i, then ui is an M-pattern and

vars(u′i) ⊆ vars(t) ∪
i−1⋃
j=1

vars(Cj).

12 For the purposes of this discussion we can regard unconditional equations as the
special case of conditional equations with empty condition, or with the condition
true = true.
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In a similar way, all executable conditional memberships t : s if C1 ∧
. . . ∧ Cn must satisfy conditions 2–3 above.

In summary, therefore, we expect all executable equations and member-
ships in a functional module (and also in a system module) to be Church-
Rosser and terminating (see Section 4.7 below, and [31, Section 10.1]) and to
satisfy the above admissibility requirements.

4.7 Matching and equational simplification

Although this section and the next are quite technical, and it may be possible
to skip them in a first reading, they introduce the concepts of matching and
equational simplification that are essential to understand how Maude works.
Therefore, we advise the reader to come back to them as needed to gain a
better understanding of those concepts.

Recall from Section 4.3 that a functional module defines an equational the-
ory (Σ,E∪A) in membership equational logic, with A the equations specified
as equational attributes in operators (see Section 4.4.1), and E the (possibly
conditional) equations and memberships specified as statements.

Ground terms in the signature Σ form a Σ-algebra denoted TΣ . Simi-
larly, equivalence classes of terms modulo E∪A define the Σ-algebra denoted
TΣ/E∪A, which is the initial model for the theory (Σ,E ∪A) specified by the
module [248].

Given a set X of variables, we can add them to the signature Σ as new
constants, and get in this way a term algebra TΣ(X) where now the terms
may have variables in X.

Given a set X of variables, each having a given kind, a (ground) substitu-
tion is a kind-preserving function σ : X −→ TΣ . Such substitutions may be
used to represent assignments of terms in TΣ to the variables in X, and also
assignments of elements in TΣ/E∪A to such variables by σ picking up a rep-
resentative of the corresponding E ∪A-equivalence class. For example, a very
natural choice is to assign to each x in X a term σ(x) which is in canonical
form according to E∪A. Furthermore, under the preregularity, Church-Rosser,
and termination assumptions (more on this below) this canonical form will
have a least sort. Therefore, we may allow each variable x in X to have either
a kind or a sort assigned to it, and can call the substitution σ well-sorted
relative to E ∪ A if the least sort of σ(x) is smaller or equal to that of x.
By substituting terms for variables (as indicated by σ) in the usual way, a
substitution σ : X −→ TΣ is extended to a homomorphic function on terms
σ : TΣ(X) −→ TΣ that we denote with the same name.

Given a term t ∈ TΣ(X), corresponding to the lefthand side of an oriented
equation, and a subject ground term u ∈ TΣ , we say that t matches13 u if there
is a substitution σ such that σ(t) ≡ u, that is, σ(t) and u are syntactically
equal terms.

13 Some authors would instead say that u matches t.
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For an oriented Σ-equation l = r to be used in equational simplification,
it is required that all variables in the righthand side r also appear among
the variables of the lefthand side l. In the case of a conditional equation
l = r if cond, this requirement is relaxed, so that more variables can appear in
the condition cond, provided that they are introduced by matching equations
according to the admissibility requirements in Section 4.6; then the variables
in the righthand side r must be among those in the lefthand side l or in the
condition cond. Under this assumption, given a theory (Σ,E) a term t rewrites
to a term t′ using such an equation if there is a subterm t|p of t at a given
position14 p of t such that l matches t|p via a well-sorted substitution15 σ and
t′ is obtained from t by replacing the subterm t|p ≡ σ(l) with the term σ(r). In
addition, if the equation has a condition cond, the substitution σ must make
the condition provably true according to the equations and memberships in
E, which are assumed to be Church-Rosser and terminating and are used also
from left to right to try to simplify the condition. Note that, in general, the
variables instantiated by σ must contain both those in the lefthand side, and
those in the condition (which are incrementally matched using the matching
equations).

We denote this step of equational simplification by t →E t′, where the
possible equations for rewriting are chosen in the set E. The reflexive and
transitive closure of the relation →E is denoted →∗E .

In many texts, equational simplification is also called (equational) rewriting
but, since in Maude we have two very different types of rewriting, rewriting
with equations in functional modules, and rewriting with rules in system
modules, each with a completely different semantics, to avoid confusion we
favor the terminology of equational simplification for the process of rewriting
with equations.

A set of equations E is confluent when any two rewritings of a term can
always be unified by further rewriting: if t →∗E t1 and t →∗E t2, then there
exists a term t′ such that t1 →∗E t′ and t2 →∗E t′. This is summarized in
Figure 4.1. For an example of a nonconfluent specification, and a particular
way to turn it into a confluent one, see Section 5.6.

A set of equations E is terminating when there is no infinite sequence of
rewriting steps

t0 →E t1 →E t2 →E . . .

If E is both confluent and terminating, a term t can be reduced to a unique
canonical form t↓E , that is, to a unique term that can no longer be rewritten.
Therefore, in order to check semantic equality of two terms t = t′ (that is, that
they belong to the same equivalence class), it is enough to check that their

14 We can represent a term t as a tree, and use strings of numbers to iden-
tify positions p in the tree, thus identifying subterms t|p. For example, for
t = f(g(a), h(b)), we have t|nil = t, t|1 = g(a), t|11 = a, t|2 = h(b), and t|21 = b.

15 Note that if a variable x has a sort s instead of a kind, well sortedness of σ means
that σ(x) must provably have sort s (or lower) according to the equations E.
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Fig. 4.1. Confluence diagram

respective canonical forms are equal, t↓E = t′ ↓E , but, since canonical forms
cannot be rewritten anymore, the last equality is just syntactic coincidence:
t↓E ≡ t′ ↓E .

In membership equational theories a third important property is sort de-
creasingness. Intuitively, this means that, assuming E is confluent and termi-
nating, the canonical form t ↓E of a term t by the equations E should have
the least sort possible among the sorts of all the terms equivalent to it by the
equations E; and it should be possible to compute this least sort from the
canonical form itself, using only the operator declarations and the member-
ships. By a Church-Rosser and terminating theory (Σ,E) we precisely mean
one that is confluent, terminating, and sort-decreasing. For a more detailed
treatment of these properties, we refer the reader to the paper [31].

Since Maude functional modules have an initial algebra semantics, we
are primarily interested in ground terms. Therefore, we can relax the above
Church-Rosser and termination requirements by requiring that they just hold
for ground terms, without losing the desired coincidence between the mathe-
matical and operational semantics. In this way, we obtain notions of ground
Church-Rosser, terminating, confluent, etc. specifications. In practice, some
perfectly reasonable Maude functional modules are ground confluent, but fail
to be confluent. This however is not a problem, since ground confluence (to-
gether with ground termination) is just what is needed to ensure uniqueness
of canonical forms. Indeed, under the ground Church-Rosser and termination
assumptions, it is easy to prove that we have the desired isomorphism

TΣ/E ∼= CanΣ/E

ensuring the coincidence between the mathematical semantics of (Σ,E) pro-
vided by the initial algebra TΣ/E , and its operational semantics by equational
simplification provided by the algebra CanΣ/E of canonical forms.

Equational specifications (Σ,E) in Maude functional modules (and in the
equational part of system modules), are assumed to be ground Church-Rosser
and terminating up to the context-sensitive strategy specified by the eval-
uation strategies declared for the operators in Σ (see Section 4.4.7). More
precisely, we can view the information about operator evaluation strategies
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as a function µ that assigns to each operator f ∈ Σ with n argument sorts
a string of numbers indicating the argument positions to be evaluated and
ended with a 0 (that is, the information given in the operator’s strat at-
tribute, or, if no such information is given, the string 1 . . . n 0). This then
defines a more restricted rewrite relation →µ

E where we can only rewrite in
subterms in positions that can be evaluated according to µ. If the relation→µ

E

is (ground) confluent, we call the specification (ground) µ-confluent ; similarly,
if →µ

E is (ground) terminating, we call it (ground) µ-terminating. We define
the concepts of (ground) µ-sort-decreasing and (ground) µ-Church-Rosser in
the same way. When we talk about the specification being “ground Church-
Rosser and terminating up to the context-sensitive strategy specified by the
evaluation strategies,” we exactly mean that it is ground µ-Church-Rosser
and ground µ-terminating. Of course, when no such strategies are declared,
this specializes to the usual notions of ground Church-Rosser and ground
terminating. Under the ground µ-Church-Rosser and ground µ-terminating
assumptions, the µ-canonical forms define a canonical term algebra CanµΣ/E
(see [188]), which provides a perfect mathematical model for the module’s op-
erational semantics, since its elements are the values that the user gets when
evaluating expressions in such a module. The question then arises: how is this
model related to the module’s mathematical semantics? In general, the quo-
tient map t 7→ [t]E sending each µ-canonical form to its E-equivalence class
is a surjective homomorphism

q : CanµΣ/E −→ TΣ/E ,

but not necessarily an isomorphism. If q fails to be an isomorphism, this
means that µ-rewriting is a sound deductive method for proving E-equalities,
but it is incomplete. Therefore we call the specification µ-semantically com-
plete iff q is an isomorphism. µ-semantic completeness therefore expresses the
complete agreement between the mathematical and operational semantics of
the module. Specifications where evaluation strategies are used mainly for
efficiency and/or termination purposes, that is, those where the execution be-
comes more efficient by avoiding wasteful computation in unnecessary parts
of the term and/or that would not terminate without the strategy restrictions
are typically µ-semantically complete. Instead, specifications such as the sieve
of Eratosthenes in Section 4.4.7, where the main intent is to compute with
infinite data structures in a lazy way, are typically µ-semantically incomplete.
Not all is lost in this second case: we still have a good mathematical model
associated to our specification, namely, CanµΣ/E , but this is a more concrete

model than TΣ/E , that is, one in which fewer elements are identified.
What are the appropriate notions when we have a theory of the form

(Σ,E ∪A)? Then matching must be defined modulo the equational axioms A,
and all the above concepts, including those for µ-rewriting, must be general-
ized to equational simplification, confluence, and termination modulo A. We
discuss this in more detail in Section 4.8 below. See also [188] for a detailed
treatment of µ-rewriting and µ-semantic completeness modulo axioms A.
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As already mentioned, the operational semantics of functional modules is
equational simplification, that is, equational rewriting of terms until a canon-
ical form is obtained in the sense explained above. Notice that the system
does not check the ground confluence and termination properties: they are
left to the user’s responsibility. However, in some cases it is possible to check
these properties with Maude’s Church-Rosser checker and termination tools
[73, 126, 118, 117]. Similar checkings are also possible for functional mod-
ules with evaluation strategies; for example, the Maude’s MTT termination
tool can check µ-termination (also called context-sensitive termination [223]).
Moreover, although the relations between the standard Church-Rosser prop-
erty and the µ-Church-Rosser property are somewhat subtle [222, 224], the
work in [188] shows how one can use standard tools in conjunction with
Maude’s Sufficient Completeness Checker [190] to check both the µ-Church-
Rosser property and µ-semantic completeness. See Sections 23.1.3, 23.1.2,
and 23.1.5 for more information on the tools, and Sections 12.4 and 13.4 for
some examples of their use.

4.8 More on matching and simplification modulo

In the Maude implementation, rewriting modulo A is accomplished by using
a matching modulo A algorithm. More precisely, given an equational theory
A, a term t (corresponding to the lefthand side of an equation) and a subject
term u, we say that t matches u modulo A (or that t A-matches u) if there
is a substitution σ such that σ(t) =A u, that is, σ(t) and u are equal modulo
the equational theory A (compare with the syntactic definition of matching
in Section 4.7 above).

Given an equational theory A = ∪iAfi corresponding to all the attributes
declared in different binary operators, Maude synthesizes a combined match-
ing algorithm for the theory A, and does both equational simplification (with
equations) and rewriting (with rules in system modules, see Chapter 6) mod-
ulo the axioms A.

Note, however, that for operators f whose equational axioms A include
the associativity axiom, to achieve the effect of simplification modulo A using
an A-matching algorithm, we have to attempt matching a lefthand side of the
form f(t1, t2) not only on a subject term u, but also on all its f -subterms,
that is, on those “fragments” of the top structure of the term that could be
matched by f(t1, t2). For example, assuming a binary associative operator
f and constants a, b, c, and d of the appropriate sort, the term t = f(a,b)

does not match the term u = f(a, f(b, f(c, d))), that is, there is no
substitution making both terms equal modulo associativity; however, because
of associativity of f, u is equivalent to f(f(a, b), f(c, d)) and then t
trivially matches the first subterm. This becomes easier to see using mixfix
notation; if f =_._, then t = a . b and u = a . b . c . d, and we clearly
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see that t matches a fragment of u. For the case where the only axiom is
associativity, the _._-subterms of a . b . c . d are

a . b

a . b . c

b . c

b . c . d

c . d

If the operation _._ had been declared both associative and commutative,
then we should add to those the additional subterms

a . c

a . d

b . d

a . b . d

a . c . d

If the term f(t1, t2) matches either u or an f -subterm of u modulo A, then
we say that f(t1, t2) matches u with extension modulo A (or that f(t1, t2)
A-matches u with extension). For example, the lefthand side of the equation
a . b = e matches a . b . c . d with extension modulo associativity, and
the lefthand side of a . d = g matches a . b . c . d with extension mod-
ulo associativity and commutativity.

For f a binary operator with equational attributes Af including the as-
sociativity axiom, we now define how a subject term u is Af -rewritten with
extension using an equation f(t1, t2) = v. First of all, f(t1, t2) must Af -
match with extension a maximal f -subterm w of u (that is, an f -subterm of
u that is not itself an f -subterm of a bigger f -subterm). This means that there
is an f -subterm w0 of w and a substitution σ such that σ(f(t1, t2)) =Af

w0.
Then, the corresponding Af -rewriting with extension step rewrites u to the
term obtained by replacing the subterm w0 by σ(v).

Note that a term f(t1, t2) Af -matches with extension a maximal f -
subterm if and only if it Af -matches without extension some f -subterm. This
is of course the important practical advantage of A-matching and A-rewriting
with extension, namely, that only maximal f -subterms of a term have to be
inspected to get the effect of rewriting equivalence classes modulo A. For more
technical details on rewriting modulo a set of axioms, see, e.g., [102].

Matching with extension for an associative operator essentially corre-
sponds to matching without extension for a collection of associated equations.
For example, we could have “generalized” the equation a . b = e with _._

associative to the equations

eq a . b = e .

eq X . a . b = X . e .

eq a . b . Y = e . Y .

eq X . a . b . Y = X . e . Y .
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so that we could have achieved the same effect by rewriting only at the top of
maximal f -subterms (without extension). Similarly, for _._ associative and
commutative, we could have generalized the same equation a . b = e to the
equations

eq a . b = e .

eq a . b . Y = e . Y .

In Maude this generalization does not have to be performed explicitly
as a transformation of the specification. It is instead achieved implicitly in
a built-in way by performing A-matching with extension. If the equational
axioms declared for a binary operator f include the associativity axiom, then
a subject term u with f as its top operator is internally represented (but this
representation can also be externally used, see Section 3.9.3) as the flattened
term f(u1, . . . , un), with the u1, . . . , un having top operators different from
f . Furthermore, if a (two-sided) identity element e has been declared for f ,
then ui 6= e, 1 ≤ i ≤ n. That is, we assume in this case that all identities
have been simplified away.

Relative to this internal representation, it is then easy to define the notion
of an f -subterm. If the axioms of f include associativity but not commutativ-
ity, then the f -subterms of the term f(u1, . . . , un) are all terms of the form
f(uk, . . . , uk+h) with 1 ≤ k ≤ n− 1 and 1 ≤ h ≤ n− k.

Similarly, if the axioms of f include associativity and commutativity, then
the f -subterms of f(u1, . . . , un) are all terms of the form f(uk1 , . . . , ukh)
with 1 ≤ ki1 < · · · < kih ≤ n, and 2 ≤ h ≤ n.

The concepts of positions in a term and depth of a term, that are important
in many situations, refer to this flattened form. The compact notation for
terms constructed with operators having the iter attribute (Section 4.4.2)
is also considered a form of flattened notation, so that, for the purpose of
calculating term depth, if the top level is at level 0, then the occurrence of
X:Foo in f^3(X:Foo) is at level 1, not level 3.

Adding axioms for an identity element e to a possibly associative and/or
commutative operation f leads to some subtle cases, where the proper appli-
cation of the general notions may not always coincide with the user’s expecta-
tions. To begin with, unexpected cases of nontermination may be introduced
by an unwary user. For example, the equation

eq a . X = b . a .

will cause nontermination when _._ is declared associative with identity 1,
since we have, for example,

d . a→ d . b . a

→ d . b . b . a
...

→ d . b . b . · · · . b . a
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...

by instantiating each time the variable X to the identity element 1.
A second source of unexpected behavior is the fact that a lefthand side

involving an associative operator may, in the presence of an additional identity
attribute, match a term not involving at all that operator. Thus, for the above
equation, we have also the nonterminating chain of rewriting steps

a→ b . a

→ b . b . a
...

→ b . b . · · · . b . a
...

In a similar way, in the presence of an identity element, the user’s expec-
tations about when a lefthand side will match with extension a subject term
may not fully agree with the proper technical definition. Consider, for exam-
ple, a binary operation _._ that is associative and commutative, and that has
an identity element 1, and let

eq a . X = c .

be an equation. Then,

1. The lefthand side a . X matches the subject term a modulo the axioms
by instantiating X to 1, giving rise to the simplification

a → c.

2. The same lefthand side matches the subject term a . b . c with exten-
sion in three different ways, namely, with substitutions X 7→ b . c, X 7→ b,
and X 7→ c, giving rise to the three simplifications

a . b . c → c

a . b . c → c . c

a . b . c → b . c

3. For the same subject term a . b . c, the substitution X 7→ 1 is not a
match with extension of the above lefthand side, because the term a . 1

is not a _._-subterm of the term a . b . c. However, because of item 1
above, we know that the equation will match that way not at the top, but
“one level down,” leading to the simplification

a . b . c → c . b . c
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It is also important to realize that there is no match with extension between
the lefthand side of the equation a = b and the subject term a . b . c

(because the lefthand side a is not a _._-term), although again the equation
will match that way not at the top, but “one level down,” leading to the
simplification

a . b . c → b . b . c

Of course, lefthand sides may contain several operators, each matched
modulo a different theory. Maude will then match each fragment of a lefthand
side according to its given theory.

Consider, for example, the following specification where _._ is associative
and _+_ is associative and commutative:

fmod XMATCH-TEST is

sort Elt .

ops a b c d e : -> Elt .

op _._ : Elt Elt -> Elt [assoc] .

op _+_ : Elt Elt -> Elt [assoc comm] .

vars X Y Z : Elt .

eq X . (Y + Z) = (X . Y) + (X . Z) [metadata "distributivity"] .

endfm

The lefthand side of the distributivity equation will produce 12 matches
with extension for the subject term

a . b . (c + d + e)

Enumerating these by hand would be tedious and error prone, however Maude
provides the xmatch command (see also Section 25.3) for just this purpose:

xmatch X . (Y + Z) <=? a . b . (c + d + e) .

The output given by Maude consists of the substitution for each match
with extension together with the portion of the subject actually matched:

Maude> xmatch X . (Y + Z) <=? a . b . (c + d + e) .

xmatch in XMATCH-TEST : X . Z + Y <=? a . b . c + d + e .

Decision time: 0ms cpu (0ms real)

Solution 1

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> c

Z:Elt --> d + e

Solution 2

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> c
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Z:Elt --> d + e

Solution 3

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> d

Z:Elt --> c + e

Solution 4

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> d

Z:Elt --> c + e

Solution 5

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> e

Z:Elt --> c + d

Solution 6

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> e

Z:Elt --> c + d

Solution 7

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> c + d

Z:Elt --> e

Solution 8

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> c + d

Z:Elt --> e

Solution 9

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> c + e

Z:Elt --> d

Solution 10

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> c + e

Z:Elt --> d
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Solution 11

Matched portion = (whole)

X:Elt --> a . b

Y:Elt --> d + e

Z:Elt --> c

Solution 12

Matched portion = b . (c + d + e)

X:Elt --> b

Y:Elt --> d + e

Z:Elt --> c

Note that extension is only used for matching the top operation, _._ in
this example, but not _+_. This is the reason why the subterm Y + Z of the
lefthand side should match the entire maximal _+_-subterm of the subject
term, and not just some _+_-subterm.

For operators with the iter attribute, the situation with matching is anal-
ogous to the assoc theory, so that proper subterms of say f^3(X:Foo), such
as f^2(X:Foo) and f(X:Foo), can also be matched by means of extension.

4.9 The reduce, match, trace, and show commands

Here we assemble the whole module for the NUMBERS running example to illus-
trate some of the basic commands for interacting with Maude. See Chapter 25
for full details about these and other Maude commands.

Notice that, since the result of the _in_ predicate is a Boolean value, we im-
port the predefined module BOOL (see Section 9.1) by means of a protecting

declaration (described in Section 8.1.1).

fmod NUMBERS is

protecting BOOL .

sort Zero .

sorts Nat NzNat .

subsort Zero NzNat < Nat .

op zero : -> Zero [ctor] .

op s_ : Nat -> NzNat [ctor] .

op sd : Nat Nat -> Nat .

ops _+_ _*_ : Nat Nat -> Nat [assoc comm] .

op _+_ : NzNat Nat -> NzNat [ditto] .

op _*_ : NzNat NzNat -> NzNat [ditto] .

op p : NzNat -> Nat .

vars I N M : Nat .

eq N + zero = N .

eq N + s M = s (N + M) .
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eq sd(N, N) = zero .

eq sd(N, zero) = N .

eq sd(zero, N) = N .

eq sd(s N, s M) = sd(N, M) .

eq N * zero = zero .

eq N * s M = (N * M) + N .

eq p(s N) = N [label partial-predecessor] .

eq (N + M) * I = (N * I) + (M * I)

[nonexec metadata "distributive law"] .

sort Nat3 .

ops 0 1 2 : -> Nat3 [ctor] .

op _+_ : Nat3 Nat3 -> Nat3 [comm] .

vars N3 : Nat3 .

eq N3 + 0 = N3 .

eq 1 + 1 = 2 .

eq 1 + 2 = 0 .

eq 2 + 2 = 1 .

sort NatSeq .

subsort Nat < NatSeq .

op nil : -> NatSeq .

op __ : NatSeq NatSeq -> NatSeq [assoc id: nil] .

sort NatSet .

subsort Nat < NatSet .

op empty : -> NatSet .

op _;_ : NatSet NatSet -> NatSet [assoc comm id: empty] .

eq N ; N = N [label natset-idem] .

op _in_ : Nat NatSet -> Bool .

var NS : NatSet .

eq N in N ; NS = true .

eq N in NS = false [owise] .

endfm

First, we evaluate some expressions using the reduce command. Maude
repeats the command filling in any omitted optional information. Then statis-
tics about the execution are printed.16 Finally, the result is printed, prefaced
by its least sort.

The first two examples evaluate the sum of three ones in Nat and in Nat3.

Maude> red s zero + s zero + s zero .

reduce in NUMBERS : s zero + s zero + s zero .

rewrites: 4 in 0ms cpu (0ms real) (~ rews/sec)

16 The cpu and real time information is not printed if the user has made use of the
set show timing off command (see Section 25.9).
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result NzNat: s s s zero

Maude> red 1 + (1 + 1) .

reduce in NUMBERS : 1 + (1 + 1) .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result Nat3: 0

The next example illustrates the effect of the idempotency equation for
sets of natural numbers.

Maude> red zero ; s zero ; zero ; s zero .

reduce in NUMBERS : zero ; s zero ; zero ; s zero .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result NatSet: zero ; s zero

Finally we convince ourselves that the owise attribute works.

Maude> red zero in s zero ; zero ; s s zero .

reduce in NUMBERS : zero in s zero ; zero ; s s zero .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result Bool: true

Maude> red zero in s zero ; s s zero .

reduce in NUMBERS : zero in s zero ; s s zero .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result Bool: false

The commands xmatch and match operate in the same way, unless the
subject term has an operator that needs extension on top, in which case it
can match proper subterms in the same theory layer, as required for rewriting
modulo that theory. The xmatch command was illustrated in Section 4.8. Here
we compare match and xmatch on a pattern that splits a sequence of natural
numbers into two parts. To be safe, we ask for at most five matches, but in
fact there are only four.

Maude> match [5] NS0:NatSeq NS1:NatSeq <=? zero zero zero .

match [5] in NUMBERS : NS0:NatSeq NS1:NatSeq <=? zero zero zero .

Decision time: 0ms cpu (0ms real)

Solution 1

NS0:NatSeq --> nil

NS1:NatSeq --> zero zero zero

Solution 2

NS0:NatSeq --> zero

NS1:NatSeq --> zero zero

Solution 3

NS0:NatSeq --> zero zero

NS1:NatSeq --> zero
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Solution 4

NS0:NatSeq --> zero zero zero

NS1:NatSeq --> nil

Using the xmatch command for the same pattern and term, we see that in
addition to the whole term matches, Maude also reports matches within the
subterm zero zero. In fact, there are two occurrences of this subterm. We
only show five of the matches.

Maude> xmatch [5] NS0:NatSeq NS1:NatSeq <=? zero zero zero .

xmatch [5] in NUMBERS : NS0:NatSeq NS1:NatSeq <=? zero zero zero .

Decision time: 0ms cpu (7ms real)

Solution 1

Matched portion = zero zero

NS0:NatSeq --> nil

NS1:NatSeq --> zero zero

Solution 2

Matched portion = zero zero

NS0:NatSeq --> zero

NS1:NatSeq --> zero

Solution 3

Matched portion = zero zero

NS0:NatSeq --> zero zero

NS1:NatSeq --> nil

Solution 4

Matched portion = (whole)

NS0:NatSeq --> nil

NS1:NatSeq --> zero zero zero

Solution 5

Matched portion = (whole)

NS0:NatSeq --> zero

NS1:NatSeq --> zero zero

Let us consider now a small example using the trace command. We turn
on selective tracing and choose to trace only uses of the equation labeled
partial-predecessor.

Maude> set trace on .

Maude> set trace select on .

Maude> trace select partial-predecessor .

Maude> red s s p(s zero) + s p(s zero) .

reduce in NUMBERS : s s p(s zero) + s p(s zero) .

*********** equation
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eq p(s N) = N [label partial-predecessor] .

N --> zero

p(s zero)

--->

zero

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result NzNat: s s s zero

Note that Maude only reports one use of this equation, despite the fact
that there are two occurrences in the term. This is because, when perform-
ing equational simplification, occurrences of the same subterm are internally
shared17 and hence there is only one occurrence of the subterm p(s zero) in
the internal representation.

We can ask Maude to show the module FIBONACCI (assuming it has been
loaded).

Maude> show module FIBONACCI .

fmod FIBONACCI is

protecting NAT .

op fibo : Nat -> Nat [memo] .

var N : Nat .

eq fibo(0) = 0 .

eq fibo(1) = 1 .

eq fibo(s s N) = fibo(N) + fibo(s N) .

endfm

The show sorts command shows all the sorts declared and for each sort
its sub- and super-sorts.

Maude> show sorts NUMBERS .

sort Bool .

sort Zero . subsorts Zero < Nat NatSet NatSeq .

sort Nat . subsorts NzNat Zero < Nat < NatSet NatSeq .

sort NzNat . subsorts NzNat < Nat NatSet NatSeq .

sort Nat3 .

sort NatSeq . subsorts NzNat Zero Nat < NatSeq .

sort NatSet . subsorts NzNat Zero Nat < NatSet .

17 However, this sharing—i.e., treating the term as a dag instead of as a tree—is
not done in a maximal way, so that all subterms that can be shared are; instead,
term sharing is itself introduced incrementally by equational simplification, since
Maude analyzes righthand sides of equations to identify its shared subterms. As
explained by Eker in [135], in the presence of operator evaluation strategies (Sec-
tion 4.4.7) term sharing has to be done carefully. Furthermore, when rewriting
is performed with a rule in a system module (see Chapter 6), rather than with
an equation, Maude will incrementally unshare those parts of the subject term
needed to ensure that all possible rewrite with rules are considered. This is be-
cause rules in system modules need not be confluent. As a consequence, two
identical subterms could be rewritten in totally different ways; but this of course
would be prevented if they were to be shared.
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The show components command shows the connected components (kinds)
in the sort partial order.

Maude> show components NUMBERS .

[Bool]:

1 Bool

[NatSeq, NatSet]:

1 NatSeq

2 NatSet

3 Nat

4 Zero

5 NzNat

[Nat3] (error free):

1 Nat3

Note that the name of the kind corresponding to the connected component
containing the natural numbers contains the names of two sorts. These are
the maximal sorts in the component. The (error free) comment about the
sort Nat3 means that all terms of kind [Nat3] are in fact of sort Nat3.

4.10 A number hierarchy

As further examples of Maude functional modules, we describe below a hierar-
chy of modules specifying the number hierarchy from the natural to the ratio-
nal numbers in a somewhat different form than in [174, C.7]. Since NAT, INT,
and RAT are predefined modules in the Maude prelude (see Chapter 9), to avoid
clashes with the predefined versions we call the modules below PEANO-NAT,
PEANO-INT, and PEANO-RAT, because they follow the natural number notation
based on zero and successor, as in the Peano axiomatization.

The natural numbers are defined by means of two constructors, zero (0)
and successor (s_). Since some operations are undefined for zero, we intro-
duce the subsort NzNat of nonzero natural numbers, which becomes the result
sort for the succesor operator. Then the predecessor p_ is the inverse of the
successor over nonzero natural numbers, so that the term p 0 is undefined.

We consider several typical arithmetical operations on natural numbers:
addition, product, difference (denoted d), quotient (whose second argument is
of sort NzNat, thus avoiding division by zero), greatest common divisor, and
a greater than predicate.

Notice that most of the arithmetical operators are declared as commutative
by means of an equational attribute comm; this applies in particular to the
difference operator d, which is symmetric because its result when applied to
two natural numbers is the result of subtracting the least from the greatest
of the two.
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Moreover, the operators for addition _+_, for product _*_, and for greatest
common divisor gcd are overloaded, with one declaration for Nat and another
for NzNat, thus making explicit the fact that when applied to two positive
natural numbers, the corresponding result is also positive.

The result of the greater than _>_ predicate is a Boolean value. Instead of
defining our own Boolean values, we will make use of the predefined module
BOOL described in Section 9.1, which provides values true and false, together
with typical Boolean operations on them. Here, we import BOOL by means of
a protecting declaration, which will be described in Section 8.1.1.

fmod PEANO-NAT is

protecting BOOL .

sorts Nat NzNat Zero .

subsorts Zero NzNat < Nat .

op 0 : -> Zero [ctor] .

op s_ : Nat -> NzNat [ctor] .

op p_ : NzNat -> Nat .

op _+_ : Nat Nat -> Nat [comm] .

op _+_ : NzNat NzNat -> NzNat [comm] .

op _*_ : Nat Nat -> Nat [comm] .

op _*_ : NzNat NzNat -> NzNat [comm] .

op _>_ : Nat Nat -> Bool .

op d : Nat Nat -> Nat [comm] .

op quot : Nat NzNat -> Nat .

op gcd : Nat Nat -> Nat [comm] .

op gcd : NzNat NzNat -> NzNat [comm] .

Except for the constructors, the remaining operations are equationally
defined in an inductive way by distinguishing different cases over the con-
structors.

For addition, product and difference, due to its commutativity attribute,
it is enough to have two equations to deal with the case in which one of the
arguments is zero and the case in which both are positive and therefore of
the form s N for some natural number N. The equations for the greater than
predicate are similar, but we need three equations because this operator is
not commutative; notice that N’ > 0 is true in the second equation, because
the variable N’ is assumed to have sort NzNat.

On the other hand, the case distinction for quotient and greatest common
divisor is not based on constructors but on comparing the values of the two
arguments, making good use of conditional equations. In particular, the equa-
tions for gcd follow the well-known Euclidean algorithm, based on repeatedly
subtracting the least argument from the greatest until both coincide.

vars N M : Nat .

vars N’ M’ : NzNat .

eq p s N = N .

eq N + 0 = N .

eq (s N) + (s M) = s s (N + M) .
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eq N * 0 = 0 .

eq (s N) * (s M) = s (N + (M + (N * M))) .

eq 0 > M = false .

eq N’ > 0 = true .

eq s N > s M = N > M .

eq d(0, N) = N .

eq d(s N, s M) = d(N, M) .

ceq quot(N, M’) = s quot(d(N, M’), M’) if N > M’ .

eq quot(M’, M’) = s 0 .

ceq quot(N, M’) = 0 if M’ > N .

eq gcd(0, N) = 0 .

eq gcd(N’, N’) = N’ .

ceq gcd(N’, M’) = gcd(d(N’, M’), M’) if N’ > M’ .

endfm

Now we specify the integer numbers as an extension of the natural num-
bers. The specification of the latter is imported by means of a protecting

declaration, meaning (as explained in Section 8.1.1) that the natural numbers
are not disturbed by this extension.

We add supersorts Int and NzInt of Nat and NzNat, respectively. The
new constructor that builds negative integers is the unary minus operator -_,
which is self-inverse, as the first equation asserts. The remaining operations
are extensions to the integers of previous operations on natural numbers.

fmod PEANO-INT is

protecting PEANO-NAT .

sorts Int NzInt .

subsort Nat < Int .

subsorts NzNat < NzInt < Int .

op -_ : Int -> Int [ctor] .

op -_ : NzInt -> NzInt [ctor] .

op _+_ : Int Int -> Int [comm] .

op _*_ : Int Int -> Int [comm] .

op _*_ : NzInt NzInt -> NzInt [comm] .

op quot : Int NzInt -> Int .

op gcd : Int Int -> Nat [comm] .

op gcd : NzInt NzInt -> NzNat [comm] .

The equations for product, quotient, and gcd simply treat appropriately
the sign. But the new equations for addition of integers have to distinguish
cases according to whether the two arguments have the same or different sign;
in the latter case, the addition reduces by means of two conditional equations
to the (symmetric) difference d on natural numbers.

vars I J : Int .

vars I’ J’ : NzInt .

vars N’ M’ : NzNat .

eq - - I = I .

eq - 0 = 0 .
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eq I + 0 = I .

eq M’ + (- M’) = 0 .

ceq M’ + (- N’) = - d(N’, M’) if N’ > M’ .

ceq M’ + (- N’) = d(N’, M’) if M’ > N’ .

eq (- I) + (- J) = - (I + J) .

eq I * 0 = 0 .

eq I * (- J) = - (I * J) .

eq quot(0, I’) = 0 .

eq quot(- I’, J’) = - quot(I’, J’) .

eq quot(I’, - J’) = - quot(I’, J’) .

eq gcd(- I’, J’) = gcd(I’, J’) .

endfm

We follow a similar pattern to specify rational numbers on top of the
integers.

First we import the module PEANO-INT in protecting mode, because
integers are not modified in any way by this extension. Then, we add a new
division operator _/_ that is a constructor building rational numbers from the
integers. The operations for unary minus, addition, and product are extended
to the larger set of numbers.

fmod PEANO-RAT is

protecting PEANO-INT .

sorts Rat NzRat .

subsort Int < Rat .

subsorts NzInt < NzRat < Rat .

op _/_ : Rat NzRat -> Rat [ctor] .

op _/_ : NzRat NzRat -> NzRat [ctor] .

op -_ : Rat -> Rat .

op -_ : NzRat -> NzRat .

op _+_ : Rat Rat -> Rat [comm] .

op _*_ : Rat Rat -> Rat [comm] .

op _*_ : NzRat NzRat -> NzRat [comm] .

The first two equations allow to simplify the result of iterating the division
operator, so that in the end we have a fraction with two integers as numerator
and denominator. Moreover, the third equation simplifies such a fraction of
integers to its reduced form, by dividing both numerator and denominator by
its greatest common divisor. Further simplification is obtained by the next
two equations, that treat the cases in which the denominator is one or the
numerator is zero.

The last equations define unary minus, addition, and product on rational
numbers in an inductive way by means of well-known algebraic properties of
such operations.

vars I’ J’ : NzInt .

vars R S : Rat .

vars R’ S’ : NzRat .

eq R / (R’ / S’) = (R * S’) / R’ .
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eq (R / R’) / S’ = R / (R’ * S’) .

ceq J’ / I’ = quot(J’, gcd(J’, I’)) / quot(I’, gcd(J’, I’))

if gcd(J’, I’) > s 0 .

eq R / s 0 = R .

eq 0 / R’ = 0 .

eq R / (- R’) = (- R) / R’ .

eq - (R / R’) = (- R) / R’ .

eq R + (S / R’) = ((R * R’) + S) / R’ .

eq R * (S / R’) = (R * S) / R’ .

endfm

Figure 8.1 in Section 8.1.5 illustrates in a diagrammatic way the relation-
ship between the modules above. This hierarchy happens to be a linear (or
total) order of theory inclusions, with BOOL at the bottom.

As mentioned before, in Chapter 9 we will see predefined versions of the
three number modules above, with a variety of additional operations.

4.11 Partial operations, subsorting, and errors

In this section we show different techniques to specify a partial function, by
means of a simple example.

Let us consider the natural numbers with zero, successor, and an addition
operation, as in the PEANO-NAT module of the previous section.

fmod NAT-PRED-KIND is

sort Nat .

op 0 : -> Nat [ctor] .

op s_ : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat [comm] .

vars N M : Nat .

eq N + 0 = N .

eq (s N) + (s M) = s s (N + M) .

Now we extend this specification with a predecessor operation that is un-
defined for zero. This operation can be easily made total by defining that
the predecessor of zero is zero itself, but this possibility is not useful for our
purposes here, where we want to consider a simple partial operation, which is
undefined in cases where the operation does not quite make sense. The sim-
plest way to declare such a partial function is to make explicit that the result
is in the kind [Nat] instead of in a sort. Then we have an equation giving the
result of predecessor over nonzero natural numbers.

op p_ : Nat -> [Nat] .

eq p s N = N .

endfm
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The term p 0 is syntactically correct (it does parse), but it does not have
a sort; it has just a kind. On the other hand, terms like p s s 0 reduce
appropriately and the result has sort Nat.

Maude> red p 0 .

result [Nat]: p 0

Maude> red p s s 0 .

result Nat: s 0

If we consider bigger terms that contain p 0 as a subterm, then again they
have a kind but not a sort.

Maude> red p s s 0 + s p 0 .

result [Nat]: s 0 + s p 0

Notice that Maude has reduced the term as much as possible, but in the end
we do not get a natural number because the subterm p 0 is meaningless.

Given that the predecessor operation is only undefined for zero, we can
refine the previous specification so that we make explicit in its declaration the
fact that the predecessor operation is total on nonzero natural numbers. The
way to accomplish this is to introduce a new sort NzNat for nonzero natural
numbers, which is the result sort for the successor operator, and becomes
a subsort of the sort of natural numbers by means of a subsort declaration
NzNat < Nat. Then the predecessor operator is declared as mapping NzNat

to Nat.

fmod NAT-PRED-SUB is

sorts Nat NzNat .

subsorts NzNat < Nat .

op 0 : -> Nat [ctor] .

op s_ : Nat -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat [comm] .

op p_ : NzNat -> Nat .

vars N M : Nat .

eq N + 0 = N .

eq (s N) + (s M) = s s (N + M) .

eq p s N = N .

endfm

With the declaration p_ : NzNat -> Nat, one could expect that the
term p 0 does not make sense and should be considered ill-formed. How-
ever, more flexibility is necessary; indeed, an approach too strict to parsing
in the context of order-sorted specifications would consider a term such as
p (s s 0 + s 0) ill-formed, because the subterm s s 0 + s 0 has sort
Nat according to the declaration of the addition operator while the prede-
cessor operator requires an argument of sort NzNat. But after equationally
simplifying the subterm s s 0 + s 0 to s s s 0, we see that the require-
ment for the sort of the argument is then indeed satisfied. Therefore, Maude
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gives at parsing time the benefit of the doubt, by automatically lifting all op-
erators to the kind level, parsing terms at the level of kinds, and simplifying
them as much as possible.

Maude> red p (s s 0 + s 0) .

result NzNat: s s 0

Maude> red p (0 + 0) .

result [Nat]: p 0

Maude> red p s s 0 + s p 0 .

result [Nat]: s 0 + s p 0

To sum up, with the subsort approach we have a more refined type sys-
tem that provides more detailed information about the terms involved in the
specification and the defining conditions of the corresponding operations.

A dual approach is to consider that errors go to an explicit error supersort
rather than to the kind. In this example we can introduce a new sort ErrorNat
which becomes a supersort of the sort of natural numbers by means of a
declaration Nat < ErrorNat. Now the predecessor operator is declared again
as a total operation, but from Nat to ErrorNat, so that p 0 = error, with
error a constant in the supersort.

fmod NAT-PRED-SUPER is

sorts Nat ErrorNat .

subsorts Nat < ErrorNat .

op 0 : -> Nat [ctor] .

op s_ : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat [comm] .

op p_ : Nat -> ErrorNat .

op error : -> ErrorNat .

vars N M : Nat .

eq N + 0 = N .

eq (s N) + (s M) = s s (N + M) .

eq p s N = N .

eq p 0 = error .

endfm

The two previous equations provide a result for any term of the form p n
where n is a natural number; for example,

Maude> red p (0 + 0) .

result ErrorNat: error

Maude> red p (s s 0 + s 0) .

result Nat: s s 0

However, if a term contains the subterm p 0, then p 0 itself, and perhaps
other subterms, can be reduced, but the context above p 0 cannot be further
reduced. A way to propagate errors explicitly is to introduce overloaded dec-
larations for all the operators, and additional equations to make explicit the
desired error propagation.
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op s_ : ErrorNat -> ErrorNat .

op _+_ : ErrorNat ErrorNat -> ErrorNat [ditto] .

op p_ : ErrorNat -> ErrorNat .

eq s error = error .

eq N + error = error .

eq p error = error .

Then all terms built with the operators in module NAT-PRED-SUPER reduce,
either to a natural number, or to the error constant.

Maude> red p (0 + 0) + p (s s 0 + s 0) .

result ErrorNat: error

Maude> red p s (0 + 0) + p (s s 0 + s 0) .

result Nat: s s 0

This last approach with error propagation can become too complex in a
specification with several operators, but it can be very useful when the error
is merely an exception and one is interested in providing exception handling
or error recovery instead of just error propagation. In the previous example,
we could consider a different equation such as N + error = N that makes the
error disappear for the addition:

Maude> red p (0 + 0) + p (s s 0 + s 0) .

result Nat: s s 0

Maude> red p p (0 + 0) .

result ErrorNat: error

Error constants can also be declared at the level of kinds instead of sorts;
then, the type information is less accurate but this can be enough in many
situations.

The user should consider these different possibilities in a given application
and use the more appropriate for each case.

At the beginning of Section 14.5, we review the criteria used in a com-
plex module like the META-LEVEL module in the Maude prelude (see file
prelude.maude) to choose between using a user-defined supersort and having
an operator map to a kind to represent partial operations.

In this section we have limited ourselves to illustrating the use of subsorts
in defining partial operations. More sophisticated partial functions—namely,
partial functions whose domain of definition is not characterized by purely syn-
tactic means, such as subsort declarations, but does indeed require a semantic
characterization—can be generally defined by conditional memberships. This
has already been illustrated by the path concatenation operator _;_ in Sec-
tion 4.3, and is illustrated with many other examples in Chapter 10.





5

A Hierarchy of Data Types: From Trees to Sets

In Section 4.4.1 we have introduced equational attributes as a means of declar-
ing some equational properties of binary operators that allow Maude to use
these properties efficiently in a built-in way in parsing and in matching mod-
ulo such equational axioms. We recall that Maude supports the following
equational attributes:

• assoc (associativity),
• comm (commutativity),
• id: 〈Term 〉 (identity, with the corresponding term for the identity ele-

ment), with variations for left identity and right identity, and
• idem (idempotency).

An important restriction to bear in mind is that the assoc and idem attributes
cannot be used together in any combination.

In this chapter we will show that equational attributes correspond to struc-
tural axioms of well-known data types built with a binary constructor opera-
tor. In this way we obtain a hierarchy of data types:

• non-empty binary trees, with elements only in their leaves, built with a
free binary constructor, that is, a constructor with no equational axioms;

• non-empty lists, built with an associative constructor;
• lists, built with an associative constructor and an identity;
• multisets (or bags), built with an associative and commutative constructor

and an identity; and
• sets, built with an associative, commutative, and idempotent constructor

and an identity.

All these data types are generic, so that they can be constructed on top
of any given data type of basic elements; for example, we can have lists of
natural numbers, lists of Booleans, lists of sets of integers, etc. This genericity
corresponds to making use of parameterized modules in Maude, which will be
introduced later in Section 8.3. Therefore, in this chapter we only consider
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constructions over natural numbers. In Section 9.12 we will describe the pre-
defined parameterized versions of lists and sets provided in the Maude prelude,
and in Chapter 10 we will describe many other parameterized data types, like
stacks, queues, sorted lists, multisets, and different versions of trees.

Although the Maude prelude also provides a predefined module of natural
numbers (see Section 9.2), in this chapter we will make use of the following
basic specification; natural numbers are built from zero and successor in the
style described in Section 4.10, but with only two operations for addition and
for calculating the maximum of two numbers, that are defined in a simple way
by structural induction over the two constructors.

fmod BASIC-NAT is

sort Nat .

op 0 : -> Nat [ctor] .

op s_ : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

op max : Nat Nat -> Nat .

vars N M : Nat .

eq 0 + N = N .

eq s M + N = s (M + N) .

eq max(0, M) = M .

eq max(N, 0) = N .

eq max(s N, s M) = s max(N, M) .

endfm

This module will be imported in the modules introduced in the next sec-
tions by means of a protecting declaration, whose full meaning will be ex-
plained in Section 8.1.1. For the time being, it is enough to know that the data
elements defined in this imported module are used by the importing module
without modifying them in any way.

5.1 Nonempty binary trees

Our first module introduces a supersort Tree of the sort Nat imported from
BASIC-NAT, so that a natural number corresponds to a tree consisting of a
single leaf. Bigger trees, with elements only in their leaves, are constructed
from these by means of a binary operator written using empty juxtaposition
notation __; this operator is a free constructor in the sense that it does not
satisfy any equational axiom.

fmod BASIC-NAT-TREE is

protecting BASIC-NAT .

sorts Tree .

subsort Nat < Tree .

op __ : Tree Tree -> Tree [ctor] .
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For example, the term ((s 0) 0) (0 (s 0)) corresponds to the tree that
we can represent graphically as follows:

s 0 0 0 s 0
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�
@
@

�
�
@
@

��
��

HH
HH

Notice that an expression such as (s 0) 0 (s 0) is ambiguous, because it
can be parsed in two different ways, and parentheses are necessary to disam-
biguate ((s 0) 0) (s 0) from (s 0) (0 (s 0)). These two different terms
correspond to the following two trees:
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We can add to this data type a couple of operations to calculate the width
(which coincides with the number of leaves) and the depth of a tree. Each
operation is defined by means of two equations, corresponding to the basic
trees identified with natural numbers, and to the binary constructor.

op depth : Tree -> Nat .

op width : Tree -> Nat .

var N : Nat .

vars T T’ : Tree .

eq depth(N) = s 0 .

eq depth(T T’) = s(max(depth(T), depth(T’))) .

eq width(N) = s 0 .

eq width(T T’) = width(T) + width(T’) .

endfm

For example, we have the following reductions:

Maude> red depth(((s 0) 0) (0 s 0)) .

result Nat: s s s 0

Maude> red width(((s 0) 0) (0 s 0)) .

result Nat: s s s s 0

Maude> red depth((s 0) (0 s 0)) .

result Nat: s s s 0

Maude> red width((s 0) (0 s 0)) .

result Nat: s s s 0
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5.2 Nonempty lists

A simple way to generate non-empty lists is to begin with singleton lists, and
then use the concatenation operation to get lists with two or more elements.
However, concatenation cannot be a free constructor, because it is associa-
tive. This property is not declared directly as an equation, but instead as an
equational operator attribute assoc.

Singleton lists are identified with natural numbers by means of a subsort
declaration Nat < NeList.

It is very convenient here to use empty juxtaposition syntax __ for the con-
catenation operator; in this way, a list of integers [x1, . . . , xn] is written simply
as x1 . . . xn. Notice that now, because of the associativity property, there is
no ambiguity, and therefore there is no need for parentheses, as opposed to
what happened in the previous section.

fmod BASIC-NAT-NE-LIST is

protecting BASIC-NAT .

sort NeList .

subsort Nat < NeList .

op __ : NeList NeList -> NeList [ctor assoc] .

We add one operation to calculate the length, that is, the number of ele-
ments in a list, and another to reverse a list. Again, each operation is defined
by means of two equations, corresponding to the singleton lists (identified with
natural numbers) and to the binary constructor.

op length : NeList -> Nat .

op reverse : NeList -> NeList .

var N : Nat .

vars L L’ : NeList .

eq length(N) = s 0 .

eq length(L L’) = length(L) + length(L’) .

eq reverse(N) = N .

eq reverse(L L’) = reverse(L’) reverse(L) .

endfm

Some reduction examples are the following:

Maude> red length(0 (s 0) (s s 0)) .

result Nat: s s s 0

Maude> red reverse(0 (s 0) (s s 0)) .

result NeList: s s 0 s 0 0
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5.3 Lists

We consider a variant of the previous example by adding the empty list nil

as the identity of concatenation, which is again the main constructor for lists,
declared this time with both an attribute assoc for associativity and an at-
tribute id: nil for the empty list as its two-sided identity.

So that the specification becomes more interesting, we will also consider
operations head and tail, which are undefined on the empty list. There-
fore, we consider a subsort NeList of non-empty lists and then singleton
lists are identified with natural numbers by means of a subsort declaration
Nat < NeList < List. Then, the concatenation operator becomes subsort
overloaded, having one declaration for non-empty lists and another one for
lists. There are two more possibilities of concatenation overloading (NeList
List -> NeList and List NeList -> NeList) but they are unnecessary in
this case because of the identity attribute.

Notice that equational attributes in overloaded operators have to coincide,
as described in Section 4.4.6, even though, by reading alone the second dec-
laration for concatenation, it may sound a bit strange to say that the empty
list is an identity for an operation only defined on non-empty lists. It is also
possible to use the ditto operator attribute to implicitly repeat the attributes
without having to write them all explicitly again.

fmod BASIC-NAT-LIST is

protecting BASIC-NAT .

sorts NeList List .

subsorts Nat < NeList < List .

op nil : -> List [ctor] .

op __ : List List -> List [ctor assoc id: nil] .

op __ : NeList NeList -> NeList [ctor assoc id: nil] .

op tail : NeList -> List .

op head : NeList -> Nat .

var N : Nat .

var L : List .

eq tail(N L) = L .

eq head(N L) = N .

We extend the length and reverse operations to the empty list. The
important point to note is that, with identity as an attribute, the identity
equations belong to the set A of equational axioms and not to the equations
E used for equational simplification, as discussed in Sections 4.4.1 and 4.7.
In this way, the congruence classes over which equational simplification takes
place are calculated modulo associativity and identity. Therefore, we only need
two equations to completely specify the behavior of these defined operations:
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the singleton case becomes a particular case of the pattern N L by instantiating
the variable L with the constant nil and applying the identity property.

op length : List -> Nat .

op reverse : List -> List .

eq length(nil) = 0 .

eq length(N L) = s length(L) .

eq reverse(nil) = nil .

eq reverse(N L) = reverse(L) N .

endfm

Moreover, there is another thing to watch out for in the presence of the
identity attribute: the alternative equation length(L L’) = length(L) +

length(L’) (with L and L’ variables of sort List) would cause problems
of nontermination. To see this, consider the instantiation with L’ 7→ nil that
gives

length(L nil) = length(L) + length(nil)

= length(L nil) + length(nil)

= (length(L) + length(nil)) + length(nil)

= ...

because of the identification L = L nil.
We finish this example with a couple of reductions:

Maude> red length(head(0 (s 0) (s s 0))) .

result Nat: s 0

Maude> red reverse(tail(0 (s 0) (s s 0))) .

result NeList: s s 0 s 0

A parameterized and much more complete version of lists, specified with
the same equational attributes as in this section, will be described in Sec-
tion 9.12.1. Another specification of lists, based on free constructors, will be
explained in Section 10.4.

5.4 Multisets

In the same way as associativity and identity for concatenation provide struc-
tural axioms for lists or strings, where the order of the elements matters, we
can specify abstractly multisets (also known as bags) by considering a multiset
union constructor (written again with empty juxtaposition syntax) that sat-
isfies associativity, commutativity (because now order between elements does
not matter), and identity structural axioms, all of them declared as equational
attributes.
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fmod BASIC-NAT-MSET is

protecting BASIC-NAT .

protecting BOOL .

sort Mset .

subsorts Nat < Mset .

op empty-mset : -> Mset [ctor] .

op __ : Mset Mset -> Mset [ctor assoc comm id: empty-mset] .

We consider operations for calculating the size of a multiset (that is,
the number of elements it has, taking into account the possible repetitions of
each one), for calculating the multiplicity of an element in a multiset (that
is, the number of times it appears), and for checking if an element is in

a multiset. The result of the last-mentioned operation is a Boolean value,
obtained from the BOOL module, which is explicitly imported with another
protecting declaration and also provides the inequality predicate _=/=_ (see
Section 9.1).

op size : Mset -> Nat .

op mult : Nat Mset -> Nat .

op _in_ : Nat Mset -> Bool .

vars N N’ : Nat .

var S : Mset .

eq size(empty-mset) = 0 .

eq size(N S) = s size(S) .

eq mult(N, empty-mset) = 0 .

eq mult(N, N S) = s mult(N, S) .

ceq mult(N, N’ S) = mult(N, S) if N =/= N’ .

eq N in S = (mult(N, S) =/= 0) .

endfm

Notice again the form of the equations for the defined operations; for
example, an equation like size(S S’) = size(S) + size(S’) (with S and
S’ variables of sort Mset) would cause problems of nontermination in the
presence of the identity attribute.

The membership operation is defined using the multiplicity function, al-
though it could be defined in a totally independent way. There is an alternative
way of defining both of these operations by making use of the otherwise at-
tribute explained in Section 4.5.4. To see if a natural number N is in a multiset,
we can match the multiset against the pattern N S; if the matching succeeds,
then the result is true, otherwise, we know that the element does not occur in
the multiset and the result is false.

eq N in N S = true .

eq N in S = false [owise] .
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The same technique can be used to count the number of occurrences of
a given element (natural number, in this example) in a given multiset: if the
multiset matches the pattern N S, then we know that N appears at least once
and count recursively the remaining occurrences; otherwise, N does not occur
and thus its multiplicity is zero.

eq mult(N, N S) = s mult(N, S) .

eq mult(N, S) = 0 [owise] .

Some reduction examples are the following:

Maude> red size(0 (s 0) (s s 0) (s s 0) (s 0) 0) .

result Nat: s s s s s s 0

Maude> red mult(s 0, 0 (s 0) (s s 0) (s s 0) (s 0) 0) .

result Nat: s s 0

Maude> red s s s 0 in 0 (s 0) (s s 0) (s s 0) (s 0) 0 .

result Bool: false

A parameterized and much more complete version of multisets will be
described in Section 10.6.

5.5 Sets

Building on the multiset example of the previous section, we can get a spec-
ification for sets of natural numbers, where multiplicity of elements does not
matter, by adding idempotency as an equation. Since the attributes for as-
sociativity and idempotency cannot be combined, we instead use an explicit
equation to declare such property.

fmod BASIC-NAT-SET is

protecting BASIC-NAT .

protecting BOOL .

sort Set .

subsorts Nat < Set .

op empty-set : -> Set [ctor] .

op __ : Set Set -> Set [ctor assoc comm id: empty-set] .

vars N N’ : Nat .

vars S S’ : Set .

eq N N = N .

The idempotency equation is stated only for singleton sets, because stating
it for arbitrary sets in the form S S = S would cause nontermination due to
the identity attribute:
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empty-set = empty-set empty-set → empty-set . . .

While a predicate to check membership makes as much sense for sets as
for multisets, a multiplicity operation does not. The size operation becomes
now the cardinality operation, but for its specification we need to make sure
that an element is not counted more than once. In the following equations,
this is accomplished with the help of a delete operation, that removes a
given element from a set. Notice that the equality _==_ and inequality _=/=_

predicates come from the BOOL predefined module (see Section 9.1), imported
by means of a protecting declaration.

op _in_ : Nat Set -> Bool .

op delete : Nat Set -> Set .

op card : Set -> Nat .

eq N in empty-set = false .

eq N in (N’ S) = (N == N’) or (N in S) .

eq delete(N, empty-set) = empty-set .

eq delete(N, N S) = delete(N, S) .

ceq delete(N, N’ S) = N’ delete(N, S) if N =/= N’ .

eq card(empty-set) = 0 .

eq card(N S) = s card(delete(N, S)) .

endfm

Notice that the equations for the above delete and card operations make
sure that further occurrences of N in S on the righthand side are also deleted
or not counted, respectively, because in general we cannot rely on the order in
which equations are applied in equational simplification to assume that there
are no repeated elements in an expression.

The operations _in_ and delete can also be defined, more succinctly and
in a more efficient way, using the owise attribute:

eq N in N S = true .

eq N in S = false [owise] .

eq delete(N, N S) = delete(N, S) .

eq delete(N, S) = S [owise] .

We finish with some reduction examples:

Maude> red card(0 (s 0) (s s 0) (s s 0) (s 0) 0) .

result Nat: s s s 0

Maude> red delete(s 0, 0 (s 0) (s s 0) (s s 0) (s 0) 0) .

result Set: 0 s s 0

Maude> red s s s 0 in 0 (s 0) (s s 0) (s s 0) (s 0) 0 .

result Bool: false

A parameterized and much more complete version of sets will be described
in Section 9.12.2.
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5.6 Idempotent semigroups

As a final example in this chapter, we consider one of a different character,
but also very related to equational attributes.

Consider the word problem for idempotent semigroups: given a binary
concatenation operation __ satisfying the equations for associativity (xy)z =
x(yz) and idempotency xx = x, when are two words provably equal? For
example, do we have abc = abcbabc? (Note the absence of parentheses because
of associativity.)

The first idea is to build in the associative equation by means of an equa-
tional attribute, and use the idempotency equation from left to right as a
rewrite rule.

The imported (by means of a protecting declaration) module QID is a
useful predefined module (see Section 9.10) that provides quoted identifiers
that in this case represent the generators of the semigroup.

fmod NAIVE-IDEM-SEMIGROUP is

protecting QID .

sort List .

subsort Qid < List .

op __ : List List -> List [ctor assoc] . *** list concatenation

var L : List .

eq L L = L .

endfm

When we query the Maude system for the equality mentioned above, we
obtain

Maude> red in NAIVE-IDEM-SEMIGROUP :

’a ’b ’c == ’a ’b ’c ’b ’a ’b ’c .

result Bool: false

However, this result is wrong, because these two terms must be identified
in the equational theory since both of them can be proved equal to the term
’a ’b ’a ’b ’c ’b ’a ’b ’c as follows:

’a ’b ’a ’b ’c ’b ’a ’b ’c

�
�	

’a ’b ’a ’b ’c

�
�	

’a ’b ’c

@
@
@
@
@R

’a ’b ’c ’b ’a ’b ’c

The problem is lack of confluence. The above specification can be made
confluent (while preserving termination, which is obvious, since the length of
the word is strictly shorter after each equational simplification) by adding
one conditional rule [330], as in the following IDEM-SEMIGROUP module. This
rule is quite subtle, because its condition involves comparing sets of letters
in subwords. Note in the following specification that both lists and sets are
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non-empty, because there is no use for the empty case, and this at the same
time avoids nontermination problems with some equations as we have already
mentioned before.

fmod IDEM-SEMIGROUP is

protecting QID .

sorts List Set .

subsorts Qid < List Set .

op __ : List List -> List [ctor assoc] . *** list concatenation

op _,_ : Set Set -> Set [ctor assoc comm] . *** set union

op {_} : List -> Set . *** set of a list

var I : Qid .

var S : Set .

vars L P Q : List .

eq S, S = S .

eq {I} = I .

eq {I L} = I, {L} .

eq L L = L .

ceq L P Q = L Q if {L} = {Q} /\ {L P} = {L} .

endfm

Maude> red in IDEM-SEMIGROUP : ’a ’b ’c .

result List: ’a ’b ’c

Maude> red ’a ’b ’c ’b ’a ’b ’c .

result List: ’a ’b ’c

Maude> red ’a ’b ’c == ’a ’b ’c ’b ’a ’b ’c .

result Bool: true

Now we have obtained the correct result, because the specification is indeed
confluent; the example in the diagram above can be completed by using the
conditional equation in the step (∗).

’a ’b ’a ’b ’c ’b ’a ’b ’c
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System Modules

A Maude system module specifies a rewrite theory. A rewrite theory has sorts,
kinds, and operators (perhaps with frozen arguments), and can have three
types of statements: equations, memberships, and rules, all of which can be
conditional. Therefore, any rewrite theory has an underlying equational the-
ory, containing the equations and memberships, plus the rules. What is the
intuitive meaning of such rules? Computationally, they specify local concur-
rent transitions that can take place in a system if the pattern in the rule’s
lefthand side matches a fragment of the system state and the rule’s condition
is satisfied. In that case, the transition specified by the rule can take place,
and the matched fragment of the state is transformed into the corresponding
instance of the righthand side. Logically, that is, when we use rewriting logic
as a logical framework to represent other logics as explained in Section 1.4, a
rule specifies a logical inference rule, and rewriting steps therefore represent
inference steps.

As was mentioned in Section 3.2, a system module is declared in Maude
using the keywords

mod 〈ModuleName 〉 is 〈DeclarationsAndStatements 〉 endm

As for functional modules the first bit of information in the specification is
the module’s name, which must be an identifier. For example,

mod VENDING-MACHINE is

...

endm

where the dots stand for all the declarations and statements in the module,
which can be:

1. module importations,
2. sort and subsort declarations,
3. operator declarations,
4. variable declarations,
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5. equation and membership statements, and
6. rule statements.

Since declarations (1)–(4) and equational statements (5) are exactly as for
functional modules, all we have left to explain is how rules (conditional or
not) are declared. As for equation and membership statements, rules can be
declared with any of the attributes label, metadata, nonexec, and print (see
Section 4.5). However, the owise attribute can only be used with equations.

6.1 Unconditional rules

Mathematically, an unconditional rewrite rule has the form l : t → t′, where
t, t′ are terms of the same kind, which may contain variables, and l is the
label of the rule. Intuitively, a rule describes a local concurrent transition in a
system: anywhere in the distributed state where a substitution instance σ(t)
of the lefthand side t is found, a local transition of that state fragment to
the new local state σ(t′) can take place. And if many instances of the same
or of several rules can be matched in different nonoverlapping parts of the
distributed state, then all of them can fire concurrently.

An unconditional rule is introduced in Maude with the following syntax:

rl [〈Label 〉] : 〈Term-1 〉 => 〈Term-2 〉 [〈StatementAttributes 〉] .

As explained in Section 4.5.1, a label can alternatively be declared as a
statement attribute; also, Maude allows declaration of unlabeled rules. In these
two cases, the part “[〈Label 〉] :” is omitted.

As a first example of a system module we consider the following specifi-
cation of a vending machine which dispenses apples and cakes. The module
VENDING-MACHINE-SIGNATURE is the underlying functional module. This mod-
ule is imported by the system module VENDING-MACHINE, which then adds the
rules for operating the machine. Although not necessary, in addition to mak-
ing the underlying functional module explicit, such splitting of modules can
be useful in organizing a large specification, where a functional part may be
shared by several system modules; see Chapter 8 for a discussion on module
importation.

The constants $ and q represent coins of one dollar and one quarter, respec-
tively, while the constants a and c represent apples and cakes, respectively.

fmod VENDING-MACHINE-SIGNATURE is

sorts Coin Item Marking .

subsorts Coin Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: null] .

op null : -> Marking .

op $ : -> Coin [format (r! o)] .

op q : -> Coin [format (r! o)] .

op a : -> Item [format (b! o)] .
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op c : -> Item [format (b! o)] .

endfm

The format declaration for each constant (see Section 4.4.5) is used to
print the constants using different colors, so that coins can easily be separated
from items in a given marking.

mod VENDING-MACHINE is

including VENDING-MACHINE-SIGNATURE .

var M : Marking .

rl [add-q] : M => M q .

rl [add-$] : M => M $ .

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

rl [change] : q q q q => $ .

endm

This module specifies a concurrent machine to buy cakes and apples with
dollars and quarters. A cake costs a dollar, and an apple three quarters. We
can insert dollars and quarters in the machine, although due to an unfortunate
design, the machine only accepts buying cakes and apples with dollars. When
the user buys an apple the machine takes a dollar and returns a quarter. To
alleviate in part this problem, the machine can change four quarters into a
dollar.

The machine is concurrent, because we can push several buttons at once
(that is, we can apply several rules at once), provided enough resources exist
in the corresponding slots, called places. For example, if we have one dollar
in the $ place and four quarters in the q place, we can simultaneously push
the buy-a and change buttons, and the machine returns, also simultaneously,
one dollar in $, one apple in a, and one quarter in q.

Note that, since the Maude interpreter is sequential, the above concurrent
transitions in the VENDING-MACHINE module are simulated by corresponding
interleavings of sequential rewriting steps. In a socket-based concurrent im-
plementation, it is possible to execute concurrently many rewriting steps for
a wide range of system modules.1

We might have tried a simpler alternative, namely, using the rule null

=> q instead of the add-q rule. However, this would not work. Instead, we
have to write M => M q with M a variable of sort Marking. The reason is
that the constant null is not a __-subterm of any marking except itself, and
therefore it would be impossible to apply the rule null => q with extension
(see Section 4.8).

1 See Chapter 17 for an interesting example of this kind: a concurrent implementa-
tion of a mobile language entirely programmed in Maude using sockets as external
objects in the way explained in Section 11.4.1.
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6.2 Conditional rules

Conditional rewrite rules can have very general conditions involving equations,
memberships, and other rewrites; that is, in their mathematical notation they
can be of the form

l : t→ t′ if (
∧
i

ui = vi) ∧ (
∧
j

wj : sj) ∧ (
∧
k

pk → qk)

with no restriction on which new variables may appear in the righthand side
or the condition. There is no need for the condition listing first equations, then
memberships, and then rewrites: this is just a notational abbreviation, since
they can be listed in any order. However, in Maude, conditions are evaluated
from left to right, and therefore the order in which they appear, although
mathematically inessential, is very important operationally (see Section 6.3).

In their Maude representation, conditional rules are declared with syntax

crl [〈Label 〉] : 〈Term-1 〉 => 〈Term-2 〉
if 〈Condition-1 〉 /\ ... /\ 〈Condition-k 〉
[〈StatementAttributes 〉] .

where the rule’s label can instead be declared as a statement attribute, or can
be omitted altogether. In either of these two alternatives, the square brackets
enclosing the label and the colon are then omitted.

As in conditional equations, the condition can consist of a single state-
ment or can be a conjunction formed with the associative connective /\. But
now conditions are more general, since in addition to equations and member-
ships they can also contain rewrite expressions, for which the concrete syntax
t => t’ is used. Furthermore, equations, memberships, and rewrites can be
intermixed in any order. As for functional modules, some of the equations
in conditions can be either matching equations or abbreviated Boolean equa-
tions.

We can illustrate the usefulness of rewrite expressions in rule conditions
by presenting a small fragment of a Maude operational semantics for Milner’s
CCS language given in [369]:

sorts Label Act Process ActProcess .

subsorts Qid < Label < Act .

subsort Process < ActProcess .

op ~_ : Label -> Label .

op tau : -> Act .

op {_}_ : Act ActProcess -> ActProcess [frozen] .

op _|_ : Process Process -> Process [frozen assoc comm] .

vars P P’ Q Q’ : Process .

var L : Label .

crl [par] : P | Q => {tau} (P’ | Q’)
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if P => {L} P’ /\ Q => {~ L} Q’ .

The conditional rule par expresses the synchronized transition of two pro-
cesses composed in parallel. The condition of the rule states that the synchro-
nized transition can take place if one process can perform an action named
L and the other can perform the complementary action named ~ L. In this
representation of CCS, the action performed is remembered by the resulting
expression, which is a term of sort ActProcess.

Note the use of the frozen attribute in some of the operators (see Sec-
tion 4.4.9).

6.3 Admissible system modules

The same way that equations or memberships expressed in their fullest possi-
ble generality cannot be executed by the Maude engine except in a controlled
way at the metalevel, conditional rewrite rules in their fullest generality can-
not be executed either, except with a strategy at the metalevel. Nonexecutable
rules should be identified by giving them the nonexec attribute.

As for functional modules, the question now becomes: what are the exe-
cutability requirements on the executable statements (i.e., those without the
nonexec attribute) of a system module? It turns out that a quite general class
of system modules, called admissible modules, are executable by Maude’s de-
fault interpreter using the rewrite, frewrite, and search commands, that
will be introduced and illustrated in Section 6.4 and are further explained in
Sections 25.2 and 25.4.

The admissibility requirements for the module’s equations and member-
ships are exactly as for functional modules; they were explained in Section 4.6
and are further discussed below. Two more requirements are needed:

• each executable conditional rule should be admissible, and
• the rules should be coherent relative to the equations, as has already been

mentioned in the introduction.

We explain each of these requirements below.
Given a system module M , a conditional2 rule of the form

l : t→ t′ if C1 ∧ . . . ∧ Cn
such that it does not have the nonexec attribute is called admissible if it sat-
isfies the exact analogues of the admissibility requirements 1–3 in Section 4.6
for conditional equations, plus the additional requirement

2 For the purposes of this discussion, we view unconditional rules as a special case
of conditional rules. The general admissibility requirement specializes then to a
very easy requirement for an unconditional rule t→ t′, namely, that each variable
of t′ must appear in t.
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4. If Ci is a rewrite ui → u′i, then

vars(ui) ⊆ vars(t) ∪
i−1⋃
j=1

vars(Cj),

and furthermore u′i is an E(M)-pattern (for the notion of pattern see
Section 4.3) for E(M) the equational theory underlying the module M .

Operationally, we try to satisfy such a rewrite condition by reducing the
substitution instance σ(ui) to its canonical form vi with respect to the equa-
tions, and then trying to find a rewrite proof vi → wi (perhaps after many
steps of rewriting) with wi in canonical form with respect to the equations and
such that wi is a substitution instance of u′i. Search for such a wi is performed
by the Maude engine using a breadth-first strategy.

As for functional modules, when executing an admissible conditional rule
in a system module, the satisfaction of all its conditions is attempted se-
quentially from left to right; but notice that now, besides the fact that many
matches for the equational conditions may be possible due to the presence of
equational attributes, we also have to deal with the fact that solving rewrite
conditions requires search, including searching for new solutions when previ-
ous ones fail to satisfy subsequent conditions.

We now explain the coherence requirement. A rewrite theory has both
rules and equations, so that rewriting is performed modulo such equations.
However, this does not mean that the Maude implementation must have a
matching algorithm for each equational theory that a user might specify,
which is impossible, since matching modulo an arbitrary equational theory
is undecidable.

The equations and memberships specified in a system module M are di-
vided into a set A of axioms corresponding to equational attributes such
as associativity, commutativity, idempotency, and (left-, right- or two-sided)
identity declared for different operators in the module (see Section 4.4.1), for
which matching algorithms exist in the Maude implementation, and a set E
of equations and memberships specified in the ordinary way. As already men-
tioned, for M to be executable, the set of executable statements in E must be
Church-Rosser and terminating modulo A, or at least ground Church-Rosser
and terminating modulo A; that is, we require that the equational part must
be equivalent to an executable functional module.

Moreover, we require that the rules R in the module are coherent [377] with
respect to the equations E modulo A, or at least ground coherent. Coherence
means that, given a term t, for each one-step rewrite of it with some rule in R
modulo the axioms A to some term t′, which we denote t −→1

R/A t
′, if u is the

canonical term we obtain by rewriting t with the equations and memberships
in E to canonical form modulo A, denoted t −→!

E/A u, then there is a one-

step rewrite of u with some rule in R modulo A, u −→1
R/A u′, such that

t′ =E∪A u′, which by the Church-Rosser and termination properties of E
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Fig. 6.1. Coherence diagram

modulo A is equivalent to t′ and u′ having the same canonical form modulo
A by E. This requirement is described graphically in Figure 6.1.

Ground coherence is a weaker requirement: we require the exact same
diagram to exist only for ground terms, and E only needs to be ground Church-
Rosser and terminating modulo A.

As explained in [377] (for the free case and for coherence modulo asso-
ciativity and commutativity), for unconditional rules R, coherence can be
checked by checking “critical pairs” between rules R and equations E, and
showing that the corresponding instance of the coherence diagram can be
filled in for all such pairs. That is, we have to look for appropriate overlaps
between lefthand sides of rules and equations using an A-unification algo-
rithm, generate the corresponding critical pairs, and check their coherence.
In the case of ground coherence, it is not necessary that the critical pairs can
be filled in: it is enough to show that each ground instance of such pairs can
be filled in. See Section 7.8 for an example of a system module that is not
coherent, a discussion of the critical pairs involved, and a method to make the
specification coherent. See also Section 13.4 for an example of how coherence
can be checked by critical pair analysis. Similarly, for ground coherence and
how to check it, see the example in Section 12.4. Section 23.1.4 describes a
coherence checker tool that checks coherence of system modules.

Why is coherence so important? What does it mean intuitively? Rewriting
modulo an equational theory E ∪ A, which is what a rewrite theory R =
(Σ,E ∪A, φ,R) really does, is in general undecidable. The undecidability has
to do with the fact that we may need to search an entire E ∪ A-equivalence
class before we can know if a class representative can be rewritten with R,
that is, if the E ∪A-equivalence class can be rewritten. Coherence makes the
problem decidable: all we need to do is to reduce the term to its canonical form
by E modulo A, and then rewrite with R such a canonical form. In a sense,
coherence reduces rewriting with R modulo E ∪ A to rewriting with E and
R modulo A, which is decidable, because we assume we have an A-matching
algorithm.

Could we miss any rewrites that way? Coherence guarantees to us that
we could not, since any rewrite of a term t with R must also be possible
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with t’s canonical form. Maude implicitly assumes this coherence property.
For example, the rewrite command will at each step first reduce the term to
canonical form with E modulo A, and then perform a rewrite step with R in a
rule-fair manner. The frewrite command uses a somewhat different rewrite
strategy to ensure both local fairness and rule fairness, but assumes the same
coherence (or ground coherence) property (see Section 25.2 and examples in
Section 6.4 below).

A last point about the execution of system modules regards frozen argu-
ment positions in operators (see Section 4.4.9). This poses a general constraint
on any rewriting strategy whatsoever, including those directly supported by
Maude for the rewrite and frewrite commands (see Section 6.4). The gen-
eral constraint is that rewriting will never happen below one of the frozen
argument positions in an operator. That is, even though many rewritings may
be possible and there can be a large amount of nondeterminism (so that dif-
ferent rewriting strategies may lead to quite different results) rewriting under
frozen arguments is always forbidden. In fact, this does not only belong to the
module’s operational semantics, but also to the latest initial model semantics
for rewrite theories developed in [36]; we give a brief informal summary of this
semantics below.

Mathematically, a system module, when “flattened” with its imported sub-
modules, exactly specifies a (generalized) rewrite theory in the sense of [36],
that is, a four-tuple

R = (Σ,E ∪A, φ,R),

where (Σ,E ∪A) is the membership equational theory specified by the signa-
ture, equational attributes, and equation and membership statements in the
module (just as in the case of functional modules); φ is a function, assign-
ing to each operator in Σ the set of natural numbers corresponding to its
frozen arguments (the empty set when no argument is frozen); and R is the
collection of (possibly conditional) rewrite rules specified in the module and
its submodules.

Intuitively, such a rewrite theory specifies a concurrent system. The equa-
tional theory (Σ,E ∪ A) specifies the “statics” of the system, that is, the
algebraic structure of the set3 of states, which is specified by the initial alge-
bra TΣ/E∪A. The rules R and the freezing information φ specify the concurrent
system’s “dynamics,” that is, the possible concurrent transitions that the sys-
tem can perform. In rewriting logic, such, possibly complex, concurrent tran-
sitions exactly correspond to rewrite proofs; but since several rewrite proofs
can indeed correspond to the same concurrent computation (describing, for
example, different semantically equivalent interleavings), rewriting logic has
an equational theory of proof equivalence [243, 36].

The initial model TR of the rewrite theory R associates to each kind k a
labeled transition system (in fact, a category) whose set of states is TΣ/E∪A,k,

3 More precisely, each kind k in Σ corresponds to a different choice for a set of
states, namely the set TΣ/E∪A,k.
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and whose labeled transitions have the form [α] : [t] → [t′], with [t], [t′] ∈
TΣ/E∪A,k, and with [α] an equivalence class of rewrite proofs modulo the
equational theory of proof equivalence. Indeed what the different [α] represent
are the different “truly concurrent” computations of the system specified by
R.

6.4 The rewrite, frewrite, and search commands

Now we illustrate the use of the Maude commands available for system mod-
ules. Recall the vending machine example:

mod VENDING-MACHINE is

including VENDING-MACHINE-SIGNATURE .

var M : Marking .

rl [add-q] : M => M q .

rl [add-$] : M => M $ .

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

rl [change]: q q q q => $ .

endm

In addition to the show commands discussed in Section 4.9, there is an
additional show rls command for system modules to show the rules of a
module. For example, showing the sorts and the rules of the VENDING-MACHINE
module we get:

Maude> show sorts VENDING-MACHINE .

sort Bool .

sort Coin . subsort Coin < Marking .

sort Item . subsort Item < Marking .

sort Marking . subsorts Item Coin < Marking .

Maude> show rls VENDING-MACHINE .

rl M => q M [label add-q] .

rl M => $ M [label add-$] .

rl $ => c [label buy-c] .

rl $ => q a [label buy-a] .

rl q q q q => $ [label change] .

6.4.1 The rewrite command

We can use the rewrite command (abbreviated rew) to explore the behavior
of different initial markings. The bracketed number between the command
and the term to be rewritten provides an upper bound for the number of rule
applications that are allowed.
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Maude> rew [1] in VENDING-MACHINE : $ $ q q .

rewrite [1] in VENDING-MACHINE : $ $ q q .

rewrites: 1 in 0ms cpu (9ms real) (~ rews/sec)

result Marking: $ $ q q q

Maude> rew [2] $ $ q q .

rewrite [2] in VENDING-MACHINE : $ $ q q .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ q q q

Maude> rew [3] $ $ q q .

rewrite [3] in VENDING-MACHINE : $ $ q q .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ q q q q

Maude> rew [4] $ $ q q .

rewrite [4] in VENDING-MACHINE : $ $ q q .

rewrites: 4 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ $ q q q q

Maude> rew [5] $ $ q q .

rewrite [5] in VENDING-MACHINE : $ $ q q .

rewrites: 5 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ $ $

Maude> rew [6] $ $ q q .

rewrite [6] in VENDING-MACHINE : $ $ q q .

rewrites: 6 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ $ $ q

Maude> rew [200] $ $ q q .

rewrite [200] in VENDING-MACHINE : $ $ q q .

rewrites: 200 in 10ms cpu (10ms real) (20000 rews/sec)

result Marking: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ q q q

Executing one rewrite starting with two dollars and two quarters, Maude
chooses to apply the add-q rule. If we allow two rewrites Maude applies add-q
and then add-$. The third rule to be applied is add-q again; then, add-$. It
goes on applying add-q and add-$ until the rule change can be applied.
The top-down rule-fair rewrite strategy keeps trying to apply rules on the
top operator (__ in this case) in a fair way. The rules applicable at the top
are add-q, add-$, and change, which are tried in this order. Since the top
operator is always the same one, no other rules are used. We can modify the
rules buy-c and buy-a so that the lefthand side has an explicit top level __
as follows:
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mod VENDING-MACHINE-TOP is

including VENDING-MACHINE-SIGNATURE .

var M : Marking .

rl [add-q] : M => M q .

rl [add-$] : M => M $ .

rl [buy-c] : $ M => c M .

rl [buy-a] : $ M => a q M .

rl [change]: q q q q => $ .

endm

Now starting with two dollars and two quarters, and executing increasing
numbers of rewrites we see that Maude applies the rules add-$, add-q, buy-c,
buy-a, and change.

Maude> rew [2] in VENDING-MACHINE-TOP : $ $ q q .

Advisory: "v.maude", line 18 (mod VENDING-MACHINE-TOP): collapse at

top of $ M may cause it to match more than you expect.

Advisory: "v.maude", line 19 (mod VENDING-MACHINE-TOP): collapse at

top of $ M may cause it to match more than you expect.

rewrite [2] in VENDING-MACHINE-TOP : $ $ q q .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ $ q q q

Maude> rew [3] $ $ q q .

rewrite [3] in VENDING-MACHINE-TOP : $ $ q q .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ q q q c

Maude> rew [4] $ $ q q .

rewrite [4] in VENDING-MACHINE-TOP : $ $ q q .

rewrites: 4 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ q q q q a c

Maude> rew [5] $ $ q q .

rewrite [5] in VENDING-MACHINE-TOP : $ $ q q .

rewrites: 5 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ $ a c

The advisory is about the modified rules for buying. Maude is letting us know
that the pattern $ M will match a term not containing the top-level operator
__, when M is instantiated to null. This is exactly what we want in this case,
but it may not always be what the user intended, so Maude gives you a heads
up; see Section 24.2.6 for more details.

Notice that rewriting in VENDING-MACHINE is not terminating. If we remove
the rules for adding coins we obtain a terminating system and can explore
vending behavior using unbounded rewriting. Let us consider the following
module SIMPLE-VENDING-MACHINE.

mod SIMPLE-VENDING-MACHINE is
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including VENDING-MACHINE-SIGNATURE .

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

rl [change]: q q q q => $ .

endm

For example, starting with two dollars and rewriting as much as possible
we can get an apple, a cake and a quarter in change.

Maude> rew in SIMPLE-VENDING-MACHINE : $ $ .

rewrite in SIMPLE-VENDING-MACHINE : $ $ .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: q a c

Starting with two dollars and three quarters and using only three rewrite
rule applications we get an apple and a cake with a dollar left over.

Maude> rew [3] $ $ q q q .

rewrite [3] in SIMPLE-VENDING-MACHINE : $ $ q q q .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: $ a c

The command continue 〈Bound 〉 (abbreviated cont) tells Maude to con-
tinue rewriting using at most 〈Bound 〉 additional rule applications. For exam-
ple, we can continue the last rewrite command (that performed three rewrites)
for one more step to get an apple and two cakes:

Maude> cont 1 .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result Marking: a c c

6.4.2 The frewrite command

Let us see now what happens when we use another strategy for rewriting in
the original VENDING-MACHINE module. The frewrite command (abbreviated
frew) rewrites a term using a depth-first position-fair strategy that makes it
possible for some rules to be applied that could be “starved” using the left-
most, outermost rule fair strategy of the rewrite command. The strategies for
the rewrite and frewrite commands are described in detail in Section 25.2.

Maude> frew [2] in VENDING-MACHINE : $ $ q q .

frewrite [2] in VENDING-MACHINE : $ $ q q .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result (sort not calculated): ($ q) ($ $) q q

Maude> frew [12] $ $ q q .

frewrite [12] in VENDING-MACHINE : $ $ q q .

rewrites: 12 in 0ms cpu (0ms real) (~ rews/sec)

result (sort not calculated):

c (q a) ($ q) ($ $) (q q) ($ q) (q q) q q
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With two rewrites, one quarter and one dollar are added. With sufficiently
many rewrites (twelve will do), a cake and an apple can be obtained.

In contrast to rewrite, that reduces the whole term using equations after
each rule rewrite, frewrite only reduces the subterm rewritten (to preserve
positions not yet visited). Thus, when rewriting stops, the term may not be
fully reduced and hence Maude will not know the exact least sort of the term
yet. This is the reason for the (sort not calculated) comment in place
of a sort in the result line. In the case of a term with an associative and
commutative top operator, the term may not be in its fully flattened form
with canonical order of subterms. This accounts for the parentheses in the
result term and the fact that the coins and items are not listed in order as
they are in the result of a rewrite.

The top-down rule-fair strategy of the rewrite command can result in
nontermination even though there is a terminating sequence of rewrites. As
an example consider the following module:

mod BB-TEST is

sort Expression .

ops a b bingo : -> Expression .

op f : Expression Expression -> Expression .

rl a => b .

rl b => a .

rl f(b, b) => bingo .

endm

Giving the rewrite command with input term f(a, a) will result in the
following looping computation:

f(a, a) => f(b, a) => f(a, a) => f(b, a) => f(a, a) => ...

This is because using the top-down rule-fair strategy of the rewrite command,
the third rule always fails to match and never gets a chance to be applied. As
already mentioned above, the frewrite command uses on the other hand a
position-fair bottom-up strategy that makes it possible for other rules to be
applied. As a consequence, some rewriting computations that could be non-
terminating using the rewrite command become terminating with frewrite.
For example, using the frewrite command in place of rewrite in the above
example we get

Maude> frew in BB-TEST : f(a, a) .

frewrite in BB-TEST : f(a, a) .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Expression: bingo

6.4.3 The search command

The rewrite and frewrite commands each explore just one possible behavior
(sequence of rewrites) of a system described by a set of rewrite rules and an
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initial state. The search command allows one to explore (following a breadth-
first strategy) the reachable state space in different ways. Its syntax conforms
to the following general scheme

search [ n, m ] in 〈ModId 〉 : 〈Term-1 〉 〈SearchArrow 〉 〈Term-2 〉
such that 〈Condition 〉 .

where

• n is an optional argument providing a bound on the number of desired
solutions;

• m is another optional argument stating the maximum depth of the search;
• the module 〈ModId 〉 where the search takes place can be omitted;
• 〈Term-1 〉 is the starting term;
• 〈Term-2 〉 is the pattern that has to be reached;
• 〈SearchArrow 〉 is an arrow indicating the form of the rewriting proof from
〈Term-1 〉 until 〈Term-2 〉:

– =>1 means a rewriting proof consisting of exactly one step,
– =>+ means a rewriting proof consisting of one or more steps,
– =>* means a proof consisting of none, one, or more steps, and
– =>! indicates that only canonical final states are allowed, that is, states

that cannot be further rewritten; and
The one step arrow =>1 is an abbreviation of the one-or-more steps arrow
=>+ with the depth bound m set to 1.

• 〈Condition 〉 states an optional property that has to be satisfied by the
reached state; the syntactic form of the condition is the same as the one
of conditions for conditional rules (see Section 6.2).

For example, for our finite vending machine, SIMPLE-VENDING-MACHINE,
we can use the search command to answer the question: if I have a dollar
and three quarters, can I get a cake and an apple? This is done by searching
for states that match a corresponding pattern. In this example, we use the
=>! symbol, meaning that we are searching for terminal states, that is, for
states that cannot be further rewritten. Moreover, no bound in the number
of solutions or in the depth of the search is needed.

Maude> search in SIMPLE-VENDING-MACHINE :

$ q q q =>! a c M:Marking .

search in SIMPLE-VENDING-MACHINE : $ q q q =>! a c M:Marking .

Solution 1 (state 4)

states: 6 rewrites: 5 in 0ms cpu (0ms real) (~ rews/sec)

M:Marking --> null

No more solutions.

states: 6 rewrites: 5 in 0ms cpu (1ms real) (~ rews/sec)

The answer is yes, and the desired state is numbered 4. To see the sequence
of rewrites that allowed us to reach this state we can type
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Maude> show path 4 .

state 0, Marking: $ q q q

===[ rl $ => q a [label buy-a] . ]===>

state 2, Marking: q q q q a

===[ rl q q q q => $ [label change] . ]===>

state 3, Marking: $ a

===[ rl $ => c [label buy-c] . ]===>

state 4, Marking: a c

One can get just the sequence of labels of applied rules with a similar
command:

Maude> show path labels 4 .

buy-a

change

buy-c

It is also possible to print out the current search graph generated by a
search command using the command show search graph. After the above
search we get

Maude> show search graph .

state 0, Marking: $ q q q

arc 0 ===> state 1 (rl $ => c [label buy-c] .)

arc 1 ===> state 2 (rl $ => q a [label buy-a] .)

state 1, Marking: q q q c

state 2, Marking: q q q q a

arc 0 ===> state 3 (rl q q q q => $ [label change] .)

state 3, Marking: $ a

arc 0 ===> state 4 (rl $ => c [label buy-c] .)

arc 1 ===> state 5 (rl $ => q a [label buy-a] .)

state 4, Marking: a c

state 5, Marking: q a a

This search graph is represented graphically in Figure 6.2.
From the same initial state, $ q q q, we can see if it is possible to reach

a final state with an apple and more things, learning that there are exactly
two possibilities:

Maude> search $ q q q =>! a M:Marking such that M:Marking =/= null .

search in SIMPLE-VENDING-MACHINE : $ q q q =>! a M:Marking

such that M:Marking =/= null = true .

Solution 1 (state 4)

states: 6 rewrites: 6 in 0ms cpu (0ms real) (~ rews/sec)
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Fig. 6.2. Graphical representation of search graph in example

M:Marking --> c

Solution 2 (state 5)

states: 6 rewrites: 7 in 0ms cpu (0ms real) (~ rews/sec)

M:Marking --> q a

No more solutions.

states: 6 rewrites: 7 in 0ms cpu (0ms real) (~ rews/sec)

In the following example with a different initial state, namely, $ q q q q,
we are looking for intermediate states from which it is possible to get later
either two apples (and two quarters left) or two cakes, getting exactly one
solution.

Maude> search $ q q q q =>+ M:Marking

such that M:Marking => a a q q /\ M:Marking => c c .

search in SIMPLE-VENDING-MACHINE : $ q q q q =>+ M:Marking

such that M:Marking => q q a a /\ M:Marking => c c .

Solution 1 (state 1)

states: 2 rewrites: 10 in 0ms cpu (0ms real) (96153 rewrites/second)

M:Marking --> $ $

No more solutions.

states: 9 rewrites: 38 in 0ms cpu (0ms real) (95477 rewrites/second)

Sometimes it is necessary to impose a limit on the number of solutions
searched for, since in general the number of such solutions could be infinite.
In the previous examples there were only one or two solutions, so imposing a
bound would not make any difference. But, returning to the coin generating
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(and thus nonterminating) vending machine module VENDING-MACHINE, the
search space becomes now infinite, so it is important to be able to limit either
the number of solutions sought or the depth of the search, or both.

We can look for different ways to use a dollar and three quarters to buy an
apple and two cakes. First we ask for one solution, and then use the bounded
continue command to see another solution. Note that here we use the search
mode =>+, which means searching for states reachable by at least one rewrite.
Searching for terminal states in the VENDING-MACHINE module is futile!

Maude> search [1] in VENDING-MACHINE : $ q q q =>+ a c c M:Marking .

search in VENDING-MACHINE : $ q q q =>+ a c c M .

Solution 1 (state 108)

states: 109 rewrites: 1857 in 0ms cpu (41ms real)(~rews/sec)

M --> q q q q

Maude> cont 1 .

Solution 2 (state 113)

states: 114 rewrites: 185 in 0ms cpu (4ms real) (~ rews/sec)

M --> null

We can also use the maximum depth optional argument, but if we put a
too small depth, we do not get any solution:

Maude> search [, 4] $ q q q =>+ a c c M:Marking .

search [, 4] in VENDING-MACHINE : $ q q q =>+ a c c M .

No solution.

states: 66 rewrites: 875 in 10ms cpu (3ms real) (87500 rews/sec)

By increasing the depth to 10 we will get 98 solutions. If we are interested
in only a few of those, we can set both bounds, like in the following example:

Maude> search [4, 10] $ q q q =>+ a c c M:Marking .

search [4, 10] in VENDING-MACHINE : $ q q q =>+ a c c M .

Solution 1 (state 108)

states: 109 rewrites: 1857 in 0ms cpu (7ms real) (~ rews/sec)

M --> q q q q

Solution 2 (state 113)

states: 114 rewrites: 2042 in 0ms cpu (7ms real) (~ rews/sec)

M --> null

Solution 3 (state 160)

states: 161 rewrites: 3328 in 0ms cpu (11ms real) (~ rews/sec)

M --> q q q q q

Solution 4 (state 164)
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states: 165 rewrites: 3524 in 0ms cpu (12ms real) (~ rews/sec)

M --> q

If we insist now in the marking M being different from null, then one of
the previous solutions is discarded, but we still get four solutions:

Maude> search [4, 10] $ q q q =>+ a c c M:Marking

such that M:Marking =/= null .

search [4, 10] in VENDING-MACHINE : $ q q q =>+ a c c M

such that M =/= null = true .

Solution 1 (state 108)

states: 109 rewrites: 1858 in 0ms cpu (5ms real) (~ rews/sec)

M --> q q q q

Solution 2 (state 160)

states: 161 rewrites: 3331 in 10ms cpu (13ms real) (333100 rews/sec)

M --> q q q q q

Solution 3 (state 164)

states: 165 rewrites: 3528 in 10ms cpu (14ms real) (352800 rews/sec)

M --> q

Solution 4 (state 175)

states: 176 rewrites: 3904 in 10ms cpu (15ms real) (390400 rews/sec)

M --> $ q q q q

In Chapter 12 we will see how the search command can be used to model
check invariant properties of a concurrent system specified in Maude as a
system module.

In case you forget to set a bound on the search command or on its con-
tinuation, you can also interrupt a search in progress by typing control-C. In
this case one of two things will happen, depending on what Maude is doing at
the instant you hit control-C. If Maude is not doing a rewrite, the command
will exit. If Maude is doing a rewrite, you will end up in the debugger. In
this latter case it is probably best to type abort, since the debugger has no
special support for search at the moment. See Sections 24.1.3 and 25.12 for
more information on the debugger.

The full syntax and different options for the search command and for
all the other commands illustrated in this section are explained in detail in
Chapter 25.

6.5 More examples of system modules

In this section we show by means of examples how Petri nets and conjunctive
planning problems can be represented as system modules in Maude, thus
providing more examples of this kind of modules as well as of the use of some
basic commands over them.
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Fig. 6.3. Petri net of the vending machine

6.5.1 Petri nets

Petri nets constitute a model of concurrent computation, used both at the the-
oretical and practical levels [314]. For example, the VENDING-MACHINE module
in Section 6.1, which specifies a concurrent machine to buy cakes and apples
with dollars and quarters, can be represented graphically as the Petri net
concurrent automaton depicted in Figure 6.3.

Here we consider a bigger example to illustrate a general technique that
can be used to represent place/transition Petri nets as system modules in
Maude.

Let us consider a Petri net modeling a small library, where a token repre-
sents a book, that can be in several different states: just bought (j), available
(a), borrowed (b), requested (r), and not available (n). The possible transitions
are the following:

• buy : when there are four accumulated requests, the library places an order
to buy two copies of each requested book (although this representation
does not distinguish among different books or copies of the same book).

• file: a book just bought is filed, making it available.
• borr : an available book can be borrowed.
• ret : a borrowed book can be returned.
• lose: a borrowed book can become lost, and thus no longer available.
• disc: an available book is discarded because of its bad condition, and thus

it is no longer available either.
• req1 : a user may place a request to buy a non available book, but only

when there are two accumulated requests these are honored.
• req2 : the library may decide to place a request to buy a new book, thus

creating a new token in the system, with no precondition in this represen-
tation.

The corresponding graphical representation for this Petri net in the usual
style is depicted in Figure 6.4.
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Fig. 6.4. A Petri net model of a library

A marking4 on a Petri net is a multiset over its set of places, denoting
the available resources (or tokens) in each place. A transition goes from the
marking representing the resources it consumes (its preset) to the marking
representing the resources it produces (its postset). Therefore, in the following
system module, first we define a multiset structure for markings by means
of the corresponding structural axioms (note that multiset union has empty
syntax), using the techniques introduced in Section 5.4). Then, each transition
gives rise to a rewrite rule from its preset to its postset. The only exception to
this general method is the rule corresponding to the transition req2 ; instead
of a rule of the form 1 => r, we have to write M => M r with M a variable of
sort Marking. The reason is that the constant 1 is not a __-subterm of any
marking except itself, according to the definition in Section 4.8, and thus it
would be imposible to apply the rule 1 => r with extension (see Section 4.8).

mod LIBRARY-PETRI-NET is

sorts Place Marking .

subsort Place < Marking .

op 1 : -> Marking [ctor] .

op __ : Marking Marking -> Marking [ctor assoc comm id: 1] .

ops a b n r j : -> Place [ctor] .

4 In the traditional graphical representation, markings are depicted by dots, indi-
cating tokens in the corresponding circular slots for their places, thus the name
“marking.”
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var M : Marking .

rl [buy] : r r r r => j j j j j j j j .

rl [file] : j => a .

rl [borr] : a => b .

rl [ret] : b => a .

rl [lose] : b => n .

rl [disc] : a => n .

rl [req1] : n n => r r .

rl [req2] : M => M r .

endm

It can easily be seen that there is a concurrent computation in a Petri net
from a marking M to a marking M ′ if and only if there is a rewriting from
M to M ′ using the rules in the Petri net as a system module.

Note that in this Petri net computations may be nonterminating; for ex-
ample, this can happen because a book can be forever in the borrow-return
cycle. This particular net happens to be confluent by chance, because in the
two places where there is nondeterminism (an available book can be either
borrowed or discarded, and a borrowed book can be either returned or lost), it
is possible to follow another path to the same place; but it is obvious that in an
arbitrary net confluence is not a required or even desirable property, precisely
because of the interest in modeling concurrency and nondeterminism.

The following sequence of 30 rewrites starts in the empty marking, and
finishes in the marking consisting of 48 books just bought.

Maude> rew [30] 1 .

rewrites: 30 in 0ms cpu (2ms real) (~ rews/sec)

result Marking: j j j j j j j j j j j j j j j j j j j j j j j j

j j j j j j j j j j j j j j j j j j j j j j j j

The following trace (see Section 25.6) for a sequence of 10 rewrites clearly
illustrates how the system keeps adding requests until there are enough to
buy a book, and then repeats the same process.

Maude> set trace on .

Maude> rew [10] 1 .

rewrite [10] in LIBRARY-PETRI-NET : 1 .

*********** rule

rl M => r M [label req2] .

M --> 1

1

--->

r 1

*********** rule

rl M => r M [label req2] .

M --> r

r



156 6 System Modules

--->

r r

*********** rule

rl M => r M [label req2] .

M --> r r

r r

--->

r r r

*********** rule

rl M => r M [label req2] .

M --> r r r

r r r

--->

r r r r

*********** rule

rl r r r r => j j j j j j j j [label buy] .

empty substitution

r r r r

--->

j j j j j j j j

*********** rule

rl M => r M [label req2] .

M --> j j j j j j j j

j j j j j j j j

--->

r j j j j j j j j

*********** rule

rl M => r M [label req2] .

M --> r j j j j j j j j

r j j j j j j j j

--->

r r j j j j j j j j

*********** rule

rl M => r M [label req2] .

M --> r r j j j j j j j j

r r j j j j j j j j

--->

r r r j j j j j j j j

*********** rule

rl M => r M [label req2] .

M --> r r r j j j j j j j j

r r r j j j j j j j j

--->

r r r r j j j j j j j j

*********** rule

rl r r r r => j j j j j j j j [label buy] .

empty substitution

r r r r j j j j j j j j

--->
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(j j j j j j j j) j j j j j j j j

rewrites: 10 in 20ms cpu (54ms real) (500 rews/sec)

result Marking: j j j j j j j j j j j j j j j j

By using the frewrite command we can explore computations where other
rules are applied, like the following traced example shows.

Maude> set trace on .

Maude> frewrite [10] 1 .

frewrite [10] in LIBRARY-PETRI-NET : 1 .

*********** rule

rl M => r M [label req2] .

M --> 1

1

--->

r 1

*********** rule

rl M => r M [label req2] .

M --> r

r

--->

r r

*********** rule

rl M => r M [label req2] .

M --> r

r

--->

r r

*********** rule

rl M => r M [label req2] .

M --> r

r

--->

r r

*********** rule

rl r r r r => j j j j j j j j [label buy] .

empty substitution

r r r r

--->

j j j j j j j j

*********** rule

rl j => a [label file] .

empty substitution

j

--->

a

*********** rule

rl M => r M [label req2] .

M --> j
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j

--->

r j

*********** rule

rl j => a [label file] .

empty substitution

j

--->

a

*********** rule

rl M => r M [label req2] .

M --> j

j

--->

r j

*********** rule

rl j => a [label file] .

empty substitution

j

--->

a

rewrites: 10 in 0ms cpu (19ms real) (~ rews/sec)

result (sort not calculated): a (r j) a (r j) a j j j

In the above Petri net, which is also known as a place/transition net, tokens
are indistinguishable. Thanks to its underlying membership equational logic,
Maude can be used to represent more general classes of Petri nets, especially
algebraic and colored Petri nets, where tokens are distinguishable and can
represent data objects. Systematic approaches to representing different classes
of Petri nets in rewriting logic can be found in [335] and [342].

6.5.2 Blocks world

A generalization of Petri net computations is provided by conjunctive planning
problems, where the states are described by means of some kind of conjunction
of propositions describing basic facts. A typical example in artificial intelli-
gence is the blocks world of a robot. In the present version there is a table
on top of which we have the blocks, which can be moved only by means of
a robot arm. We have as basic propositions some predicates whose intuitive
meaning is given in the accompanying comments.

The rule pickup describes how the robot arm, being empty, takes a block
from the table, while putdown corresponds to the inverse move. The pair of
rules unstack and stack describe similar moves when the block is on top
of another one. As opposed to the Petri net transitions, note that here the
states in rules have variables, so that they can be instantiated with identifiers
for blocks, which are obtained from the predefined module QID of identifiers
(described later in Section 9.10), which is imported by means of a protecting

declaration (explained in Section 8.1.1).
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Fig. 6.5. Initial and final states in a world with three blocks

mod BLOCKS-WORLD is

protecting QID .

sorts BlockId Prop State .

subsort Qid < BlockId .

subsort Prop < State .

op table : BlockId -> Prop [ctor] . *** block is on the table

op on : BlockId BlockId -> Prop [ctor] . *** block A is on block B

op clear : BlockId -> Prop [ctor] . *** block is clear

op hold : BlockId -> Prop [ctor] . *** robot arm holds block

op empty : -> Prop [ctor] . *** robot arm is empty

op 1 : -> State [ctor] .

op _&_ : State State -> State [ctor assoc comm id: 1] .

vars X Y : BlockId .

rl [pickup] : empty & clear(X) & table(X) => hold(X) .

rl [putdown] : hold(X) => empty & clear(X) & table(X) .

rl [unstack] : empty & clear(X) & on(X, Y) => hold(X) & clear(Y) .

rl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X, Y) .

endm

Consider, for example, the states described in Figure 6.5. The initial state
I on the left and the final state F on the right are respectively described by
the following two terms of sort State:

empty & clear(’c) & clear(’b) & table(’a) & table(’b) & on(’c, ’a)

empty & clear(’a) & table(’c) & on(’a, ’b) & on(’b, ’c)

The fact that the “sequential plan” (in a self-explanatory intuitive nota-
tion)

unstack(c,a); putdown(c); pickup(b); stack(b,c); pickup(a); stack(a,b)

moves the blocks from state I to state F corresponds directly to a sequence
of computational rewrite steps applying the corresponding rewrite rules.
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If we just ask for a sequence of rewrites starting from the initial state I
by using the rewrite command, it gets very boring as the robot arm, after
picking up the block b keeps stacking and unstacking it on c; we show a
sequence of 5 rewrites:

Maude> rew [5] empty & clear(’c) & clear(’b) & table(’a) &

table(’b) & on(’c, ’a) .

rewrite [5] in BLOCKS-WORLD : empty & clear(’c) & clear(’b) &

table(’a) & table(’b) & on(’c, ’a) .

*********** rule

rl empty & table(X) & clear(X) => hold(X) [label pickup] .

X --> ’b

empty & table(’a) & table(’b) & clear(’b) & clear(’c) & on(’c, ’a)

--->

(table(’a) & clear(’c) & on(’c, ’a)) & hold(’b)

*********** rule

rl clear(Y) & hold(X) => empty & clear(X) & on(X, Y) [label stack] .

Y --> ’c

X --> ’b

table(’a) & clear(’c) & hold(’b) & on(’c, ’a)

--->

(table(’a) & on(’c, ’a)) & empty & clear(’b) & on(’b, ’c)

*********** rule

rl empty & clear(X) & on(X, Y) => clear(Y) & hold(X) [label unstack] .

X --> ’b

Y --> ’c

empty & table(’a) & clear(’b) & on(’b, ’c) & on(’c, ’a)

--->

(table(’a) & on(’c, ’a)) & clear(’c) & hold(’b)

*********** rule

rl clear(Y) & hold(X) => empty & clear(X) & on(X, Y) [label stack] .

Y --> ’c

X --> ’b

table(’a) & clear(’c) & hold(’b) & on(’c, ’a)

--->

(table(’a) & on(’c, ’a)) & empty & clear(’b) & on(’b, ’c)

*********** rule

rl empty & clear(X) & on(X, Y) => clear(Y) & hold(X) [label unstack] .

X --> ’b

Y --> ’c

empty & table(’a) & clear(’b) & on(’b, ’c) & on(’c, ’a)

--->

(table(’a) & on(’c, ’a)) & clear(’c) & hold(’b)

rewrites: 5 in 0ms cpu (42ms real) (~ rews/sec)

result State: table(’a) & clear(’c) & hold(’b) & on(’c, ’a)

To see that it is possible to go from state I to state F we can use the search
command as follows, where the symbol =>* means that we are interested in
sequences of zero or more rewrites.
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Maude> search empty & clear(’c) & clear(’b) & table(’a) &

table(’b) & on(’c,’a)

=>* empty & clear(’a) & table(’c) & on(’a,’b) & on(’b,’c) .

Solution 1 (state 21)

empty substitution

No more solutions.

Now, to show the path leading from the initial to the final state, we use
the show path command:

Maude> show path 21 .

state 0, State: empty & table(’a) & table(’b) & clear(’b) &

clear(’c) & on(’c, ’a)

===[ rl empty & clear(X) & on(X, Y) => clear(Y) & hold(X)

[label unstack] . ]===>

state 2, State: table(’a) & table(’b) & clear(’a) & clear(’b) &

hold(’c)

===[ rl hold(X) => empty & table(X) & clear(X)

[label putdown] . ]===>

state 5, State: empty & table(’a) & table(’b) & table(’c) &

clear(’a) & clear(’b) & clear(’c)

===[ rl empty & table(X) & clear(X) => hold(X)

[label pickup] . ]===>

state 8, State: table(’a) & table(’c) & clear(’a) & clear(’c) &

hold(’b)

===[ rl clear(Y) & hold(X) => empty & clear(X) & on(X, Y)

[label stack] . ]===>

state 13, State: empty & table(’a) & table(’c) & clear(’a) &

clear(’b) & on(’b, ’c)

===[ rl empty & table(X) & clear(X) => hold(X)

[label pickup] . ]===>

state 17, State: table(’c) & clear(’b) & hold(’a) & on(’b, ’c)

===[ rl clear(Y) & hold(X) => empty & clear(X) & on(X, Y)

[label stack] . ]===>

state 21, State: empty & table(’c) & clear(’a) & on(’a, ’b) &

on(’b, ’c)

Much less information is obtained with the show path labels command,
that only returns the sequence of names of applied rules:

Maude> show path labels 21 .

unstack

putdown

pickup

stack

pickup

stack
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The reader can check that this sequence of rules coincides indeed with the
“sequential plan” that we proposed before.

A simpler version of the blocks world with no robot arm is used in Sec-
tion 21.2.3 to illustrate an object-oriented approach.
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Playing with Maude

with Miguel Palomino

and Alberto Verdejo

Mathematical games and puzzles of all sorts constitute an important subclass
of mathematical problems, with a long tradition and an extensive literature
[25, 162, 16, 329]. Most of them have in common the fact that they are easy to
state and understand, which does not mean that a precise solution is always
trivial to find.

In this chapter we make use of Maude system modules to present and il-
lustrate some general techniques that allow solving a diverse enough selection
of these problems. We are not concerned with finding neat and concise mathe-
matical solutions, but rather we would like to find out how easy it is to express
those problems in the rewriting logic formalism underlying Maude, and how
far we can go in their resolution by the use of just brute force and as little
ingenuity as possible. In this regard, a clear conclusion is that many of these
problems can be represented/specified in Maude in a much simpler way than
it would be possible in more conventional languages. Among the main reasons
why the rule-based programming paradigm supported by Maude allows so
natural a representation of many problems, we would like to mention:

• The syntax is user-definable to a great extent (as described in Chapter 3),
which allows the user to choose the most appropriate syntax for each prob-
lem. In particular, operators declared by the user can have attributes like
associativity and commutativity (see Section 4.4.1), which makes multiset
rewriting trivial. All the specifications in this chapter make essential use
of this feature.

• Membership equational logic allows a (first-order) version of functional
programming to describe the static aspects of a system.

• The dynamic aspects are described by means of rewrite rules that repre-
sent the possible transitions or changes in a system. Those rules need only
specify the part of the system that actually changes, which makes them
quite simple. This corresponds to the fact that rewriting logic is a logic
very suitable for expressing concurrent action and change [230] in which
the so-called “frame problem” [186] is totally avoided.
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• The transitive closure of the relation defined by the rules is automatically
computed by the Maude system. This, combined with the flexible search

command, lets the user explore all computations starting at a given state
(as described in Section 6.4 and further illustrated here).

On the other hand, it is also true that some of these examples suffer from the
state explosion problem, which makes them difficult to solve just by checking
all possible combinations. As explained in Section 14.6, Maude’s META-LEVEL
module can be used to define sophisticated rewriting strategies, that can guide
and control the rewriting process in a given system module. Defining efficient
strategies of this kind is obviously the way of avoiding such combinatorial
explosions in many cases.

Most of the problems introduced here are well known and can be found (in
some form or another) in a number of sources: see [16] for a classic reference on
the subject, [162] for a delightful exposition on how to tackle these problems,
[25] for an online presentation, or even [329] for more algebraic ones. In many
cases, a clear mathematical solution exists, but not always. In any case, our
goal in this chapter is just to show the ease with which Maude lends itself to
the specification of these problems, and to try to solve them without much
thinking.

This chapter is thus an introduction to rule-based programming in Maude
by means of a collection of puzzles showing the language’s expressive power.
Even though these examples can be considered quite simple, we hope that
readers will find them attractive enough to be encouraged to use Maude for
playing with other games of their own, and also for developing more “serious”
applications.

7.1 Writing on a blackboard

To begin illustrating the above ideas in Maude, let us consider the following
simple example. We have some natural numbers written on a blackboard and
we are allowed, at any given time, to replace any two of them by their arith-
metic mean. In this case the static part corresponds to the representation of
the blackboard and the numbers themselves.

Although we could start by specifying natural numbers in Maude, this is
not necessary because we can use the predefined module NAT described later in
Section 9.2, that provides in particular the addition _+_ and quotient _quo_

operations. With these operations the arithmetic mean of natural numbers N

and M can be represented by the term (N + M) quo 2.
The blackboard itself can be represented as a non-empty multiset, of num-

bers, using the techniques described in Section 5.4, as follows:

sort Blackboard .

subsort Nat < Blackboard .

op __ : Blackboard Blackboard -> Blackboard [ctor assoc comm] .
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The subsort declaration means that a single natural number constitutes a
valid representation for the blackboard. Multiset union is represented with
empty syntax . Note that this operator has two attributes, assoc and comm,
so that terms of sort Blackboard are considered modulo associativity and
commutativity; in this way, for example the terms 2 0 and 0 2 denote the
same blackboard, while the terms 2 0 and 0 2 2 denote instead different
blackboards, because the number of times a given number appears in the
blackboard matters.

Finally, the system’s dynamics is specified by the single rule

rl [replace] : N M => (N + M) quo 2 .

It is important to note that it is enough to specify the behavior of the two
numbers that are going to be erased, without considering the rest of the
numbers in the blackboard.

The rewrite command (see Section 6.4) can be used to execute the system,
by means of the Maude interpreter, which applies the rules and stops when
no rule can be applied.

Maude> rewrite 6 3 2 .

result NzNat: 4

But the numbers chosen to be replaced by their mean can be arbitrarily
selected in a nondeterministic way, and this affects the final result. The search
command can be used to explore the computation graph, as described in
Section 6.4. This command receives as arguments the term to be rewritten,
the relation used to obtain the desired result states (=>* for zero or more
rewrites), and the resulting state (a new variable N:Nat of sort Nat in this
case). The computation graph is traversed in a breadth-first way.

Maude> search 6 3 2 =>* N:Nat .

Solution 1 (state 4)

N --> 4

Solution 2 (state 5)

N --> 3

No more solutions.

In this example, there are exactly two final results corresponding to black-
boards with either the natural number 4 or 3, as shown in the two solutions
displayed by Maude. Furthermore, since blackboards with just one element
cannot be further transformed, in the above search command we obtain the
same solutions using the relation =>* for zero or more rewrites as using the
relation =>! for rewriting until terminal states, that is, searching for states
that cannot be further rewritten. However, this is not the case in most of the
examples that follow, and therefore the user must be careful with the exact
form of the search command.
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Notice that there might be different paths leading to the same final state,
but the Maude search command only enumerates the different substitutions
that satisfy the search requirements (with each substitution corresponding to
a different state) and not the different ways of obtaining the same substitution.
In the previous example, there are two ways of reaching the natural number
3 and one way of reaching 4; however the number of solutions is just two.
Maude only looks at the first path it finds to a given state; since the search
takes place following a breadth-first strategy, the first path that is found is
also the shortest path.

Let us consider now a problem discussed in [162, Chapter 12]. Assume that
the numbers 1, 2, . . . , 9 are written on the blackboard, and that the replace

rule is modified so that it is allowed to erase any two numbers a and b and to
write the new number ab + a + b. What numbers can be on the blackboard
after applying such operation as many times as possible until there is only
one number in the blackboard?

The complete specification as a Maude module is then as follows, where
the second line imports the predefined module NAT that specifies the natural
numbers with the usual notation and arithmetic operations (see Section 9.2
later). This module is imported by means of a protecting declaration, whose
meaning will be explained in Section 8.1.1. This importation will appear in
most of the modules in this chapter.

The constant initial is used to give a name to the initial configuration
of the blackboard by means of an equation.

mod BLACKBOARD is

protecting NAT .

sort Blackboard .

subsort Nat < Blackboard .

op __ : Blackboard Blackboard -> Blackboard [ctor assoc comm] .

op initial : -> Blackboard .

vars M N : Nat .

eq initial = 1 2 3 4 5 6 7 8 9 .

rl [replace] : M N => M * N + M + N .

endm

We find the solution to the above question by means of the following
invocation of the search command

Maude> search initial =>* N:Nat .

Solution 1 (state 14989)

N --> 3628799

No more solutions.
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Fig. 7.1. Rabbits ready to jump

which shows that there can be only one possible solution: 3628799.

7.2 The hopping rabbits game

Two teams of n rabbits each, wearing T-shirts marked with a cross and a circle
respectively, are placed facing each other on a row with 2n+ 1 positions. The
x-team occupies the first n positions and the o-team the last n; the middle
one is left empty. For example, Figure 7.1 shows the initial configuration for
n = 3.

The goal is to swap the positions of the teams (the players of each team
are indistinguishable), with the rabbits moving according to the rules of the
game:

1. Rabbits from the x-team can only move rightward, and rabbits from the
o-team can only move leftward.

2. A rabbit is allowed to advance one position if that position is empty.
3. A rabbit can jump over a rival if the position behind it is free.

This puzzle is also known as the toads and frogs puzzle or traffic jam puzzle.
It is possible to generalize the puzzle so that the number of elements in each
team is different [16].

We represent the state of the game as a non-empty list of rabbits, specified
by means of an associative append operator written with empty syntax __;
note that associativity is built into the list constructor __ using the attribute
assoc, as described in Section 5.2. Each rabbit is represented as a constant
x or o, according to its team, and the constant free represents the empty
position.

The initial state of the game depends on the number n of rabbits in each
team. This is specified by means of an operator initial that builds the appro-
priate initial state, as indicated in the equations below that define inductively
the behavior of this operator; more explicitly, in the base case with n = 0
there is only the empty position, and in the inductive case we add a rabbit
of the appropriate team at each end of the list (the term s(N) represents the
successor of N, that is, N + 1).

Notice how equations are used to define the initial state, while rules are
used to represent the transitions corresponding to the legal moves in the game.
As pointed out in the introduction above, we are indeed using two logics, each
for a different purpose: equational logic for the static aspects of a system, and
rewriting logic for the dynamic aspects.
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Since the rules need only specify the parts of the system that change, in
this game we only need to consider the positions adjacent to the free position.
Thus there are four possible legal moves, and each one is represented by a
rule whose label identifies the corresponding move.

The complete specification as a Maude module is then as follows:

mod RABBIT-HOP is

protecting NAT .

sorts Rabbit RabbitList .

subsort Rabbit < RabbitList .

ops x o free : -> Rabbit [ctor] .

op __ : RabbitList RabbitList -> RabbitList [ctor assoc] .

op initial : Nat -> RabbitList .

var N : Nat .

eq initial(0) = free .

eq initial(s(N)) = x initial(N) o .

rl [xAdvances] : x free => free x .

rl [xJumps] : x o free => free o x .

rl [oAdvances] : free o => o free .

rl [oJumps] : free x o => o x free .

endm

Since we are interested in learning how to reach the final position, and in
general there are several possible rules that can be applied in a given state,
we use the search command. The example below is with n = 3.

Maude> search initial(3) =>* o o o free x x x .

Solution 1 (state 71)

empty substitution

No more solutions.

The shown solution consists of the empty substitution because the final
pattern o o o free x x x in the search command above is a ground term,
that is, it has no variables.

The sequence of 15 steps leading to the final position can be obtained by
using the show path command (see Section 6.4) as follows, where we only
show the beginning of the output.

Maude> show path 71 .

state 0, RabbitList: x x x free o o o

===[ rl x free => free x [label xAdvances] . ]===>

state 1, RabbitList: x x free x o o o

===[ rl free x o => o x free [label oJumps] . ]===>

state 4, RabbitList: x x o x free o o
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===[ rl free o => o free [label oAdvances] . ]===>

state 9, RabbitList: x x o x o free o

===[ rl x o free => free o x [label xJumps] . ]===>

state 14, RabbitList: x x o free o x o

...

A more compact way of obtaining the sequence of moves, with less infor-
mation, is provided by the show path labels command:

Maude> show path labels 71 .

xAdvances

oJumps

oAdvances

xJumps

xJumps

xAdvances

oJumps

oJumps

oJumps

xAdvances

xJumps

xJumps

oAdvances

oJumps

xAdvances

Recall that the Maude search command does not enumerate the different
ways of obtaining the same substitution. In this example, there are at least
two ways of reaching the final position, namely, the one shown above and its
symmetric; however, the solution itself, in the sense of the final state reached
is unique, corresponding to the empty substitution.

7.3 The Josephus problem

As related in [16], Flavius Josephus was a famous Jewish historian who, during
the Jewish-Roman war in the first century, was trapped in a cave with a group
of 40 Jewish soldiers surrounded by Romans. Legend has it that, preferring
death to being captured, the Jews decided to gather in a circle and rotate a
dagger around so that every third remaining person would commit suicide.
Apparently, Josephus was too keen to live and quickly found out the safe
position.

The problem of finding that safe position can be modeled very easily in
Maude. The circle representation becomes a (circular) list, once the beginning
position is chosen. The associative operator is used to build non-empty lists
of nonzero natural numbers (which belong to the sort NzNat in the predefined
module NAT, see Section 9.2) representing the original positions of the soldiers
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in the circle. Though it is not explicitly represented, we assume that the dagger
is initially at position 1.

The idea then consists in continually taking the first two elements in the
list and moving them to the end of it while “killing” the third one; when only
two are left, the one who initially has the dagger has to commit suicide. Note
that in this way the dagger remains always implicitly located at the beginning
of the list. Since we need to keep track of both the actual start and end of the
list, we enclose the whole list using the operator {_}. In this way, we force
rewriting to take place only at the top of the term that represents the state.

As in the previous example, the operator initial and the corresponding
equations are used to build inductively the initial state. Then we specify the
rules corresponding to the system transitions; we have three rules, one for
each of the cases when there are two, three, or more soldiers in the circle.
Notice that there is no rule corresponding to a single soldier list, because this
is the situation in which the last remaining soldier decides not to follow the
rules of the game.

mod JOSEPHUS is

protecting NAT .

sorts Morituri Circle .

subsort NzNat < Morituri .

op __ : Morituri Morituri -> Morituri [ctor assoc] .

op {_} : Morituri -> Circle [ctor] .

op initial : NzNat -> Morituri .

var M : Morituri .

vars I1 I2 I3 N : NzNat .

eq initial(1) = 1 .

eq initial(s(N)) = initial(N) s(N) .

rl [kill>3] : { I1 I2 I3 M } => { M I1 I2 } .

rl [kill3] : { I1 I2 I3 } => { I1 I2 } .

--- Rule kill3 is necessary because M cannot be empty

rl [kill2] : { I1 I2 } => { I2 } .

endm

Had we been in the same position as Josephus (and had we had a laptop
to run Maude on it), we could have found out the safe spot by executing the
command:

Maude> rewrite { initial(41) } .

result Circle: {31}

Note that at any moment, until the end, only one of the three rules can be
applied, thus the final state is reached deterministically.

It is also easy to modify the program so that every i-th person commits
suicide, where i is a parameter. The idea is the same, but because of the
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parameter it is now necessary to explicitly represent the dagger. For that,
we use the constructor dagger : NzNat NzNat -> Morituri, whose second
argument stores the value of i while the first one acts as a counter: each
time an element is moved from the beginning of the list to the end, the first
argument is decreased by one; once it reaches 1, the element that is currently
the head of the list is “killed,” i.e., removed from the list.

mod JOSEPHUS-GENERALIZED is

protecting NAT .

sorts Morituri Circle .

subsort NzNat < Morituri .

op dagger : NzNat NzNat -> Morituri [ctor] .

op __ : Morituri Morituri -> Morituri [ctor assoc] .

op {_} : Morituri -> Circle [ctor] .

op initial : NzNat NzNat -> Morituri .

var M : Morituri .

vars I I1 I2 N : NzNat .

eq initial(1, I) = dagger(I, I) 1 .

eq initial(s(N), I) = initial(N, I) s(N) .

rl [kill] : { dagger(1, I) I1 M } => { dagger(I, I) M } .

rl [next] : { dagger(s(N), I) I1 M } => { dagger(N, I) M I1 } .

rl [last] : { dagger(N, I) I1 } => { I1 } .

--- The last one throws the dagger away!

endm

Maude> rewrite { initial(41, 3) } .

result Circle: {31}

As expected, the safe position obtained in this case coincides with the one
obtained previously.

7.4 The three basins puzzle

The following is a classic puzzle with a recent cameo in the 1995 Hollywood
hit Die Hard: With a Vengeance. In the movie, McClane and Zeus have to
deactivate a bomb by placing 4 gallons of water on a scale. The supply of
water is unlimited, but they only have three basins with capacities of 3, 5,
and 8 gallons, respectively.

The problem can be specified in Maude as follows. A basin is represented
by means of the constructor basin with two natural numbers as arguments:
the first one is the basin’s capacity and the second one indicates how full it is.
We can think of a basin as an object with two attributes, namely, its capacity
and its current content. This way of thinking leads to an object-based style of



172 7 Playing with Maude

programming, where objects change their attributes as result of interacting
with other objects; these interactions are represented as rules on configurations
that are non-empty multisets of objects (for more information on this style of
programming and how it is supported by Maude, see Chapter 11 later). The
multiset constructor is written with empty syntax and declared with attributes
assoc and comm. The constant initial defines the initial configuration.

At any given time, we can either empty one of the basins, or fill it com-
pletely; the rules empty and fill below take care of this. When there is
enough space in one of the basins to hold the current content of another, we
can transfer all the water from this second one by using the rule transfer1

(note that this is a conditional rule introduced with the keyword crl). The
case when, after pouring one basin over another, there is still some water left is
dealt with by the conditional rule transfer2 (where the operator sd denotes
the subtraction operation over natural numbers, specified in the predefined
Maude module NAT, see Section 9.2). These last two rules could be combined
into a single one, but the specification would not be so clear.

mod DIE-HARD is

protecting NAT .

sorts Basin BasinSet .

subsort Basin < BasinSet .

op basin : Nat Nat -> Basin [ctor] . --- Capacity / Content

op __ : BasinSet BasinSet -> BasinSet [ctor assoc comm] .

op initial : -> BasinSet .

vars M1 N1 M2 N2 : Nat .

eq initial = basin(3, 0) basin(5, 0) basin(8, 0) .

rl [empty] : basin(M1, N1) => basin(M1, 0) .

rl [fill] : basin(M1, N1) => basin(M1, M1) .

crl [transfer1] : basin(M1, N1) basin(M2, N2)

=> basin(M1, 0) basin(M2, N1 + N2)

if N1 + N2 <= M2 .

crl [transfer2] : basin(M1, N1) basin(M2, N2)

=> basin(M1, sd(N1 + N2, M2)) basin(M2, M2)

if N1 + N2 > M2 .

endm

We can now find out the shortest solution with the help of the search

command, due to the breadth-first way of searching (the argument [1] tells
Maude to look only for one solution). Notice that the pattern used after the
arrow =>* represents any set of basins with at least one of them containing
exactly 4 gallons.

Maude> search [1] initial =>* basin(N:Nat, 4) B:BasinSet .
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Solution 1 (state 75)

B:BasinSet --> basin(3, 3) basin(8, 3)

N:Nat --> 5

The sequence of actions that leads to the solution can be seen using the
command show path as follows, where we omit part of the information about
the rules used.

Maude> show path 75 .

state 0, BasinSeet: basin(3, 0) basin(5, 0) basin(8, 0)

===[ rl ... fill ]===>

state 2, BasinSeet: basin(3, 0) basin(5, 5) basin(8, 0)

===[ crl ... transfer2 ]===>

state 9, BasinSeet: basin(3, 3) basin(5, 2) basin(8, 0)

===[ crl ... transfer1 ]===>

state 20, BasinSeet: basin(3, 0) basin(5, 2) basin(8, 3)

===[ crl ... transfer1 ]===>

state 37, BasinSeet: basin(3, 2) basin(5, 0) basin(8, 3)

===[ rl ... fill ]===>

state 55, BasinSeet: basin(3, 2) basin(5, 5) basin(8, 3)

===[ crl ... transfer2 ]===>

state 75, BasinSeet: basin(3, 3) basin(5, 4) basin(8, 3)

7.5 Crossing the bridge

The four members of U2, the famous rock band, are in a tight situation. Their
concert starts in 17 minutes, and in order to get to the stage they must first
cross an old bridge through which only a maximum of two persons can walk
over at the same time. It is already dark and, because of the bad condition of
the bridge, to avoid falling into the darkness it is necessary to cross it with
the help of a flashlight. Unfortunately, they only have one. Knowing that it
takes Bono, Edge, Adam, and Larry, 1, 2, 5, and 10 minutes, respectively, to
cross the bridge, is there a way that they can make it to the concert on time?

The current state of the group can be represented in Maude by a multiset
(a term of sort Group below) consisting of performers, the flashlight, and a
watch to keep track of the time. The flashlight and the performers have a
Place associated with them, indicating whether their current position is to
the left or to the right of the bridge; each performer, in addition, also carries
the time it takes him to cross the bridge. As in the previous example, we can
think of this specification as one fitting an object-based style of programming.
In order to change the position from left to right and vice versa, we use
an auxiliary operation changePos, which is defined by means of two simple
equations.

The traversing of the bridge is modeled by two rewrite rules: the first one
for the case in which a single person crosses it, and the second for when there
are two persons. Note that for some persons to be allowed to cross, their
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position relative to the bridge must be the same as that of the flashlight,
which is represented by having the same variable P twice on the lefthand side
of the rules. Moreover, since __ is commutative, the condition in the second
rule involves no loss of generality.

mod U2 is

protecting NAT .

sorts Performer Object Group Place .

subsorts Performer Object < Group .

ops left right : -> Place [ctor] .

op changePos : Place -> Place .

op flashlight : Place -> Object [ctor] .

op watch : Nat -> Object [ctor] .

op performer : Nat Place -> Performer [ctor] .

op __ : Group Group -> Group [ctor assoc comm] .

op initial : -> Group .

var P : Place .

vars M N N1 N2 : Nat .

eq initial

= watch(0) flashlight(left) performer(1, left)

performer(2, left) performer(5, left) performer(10, left) .

eq changePos(left) = right .

eq changePos(right) = left .

rl [one-crosses] :

watch(M) flashlight(P) performer(N, P)

=> watch(M + N) flashlight(changePos(P))

performer(N, changePos(P)) .

crl [two-cross] :

watch(M) flashlight(P) performer(N1, P) performer(N2, P)

=> watch(M + N1) flashlight(changePos(P))

performer(N1, changePos(P))

performer(N2, changePos(P))

if N1 > N2 .

endm

A solution can now be found quickly by looking for a state in which all
performers (and the flashlight) are to the right of the bridge. Notice how the
search command is invoked with a such that clause that imposes a condition
that solutions have to fulfill; in our example, that the total time should be
less than or equal to 17 minutes (see Section 25.4 for all the possible options
of the search command).

Maude> search [1] initial

=>* flashlight(right) watch(N:Nat)
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performer(1, right) performer(2, right)

performer(5, right) performer(10, right)

such that N:Nat <= 17 .

Solution 1 (state 402)

N --> 17

The solution takes exactly 17 minutes (a happy ending after all!) and the
complete sequence of appropriate actions can be shown as follows:

Maude> show path 402 .

state 0, Group: flashlight(left) watch(0)

performer(1, left) performer(2, left)

performer(5, left) performer(10, left)

===[ crl ... two-cross ]===>

state 5, Group: flashlight(right) watch(2)

performer(1, right) performer(2, right)

performer(5, left) performer(10, left)

===[ rl ... one-crosses ]===>

state 15, Group: flashlight(left) watch(3)

performer(1, left) performer(2, right)

performer(5, left) performer(10, left)

===[ crl ... two-cross ]===>

state 71, Group: flashlight(right) watch(13)

performer(1, left) performer(2, right)

performer(5, right) performer(10, right)

===[ rl ... one-crosses ]===>

state 158, Group: flashlight(left) watch(15)

performer(1, left) performer(2, left)

performer(5, right) performer(10, right)

===[ crl ... two-cross ]===>

state 402, Group: flashlight(right) watch(17)

performer(1, right) performer(2, right)

performer(5, right) performer(10, right)

After sorting out the information, it becomes clear that Bono and Edge should
be the first to cross. Then Bono returns with the flashlight, which he gives
to Adam and Larry. Finally, Edge takes the flashlight back to Bono and they
cross the bridge together for the last time.

Note that, in order for the search command to stop, we need to tell Maude
to look only for one solution. Otherwise, it will continue exploring all possible
combinations, taking increasingly larger amounts of time, and it will never
end.

If we invoked the same search command but omitting the such that

clause, then we would get

Maude> search [1] initial

=>* flashlight(right) watch(N:Nat)

performer(1, right) performer(2, right)
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performer(5, right) performer(10, right) .

Solution 1 (state 396)

N --> 19

Unfortunately, this “solution” of the search, although as short as possible in
terms of number of rewrite steps, is not a solution of the problem because
it does not satisfy our time constraint, taking 19 minutes, two more minutes
than allowed.

7.6 The looping chips game

In the next game, taken from [25], four chips of different colors have been
placed in consecutive places on a 12 × 1 board whose ends have been glued
together in a circular fashion. Each chip can be moved 5 places from its current
location, either clockwise or counterclockwise, assuming the final position is
empty. The goal is to arrange the chips in reverse order, over the original four
squares.

The state is again represented by a multiset of Places, with each Place

determined by its position in the board and the color of the chip on it or e if
empty.1 As in previous examples, places can be understood as objects and the
state of the game at each moment is given by a configuration of objects. The
constants initial and final represent the initial and final configurations.

There are two possible legal moves in the game, but taking advantage of
the circularity of the board, it is possible to represent both of them together in
a single rule, as shown below; notice how the first part of the rule’s condition
considers the two possible directions of the move by exchanging the variables
I and J, and the second part, C =/= e, forbids moves of empty positions.

mod CHIPS is

protecting NAT .

sorts Place Board Chip .

subsort Place < Board .

ops r b g y e : -> Chip [ctor] . --- colors and empty

op place : Nat Chip -> Place [ctor] .

op __ : Board Board -> Board [ctor assoc comm] .

ops initial final : -> Board .

eq initial

= place(0, r) place(1, b) place(2, g) place(3, y)

place(4, e) place(5, e) place(6, e) place(7, e)

1 In this example, we could also use a list representation for the state; this would
simplify the representation of places, but instead the corresponding rules would
be more complex.
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place(8, e) place(9, e) place(10,e) place(11,e) .

eq final

= place(0, y) place(1, g) place(2, b) place(3, r)

place(4, e) place(5, e) place(6, e) place(7, e)

place(8, e) place(9, e) place(10,e) place(11,e) .

vars I J : Nat .

var C : Chip .

crl [move] :

place(I, C) place(J, e) => place(I, e) place(J, C)

if (((I + 5) rem 12 == J) or ((J + 5) rem 12 == I))

/\ C =/= e .

endm

Then, we can use the command

Maude> search initial =>* B:Board such that B:Board == final .

No solution.

to prove that it is not possible, by using the allowed moves, to reverse the
original order of the chips. Since the constant final is not a pattern (because
it can be reduced), it cannot be used after the arrow in the search command;
however, the clause at the end allows us to say the same thing in the correct
way. Of course, we could also write as pattern the whole term in the righthand
side of the equation for final, but it is simpler to abbreviate such a long term.

7.7 The Khun Phan puzzle

The Khun Phan puzzle is one of those typical puzzles based on a rectangular
board over which some pieces can be slid. The goal is to move the pieces so as
to reach a certain configuration in which sometimes a picture becomes clear,
or other times a piece understood as representing some character is freed from
his guards. Figure 7.2 shows the initial configuration that we will consider.
The board is a 4× 5 rectangle, there is one 2× 2 piece, five rectangular pieces
of size 2 × 1, and four smaller squares with dimension 1 × 1; there are only
two empty spaces that must be used to slide the pieces. The goal we consider
is to move the pieces so as to put the big square in the position where the
small ones are initially. An additional twist would be to reach a completely
symmetric position with respect to the original one.

The state of the board is also represented as a multiset of pieces with the
operator __. There is a different constructor for each piece, bigsq, hrect,
vrect, and smallsq, and another one, empty, to indicate an empty space
(that is considered to be just a special kind of piece). These constructors take
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Fig. 7.2. The Khun Phan puzzle

two natural numbers as arguments, corresponding to the coordinates of the
upper left corner of the piece; the origin (1, 1) is located at the upper left
corner of the board.

The representation of the moves as rewrite rules is then immediate: each
move involves a piece and at least one empty space. For each kind of piece
there are four rules, corresponding to the four possible directions. For exam-
ple, moving the big square one position to the right is captured by the rule
Sqr below. Again, we can think of these pieces as objects and of rules as
interactions between them. The complete specification is as follows:

mod KHUN-PHAN is

protecting NAT .

sorts Piece Board .

subsort Piece < Board .

op __ : Board Board -> Board [ctor assoc comm] .

ops empty bigsq smallsq hrect vrect : Nat Nat -> Piece [ctor] .

op initial : -> Board .

vars X Y : Nat .

eq initial

= vrect(1, 1) bigsq(2, 1) vrect(4, 1)

empty(1, 3) hrect(2, 3) empty(4, 3)

vrect(1, 4) smallsq(2, 4) smallsq(3, 4) vrect(4, 4)

smallsq(2, 5) smallsq(3, 5) .

rl [sqr] : smallsq(X, Y) empty(s(X), Y)

=> empty(X, Y) smallsq(s(X), Y) .

rl [sql] : smallsq(s(X), Y) empty(X, Y)

=> empty(s(X), Y) smallsq(X, Y) .

rl [squ] : smallsq(X, s(Y)) empty(X, Y)

=> empty(X, s(Y)) smallsq(X, Y) .

rl [sqd] : smallsq(X, Y) empty(X, s(Y))
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=> empty(X, Y) smallsq(X, s(Y)) .

rl [Sqr] : bigsq(X, Y) empty(s(s(X)), Y) empty(s(s(X)), s(Y))

=> empty(X, Y) empty(X, s(Y)) bigsq(s(X), Y) .

rl [Sql] : bigsq(s(X), Y) empty(X, Y) empty(X, s(Y))

=> empty(s(s(X)), Y) empty(s(s(X)), s(Y)) bigsq(X, Y) .

rl [Squ] : bigsq(X, s(Y)) empty(X, Y) empty(s(X), Y)

=> empty(X, s(s(Y))) empty(s(X), s(s(Y))) bigsq(X, Y) .

rl [Sqd] : bigsq(X, Y) empty(X, s(s(Y))) empty(s(X), s(s(Y)))

=> empty(X, Y) empty(s(X), Y) bigsq(X, s(Y)) .

rl [hrectr] : hrect(X, Y) empty(s(s(X)), Y)

=> empty(X, Y) hrect(s(X), Y) .

rl [hrectl] : hrect(s(X), Y) empty(X, Y)

=> empty(s(s(X)), Y) hrect(X, Y) .

rl [hrectu] : hrect(X, s(Y)) empty(X, Y) empty(s(X), Y)

=> empty(X, s(Y)) empty(s(X), s(Y)) hrect(X, Y) .

rl [hrectd] : hrect(X, Y) empty(X, s(Y)) empty(s(X), s(Y))

=> empty(X, Y) empty(s(X), Y) hrect(X, s(Y)) .

rl [vrectr] : vrect(X, Y) empty(s(X), Y) empty(s(X), s(Y))

=> empty(X, Y) empty(X, s(Y)) vrect(s(X), Y) .

rl [vrectl] : vrect(s(X), Y) empty(X, Y) empty(X, s(Y))

=> empty(s(X), Y) empty(s(X), s(Y)) vrect(X, Y) .

rl [vrectu] : vrect(X, s(Y)) empty(X, Y)

=> empty(X, s(s(Y))) vrect(X, Y) .

rl [vrectd] : vrect(X, Y) empty(X, s(s(Y)))

=> empty(X, Y) vrect(X, s(Y)) .

endm

Then we can use the command

Maude> search initial =>* B:Board bigsq(2, 4) .

to get all possible 964 final configurations of the game.2 The final state used,
B:Board bigsq(2,4), represents any final situation such that the upper left
corner of the big square is at coordinates (2, 4). No wonder it takes some
time to find a solution: close examination of the first one, corresponding to
the shortest path leading to the final configuration due to the breadth-first
search, reveals that it involves 112 moves! We can use the show path labels

command to see only the sequence of the names of the applied rules, corre-
sponding to such moves (we only show some of them at the beginning and at
the end).

Maude> show path labels 23721 .

hrectr

2 Recall that the search command does not enumerate the different ways of reach-
ing each configuration.
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squ

sql

hrectl

vrectu

......

sqr

hrectu

squ

sql

Sql

On the other hand, the command

Maude> search initial

=>* vrect(1, 1) smallsq(2, 1) smallsq(3, 1) vrect(4, 1)

smallsq(2, 2) smallsq(3, 2)

empty(1, 3) hrect(2, 3) empty(4, 3)

vrect(1, 4) bigsq(2, 4) vrect(4, 4) .

No solution.

shows that it is not possible to reach a position symmetric to the initial one.

7.8 Crossing the river

A shepherd needs to transport to the other side of a river a wolf, a goat, and a
cabbage. He has only a boat with room for the shepherd himself and another
item. The problem is that in the absence of the shepherd the wolf would eat
the goat, and the goat would eat the cabbage.

We represent with constants left and right the two sides of the river.
The shepherd and his belongings are represented as objects with an attribute
indicating the side of the river in which each is located and are grouped to-
gether with a multiset operator __; the constant initial denotes the initial
situation, where we assume that all the objects are located on the left river-
bank.

sorts Side Group .

ops left right : -> Side [ctor] .

--- shepherd, wolf, goat, cabbage

ops s w g c : Side -> Group [ctor] .

op __ : Group Group -> Group [ctor assoc comm] .

op initial : -> Group .

The rules represent the ways of crossing the river allowed by the capacity
of the boat; an auxiliary change operation is used to modify the corresponding
attributes.
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op change : Side -> Side .

eq change(left) = right .

eq change(right) = left .

rl [shepherd-alone] : s(S) => s(change(S)) .

rl [wolf] : s(S) w(S) => s(change(S)) w(change(S)) .

rl [goat] : s(S) g(S) => s(change(S)) g(change(S)) .

rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

It only remains to specify the facts that the wolf eats the goat when they
are alone, and that the goat eats the cabbage. One might think about using
additional rules to represent these “eating transitions,” but this would not be
correct, because it would allow paths in which the shepherd leaves for example
the goat and the cabbage alone and later comes back to find that the cabbage
is still there. The point is that the eating actions do not constitute additional
alternatives to the ones encoded by the rules. If the goat is left alone with the
cabbage, no action should be able to preempt its eating it. Instead of rules, we
use equations, that represent instant actions and therefore should be executed
immediately.

ceq w(S) g(S) s(S’) = w(S) s(S’) if S =/= S’ .

--- wolf eats goat

ceq c(S) g(S) w(S’) s(S’) = g(S) w(S’) s(S’) if S =/= S’ .

--- goat eats cabbage

Note that the statement of the problem is underspecified; it is not clear
what exactly should happen if the wolf, the goat, and the cabbage were left
alone. In the previous equations we have decided that the goat is not fast
enough and gets eaten by the wolf before it can take a bite of the cabbage.

At this point it would seem that our module is ready to be executed but,
in fact, a major problem has inadvertently crept in: lack of coherence. Indeed,
the following diagram is not commutative, where →1 denotes one step of
rewriting by means of the rules.

w(left) g(left) c(left) s(right) →1 w(left) g(left) c(left) s(left)

‖ ‖6
w(left) c(left) s(right) →1 w(left) c(left) s(left)

That is, some rewrites would be missed by first simplifying terms with the
equations, so that coherence is lost and the module becomes inadmissible.

Coherence could be recovered by introducing additional rules; for example,
a rule like

rl w(left) c(left) s(right) => w(left) g(left) c(left) s(left) .

would make the above diagram commutative. However, such a rule would
generate goats out of the blue and does not correspond to any realistic aspect
of the problem at hand.
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An alternative solution, that applies in general [294, 257], is to encapsu-
late the whole state within an auxiliary operator, say {_}, so that rules are
specified relative to it and can be forced to be triggered only if no equation is
enabled. This is the approach followed in the module below, where toBeEaten
is an operator that is true of a state if either the wolf or the goat can eat.

mod RIVER-CROSSING is

sorts Side Group State .

ops left right : -> Side [ctor] .

op change : Side -> Side .

--- shepherd, wolf, goat, cabbage

ops s w g c : Side -> Group [ctor] .

op __ : Group Group -> Group [ctor assoc comm] .

op {_} : Group -> State [ctor] .

op toBeEaten : Group -> Bool .

op initial : -> State .

vars S S’ : Side .

var G : Group .

eq change(left) = right .

eq change(right) = left .

ceq w(S) g(S) s(S’) = w(S) s(S’) if S =/= S’ .

--- wolf eats goat

ceq c(S) g(S) w(S’) s(S’) = g(S) w(S’) s(S’) if S =/= S’ .

--- goat eats cabbage

ceq toBeEaten(w(S) g(S) s(S’) G) = true if S =/= S’ .

ceq toBeEaten(c(S) g(S) s(S’) G) = true if S =/= S’ .

eq toBeEaten(G) = false [owise] .

eq initial = { s(left) w(left) g(left) c(left) } .

crl [shepherd-alone] : { s(S) G } => { s(change(S)) G }

if not(toBeEaten(s(S) G)) .

crl [wolf] : { s(S) w(S) G } => { s(change(S)) w(change(S)) G }

if not(toBeEaten(s(S) w(S) G)) .

rl [goat] : { s(S) g(S) G } => { s(change(S)) g(change(S)) G }.

crl [cabbage] : { s(S) c(S) G } => { s(change(S)) c(change(S)) G }

if not(toBeEaten(s(S) c(S) G)) .

endm
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The resulting module is coherent and, by using the search command, we
can confirm that there is a way the shepherd can safely take his belongings
to the other side of the river.

Maude> search initial =>* { w(right) s(right) g(right) c(right) } .

Solution 1 (state 27)

empty substitution

No more solutions.

Now, by requesting the path leading from the initial state to the final one,

Maude> show path 27 .

state 0, State: {s(left) w(left) g(left) c(left)}

===[ rl ... goat ]===>

state 3, State: {s(right) w(left) g(right) c(left)}

===[ crl ... shepherd-alone ]===>

state 8, State: {s(left) w(left) g(right) c(left)}

===[ crl ... wolf ]===>

state 14, State: {s(right) w(right) g(right) c(left)}

===[ rl ... goat ]===>

state 21, State: {s(left) w(right) g(left) c(left)}

===[ crl ... cabbage ]===>

state 25, State: {s(right) w(right) g(left) c(right)}

===[ crl ... shepherd-alone ]===>

state 26, State: {s(left) w(right) g(left) c(right)}

===[ rl ... goat ]===>

state 27, State: {s(right) w(right) g(right) c(right)}

we obtain the shortest sequence of moves necessary to safely carry all the
belongings from one side to the other. We can see the “skeleton” of such
moves as follows:

Maude> show path labels 27 .

goat

shepherd-alone

wolf

goat

cabbage

shepherd-alone

goat

In Section 13.7 we will see a different approach to solve this problem, based
on model checking the system proposed at the beginning of this section, with
neither equations nor rules for the eating actions.
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7.9 Dominoes on a chessboard

We are given an 8× 8 board and 31 dominoes, each of which can be used to
cover exactly two squares of the board. Is it possible to arrange the dominoes
on the board so as to leave uncovered the upper left and the lower right
corners?

The answer is no, and a neat solution is given in [162, Chapter 1] among
other places. It is enough to imagine the board painted like a chessboard and
realize that each domino necessarily covers both a black and a white square:
since the corners to be left uncovered are of the same color, such a covering is
not possible. This solution, however, requires some ingenuity but, given our
present lazy approach, we are just going to model the problem in Maude and
try to solve it by sheer force.

Again, the state of the board is represented as a multiset of squares. Each
square has three arguments: the first two are its coordinates (column/row)
and the third indicates whether it is already covered or still empty. Since the
position of the squares in the board is fixed, the attribute comm for could
be thought to be unnecessary. This, however, allows a more homogeneous and
simple presentation of the rules, taking care of positioning the dominoes both
horizontally and vertically, by focusing only on those two squares involved
in placing a domino. Having the board represented as a list by removing the
attribute comm would force us to represent all the squares in between them in
one of the rules.

mod CHESS-COVER is

protecting NAT .

sorts Status Pos Board State .

subsort Pos < Board .

ops e c : -> Status [ctor] . --- empty and covered

op sq : Nat Nat Status -> Pos [ctor] .

op __ : Board Board -> Board [ctor assoc comm] .

ops initial final : -> Board .

vars I J I1 J1 : Nat .

var B : Board .

eq initial

= sq(1,1,e) sq(2,1,e) sq(3,1,e) sq(4,1,e) sq(5,1,e) ...

... sq(4,8,e) sq(5,8,e) sq(6,8,e) sq(7,8,e) sq(8,8,e) .

eq final

= sq(1,1,e) sq(2,1,c) sq(3,1,c) sq(4,1,c) sq(5,1,c) ...

... sq(4,8,c) sq(5,8,c) sq(6,8,c) sq(7,8,c) sq(8,8,e) .

rl [hor] : sq(I, J, e) sq(s(I), J, e)

=> sq(I, J, c) sq(s(I), J, c) .
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rl [ver] : sq(I, J, e) sq(I, s(J), e)

=> sq(I, J, c) sq(I, s(J), c) .

endm

In the above equations, defining the constants initial and final, we
have omitted the lengthy but obvious representation of the 64 squares in the
chessboard.

Now, the command

Maude> search initial =>* B:Board such that B:Board == final .

should return the answer. This time, however, a state explosion problem occurs
and in our computer the program runs out of memory before producing any
result. To solve it, we are forced to use some ingenuity after all.

Note that, instead of placing the dominoes in an arbitrary order, we could
do it starting either from the top of the board towards the bottom, or from the
left towards the right, or even in a diagonal manner beginning at the upper
left corner. The first two approaches still fail to return an answer, but the
third does. To implement it, we need an auxiliary operator cDiag, that checks
whether all positions in the board that come before a given square according
to the diagonal order have been already covered. Furthermore, as we did with
the Josephus examples in Section 7.3, we need to have full control of all the
elements in the board and for that we enclose them inside the constructor
{_}.

op {_} : Board -> State [ctor] .

op cDiag : Nat Nat Board -> Bool .

ceq cDiag(I, J, sq(I1, J1, e) B) = false

if (I1 + J1 < I + J) /\ (I1 + J1 >= 3) .

eq cDiag(I, J, B) = true [owise] .

crl [hor] : { B sq(I, J, e) sq(s(I), J, e) }

=> { B sq(I, J, c) sq(s(I), J, c) }

if cDiag(I, J, B) .

crl [ver] : { B sq(I, J, e) sq(I, s(J), e) }

=> { B sq(I, J, c) sq(I, s(J), c) }

if cDiag(I, J, B) .

The “otherwise” attribute, owise, is just a convenient way of specifying
the behavior of cDiag in all remaining cases without having to write equations
for them. The result is still an equational theory since the owise attribute is
just a shorthand for a conditional equation (as explained in Section 4.5.4).

Finally, the result of the command

Maude> search { initial } =>* { B:Board }

such that B:Board == final .

No solution.
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proves that such a covering is indeed not possible.

7.10 Black or white

Imagine an 8 × 8 board where the four corners are colored white and all
the other squares are black. Is it possible to make all the squares white by
recoloring rows and columns? “Recoloring” is the operation of changing the
colors of all the squares in a row or a column. The solution to this problem
can be found in [162, Chapter 12].

The board is represented as in the previous example, but now the third
attribute of a square is the corresponding color, either black (constant b) or
white (w).

Recoloring a row or a column is represented as a rewrite rule that makes
use of an auxiliary operation recolor that changes the color from black to
white and vice versa.

In addition to the constant initial, representing the initial coloring of the
board (whose representation is again omitted), we have a predicate allWhite?
to check whether all the squares are white. This predicate has a very simple
equational specification thanks to the owise attribute; intuitively, the corre-
sponding equations below just mean that all the squares are white when it is
not true that at least one square is black.

mod RECOLORING is

protecting NAT .

sorts Place Board Color .

subsort Place < Board .

ops w b : -> Color [ctor] .

op sq : Nat Nat Color -> Place [ctor] .

op __ : Board Board -> Board [ctor assoc comm] .

op initial : -> Board .

op recolor : Color -> Color .

op allWhite? : Board -> Bool .

vars I J : Nat .

vars C1 C2 C3 C4 C5 C6 C7 C8 : Color .

var B : Board .

eq recolor(b) = w .

eq recolor(w) = b .

eq allWhite?(sq(I,J,b) B) = false .

eq allWhite?(B) = true [owise] .

eq initial



7.11 The game is not over 187

= sq(1,1,w) sq(1,2,b) sq(1,3,b) sq(1,4,b) ...

... sq(8,5,b) sq(8,6,b) sq(8,7,b) sq(8,8,w) .

rl [recolor-column] :

sq(I,1,C1) sq(I,2,C2) sq(I,3,C3) sq(I,4,C4)

sq(I,5,C5) sq(I,6,C6) sq(I,7,C7) sq(I,8,C8)

=> sq(I,1,recolor(C1)) sq(I,2,recolor(C2))

sq(I,3,recolor(C3)) sq(I,4,recolor(C4))

sq(I,5,recolor(C5)) sq(I,6,recolor(C6))

sq(I,7,recolor(C7)) sq(I,8,recolor(C8)) .

rl [recolor-row] :

sq(1,J,C1) sq(2,J,C2) sq(3,J,C3) sq(4,J,C4)

sq(5,J,C5) sq(6,J,C6) sq(7,J,C7) sq(8,J,C8)

=> sq(1,J,recolor(C1)) sq(2,J,recolor(C2))

sq(3,J,recolor(C3)) sq(4,J,recolor(C4))

sq(5,J,recolor(C5)) sq(6,J,recolor(C6))

sq(7,J,recolor(C7)) sq(8,J,recolor(C8)) .

endm

The command

Maude> search initial =>* B:Board such that allWhite?(B:Board) .

No solution.

proves that it is not possible to get a configuration with all the squares colored
white from our initial configuration.

7.11 The game is not over

We have specified several other games and puzzles, but we think that by now
the pattern by which these problems are modeled and solved in Maude should
be clear. There are however several advanced features available in Maude that
can be useful in some examples, and that we have not considered here with
the idea of keeping things at an introductory level.

The first one is the possibility of using membership axioms (see Section 4.2)
to refine the representation of the state. For example, the multiset constructor
allows repetition of elements, but this should be forbidden in some situations;
as another example, in the Khun Phan puzzle a piece cannot be stacked on
top of another. In the puzzles above we have not made use of this feature, but
memberships are the right technical tool to make sure that all the elements
are different.

The breadth-first search implemented by the search command has been
the most appropriate in our examples. Nonetheless, in other examples a dif-
ferent kind of search might be more suitable. As already mentioned at the
beginning of this chapter and further explained in Section 14.6, many different
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strategies can be defined with the help of the META-LEVEL module described
in Chapter 14. Furthermore, we are currently designing a strategy language
for Maude in which the user can express complex requirements on the com-
putation, and in particular on the kind of search desired [234]. A Core Maude
implementation of this strategy language is ongoing, to make it part of a
future release of Maude.

The paper [295], from which this chapter has been adapted, contains
a small comparison with other rule-based programming languages, namely,
ELAN [27], CHR [163], and ASF+SDF [104].

The following are some additional problems that the reader may find in-
teresting to try to solve using the techniques described in this chapter:

1. Mr. Smith and his wife invited four other couples to have dinner at their
house. When they arrived, some people shook hands with some others (of
course, nobody shook hands with their spouse or with the same person
twice), after which Mr. Smith asked everyone how many times they had
shaken hands. The answers, it turned out, were different in all cases. How
many people did Mrs. Smith shake hands with?

2. The numbers 25 and 36 are written on a blackboard. At each turn, a
player writes on the board the (positive) difference between two numbers
already on the blackboard—if this number does not already appear on it.
The loser is the player who cannot write a number. Prove that the second
player will always win.

3. A 3 × 3 table is filled with numbers. It is allowed to increase simultane-
ously all the numbers in any 2× 2 square by 1. Is it possible, using these
operations, to obtain the table (4, 9, 5), (10, 18, 12), (6, 13, 7) from a table
initially filled with zeros?
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Module Operations

Specifications and code should be structured in modules of relatively small size
to facilitate understandability of large systems, increase reusability of compo-
nents, and localize the effects of system changes. In Maude, these goals are
achieved by means of a module algebra that supports parameterized program-
ming techniques in the OBJ3 style [174] as well as the definition of module
hierarchies, i.e., acyclic graphs of module importations; that is, each func-
tional or system module can import other Maude modules as submodules.
Since the submodule relation is transitive, we can in this way develop module
hierarchies. Mathematically, we can think of such hierarchies as partial orders
of theory inclusions, that is, the theory of the importing module contains the
theories of its submodules as subtheories.

As in Clear [42], OBJ [174], and other specification languages in that tra-
dition, the abstract syntax for writing specifications in Maude can be seen
as given by module expressions, where the notion of module expression is
understood as an expression that defines a new module out of previously de-
fined modules by combining and/or modifying them according to a specific
set of operations. In fact, structuring is essential in all specification languages,
not only to facilitate the construction of specifications from already existing
ones—with more or less flexible reusability mechanisms—but also for manag-
ing the complexity of understanding and analyzing large specifications. Maude
supports module operations for summation, renaming, and instantiation of
parameterized modules.

Section 8.1 introduces module importations and the different modes in
which such importations can take place. Section 8.2 discusses the summation
and renaming module expressions. Section 8.3 introduces parameterized pro-
gramming, including the use of theories and views, the parameterization of
functional and system modules, and the instantiation of parameterized mod-
ules. We refer to [111, 124, 125] for a deeper discussion on the semantics of
the Maude module operations.
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8.1 Module importation

Recall that a functional module M specifies a membership equational theory
of the form (Σ,E ∪ A), with Σ its signature, A the equational attributes
specified for its operators, and E its set of equations and memberships. A
submodule M ′ of M is either a module directly imported by M , or a sub-
module of one of the modules directly imported by M . Then M ′ specifies a
membership equational subtheory (Σ′, E′ ∪ A′) ⊆ (Σ,E ∪ A). Specifically,
we have three inclusions: Σ′ ⊆ Σ, E′ ⊆ E, and A′ ⊆ A. Furthermore, since
in Maude subsort-overloaded operators must have the same equational at-
tributes, Maude will enforce that the inclusion A′ ⊆ A satisfies this property.

In a similar way, a system module Q specifies a rewrite theory (Σ,E ∪
A, φ,R). A submodule Q′ of Q will likewise specify a rewrite subtheory
(Σ′, E′ ∪ A′, φ′, R′) ⊆ (Σ,E ∪ A, φ,R). This means that we have inclusions
Σ′ ⊆ Σ, E′ ⊆ E, A′ ⊆ A (again, with the same equational attributes for
subsort-overloaded operators), φ′ ⊆ φ, and R′ ⊆ R, where φ′ ⊆ φ is an inclu-
sion of functions and means that the freezing function φ extends the function
φ′. Note that Q′ could be a functional module, which is then understood as
the rewrite theory (Σ′, E′ ∪ A′, φ′, ∅), where φ′ specifies whatever freezing
information has been given to the operators of Σ′ in Q′. A system module
cannot be imported into a functional module.

In Maude, a module—any module expression giving rise to a module—can
be imported as a submodule of another in three different modes: protecting,
extending, or including. This is done with the syntax declarations

protecting 〈ModuleExpression 〉 .

extending 〈ModuleExpression 〉 .

including 〈ModuleExpression 〉 .

which can be abbreviated, respectively, to

pr 〈ModuleExpression 〉 .

ex 〈ModuleExpression 〉 .

inc 〈ModuleExpression 〉 .

In addition to being allowed as arguments of a protecting, extending, or
including importation, module expressions can also appear as the source or
target of a view (see Section 8.3.2), or as the parameter of a module, provided
the top level is a theory (see Section 8.3.3).

Each of the importation modes places specific semantic constraints on
the corresponding inclusion between the theory of the submodule and that
of the supermodule. The user must be aware that, as explained later, the
Maude system does not check that these constraints are satisfied, that is, the
different modes of importation can be understood as promises by the user,
which would need to be proved by him/herself. Although those importation
modes have no effect operationally, they do crucially affect the interpretation
given to a module by the theorem proving tools. If a user is doubtful about
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the appropriate importation mode the default should be to use the including
mode, which places weaker requirements on the importation.

Importation statements take a module expression as argument, which may
be a module name, the summation of module expressions, the renaming of a
module expression, or the instantiation of a parameterized module expression.
Modules are constructed for each subexpression of a module expression, and
so each submodule signature must be legal. Modules and module expressions
are cached both to save time and so that the same module corresponding to
a module expression will not be imported twice via a diamond of imports.
Mutually or self recursive imports occurring through module expressions are
detected and disallowed. Cached modules generated by module expressions
that no longer have any users (if the module(s) containing the module expres-
sion have been replaced) are deleted. When a module M used in a module
expression is modified, any modules generated for module expressions that
depend on M are deleted and any modules that depend on M are reevaluated
if you attempt to use them. Here the notion of “depends on” is transitive
through arbitrary nesting of importation and module expressions.

In addition to being imported by the explicit importation statements we
have just introduced, modules can be imported in an implicit way (also in the
three possible modes) by means of commands set protect/extend/include

module on/off; see more details in Section 25.13 and the detailed example
in Section 9.1.

8.1.1 Protecting

Importing a module M ′ into M in protecting mode intuitively means that
no junk and no confusion are added to M ′ when we include it in M . For
example, we may import the module NAT of natural numbers into a module
FOO. “Junk” would be added to NAT if in FOO we have new ground terms
in canonical form in any of the sorts in NAT, namely Nat and NzNat. For
example, FOO may have declared a constant infinity of sort NzNat to which
no equations apply. “Confusion” would be added if different natural numbers
are now identified. For example, if FOO contains the equation s s 0 = 0, then
all even numbers will be identified with 0 and all odd numbers with s 0.

Let us explain the semantics of the protecting relation in more detail for
functional modules M ′ and M , where M ′ has been imported as a submodule
in protecting mode, either by an explicit protecting importation in M , or
transitively through one of M ’s submodules. Let (Σ′, E′ ∪ A′) ⊆ (Σ,E ∪ A)
be the theory inclusion defined by the module inclusion M ′ ⊆M . Notice that
the existence of the inclusions Σ′ ⊆ Σ, E′ ⊆ E, and A′ ⊆ A means that for
each sort s′ in Σ′ there is a well-defined function

qs′ : TΣ′/E′∪A′,s′ −→ TΣ/E∪A,s′

mapping the equivalence class [t]E′∪A′ of a ground term t to the equivalence
class [t]E∪A. By definition, the submodule inclusion M ′ ⊆ M is protecting if
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and only if for each sort s′ in Σ′ the above function is bijective. This captures
mathematically the “no junk” (surjectivity) and “no confusion” (injectivity)
ideas. Under our ground Church-Rosser and termination assumptions for M ′

and M this also means that the canonical form of any ground Σ′-term t in
M ′ that has a sort in Σ′ must be the same as its canonical form in M . The
requirement that t must have a sort is crucial. We do not require that for k′

a kind the map

qk′ : TΣ′/E′∪A′,k′ −→ TΣ/E∪A,k′

is bijective. The reason is that the notion of defined function—that is, an
operator that disappears and leaves just a term with constructors—is only
meaningful when the result has a sort. The same operator may not disappear
for error terms at the kind level. That is, in the module M extending M ′

there may easily be new error terms of kind k′ created by new operators in
M . For example, if we import the module NAT into the module RAT of rational
numbers, the sorts Nat and Rat belong to the same kind, but there are now
new error terms in the kind, such as 3 + 7/0. Therefore, we should not care
about “error junk” being added by a supermodule at the kind level, provided
that the sorts themselves are protected.

For system modules the protecting requirement is interpreted exactly as
before as far as their underlying equational theories are concerned. That is,
if Q protects Q′ and the associated theory inclusion is (Σ′, E′ ∪ A′, φ′, R′) ⊆
(Σ,E∪A, φ,R), then the equational theory inclusion (Σ′, E′∪A′) ⊆ (Σ,E∪A)
must be protecting. We furthermore require that for any two ground Σ′-terms
t and t′ we can reach t′ from t by a sequence of rewrites in the module M ′ if
and only if we can do so in the module M ; that is, for ground terms in M ′

we require that the reachability relation is not altered by the supermodule.
Of course, the protecting assertion cannot be checked by Maude at run-

time: it requires inductive theorem proving. Using the proof techniques in [31]
together with an inductive theorem prover for membership equational logic
and a Church-Rosser checker such as those described in [126, 128, 73] (which
are available in the Maude formal tool environment together with other useful
tools for termination and sufficient completeness; see Section 23.1), this can
be done for functional modules. Using the fact that initial models of rewrite
theories are also models of equational theories [36], similar proof techniques
could be developed to prove the protecting relation between rewrite theories.

8.1.2 Extending

A weaker, yet substantial, requirement about a module importation is ex-
pressed by the keyword extending. Intuitively, the idea is to allow “junk,”
but to rule out confusion. Extending importations may appear naturally in sit-
uations in which the data of some sort is extended with new data elements, yet
not identifying previously defined data, like adding a new constant infinity
to the natural numbers in a module importing NAT. As another example, when
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defining the semantics of a programming language in Maude, we can have from
the beginning a sort Program, and define incrementally the syntax of programs
in several modules, say, EXPRESSION, STATEMENT, PROCEDURE, and so on. This
will typically give rise to a family of extending module importations as more
syntax is added.

For functional modules M ′ and M , where M ′ has been imported as a
submodule in extending mode, either by an explicit extending importation in
M , or transitively through one of M ’s submodules, if (Σ′, E′ ∪A′) ⊆ (Σ,E ∪
A) is the theory inclusion defined by the module inclusion M ′ ⊆ M , the
extending requirement means that for each sort s′ in Σ′ the function

qs′ : TΣ′/E′∪A′,s′ −→ TΣ/E∪A,s′

is injective. For system modules the extending requirement is interpreted
exactly as before as far as their underlying equational theories are concerned.
That is, if Q extends Q′ and the associated theory inclusion is (Σ′, E′ ∪
A′, φ′, R′) ⊆ (Σ,E ∪ A, φ,R), then the equational theory inclusion (Σ′, E′ ∪
A′) ⊆ (Σ,E ∪A) must be extending. We furthermore require that for any two
ground Σ′-terms t and t′ we can reach t′ from t by a sequence of rewrites in
the module M ′ if and only if we can do so in the module M ; that is, for ground
terms in M ′ the reachability relation is not altered by the supermodule.

Under the Church-Rosser and termination assumptions, the extending

(Σ′, E′ ∪ A′) ⊆ (Σ,E ∪ A) requirement is a form of conservative extension
requirement, in the sense that it implies that for any Σ′ ground terms t and
t′ that have a sort in (Σ′, E′ ∪A′), E′ ∪A′ proves t = t′ if and only if E ∪A
proves t = t′. In addition, for system modules it further implies that for any
two ground Σ′-terms t and t′ the reachability relation is not altered by the
extension. In summary, equality and reachability are conservatively preserved
for ground terms.

Note that the extending relation does not destroy protecting importa-
tions further down the hierarchy. That is, if M imports M ′ in extending

mode, but M ′ imports M ′′ in protecting mode, then M still imports M ′′ in
protecting mode, not in extending mode. If we do not want M to protect
M ′′ (because this is indeed violated), then we have to say so by explicitly
giving an extending importation declaration for M ′′ in M .

8.1.3 Including

The most general form of module importation is provided by the including

keyword. No requirements are made in an including importation about maps
of the form qs′ : there can now be junk (lack of surjectivity) and/or confusion
(lack of injectivity). Likewise, for system modules it is not anymore required
that the reachability relation between ground terms in the submodule is pre-
served. The including keyword does however impose some requirements.
First of all, there is the requirement that the equational attributes of subsort-
overloaded operators must be the same. Furthermore, the including relation
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does not destroy protecting or extending importations further down the hier-
archy. That is, if M imports M ′ in including mode, but M ′ imports M ′′ in
protecting (resp. extending) mode, then M still imports M ′′ in protecting

(resp. extending) mode, not in including mode. If we do not want M to
protect or extend M ′′ (because this is indeed violated), then we have to say
so by explicitly giving an including importation declaration for M ′′ in M .

Given that, as already mentioned, there is no difference at runtime between
the different modes of importation because the Maude system does not check
the corresponding requirements, from a pragmatic point of view, when a user
is doubtful about the appropriate importation mode, the best idea is to use
the including mode so that at least no false assertion is made.

8.1.4 Default conventions in module importations

We have already explained our default convention when a submodule M0 is
imported indirectly and transitively into M through the direct importation
by M of a module M1 that itself imports M0. Then, whatever was the mode
(protecting, extending, or including) in which M0 was imported by M1 is
also, by default, the mode in which M0 is imported by M , unless M contains
an explicit declaration importing M0 in a different mode. We now explain
what our default convention is in the case of diamond importations.

We talk of a diamond importation of M0 by M , when M0 is imported indi-
rectly by M through the direct importation of two or more different modules,
say M1,M2, . . . ,Mk. The problem now is that M0 can be imported by each
of the modules M1,M2, . . . ,Mk in different modes. For example, M1 could
import it in protecting mode, M2 in extending mode, M3 in including

mode, and so on. What should now be the default convention for the mode in
which M imports M0? We adopt a convention that is consistent with a logi-
cal understanding of such importation declarations. Indeed, such declarations
impose semantic constraints of decreasing strength; that is, we have:

protectingM0 ⇒ extendingM0 ⇒ includingM0.

The default convention consistent with this logical reading is that the strongest
mode wins, i.e., protecting prevails over extending, which itself prevails
over including. This is because we view the set of all such importing mode
declarations as a conjunction, and exploit the logical equivalence between
A⇒ B and (A ∧B)⇔ A.

Note that this “strongest wins” default mode may not always be the correct
or intended mode in whichM should importM0. Sometimes it may not be, and
then the user should overrule the default convention by declaring explicitly
a different mode in which M imports M0. A pragmatic reason why this need
for overruling the default mode may arise is that, although a weaker mode of
importation (say extending) does not logically preclude such an importation
also satisfying a stronger one (say protecting), in practice, when we declare
an importation in a weaker mode it can often be because we know or suspect
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that it fails to satisfy a stronger mode. For example, when we say “extending”
we may often mean “extending and not protecting.”

8.1.5 Some module hierarchy examples

Prime numbers sieve

Section 4.4.7 included a functional module specifying the sieve of Eratosthenes
to calculate prime numbers.

fmod SIEVE is

protecting NAT .

sort NatList .

subsort Nat < NatList .

...

endfm

The predefined module of natural numbers (see Section 9.2) is imported in
protecting mode. This is justified because the elements of sort Nat are used
to generate the lists of natural numbers by means of a subsort declaration and
also as arguments of other operators. However, no new operator of result sort
Nat is added in the SIEVE module, and all the equations in this module identify
elements of sort NatList without identifying different natural numbers.

Vending machine

The vending machine example in Section 6.1 was presented in a modular way,
by separating the underlying signature defining the states of the machine from
the rules defining the corresponding transitions.

mod VENDING-MACHINE is

including VENDING-MACHINE-SIGNATURE .

var M : Marking .

rl [add-q] : M => M q .

...

endm

It is important to notice that in this example the importation mode cannot
be either protecting or extending, because those modes require preservation
of the reachability relation, which clearly is not the case when adding (non-
identity) rewrite rules to a functional module (where the reachability relation
is the identity).

Bank accounts and object configurations

Later, in Section 11.1, devoted to the definition of configurations of objects
and messages for object-based programming, we will present several mod-
ules where additional data are introduced in order to run some tests. For
example, the following module introduces three new constants to be used
as object identifiers, and a new constant to be used as a test configuration.
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This configuration constant is identified with a term of sort Configuration

in the imported module BANK-ACCOUNT by means of an equation whose right-
hand side is omitted below. However, constants A-001, A-002, and A-003 are
new data elements, i.e., junk, of sort Oid. The sort Oid was declared in the
module CONFIGURATION, but since it was imported in including mode in
BANK-ACCOUNT, it is not necessary to import it in a different mode. Therefore,
the appropriate importation mode is extending.

mod BANK-ACCOUNT-TEST is

ex BANK-ACCOUNT .

ops A-001 A-002 A-003 : -> Oid .

op bankConf : -> Configuration .

eq bankConf = ... .

endm

The following example, from Section 11.3, is more interesting, in that it
introduces new sorts MsgBody and Request, not just new constants for a sort
in the imported module. Still, the appropriate importation mode is extending
because there are no new rewrite rules and no equations, and thus no confusion
between elements in imported sorts is introduced.

mod DATA-AGENTS-CONF is

ex CONFIGURATION .

sort MsgBody .

op msg : Oid Oid MsgBody -> Msg [ctor message] .

sort Request .

op w4 : Oid Oid MsgBody -> Request [ctor] .

endm

There are several other modules in Chapter 11 illustrating the use of the
extending mode in importing modules, like BANK-MANAGER-TEST, TICKER-TEST,
TICKER-FACTORY-TEST, and AGENT-TEST; see Figures 11.1, 11.2, and 11.3.

Number hierarchy

The acyclic importation graph corresponding to the module hierarchy repre-
senting the number hierarchy from the natural to the rational numbers, as
presented in Section 4.10, is shown in Figure 8.1, where a module above im-
ports the modules below it, with the predefined BOOL module at the bottom.
Note that in this example all the importations are protecting importations.

Hierarchy of predefined modules

A more complex acyclic importation graph corresponds to the hierarchy of
predefined modules for basic data types, described later in Chapter 9 and
shown in Figure 9.1, where all the importations are in protecting mode.
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PEANO-RAT

PEANO-INT

PEANO-NAT

BOOL

Fig. 8.1. Importation (protecting) graph of number hierarchy modules

8.2 Module summation and renaming

8.2.1 The summation module expression

The summation module operation creates a new module that includes all
the information in its summands. The syntax for a summation of module
expressions is

ModuleExpression + ModuleExpression

with + associative and commutative.
Summation expressions are flattened before being evaluated, so that

A + (B + C) and (C + A) + B both create a single new module A + B + C,
The evaluation of a summation module expression results in the creation of
a new module, with such a module expression as its name, which imports
the module expressions being combined. The new module will be generated
having one type or another, depending on the types of the arguments of the
summation module expression. A summation is a functional module if all the
summands are functional modules and a system module otherwise.

Although the use of the summation module expression is more interesting
in combination with other module expressions, let us consider as an exam-
ple the following module, in which the union of the predefined FLOAT and
STRING modules (see Chapter 9) are imported together in protecting mode
to illustrate its use.

fmod FLOAT-STRING is

protecting FLOAT + STRING .

...

endfm
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Notice that a declaration

protecting A + B .

is not equivalent to a sequence of declarations

protecting A .

protecting B .

because in general the modules A and B may share sorts and operators. The
same happens with extending declarations, for the same reason. However, a
declaration of the form

including A + B .

is indeed equivalent to a sequence of declarations

including A .

including B .

8.2.2 Module renaming

The syntax of a renaming module expression is

〈ModuleExpression 〉 * ( 〈Renaming 〉 )

where 〈Renaming 〉 is a comma-separated sequence of renaming items of the
forms:

sort 〈identifier 〉 to 〈identifier 〉
op 〈identifier 〉 to 〈identifier 〉
op 〈identifier 〉 to 〈identifier 〉 [ 〈attribute-set 〉 ]

op 〈identifier 〉 : 〈type-list 〉 -> 〈type 〉 to 〈identifier 〉
op 〈identifier 〉 : 〈type-list 〉 -> 〈type 〉 to 〈identifier 〉

[ 〈attribute-set 〉 ]

label 〈identifier 〉 to 〈identifier 〉

Renaming (_*(_)) binds tighter than summation (_+_), and it groups to
the left. Note that, in addition to the typical renamings of sorts and opera-
tors, renaming of labels is also supported (which may be useful for metalevel
applications). Note also how the renaming of operators allows changing the at-
tributes of the operator being renamed. The only attributes currently allowed
in operator maps are prec, gather, and format. The idea is that when you
rename an operator, the old syntactic properties may no longer be legal and
are reset to defaults, unless you explicitly set them with these attributes; for
example, when a change in the syntax of the operator could cause a parsing
different from the intended one. Let us see an example in which modifying
the grammatical attributes of an operator is useful. Consider the following
module defining lists of natural numbers with a max operator returning the
greatest of the elements in a list of natural numbers.
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fmod NAT-LIST-MAX is

pr NAT .

sort NeNatList .

subsort Nat < NeNatList .

op __ : NeNatList NeNatList -> NeNatList [ctor assoc] .

op max : NeNatList -> Nat .

var N : Nat .

var NL : NeNatList .

eq max(N) = N .

eq max(N NL) = if N > max(NL) then N else max(NL) fi .

endfm

We may obtain the maximum of a list of natural numbers as follows.

Maude> red max(4 2 5 3) .

result NzNat: 5

Suppose now that we want to change the syntax of the function max in the
NAT-LIST-MAX module above to maximum_.

fmod NAIVE-NAT-LIST-MIXFIX-MAX is

pr NAT-LIST-MAX * (op max : NeNatList -> Nat to maximum_) .

endfm

We can do the following reduction:

Maude> red maximum 2 3 4 1 .

result NeNatList: 2 3 4 1

This result may seem strange, but it makes perfect sense. What has happened
is that it has been parsed as (maximum 2) 3 4 1, the only possible parse
given the default precedence values and gathering patterns assigned. Since
by default maximum_ has precedence 15 and gathering E, it cannot take the
list 2 3 4 1 as argument because __ has precedence 41. However, since __

has gathering e E, maximum 2 is a valid argument for it (see Section 3.9 for a
detailed discussion on the use of precedence values and gathering patterns and
their default values). We can of course obtain the intended result by placing
parentheses around the set of numbers,

Maude> red maximum (2 3 4 1) .

result NzNat: 4

but it is more convenient to change the precedence values of the operators.
We can, for example, raise the precedence of maximum_.

fmod NAT-LIST-MIXFIX-MAX is

pr NAT-LIST-MAX

* (op max : NeNatList -> Nat to maximum_ [prec 41]) .

endfm

having then the following reduction.
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Maude> red maximum 2 3 4 1 .

result NzNat: 4

Notice that if maximum_ has precedence 41, then (maximum 2) 3 4 1 is no
longer a valid parse.

A renaming can be considered as a function that, given a module M and
a list of mappings S, returns a copy of the module, with such a module
expression as its name, in which the names of sorts, operators, etc. are changed
as indicated by the mappings. However, renaming a module that has imports
is a subtle issue. Given a structured specification, the renaming not only causes
the creation of a copy of the top module in the structure, but renames also
the part of the submodule structure that is affected by the renaming. For any
other submodule M ′ in the structure which is affected by the mappings, a
renamed copy of it is generated with name M ′ * (S′), where S′ is the subset
of mappings in S that affect M ′.

A module expression A * (R) evaluates to A if A has no content that is
affected by the renaming R. Otherwise A * (R) evaluates to a new module
A * (R′) where R′ is obtained by deleting those renaming items that do not
affect A, and canonizing the types in operator renamings with respect to A
(see below). If A imports modules B and C, A * (R′) will import modules
obtained by evaluating B * (R′) and C * (R′).

There are some subtle cases. Consider for example the following three
modules:

fmod RENAMING-EX-A is

sort Foo .

op a : -> Foo .

op f : Foo -> Foo .

endfm

fmod RENAMING-EX-B is

including RENAMING-EX-A .

sort Bar .

subsort Foo < Bar .

op f : Bar -> Bar .

endfm

fmod RENAMING-EX-C is

inc RENAMING-EX-B * (op f : Bar -> Bar to g) .

endfm

Here, the operator f in the module RENAMING-EX-A looks as though it is
not affected by the renaming in the module RENAMING-EX-C, but because of
the subsort declaration Foo < Bar in RENAMING-EX-B, it should be renamed
for consistency. This is internally handled by the Maude system by canonizing
the type Bar occurring in the renaming
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op f : Bar -> Bar to g

to the kind expression [Foo,Bar], which includes all of the sorts in the kind
[Bar] occurring in RENAMING-EX-B. Thus, the module expression

RENAMING-EX-B * (op f : Bar -> Bar to g)

evaluates to a new module

RENAMING-EX-B * (op f : [Foo,Bar] -> [Foo,Bar] to g)

which includes the module expression

RENAMING-EX-A * (op f : [Foo,Bar] -> [Foo,Bar] to g)

which evaluates to a new module

RENAMING-EX-A * (op f : [Foo] -> [Foo] to g)

in which f has been renamed.
In general, * does not distribute over +. Consider this other example:

fmod RENAMING-EX-D is

sorts Foo Bar .

endfm

fmod RENAMING-EX-E is

inc RENAMING-EX-D .

op f : Foo -> Foo .

endfm

fmod RENAMING-EX-F is

inc RENAMING-EX-D .

subsort Foo < Bar .

op f : Bar -> Bar .

endfm

It is not the case that the module expressions

(RENAMING-EX-E + RENAMING-EX-F) * (op f : Bar -> Bar to g)

and

(RENAMING-EX-E * (op f : Bar -> Bar to g))

+ (RENAMING-EX-F * (op f : Bar -> Bar to g))

evaluate to the same module, because in the latter the operator f occurring in
RENAMING-EX-E will not be renamed, since f : Bar -> Bar does not occur
in RENAMING-EX-E.

Operators with the poly attribute are only affected by operator renam-
ings that do not specify types. Renaming a module does not change its mod-
ule type, that is, renamed functional modules (resp. system modules) remain
functional (resp. system).
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8.3 Parameterized programming

Theories, parameterized modules, and views are the basic building blocks
of parameterized programming [42, 174]. As in OBJ, a theory defines the
interface of a parameterized module, that is, the structure and properties
required of an actual parameter.

A parameterized module is a module with one or more parameters, each
of which is expressed by means of one theory, that is, modules can be pa-
rameterized by one or more theories. If we want, e.g., to define a list or a set
of elements, we may define a module LIST or SET parameterized by a theory
expressing the requirements on the type of the elements to store in such data
structures. Thus, theories are used to declare the interface requirements for
parameterized modules. In the case of lists and sets we do not need any re-
quirement on the data elements, and therefore we may use the trivial theory
TRIV, with just a sort Elt, as parameter of such modules; but in other cases,
say search trees or sorted lists, we may require, e.g., a particular operator, an
order relation, or an equivalence relation, in which cases we shall need to use
the appropriate theories describing the specific requirements.

The instantiation of the formal parameters of a parameterized module
with actual parameter modules or theories requires a view mapping entities
from the formal interface theory to the corresponding entities in the actual
parameter module.

8.3.1 Theories

Theories are used to declare module interfaces, namely the syntactic and
semantic properties to be satisfied by the actual parameter modules used
in an instantiation. As for modules, Maude supports two different types of
theories: functional theories and system theories, with the same structure of
their module counterparts, but with a different semantics. Functional theories
are declared with the keywords fth ... endfth, and system theories with the
keywords th ... endth. Both of them can have sorts, subsort relationships,
operators, variables, membership axioms, and equations, and can import other
theories or modules. System theories can also have rules. Although there is no
restriction on the operator attributes that can be used in a theory, there are
some subtle restrictions and issues regarding the mapping of such operators
(see Section 8.3.2).

Like functional modules, functional theories are membership equational
logic theories, but they do not need to be Church-Rosser and terminating, and
therefore some or all of their statements may be declared with the nonexec

attribute. Theories have a loose semantics, in the sense that any algebra sat-
isfying the equations and membership axioms in the theory is an acceptable
model. However, functional theories can be executed in exactly the same way
as functional modules; that is, the equations and membership axioms not hav-
ing the nonexec attribute should be Church-Rosser and terminating, and can
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be executed by equational simplification, whereas the statements declared as
nonexec can be arbitrary and can only be executed in a controlled way at
the metalevel. System theories have a similar loose interpretation, but are
treated just as system modules for executability purposes. Theories are then
allowed to contain rules and equations which, if declared with the nonexec

attribute, can be arbitrary, that is, can have variables in their righthand sides
or conditions that may not appear in their corresponding lefthand sides and
do not obey the admissibility conditions in Sections 4.6 and 6.3. Similarly,
conditional membership axioms may have variables in their conditions that
do not appear in their head membership assertions. Also, the lefthand side
may be a single variable.

Let us begin by introducing the functional theory TRIV, which requires
just a sort.

fth TRIV is

sort Elt .

endfth

The theory TRIV is used very often, for instance in the definition of data
structures, such as lists, sets, trees, etc., of elements of some type with no
specific requirement; in these cases, it is common to define a module, say
LIST, SET, TREE, etc., parameterized by the TRIV theory (see Section 8.3.3).
The theory TRIV is predefined in Maude, together with several useful views
from TRIV to other predefined modules and theories (see Section 9.11.1).

But we can define more interesting theories. For example, the theory of
monoids, with an associative binary operator with identity element 1, can be
specified as follows:

fth MONOID is

including TRIV .

op 1 : -> Elt .

op __ : Elt Elt -> Elt [assoc id: 1] .

endfth

Notice the importation of the theory TRIV into the MONOID theory. As
for modules, it is possible to structure our theories by importing other theo-
ries and modules (and in general module expressions involving theories and
modules) into theories. However, a theory cannot be imported into a module:
theories can only be used as parameters of modules. Also, theories do not have
automatic importation as modules do (e.g., BOOL, as described in Section 9.1).

Modules and theories can be combined in module expressions (they can be
summed, for example), and modules can be imported into theories. Basically,
we have a lattice
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where summation corresponds to join, and where a module or theory may
only import a submodule or subtheory of lesser or equal type.

Although the importation of a module into a theory can be done in any
mode, a theory can only be imported in including mode into another the-
ory. The including importation of a theory into another theory keeps its
loose semantics. However, the importation of a theory into another one in
protecting or extending mode would imply additional semantic require-
ments; such modes of importation are ruled out.1 On the other hand, al-
though a module keeps its initial interpretation when imported into a theory
in protecting or extending modes, it looses it if imported in including

mode.
Let us see a few examples illustrating all this.
The theory of commutative monoids can be defined just as the theory of

monoids; the binary operator _+_ is now declared associative, commutative,
and has 0 as its identity element.

fth +MONOID is

including TRIV .

op 0 : -> Elt .

op _+_ : Elt Elt -> Elt [assoc comm id: 0] .

endfth

The theory of semirings can be expressed as follows.

fth SEMIRING is

including MONOID .

including +MONOID .

vars X Y Z : Elt .

eq X (Y + Z) = (X Y) + (X Z) [nonexec] .

eq (X + Y) Z = (X Z) + (Y Z) [nonexec] .

endfth

Note the use of the nonexec attribute, and note also that given the seman-
tics of theory inclusions, there is no difference between having a structured
theory or one flat theory including all the declarations.2 For example, the
theory of commutative rings can be defined directly as follows:

1 If a theory is imported using a mode other than including, the system gives an
error message saying that the mode is being treated as if it were including. Other
illegal importations give an error message saying that they are being ignored.

2 The only exception to this semantic equivalence between structured theories and
their flattened form is the case in which a theory imports some modules, since any
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fth RING is

sort Ring .

ops z e : -> Ring .

op _+_ : Ring Ring -> Ring [assoc comm id: z] .

op _*_ : Ring Ring -> Ring [assoc comm id: e] .

op -_ : Ring -> Ring .

vars A B C : Ring .

eq A + (- A) = z [nonexec] .

eq A * (B + C) = (A * B) + (A * C) [nonexec] .

endfth

but could also be defined as a structured theory including the theories of
commutative groups and commutative monoids (renamed if necessary), to
which the distributivity axiom is added.

As mentioned above, the including importation of a theory into another
theory keeps its loose semantics. However, if the imported theory contains a
module, which therefore must be interpreted with an initial semantics (see
Section 6.3), then that initial semantics is maintained by the importation.
For example, in the definition of the TAOSET theory below, the declaration
protecting BOOL ensures that the initial semantics of the functional module
for the Booleans is preserved, which is in fact a crucial requirement.

Let us consider now a hierarchy of theories for partially and totally ordered
sets. The most basic theory specifies a transitive and antisymmetric order _<_
on a set:

fth TAOSET is

protecting BOOL .

sort Elt .

op _<_ : Elt Elt -> Bool .

vars X Y Z : Elt .

ceq X < Z = true if X < Y /\ Y < Z [nonexec label transitive] .

ceq X = Y if X < Y /\ Y < X [nonexec label antisymmetric] .

endfth

By adding irreflexivity to TAOSET we get a theory specifying a strict partial
order:

fth SPOSET is

including TAOSET .

var X : Elt .

eq X < X = false [nonexec label irreflexive] .

endfth

Notice that in this case antisymmetry is implied by irreflexivity and tran-
sitivity. Of course, there are different ways of presenting a theory, and in

of the protecting or extending initiality requirements of the imported module
and its submodules must be preserved. Those requirements would be lost if the
whole structure were to be flattened.
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particular one can always write the corresponding flat theory with only the
axioms for irreflexivity and transitivity. In the presentation above, the initial
semantics of BOOL when it is imported in protecting mode in TAOSET is pre-
served when the latter is included in SPOSET. The same will hold in further
importations in this hierarchy of order theories.

On the other hand, by adding reflexivity to TAOSET we get a theory spec-
ifying a non-strict partial order. Notice the renaming in the importation, so
that the name of the order _<=_ reflects its reflexivity.

fth NSPOSET is

including TAOSET * (op _<_ to _<=_) .

var X : Elt .

eq X <= X = true [nonexec label reflexive] .

endfth

Having both _<_ and _<=_ available together is useful in some applications.
There are standard ways of associating a strict partial order with a non-strict
partial order and the other way around:

• from a < b, one can define a ≤ b as equivalent to a < b or a = b; and
• from a ≤ b, one can define a < b as equivalent to a ≤ b and a 6= b.

These equivalences can be expressed as Maude theories as follows, where we
use the same name for both theories because they are equivalent, that is, we
have two different presentations of the same theory and in what follows we
will not care about which version of POSET is used.

fth POSET is

including SPOSET .

op _<=_ : Elt Elt -> Bool .

vars X Y : Elt .

eq X <= X = true [nonexec] .

ceq X <= Y = true if X < Y [nonexec] .

ceq X = Y if X <= Y /\ X < Y = false [nonexec] .

endfth

fth POSET is

including NSPOSET .

op _<_ : Elt Elt -> Bool .

vars X Y : Elt .

eq X < X = false [nonexec] .

ceq X <= Y = true if X < Y [nonexec] .

ceq X = Y if X <= Y /\ X < Y = false [nonexec] .

endfth

Notice that the axioms are almost the same in both presentations of POSET,
but, while the first presentation defines the reflexive order _<=_ in terms of
the irreflexive one _<_, the second presentation defines the irreflexive order
_<_ in terms of the reflexive one _<=_.
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To each of the previous theories we can add an axiom requiring the order
to be total (or linear), that is, two different elements have to be related one
way or the other. In this way, we have the following theories for a strict total
order, a non-strict total order, and a total order with both operations.

fth STOSET is

including SPOSET .

vars X Y : Elt .

ceq X = Y if X < Y = false /\ Y < X = false [nonexec label total] .

endfth

fth NSTOSET is

including NSPOSET .

vars X Y : Elt .

ceq X <= Y = true if Y <= X = false [nonexec label total] .

endfth

fth TOSET is

including POSET .

vars X Y : Elt .

ceq X <= Y = true if Y <= X = false [nonexec label total] .

endfth

As already mentioned above, the requirement ensuring the initial seman-
tics of BOOL when it is protected in TAOSET is then preserved by the remaining
theories when TAOSET is included in them via a chain of including importa-
tions. In fact, we are dealing with structures in which part of them, not only
the top theory, has a loose semantics, while other parts contain modules with
an initial semantics.

This hierarchy of order theories is displayed in Figure 8.2, where we repre-
sent by boxes the modules (with initiality constraints), by ovals the theories
(with loose semantics), by triple arrows the protecting importations, and by
single arrows the including importations.

Finally, as an example of a system theory, let us consider the theory CHOICE

of bags of elements with a choice operator defined on the bags by a rewrite
rule that nondeterministically picks up one of the elements in the bag. We
can specify this theory as follows, where we have a sort Bag declared as a
supersort of the sort Elt.

th CHOICE is

sorts Bag Elt .

subsort Elt < Bag .

op empty : -> Bag .

op __ : Bag Bag -> Bag [assoc comm id: empty] .

op choice : Bag -> Elt .

var E : Elt .

var B : Bag .
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TOSET

NSTOSETSTOSET POSET

NSPOSETSPOSET

TAOSET

BOOL

Fig. 8.2. Hierarchy of order theories

rl [choice] : choice(E B) => E .

endth

8.3.2 Views

We use views to specify how a particular target module or theory is claimed
to satisfy a source theory. In general, there may be several ways in which
such requirements might be satisfied, if at all, by the target module or the-
ory; that is, there can be many different views, each specifying a particular
interpretation of the source theory in the target. Each view declaration has an
associated set of proof obligations, namely, for each axiom in the source the-
ory it should be the case that the axiom’s translation by the view holds true
in the target. Since the target can be a module interpreted initially, verifying
such proof obligations may in general require inductive proof techniques of the
style supported for Maude’s logic in [73], and for which tools in the Maude
formal environment can be used (see Section 23.1). Such proof obligations are
not discharged or checked by the system.

In the definition of a view we have to indicate its name (which has to
be a single identifier, as defined in Section 3.1), the source theory, the target
module or theory, and the mapping of each sort and operator in the source
theory. The name space of views is separate from the name space of modules
and theories, which means that, e.g., a view and a module could have the
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same name. In fact, we shall see below how we recommend naming inclusion
views as the target theory. The source and target of a view can be any module
expression, with the source module expression evaluating to a theory and the
target module expression evaluating to a module or a theory.

The syntax for views is as follows:

view 〈ViewName 〉 from 〈Source 〉 to 〈Target 〉 is

〈Mappings 〉
endv

The mapping of a sort in the source theory to a sort in the target module
or theory is expressed with syntax

sort 〈identifier 〉 to 〈identifier 〉 .

For each sort S in the source theory, there must exist a sort S′ in the target
module or theory which is its mapping under the view; unmentioned sorts get
the identity mapping. Furthermore, if sorts S and T in the source theory are
in the same kind, then their mappings S′ and T ′ under the view must be in
the same kind in the target module or theory. Finally, if S is a subsort of T ,
then it must be true that S′ is a subsort of T ′.

The mapping of operators is expressed with syntax

op 〈identifier 〉 to 〈identifier 〉 .

op 〈identifier 〉 : 〈type-list 〉 -> 〈type 〉 to 〈identifier 〉 .

op 〈op-expr 〉 to term 〈term 〉 .

In the first case, where only an operator identifier is given, the map affects
all operators with the same name. Existence of appropriate operators in the
target is checked for. In the second case, when explicit arity and coarity are
given, the operator map affects not only the operators with such arity and
coarity, but also the entire family of subsort-overloaded operators (see Sec-
tion 3.6) associated with the given operator. The third case is similar to the
second one, but instead of mapping the operator to another operator, it is
mapped to a given term with variables; 〈op-expr 〉 is a term consisting of a
single operator applied to variables—declared either on-the-fly or with vari-
able declarations in the same view—and the target term is any term with
variables, those in the source 〈op-expr 〉 in the corresponding sorts resulting
from the mapping. See below for more details and examples.

Maps must preserve the arities and the types of operators, and sort maps
and operator maps must be compatible. For each operator f : S1 . . . Sn -> T
in the source theory there must exist an operator f ′ : S′1 . . . S

′
n -> T ′ in the

target module or theory, where S′i is the mapping of sort Si under such a view.
Unmentioned operators also get the identity mapping. Thus, “obvious”

parts of a mapping do not need to be explicitly given, namely, any identical
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mapping of a sort or operator such that its arity and coarity are mapped to
those of an operator with the same name in the target can be omitted.3

As a first example, the following view StringAsToset defines a view from
the theory TOSET, presented in Section 8.3.1, to the predefined functional
module STRING, described in Section 9.8.

view StringAsToset from TOSET to STRING is

sort Elt to String .

endv

Notice that the identity maps op _<_ to _<_ and op _<=_ to _<=_ have
been omitted.

The maps sending operators to derived operators, that is, terms with vari-
ables, allow us to map an operator, not only to another operator, but also
to an expression. The view RingToRat below is a view from the theory RING,
presented in Section 8.3.1, to the predefined functional module RAT, described
in Section 9.6.

view RingToRat from RING to RAT is

sort Ring to Rat .

op e to term 1 .

op z to 0 .

endv

Notice that we have followed the convention of omitting the “obvious” parts
of the map concerning the operators _+_ and _*_. Furthermore, we have used
an operator map sending the operator e to the term 1, due to the fact that in
RAT 1 is not a constant, but the term s_^1(0) (see Sections 4.4.2, 9.2, and 9.6
for details). Note that the map op e to term 1 cannot be expressed with the
other forms of operator maps, because 1 is not an operator, but just syntactic
sugar for the term s_^1(0).

As another example, consider the case in which we want to define a view
from the theory NSPOSET in which we have a sort Elt and a non-strict “less
or equal” operator _<=_ : Elt Elt -> Bool, to a module defining the in-
tegers with no such operator but instead with a strict operator “less than”
_<_ : Int Int -> Bool. Then, we can define a view with maps

sort Elt to Int .

op X:Elt <= Y:Elt to term X:Int < Y:Int or X:Int == Y:Int .

where we have also used the predefined equality operator _==_. The lefthand
side of the operator mapping, X:Elt <= Y:Elt in this case, which consists
of an operator with only variable arguments, must parse to a unique term in
the source theory. Each of the variables used in the maps must have a unique
base name (e.g., using both X:Foo and X:Bar in the same argument list is
disallowed).

3 In Full Maude (see Chapter 19), maps for all sorts in the source theory have to
be explicitly given, even when they are identity maps.
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Also, the righthand side, X:Int < Y:Int or X:Int == Y:Int in this
case, must parse to a unique term in the target module or theory. The only
variables that may occur in the target term are those appearing in the source
term; however, they may occur multiple times or not at all. If the source term
parses to a sort S or kind [S], then the target term must parse to sort T or
kind [T ] such that T and the mapping of S under the view S′ belong to the
same kind.

Views may also contain variable declarations. The syntax is identical to
that in modules and theories. However, its semantics is subtly different. In-
stead of declaring a single variable, a declaration

var X : S .

now declares two aliases with the same name; in the lefthand side of an oper-
ator mapping, X is an alias for X:S while in the righthand side of an operator
mapping, X is an alias for X:S′, with S′ the mapping of S under the view.

For example, we can define a view from the theory SPOSET with a strict
order operation _<_ to the predefined functional module INT of integers (see
Section 9.4) in such a way that the _<_ order relation of a poset is mapped to
an expression using the “less than or equal” operator _<=_ on sort Int and
the predefined inequality operator _=/=_ in BOOL (see Sections 9.4 and 9.1)
as follows:

view SPosetToInt from SPOSET to INT is

sort Elt to Int .

vars X Y : Elt .

op X < Y to term X <= Y and X =/= Y .

endv

Alternatively, we can specify this view without a variable declaration as

view SPosetToInt from SPOSET to INT is

sort Elt to Int .

op X:Elt < Y:Elt to term X:Int <= Y:Int and X:Int =/= Y:Int .

endv

Note that this view imposes several proof obligations to be checked by the user.
In particular, the translations by the view of the axioms in SPOSET should hold
in the target. Given variables X, Y, and Z of sort Int, the following axioms
should be true in INT:

eq X <= X and X =/= X = false .

ceq X <= Z and X =/= Z = true

if X <= Y and X =/= Y /\ Y <= Z and Y =/= Z .

ceq X = Y if X <= Y and X =/= Y /\ Y <= X and Y =/= X .

Of course, since the predefined INT module indeed includes both operators
_<_ and _<=_, it is not necessary to use the feature described in the previous
example. We can instead have simpler view declarations such as the following:
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view IntAsStoset from STOSET to INT is

sort Elt to Int .

endv

view IntAsToset from TOSET to INT is

sort Elt to Int .

endv

where the identity maps op _<_ to _<_ and op _<=_ to _<=_ have been
omitted.

We recommend following the convention of naming views from TRIV by the
name of the sort to which Elt is mapped, when the name of this sort is not
structured.4 Thus, a view from the theory TRIV to the module INT that sends
the sort Elt to Int should be named Int (as we shall see in Section 9.11.1,
the view Int is predefined in Maude).

view Int from TRIV to INT is

sort Elt to Int .

endv

This convention can add understandability to the specifications. As we will
see in Section 8.3.4, given a module LIST of lists parameterized by TRIV with
a sort List{X}, once it is instantiated, e.g., with the view Int above, the
sort List{X} becomes List{Int}, defining lists of integers. Using names of
views as labels in interfaces of parameterized modules (see Section 8.3.4 below)
should be avoided, since this can sometimes generate ambiguities.

We can also have views between theories, which is particularly useful to
compose instantiations of views to link the formal parameter of some pa-
rameterized module to some actual parameter via some intermediate formal
parameter of another parameterized module. We will discuss the uses of these
views and give some examples in the coming sections. An example of a view
whose target is a theory is the following:

view PosetToToset from POSET to TOSET is

sort Elt to Elt .

endv

As said above, identity maps can be omitted. Thus, the following definition is
equivalent to the previous one.

view PosetToToset from POSET to TOSET is

endv

4 Notice that a structured sort name, such as List{Nat} for example, cannot be
used as a view name, because it is not a single identifier; if desired, the user
can write the single-identifier form List‘{Nat‘} as view name. The convention
is totally general in Full Maude; see Section 19.3.2.
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In this example the PosetToToset view represents the inclusion of the POSET

theory into TOSET.
In those cases in which a view defines a theory inclusion from TRIV into

another theory, we recommend following the convention of naming the view
with the name of the target theory. An example that will be very useful later
is the inclusion of TRIV into TOSET, which is expressed as a view as follows:

view TOSET from TRIV to TOSET is

endv

Let us finish this section by commenting on some subtle issues that can
arise with operator mappings:

• Operator mappings are not applied to operators that have at least one
declaration in a module (as opposed to a theory); if a mapping applies
to such an operator, an advisory is generated. Although it does not seem
to be useful, Maude does not forbid having subsort-overloaded operators
appearing in a theory and in one of its submodules. However, the oper-
ator is considered to “belong” to the module, and therefore it cannot be
mapped by a view.

• assoc operators. Nested occurrences of associative operators may have
been flattened, or have been entered in a flattened way such as, for exam-
ple, f(a, a, b, b). In order to map this to an operator that has different
attributes (perhaps including assoc) or to a term, flattened occurrences
will be temporarily unflattened into a regular term before translation. The
precise choice of unflattening is left unspecified.

• iter operators. Mapping an iter operator (see Section 4.4.2) to a non-
iter operator causes the efficient representation of towers of symbols to
be expanded out, with a potential exponential blow up. Mapping an iter

operator to a term in which the single argument variable occurs more
than once causes a doubly exponential blow up. Maude operates under
the principle of “you asked for it, you got it” and if the expansion is too
large it will die with a virtual memory exhausted error.

• Built-in operators. The built-in operators for holding non-algebraically de-
fined data StringSymbol, FloatSymbol, and QuotedIdentifierSymbol

have a special internal representation for their terms, and can only be
mapped to operators of identical type.

• Polymorphic operators. Polymorphic operators must map to polymorphic
operators that are polymorphic on the same arguments. Only generic map-
pings of the form f to f ′ are considered when mapping polymorphic op-
erators.
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8.3.3 Parameterized modules

System modules and functional modules can be parameterized. A parameter-
ized system module has syntax

mod M{X1 :: T1 , . . . , Xn :: Tn} is ... endm

with n ≥ 1. Parameterized functional modules have completely analogous
syntax.

The {X1 :: T1 , . . . , Xn :: Tn} part is called the interface, where each
pair Xi ::Ti is a parameter, and each Xi is an identifier—the parameter
name or parameter label—and each Ti is an expression that yields a theory—
the parameter theory. Each parameter name in an interface must be unique,
although there is no uniqueness restriction on the parameter theories of a
module—we can have, e.g., two TRIV parameters. The parameter theories of
a functional module must be functional theories.

In a parameterized module M , all the sorts and statement labels coming
from theories in its interface must be qualified by their names. Thus, given
a parameter Xi ::Ti, each sort S in Ti must be qualified as Xi$S, and each
label l of a statement occurring in Ti must be qualified as Xi$l. In fact, the
parameterized module M is flattened as follows. For each parameter Xi ::Ti,
a renamed copy of the theory Ti, called Xi ::Ti is included. The renaming
maps each sort S to Xi$S, and each label l of a statement occurring in Ti
to Xi$l. The renaming percolates down through nested inclusions of theories,
but has no effect on importations of modules. Thus, if Ti includes a theory
T ′, when the renamed theory Xi ::Ti is created and included into M , and
the renamed theory Xi ::T

′ will also be created and included into Xi ::Ti.
5

However, the renaming will have no effect on modules imported by either the
Ti or T ′; for example, if BOOL is imported by one of these theories, it is not
renamed, but imported in the same way into M .

For example, a parameterized module PRELIM-SET with TRIV as interface
can be defined as follows:

fmod PRELIM-SET{X :: TRIV} is

protecting BOOL .

sorts Set NeSet .

subsorts X$Elt < NeSet < Set .

op empty : -> Set .

op _,_ : Set Set -> Set [assoc comm id: empty] .

op _,_ : NeSet NeSet -> NeSet [ditto] .

op _in_ : X$Elt Set -> Bool .

op _-_ : Set Set -> Set . *** set difference

var E : X$Elt .

5 These renamed modules are visible as names when using the show modules com-
mand (see Section 25.10) and will be shared, but they cannot be referred to
directly in module expressions.
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vars S S’ : Set .

eq E, E = E .

eq E in E, S = true .

eq E in S = false [owise] .

eq (E, S) - (E, S’) = S - (E, S’) .

eq S - S’ = S [owise] .

endfm

In Maude—unlike OBJ3 and other similar languages—sorts are not sys-
tematically qualified by their module name. This convention of not qualifying
sorts may be particularly weak when dealing with parameterized modules.
However, given that Maude supports ad-hoc overloading and that constants
can be qualified in order to be disambiguated (see Section 3.9.3), the problem
of ambiguity in a signature is reduced to collisions of sorts. For example, in a
module one may very easily need sets of integers and sets of quoted identifiers,
in which case, given the specification of the PRELIM-SET module above, we
would get two Set sorts from different importations which would be confused
into one sort. Our solution consists in qualifying parameterized sorts, not with
the module expression they belong to, but with the name of the view or views
used in the instantiation of the parameterized module. Since we assume that
all views are named, these names are the ones used in the qualification. Specif-
ically, in the body of a parameterized module M{X1 ::T1 , . . . ,Xn ::Tn},
any sort S can be written in the form S{X1 , . . . ,Xn}. When the mod-
ule is instantiated with views V1 . . . Vn, then this sort is instantiated to
S{V1 , . . . , Vn}.

Note that, although we strongly recommend it, the parameterization of
sorts is optional, and therefore, for example, the above PRELIM-SET specifica-
tion is a perfectly valid parameterized module.

Sorts declared in the parameterized module M{X1 ::T1 , . . . ,Xn ::Tn}
may in general be parameterized as S{Y1 , . . . , Ym}, with m ≥ 1, and where
each Yj is an Xi. It is recommended that all sorts declared in a parameterized
module be parameterized with m = n and Yj = Xj for 1 ≤ j ≤ n, but this is
not enforced—parameterized sorts may duplicate, omit, or reorder parameters
and unparameterized sorts are also allowed.

Thus, the previous PRELIM-SET module to define sets could instead have
been specified in a better way as follows:

fmod BASIC-SET{X :: TRIV} is

protecting BOOL .

sorts Set{X} NeSet{X} .

subsorts X$Elt < NeSet{X} < Set{X} .

op empty : -> Set{X} .

op _,_ : Set{X} Set{X} -> Set{X} [assoc comm id: empty] .

op _,_ : NeSet{X} NeSet{X} -> NeSet{X} [ditto] .

op _in_ : X$Elt Set{X} -> Bool .

op _-_ : Set{X} Set{X} -> Set{X} . *** set difference
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var E : X$Elt .

vars S S’ : Set{X} .

eq E, E = E .

eq E in E, S = true .

eq E in S = false [owise] .

eq (E, S) - (E, S’) = S - (E, S’) .

eq S - S’ = S [owise] .

endfm

When this module is instantiated with the predefined view Int, the sort
Set{X} becomes Set{Int}, and when it is instantiated with the predefined
view Qid (see Section 9.11.1) it becomes Set{Qid}. In the following sections
we will see additional examples of how this qualification convention for the
sorts of a parameterized module avoids many unintended collisions of sort
names, thus making renaming practically unnecessary.6

As another simple example of parameterized module, we consider a module
MAYBE{X :: TRIV} in which we declare a sort Maybe{X} as a supersort of the
sort Elt of the parameter theory and a constant maybe of this sort Maybe{X}.
This technique is useful to declare a partial function as a total function, as
explained in Section 4.11, and it will be applied, among other examples, in the
SEARCH-TREE module of Section 10.9 and in the PFUN module of Section 19.3.2.

fmod MAYBE{X :: TRIV} is

sort Maybe{X} .

subsort X$Elt < Maybe{X} .

op maybe : -> Maybe{X} [ctor] .

endfm

The PRELIM-SET, BASIC-SET, and MAYBE modules above have only one
parameter. In general, however, parameterized modules can have several pa-
rameters. It can furthermore happen that several parameters are declared with
the same parameter theory, that is, we can have, for example, an interface of
the form {X :: TRIV, Y :: TRIV} involving two copies of the theory TRIV.
Therefore, parameters cannot be treated as normal submodules, since we do
not want them to be shared when their labels are different. We regard the
relationship between the body of a parameterized module and the interface of
its parameters not as an inclusion, but as a module constructor which is eval-
uated generating renamed copies of the parameters, which are then included.
For the above interface, two copies of the theory TRIV are generated, with
names X :: TRIV and Y :: TRIV. As already mentioned, in such copies of pa-
rameter theories, sorts are renamed as follows: if Z is the label of a parameter
theory T , then each sort S in T is renamed to Z$S and each statement label
l is renamed to Z$l. All occurrences of these sorts and labels in the body of
the parameterized module must mention their corresponding renaming.

6 In Section 19.3.2, we shall see how this naming convention can be easily extended
to the case of Full Maude’s parameterized views.
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Let us consider as an example the following module PAIR, in which we
would like to point out the use of the qualifications for the sorts coming from
each of the parameters.

fmod PAIR{X :: TRIV, Y :: TRIV} is

sort Pair{X, Y} .

op <_;_> : X$Elt Y$Elt -> Pair{X, Y} .

op 1st : Pair{X, Y} -> X$Elt .

op 2nd : Pair{X, Y} -> Y$Elt .

var A : X$Elt .

var B : Y$Elt .

eq 1st(< A ; B >) = A .

eq 2nd(< A ; B >) = B .

endfm

As already mentioned, if a parameter theory is structured, this renaming
process for parameter theories is carried out not only at the top level, but for
the whole “theory part,” that is, renaming subtheories but not renaming sub-
modules. Consider, for example, the following parameterized module defining
a lexicographical ordering on pairs of elements of two totally strictly ordered
sets.

fmod LEX-PAIR{X :: STOSET, Y :: STOSET} is

sort Pair{X, Y} .

op <_;_> : X$Elt Y$Elt -> Pair{X, Y} .

op _<_ : Pair{X, Y} Pair{X, Y} -> Bool .

op 1st : Pair{X, Y} -> X$Elt .

op 2nd : Pair{X, Y} -> Y$Elt .

vars A A’ : X$Elt .

vars B B’ : Y$Elt .

eq 1st(< A ; B >) = A .

eq 2nd(< A ; B >) = B .

eq < A ; B > < < A’ ; B’ > = (A < A’) or (A == A’ and B < B’) .

endfm

Representing by boxes the modules (with initiality constraints), by ovals
the theories (with loose semantics), by triple arrows the protecting and
parameter importations, and by single arrows the including importations,
we can depict the structure of the LEX-PAIR functional module defining a
lexicographic order on pairs as in Figure 8.3, where we have two copies not only
of STOSET but also of the SPOSET and TAOSET subtheories (see also Figure 8.2
in page 208), but only one copy of the BOOL submodule.

The parameter theory of a module can be any module expression whose
result is a theory. The following module defines bags of elements with an
occurrences operation that returns the number of occurrences of a particular
element in a given bag.
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LEX-PAIR

X :: STOSET Y :: STOSET

X :: SPOSET Y :: SPOSET

X :: TAOSET Y :: TAOSET

BOOL

Fig. 8.3. Structure of LEX-PAIR

fmod BAG{X :: TRIV * (sort Elt to Element)} is

protecting NAT .

sorts Bag{X} NeBag{X} .

subsorts X$Element < NeBag{X} < Bag{X} .

op mt : -> Bag{X} .

op __ : Bag{X} Bag{X} -> Bag{X} [assoc comm id: mt] .

op __ : Bag{X} NeBag{X} -> NeBag{X} [ditto] .

op occurrences : X$Element Bag{X} -> Nat .

vars E E’ : X$Element .

var S : Bag{X} .

eq occurrences(E, E S) = 1 + occurrences(E, S) .

eq occurrences(E, S) = 0 [owise] .

endfm

Module instantiation will be explained in the next section, and then we
shall see some execution examples.

8.3.4 Module instantiation

Instantiation is the process by which actual parameters are bound to the
formal parameters of a parameterized module and a new module is created as
a result. This can be seen in fact as the evaluation of a module expression. The
instantiation requires a view from each formal parameter to its corresponding
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actual parameter. Each such view is then used to bind the names of sorts,
operators, etc. in the formal parameters to the corresponding sorts, operators
(or expressions), etc. in the actual target.

The instantiation of a parameterized module must be made with views
explicitly defined previously. Thus, given the views Int (from TRIV to INT)
and IntAsStoset (from STOSET to INT), both introduced in Section 8.3.2,
we can define sets of integers with the module expression BASIC-SET{Int},
and lexicographically ordered pairs of integers with LEX-PAIR{IntAsStoset,

IntAsStoset}.
As mentioned in Section 8.3.2, there are also views from theories to theo-

ries. Using such views we can, for example, instantiate the module BASIC-SET

with the view TOSET (from TRIV to TOSET) given also in Section 8.3.2. The
result is a module BASIC-SET{TOSET} which is still parameterized, but now
by the theory TOSET. We can instantiate it again with a view from TOSET to
some other theory or module, for example, IntAsToset (from TOSET to INT),
obtaining the module BASIC-SET{TOSET}{IntAsToset}, which defines sets of
integers. Note that certain new operations, which would not be meaningful in
the original BASIC-SET module, could now be defined in a totally parametric
way in an extension of BASIC-SET{TOSET}. For example, we could define in
this way a maximum function

op max : NeSet{TOSET}{X} -> X$Elt .

as done in the SET-MAX module later in this section.
Another interesting use of parameterized modules is the linking of param-

eters. Suppose that we wish to define lists of sets of elements. We may define a
module SET-LIST parameterized by the theory TRIV that imports the module
BASIC-SET and declares the sort SetList{X} with constructors nil and _;_.
Note however that BASIC-SET is also a parameterized module, which must be
instantiated to be imported. In cases like this one, we can use the label of
the parameter to link the parameter of the module with the parameter of the
submodule. Once the module is instantiated, the parameterized submodule
gets instantiated with the same view. Thus, if the module SET-LIST below
is instantiated by, say, the view Int to define lists of sets of integers, the
submodule BASIC-SET also gets instantiated with the same view, providing a
definition of sets of integers.7

fmod SET-LIST{X :: TRIV} is

protecting BASIC-SET{X} .

sort SetList{X} .

subsort Set{X} < SetList{X} .

op nil : -> SetList{X} [ctor] .

op _;_ : SetList{X} SetList{X} -> SetList{X}

7 In Section 19.3.2, we shall introduce the notion of parameterized views, a more
convenient way of defining this kind of structures. Currently, parameterized views
are only available in Full Maude.
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[ctor assoc id: nil] .

endfm

As another example, let us consider the following modules MONOMIAL and
POLYNOMIAL, defining, respectively, monomials on a set of variables and poly-
nomials on a commutative ring and a set of variables. First, the module
MONOMIAL defines monomials as terms of the form X ^ N, with X a variable8

and N a nonzero natural number indicating the power to which the variable is
raised, and with an empty syntax multiplication operation __ on monomials.

fmod MONOMIAL{X :: TRIV} is

protecting NAT .

sorts Pow{X} Mon{X} .

subsorts Pow{X} < Mon{X} .

*** multiplication

op __ : Mon{X} Mon{X} -> Mon{X} [assoc comm] .

op _^_ : X$Elt NzNat -> Pow{X} .

var X : X$Elt .

vars N M : NzNat .

eq (X ^ N) (X ^ M) = X ^ (N + M) .

endfm

Once we have the specification of monomials, we can specify polynomials
as monomials with coefficients in some commutative ring, and with addition
and multiplication operations. Thus, for specifying polynomials on a ring and
a set of variables in a module POLYNOMIAL, we need to import the above mod-
ule MONOMIAL. But notice that POLYNOMIAL is parameterized by two theories:
RING, for the coefficients, and TRIV, for the variables. Since we need to import
monomials on the same set of variables, we need to bind or link such param-
eters. This linking is done by means of the label X of the parameter theory
X :: TRIV.

fmod POLYNOMIAL{R :: RING, X :: TRIV} is

protecting MONOMIAL{X} .

sorts Poly{R, X} .

subsorts R$Ring < Poly{R, X} .

*** multiplication

op __ : Poly{R, X} Poly{R, X} -> Poly{R, X} [assoc comm] .

*** addition

op _++_ : Poly{R, X} Poly{R, X} -> Poly{R, X} [assoc comm] .

8 Note that a variable in a monomial or polynomial is a constant, not a mathemat-
ical variable in the Maude sense. That is, in this example, as later in the lambda
calculus example presented in Section 8.3.6, variables are understood as names.
Of course, in Maude we can also define a variable X:X$Elt in the parameter
sort to which variables belong as constants, or, more generally, variables such as
P:Poly{R, X}. In this context, as well as in the lambda calculus examples, such
mathematical variables can be distinguished from variables as names by referring
to them as metavariables.
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op --_ : Poly{R, X} -> Poly{R, X} .

op __ : R$Ring Mon{X} -> Poly{R, X} .

vars A B : R$Ring .

vars U V : Mon{X} .

vars P Q R : Poly{R, X} .

eq P ++ z = P .

eq P ++ (-- P) = z .

eq P e = P .

eq -- (P ++ Q) = (-- P) ++ (-- Q) .

eq -- (A U) = (- A) U .

eq P (Q ++ R) = (P Q) ++ (P R) .

eq z U = z .

eq z P = z .

eq A (B U) = (A B) U .

eq (A U) ++ (B U) = (A ++ B) U .

eq (A U) (B V) = (A B) (U V) .

eq A B = A * B .

eq A ++ B = A + B .

endfm

If the module POLYNOMIAL is instantiated with, say, views RingToRat and
Qid, the submodule MONOMIAL then gets automatically instantiated with Qid,
thanks to the binding of the parameters.

As an additional example, let us give a more concise definition of the
parameterized module LEX-PAIR{X :: STOSET, Y :: STOSET} given in Sec-
tion 8.3.3 using these ideas as follows:

view STOSET from TRIV to STOSET is

endv

fmod LEX-PAIR{X :: STOSET, Y :: STOSET} is

protecting PAIR{STOSET, STOSET}{X, Y} .

op _<_ :

Pair{STOSET, STOSET}{X, Y} Pair{STOSET, STOSET}{X, Y} -> Bool .

vars A A’ : X$Elt .

vars B B’ : Y$Elt .

eq < A ; B > < < A’ ; B’ > = (A < A’) or (A == A’ and B < B’) .

endfm

In Section 8.2.2, we presented a NAT-LIST-MAX module in which we de-
fined a max function that returns the greatest element of a list of natural
numbers. However, we can define such a function on lists or sets of any type
of elements as long as there is a total order relation available for them. Let us
consider the following module SET-MAX, parameterized by the theory TOSET

(see Section 8.3.1. Given a non-empty finite set of elements in a totally or-
dered set, the operation max returns the maximum element in the set. Note
that we have used the or-else operator for short-circuit disjunction from the
EXT-BOOL module to improve the efficiency of the calculation.
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fmod SET-MAX{T :: TOSET} is

protecting BASIC-SET{TOSET}{T} .

protecting EXT-BOOL .

op max : NeSet{TOSET}{T} -> T$Elt .

var E : T$Elt .

var S : Set{TOSET}{T} .

eq max(E, S)

= if S == empty or-else max(S) < E

then E

else max(S)

fi .

endfm

We can now calculate the maximum of a set of integers by instantiating
this module with the view IntAsToset introduced in Section 8.3.2. Notice
that in this example we need an extra set of parentheses to disambiguate
between the operator max just defined and the associative operator max on
integers.

fmod INT-SET-MAX is

protecting SET-MAX{IntAsToset} .

endfm

Maude> red max((4, 3, 5, 2, 1)) .

result NzNat: 5

Similarly, we can calculate the greatest element in sets of any type
with a total order relation; for example, sets of strings, by using the view
StringAsToset also introduced in Section 8.3.2:

fmod STRING-SET-MAX is

protecting SET-MAX{StringAsToset} .

endfm

Maude> red max("four", "three", "five", "two", "one") .

result String: "two"

Notice that, if we have several parameters, we can instantiate the param-
eterized module or theory with some views going to theories and others going
to modules. The result in such case is the expected one, that is, we get a mod-
ule or theory parameterized by the targets of those views going to theories.
For example, the module RAT-POLY below gives us a specification of the poly-
nomials with rational coefficients by just importing the module POLYNOMIAL

introduced above instantiated with the view RingToRat from the theory RING

to the functional module RAT (see Section 8.3.2).

fmod RAT-POLY{X :: TRIV} is

protecting POLYNOMIAL{RingToRat, X} .

endfm
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We can then define the polynomials with rational coefficients and with
quoted identifiers as variables by instantiating the module RAT-POLY with the
following Qid view, which is predefined in Maude (see Section 9.11.1).

view Qid from TRIV to QID is

sort Elt to Qid .

endv

fmod QID-RAT-POLY is

pr RAT-POLY{Qid} .

endfm

Let us reduce as an example the following polynomial expression:

Maude> red in QID-RAT-POLY :

(((2 / 3) ((’X ^ 2) (’Y ^ 3)))

++ ((7 / 5) ((’Y ^ 2) (’Z ^ 5))))

(((1 / 7) (’U ^ 2))

++ (1 / 2)) .

result Poly{RingToRat, Qid}:

(1/3 (’X ^ 2) ’Y ^ 3)

++ (1/5 (’U ^ 2) (’Y ^ 2) ’Z ^ 5)

++ (2/21 (’U ^ 2) (’X ^ 2) ’Y ^ 3)

++ (7/10 (’Y ^ 2) ’Z ^ 5)

Summarizing, a parameterized module M{X1 ::T1 , . . . ,Xn ::Tn} with
n free parameters is instantiated by the module expression M{A1, . . . , An},
where each Ai is an instance of one of the following three alternatives:

• The name Yj of a parameter of the correct theory from the module enclos-
ing the module expression. In this case the parameter becomes a bound
parameter in the module resulting from the instantiation. Each sort Xi$S
is mapped to Yj$S, and each Xi occurring as a parameter in a parame-
terized sort becomes Yj (and similarly for statement labels).
• The name of a view V with a theory as target with the correct source

theory. In this case, the parameter becomes a free parameter with V ’s
target theory in the module resulting from the instantiation.
• The name of a view V with a module as target with the correct source

theory. In this case, the parameter disappears. Each sort Xi$S is mapped
to S′, where S′ is the mapping of S under V . Each Xi occurring as a
parameter in a parameterized sort becomes V . Each statement label Xi$l
is mapped to l′, where l′ is the mapping of l under the view V .

Parameterized modules with free parameters cannot be imported: first all
of the free parameters must be instantiated away. Parameterized modules with
bound parameters may only be imported, since they were created for module
expressions in a context where the parameters are bound by an enclosing
parameterized module.
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Parameterized functional modules may be instantiated with views that
have system modules as their targets; then the instantiated module is pro-
moted to a system module.

Parameterized modules cannot be summed, even if all the parameters are
bound. Parameterized modules may be renamed, but the renaming must not
affect any sorts or operators coming from a parameter theory. The result
of renaming a parameterized module is a parameterized module with the
same parameters, and we can use it as any other parameterized module; for
example, we can instantiate it with a view, or bind its parameters to the
parameters of the module in which the module expression is being imported,
as in the following example, where we rename the SET-LIST parameterized
module above.

fmod MY-SET-LIST{Y :: TRIV} is

pr (SET-LIST

* (sort Set{X} to MySet{X},

op __ : SetList{X} SetList{X} -> SetList{X} to _._))

{Y} .

endfm

fmod MY-QID-SET-LIST is

protecting MY-SET-LIST{Qid} .

endfm

The SET-LIST module has only free parameters and so it can be renamed;
however its renaming imports the renaming of BASIC-SET{X} which has a
bound parameter. Note that the parameter of the sorts appearing in the re-
naming of the SET-LIST module is X, since this is the label of the parameter
in such module. We have used label Y for the parameter of MY-SET-LIST to
emphasize this fact, although they could be the same.

Allowing renaming of modules with bound parameters requires that re-
namings be capable of instantiation; that is, parameterized sort names inside
a renaming have their parameters instantiated, with an extra pair of curly
brackets being added in the case of instantiation by a view with a theory as
target.

Let us illustrate these ideas. When, due to instantiation by a view with a
theory as target, a bound parameter in a renamed module escapes and needs
to be rebound by an extra instantiation, the extra instantiation is inserted
before rather than after the renaming. Let us consider the following example,
where we use the views TOSET, from the theory TRIV to the theory TOSET,
and IntAsToset, from the theory TOSET to the predefined module INT, both
described in Section 8.3.2.

fmod RENAMING-PAR-MOD-A{X :: TRIV} is

sort Foo{X} .

op f : Foo{X} -> Foo{X} .

endfm
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fmod RENAMING-PAR-MOD-B{X :: TRIV} is

extending RENAMING-PAR-MOD-A{X} .

sort Bar{X} .

op g : Bar{X} -> Foo{X} .

endfm

fmod RENAMING-PAR-MOD-C is

pr (RENAMING-PAR-MOD-B * (sort Foo{X} to Foo’{X},

sort Bar{X} to Bar’{X},

op f : Foo{X} -> Foo{X} to f’,

op g : Bar{X} -> Foo{X} to g’)) {TOSET} {IntAsToset} .

endfm

In this case, the module RENAMING-PAR-MOD-A gets instantiated before it
is renamed:

RENAMING-PAR-MOD-A{TOSET}{IntAsToset}

* (sort Foo{TOSET}{IntAsToset} to Foo’{TOSET}{IntAsToset},

op f : [Foo{TOSET}{IntAsToset}] -> [Foo{TOSET}{IntAsToset}]

to f’)

Passing parameters from an enclosing module in nonfinal instantiations is
prohibited. This restriction avoids many subtle issues. Thus:

fmod ILLEGAL-INST{X :: RING, Y :: POSET} is

protecting POLYNOMIAL{X, POSET}{Y} .

endfm

is illegal, because X occurs in the nonfinal instantiation POLYNOMIAL{X, POSET}.
With appropriate views, this example can be correctly written as follows:

view RING from RING to RING is

endv

view POSET from TRIV to POSET is

endv

fmod LEGAL-INST{X :: RING, Y :: POSET} is

protecting POLYNOMIAL{RING, POSET}{X, Y} .

endfm

Another way of viewing this restriction is that parameters from an en-
closing module and views with theories as targets may not occur in the same
instantiation. Note that views with theories as targets may never occur in a
final instantiation (otherwise there would be free parameters in an import)
and must occur in any nonfinal instantiation (otherwise there would be no
free parameters for the next instantiation).
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8.3.5 A specification of sorted lists

In this section we present a specification of sorted lists, which are defined as
lists in which their elements are sorted, that is, we define sorted lists as a sub-
sort of lists. To be able to declare memberships defining such data structure,
the list concatenation operator is declared at the kind level, because mem-
bership axioms should only be given on associative operators defined at the
kind level (see Section 24.2.8). We also specify on lists an operation length

to compute the length of a list.

fmod LIST-KIND{X :: TRIV} is

protecting NAT .

sorts NeKList{X} KList{X} .

subsort X$Elt < NeKList{X} < KList{X} .

op nil : -> KList{X} .

op __ : KList{X} KList{X} ~> KList{X} [assoc id: nil] .

mb NL:NeKList{X} NL’:NeKList{X} : NeKList{X} .

op length : KList{X} -> Nat .

eq length(N:X$Elt L:KList{X}) = 1 + length(L:KList{X}) .

eq length(nil) = 0 .

endfm

The module SORTED-LIST-KIND below has as parameter the theory NSTOSET,
defined in Section 8.3.1; this theory requires a total non-strict order _<=_ on
a set of elements, thus providing a total ordering on the elements of lists. This
module imports in protecting mode the module for lists just defined, but
first we need to instantiate the latter, parameterlized over TRIV, using the
following view between theories,

view NSTOSET from TRIV to NSTOSET is

endv

obtaining the module LIST-KIND{NSTOSET}, parameterized over NSTOSET, so
that we are importing lists over a totally ordered set instead of lists over any
set. Then, we also add operations min and max to compute, respectively, the
smallest and greatest element of a non-empty sorted list.

fmod SORTED-LIST-KIND{X :: NSTOSET} is

protecting LIST-KIND{NSTOSET}{X} .

sorts NeSortedList{X} SortedList{X} .

subsort X$Elt < NeSortedList{X}

< NeKList{NSTOSET}{X} SortedList{X}

< KList{NSTOSET}{X} .

vars N M : X$Elt .

var SL : SortedList{X} .

var L : KList{NSTOSET}{X} .
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op nil : -> SortedList{X} .

cmb N M L : NeSortedList{X} if N <= M /\ M L : SortedList{X} .

op min : NeSortedList{X} -> X$Elt .

ceq min(N L) = N if N L : SortedList{X} .

op max : NeSortedList{X} -> X$Elt .

ceq max(L N) = N if L N : SortedList{X} .

endfm

The following reductions illustrate the behavior of the specification, using
an instantiation with natural numbers.

view Nat<= from NSTOSET to NAT is

sort Elt to Nat .

endv

fmod NAT-SORTED-LIST-KIND is

protecting SORTED-LIST-KIND{Nat<=} .

endfm

Maude> red in NAT-SORTED-LIST-KIND : length(2 3 4 5 6 7) .

result NzNat : 6

The operations min and max over a sorted list work as expected.

Maude> red min(2 3 4 5 6 7) .

result NzNat : 2

Maude> red max(2 3 4 5 6 7) .

result NzNat : 7

The same operations cannot be applied to a non-sorted list, returning a
non-reduced term in the corresponding kind.

Maude> red min(2 4 5 6 3 7) .

result [KList{NSTOSET}{Nat<=}]: min(2 4 5 6 3 7)

Maude> red max(2 4 5 6 3 7) .

result [KList{NSTOSET}{Nat<=}]: max(2 4 5 6 3 7)

We can also have sorted lists of other data elements, for instance of strings:

view String<= from NSTOSET to STRING is

sort Elt to String .

endv

To avoid the confusion between the length operator on strings and the
one on lists, we rename the module SORTED-LIST-KIND before instantiating
it.
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fmod STRING-SORTED-LIST-KIND is

pr (SORTED-LIST-KIND

* (op length : KList{NSTOSET}{X} -> Nat to klength))

{String<=} .

endfm

Maude> red in STRING-SORTED-LIST-KIND : "one" "two" "three" .

result NeKList{NSTOSET}{String<=}: "one" "two" "three"

Maude> red "one" "three" "two" .

result NeSortedList{String<=}: "one" "three" "two"

Maude> red min("one" "two" "three") .

result [KList{NSTOSET}{String<=}]: min("one" "two" "three")

Maude> red max("one" "three" "two") .

result String: "two"

8.3.6 The lambda calculus

This section shows that higher-order (in the sense of lambda calculi) compu-
tational models can also be naturally represented inside rewriting logic. We
want to represent the reduction over (untyped) λ-calculus terms as rewriting
inside rewriting logic. The simple idea is to specify the syntax as a functional
module, and then in a system module add the usual β and η reduction rules.
The problem is that β has in its righthand side a substitution operator that
is usually defined at the mathematical metalevel, outside the syntax of the
calculus. To solve this, we follow the approach of so called explicit substitu-
tion calculi, in which substitution is just another term constructor defined by
means of the usual equations.

Our presentation makes an interesting use of parameterization. The calcu-
lus is defined with respect to an arbitrary set of variables; the only requirement
is ensuring the possibility of always obtaining new variables, which are used
in renaming bound variables to avoid the capture of free variables. The oper-
ation that calculates the free variables of a term is also in the representation,
inside the calculus, instead of being implicit at the mathematical metalevel.

We begin our specification with a functional theory describing the re-
quirements on sets of variables. For that, we use the techniques based on
equational attributes described in Section 5.5 to specify that the elements of
the sort VarSet are indeed sets of elements of the sort Var. We also require
equationally defined operations _in_, to check if a variable belongs to a set,
and _\_ for set difference (this operation is necessary for defining later the free
variables operation). Finally, the last equation specifies the requirement for
the new operation that generates fresh variables, but without defining it, so
that many different instantiations are possible (notice the nonexec attribute).
The VAR theory imports in protecting mode the predefined module BOOL (see
Section 9.1), which is used in defining the set membership predicate and in
the requirement for new.
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fth VAR is

protecting BOOL .

sorts Var VarSet .

subsort Var < VarSet . *** singleton sets

op empty-set : -> VarSet . *** empty set

op _U_ : VarSet VarSet -> VarSet [assoc comm id: empty-set] .

*** set union

op _in_ : Var VarSet -> Bool . *** membership test

op _\_ : VarSet VarSet -> VarSet . *** set difference

op new : VarSet -> Var . *** new variable

vars E E’ : Var .

vars S S’ : VarSet .

eq E U E = E .

eq E in empty-set = false .

eq E in E’ U S = (E == E’) or (E in S) .

eq empty-set \ S = empty-set .

eq (E U S) \ S’ = if E in S’ then S \ S’ else E U (S \ S’) fi .

eq new(S) in S = false [nonexec] .

endfth

Now we specify the syntax of the lambda calculus on top of the assumed
variables: lambda abstraction, application (written with empty syntax, as
usual), explicit substitution of a term for a variable, and the free-variables
extracting operation. Extraction of free variables and substitution are defined
as usual by “structural” induction on terms, but the second needs to take
into account the necessary renaming of bound variables in order to avoid the
capture of free variables; here it is where we make use of the new operation
generating fresh variables.

fmod LAMBDA{X :: VAR} is

sort Lambda{X} .

subsort X$Var < Lambda{X} . *** variables

op \_._ : X$Var Lambda{X} -> Lambda{X} [ctor] .

*** lambda abstraction

op __ : Lambda{X} Lambda{X} -> Lambda{X} [ctor] .

*** application

op _[_/_] : Lambda{X} Lambda{X} X$Var -> Lambda{X} .

*** substitution

op fv : Lambda{X} -> X$VarSet . *** free variables

vars X Y : X$Var .

vars M N P : Lambda{X} .

*** Free variables

eq fv(X) = X .

eq fv(\ X . M) = fv(M) \ X .

eq fv(M N) = fv(M) U fv(N) .
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eq fv(M [N / X]) = (fv(M) \ X) U fv(N) .

*** Substitution equations

eq X [N / X] = N .

ceq Y [N / X] = Y if X =/= Y .

eq (M N)[P / X] = (M [P / X])(N [P / X]) .

eq (\ X . M)[N / X] = \ X . M .

ceq (\ Y . M)[N / X] = \ Y . (M [N / X])

if X =/= Y and (not(Y in fv(N)) or not(X in fv(M))) .

ceq (\ Y . M)[N / X]

= \ (new(fv(M N))) . ((M [new(fv(M N)) / Y])[N / X])

if X =/= Y /\ (Y in fv(N)) /\ (X in fv(M)) .

*** Alpha conversion

ceq \ X . M = \ Y . (M [Y / X]) if not(Y in fv(M)) [nonexec] .

endfm

The following system module simply adds the rewrite rules corresponding
to the β and η reduction rules.

mod BETA-ETA{X :: VAR} is

including LAMBDA{X} .

var X : X$Var .

vars M N : Lambda{X} .

rl [beta] : (\ X . M) N => M [N / X] .

crl [eta] : \ X . (M X) => M if not(X in fv(M)) .

endm

We can instantiate this parameterized module by using natural numbers
for variables, where the new variable with respect to a given finite set is
obtained as the maximum plus one. In order to be able to have the usual
number notation, we will use the predefined module NAT of natural numbers,
described in Section 9.2. Moreover, we also use the parameterized module
SET-MAX defined in Section 8.3.4 to build sets of natural numbers with a
maximum operation, but renaming the set union and difference operations
from _,_ to _U_ and from _-_ to _\_, respectively, so that we can use the
same notation as in the VAR theory above. Since SET-MAX is parameterized
with respect to the theory TOSET requiring a total order, we need the following
view:

view NatAsToset from TOSET to NAT is

sort Elt to Nat .

endv

With all the previous ingredients in place, we are now able to define a
view VarNat from the theory VAR to the renamed version of the parameterized
module SET-MAX instantiated with the above view to the natural numbers. We
make essential use of the feature that operations can be mapped to terms for
the new operation to be defined as the maximum plus one; notice that the
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term inside the operator map for new distinguishes the empty case for the
set S, because the imported map operation from the SET-MAX module is only
defined on non-empty sets. Identity mappings for the remaining operations
can be omitted.

view VarNat from VAR to (SET-MAX * (op _,_ to _U_,

op _-_ to _\_)) {NatAsToset} is

sort Var to Nat .

sort VarSet to Set{TOSET}{NatAsToset} .

var S : VarSet .

op empty-set to empty .

op new(S) to term if S == empty then 1 else s max(S) fi .

endv

This view is then used to instantiate the parameterized module BETA-ETA.

mod UNTYPED-LAMBDA-CALCULUS is

protecting BETA-ETA{VarNat} .

endm

Reduction for untyped λ-calculus is confluent (the well-known Church-
Rosser theorem), but not terminating. For example, the term

(\ 1 . (1 1))(\ 1 . (1 1))

reduces to itself, as the following trace illustrates, where we ask Maude for
a sequence of only two rewrites, tracing rules but not equations. (See Sec-
tion 25.6 for more information on tracing commands.)

Maude> set trace on .

Maude> set trace eqs off .

Maude> rew [2] (\ 1 . (1 1))(\ 1 . (1 1)) .

rewrite [2] in UNTYPED-LAMBDA-CALCULUS : (\ 1 . (1 1)) \ 1 . (1 1) .

*********** rule

rl (\ X:Nat . M:Lambda{VarNat}) N:Lambda{VarNat}

=> M:Lambda{VarNat}[N:Lambda{VarNat} / X:Nat] [label beta] .

X:Nat --> 1

M:Lambda{VarNat} --> 1 1

N:Lambda{VarNat} --> \ 1 . (1 1)

(\ 1 . (1 1)) \ 1 . (1 1)

--->

(1 1)[\ 1 . (1 1) / 1]

*********** rule

rl (\ X:Nat . M:Lambda{VarNat}) N:Lambda{VarNat}

=> M:Lambda{VarNat}[N:Lambda{VarNat} / X:Nat] [label beta] .

X:Nat --> 1

M:Lambda{VarNat} --> 1 1

N:Lambda{VarNat} --> \ 1 . (1 1)

(\ 1 . (1 1)) \ 1 . (1 1)
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--->

(1 1)[\ 1 . (1 1) / 1]

result Lambda{VarNat}: (\ 1 . (1 1)) \ 1 . (1 1)

Maude> set trace off .

The following trace corresponds to reduction to normal form, where no
limit on the number of rewrites has been imposed on the rew command.

Maude> set trace on .

Maude> set trace eqs off .

Maude> rew (\ 1 . ((1 (\ 2 . ((1 2) 2))) 1)) (\ 3 . (\ 4 . 3)) .

rewrite in UNTYPED-LAMBDA-CALCULUS :

(\ 1 . ((1 \ 2 . ((1 2) 2)) 1)) \ 3 . \ 4 . 3 .

*********** rule

rl (\ X:Nat . M:Lambda{VarNat}) N:Lambda{VarNat}

=> M:Lambda{VarNat}[N:Lambda{VarNat} / X:Nat] [label beta] .

X:Nat --> 1

M:Lambda{VarNat} --> (1 \ 2 . ((1 2) 2)) 1

N:Lambda{VarNat} --> \ 3 . \ 4 . 3

(\ 1 . ((1 \ 2 . ((1 2) 2)) 1)) \ 3 . \ 4 . 3

--->

((1 \ 2 . ((1 2) 2)) 1)[\ 3 . \ 4 . 3 / 1]

*********** rule

rl (\ X:Nat . M:Lambda{VarNat}) N:Lambda{VarNat}

=> M:Lambda{VarNat}[N:Lambda {VarNat} / X:Nat] [label beta] .

X:Nat --> 3

M:Lambda{VarNat} --> \ 4 . 3

N:Lambda{VarNat} --> \ 2 . (((\ 3 . \ 4 . 3) 2) 2)

(\ 3 . \ 4 . 3) \ 2 . (((\ 3 . \ 4 . 3) 2) 2)

--->

(\ 4 . 3)[\ 2 . (((\ 3 . \ 4 . 3) 2) 2) / 3]

*********** rule

rl (\ X:Nat . M:Lambda{VarNat}) N:Lambda{VarNat}

=> M:Lambda{VarNat}[N:Lambda{VarNat} / X:Nat] [label beta] .

X:Nat --> 4

M:Lambda{VarNat} --> \ 2 . (((\ 3 . \ 4 . 3) 2) 2)

N:Lambda{VarNat} --> \ 3 . \ 4 . 3

(\ 4 . \ 2 . (((\ 3 . \ 4 . 3) 2) 2)) \ 3 . \ 4 . 3

--->

(\ 2 . (((\ 3 . \ 4 . 3) 2) 2))[\ 3 . \ 4 . 3 / 4]

*********** trial #1

crl \ X:Nat . (M:Lambda{VarNat} X:Nat)

=> M:Lambda{VarNat}

if not X:Nat in fv(M:Lambda{VarNat}) = true [label eta] .

X:Nat --> 2

M:Lambda{VarNat} --> (\ 3 . \ 4 . 3) 2

*********** solving condition fragment
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not X:Nat in fv(M:Lambda{VarNat}) = true

*********** failure for condition fragment

not X:Nat in fv(M:Lambda{VarNat}) = true

*********** failure #1

*********** rule

rl (\ X:Nat . M:Lambda{VarNat}) N:Lambda{VarNat}

=> M:Lambda{VarNat}[N:Lambda{VarNat} / X:Nat] [label beta] .

X:Nat --> 3

M:Lambda{VarNat} --> \ 4 . 3

N:Lambda{VarNat} --> 2

(\ 3 . \ 4 . 3) 2

--->

(\ 4 . 3)[2 / 3]

*********** trial #2

crl \ X:Nat . (M:Lambda{VarNat} X:Nat)

=> M:Lambda{VarNat}

if not X:Nat in fv(M:Lambda{VarNat}) = true [label eta] .

X:Nat --> 2

M:Lambda{VarNat} --> \ 4 . 2

*********** solving condition fragment

not X:Nat in fv(M:Lambda{VarNat}) = true

*********** failure for condition fragment

not X:Nat in fv(M:Lambda{VarNat}) = true

*********** failure #2

*********** rule

rl (\ X:Nat . M:Lambda{VarNat}) N:Lambda{VarNat}

=> M:Lambda{VarNat}[N:Lambda{VarNat} / X:Nat] [label beta] .

X:Nat --> 4

M:Lambda{VarNat} --> 2

N:Lambda{VarNat} --> 2

(\ 4 . 2) 2

--->

2[2 / 4]

result Lambda{VarNat}: \ 2 . 2

Maude> set trace off .

Finally, consider the term

(\ 1 . (\ 2 . 2))((\ 1. (1 1))(\ 1.(1 1)))

where the constant function \ 1 . (\ 2 . 2) that discards its argument
is applied to the self-reducing term that we have seen above. Under eager
evaluation, the reduction of this term does not terminate, since the argument is
always reduced before applying the function. Under normal-order evaluation,
the function is applied without reducing the argument, and thus reduction
reaches in this case a normal form. Maude’s top-down default strategy for
evaluation of rules with the rew command in system modules agrees with the
latter, as the following reduction shows:
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Maude> set trace on .

Maude> set trace eqs off .

Maude> rew (\ 1 . (\ 2 . 2))((\ 1 . (1 1))(\ 1 .(1 1))) .

rewrite in UNTYPED-LAMBDA-CALCULUS :

(\ 1 . \ 2 . 2) ((\ 1 . (1 1)) \ 1 . (1 1)) .

*********** rule

rl (\ X:Nat . M:Lambda{VarNat}) N:Lambda{VarNat}

=> M:Lambda{VarNat}[N:Lambda{VarNat} / X:Nat] [label beta] .

X:Nat --> 1

M:Lambda{VarNat} --> \ 2 . 2

N:Lambda{VarNat} --> (\ 1 . (1 1)) \ 1 . (1 1)

(\ 1 . \ 2 . 2) ((\ 1 . (1 1)) \ 1 . (1 1))

--->

(\ 2 . 2)[(\ 1 . (1 1)) \ 1 . (1 1) / 1]

result Lambda{VarNat}: \ 2 . 2

Maude> set trace off .

To reduce the undesirable gap between the textbook presentations of lan-
guages with binding constructs and their formalization, a calculus of names
and explicit substitutions called CINNI has been developed in [334, 336]. It
makes use of a term representation with explicit names proposed by Berkling
in the context of the λ-calculus [22] and generalizes an existing substitution
calculus for the λ-calculus by Lescanne based on de Bruijn indices [219]. In
contrast to most explicit substitution calculi studied in the literature, CINNI
is a completely generic calculus of explicit substitutions, in the sense that it
can be instantiated not just to the lambda calculus, but, more generally, to
the syntax of nearly arbitrary languages with name binding operators. Two
applications of CINNI will be presented in Sections 23.2.1 and 23.2.4.
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Predefined Data Modules

Maude has a standard library of predefined modules that, by default, are
entered into the system at the beginning of each session, so that any of these
predefined modules can be imported by any other module defined by the
user. Also, by default, the predefined functional module BOOL is automatically
imported (in including mode) as a submodule of any user-defined module,
unless such importation is explicitly disabled. These modules can be found in
the file prelude.maude that is part of the Maude distribution.

We describe below those predefined modules that provide commonly used
data types, including Booleans, numbers, strings, and quoted identifiers. The
relationships among these modules are shown in the importation graph in
Figure 9.1, where all the importations are in protecting mode.

We also describe typical parameterized collections of data types such as
lists and sets, and associations such as maps and arrays. The chapter ends
introducing the built-in linear Diophantine equation solver, defined in the file
linear.maude that is also part of the Maude distribution.

Other predefined modules, also in the prelude.maude file, are discussed
later; more specifically, the META-LEVEL module is discussed in Chapter 14,
the LOOP-MODE module in Section 18.1, and the CONFIGURATION module in
Sections 11.1 and 11.4.

Furthermore, this chapter also describes a predefined module MACHINE-INT
for machine integers, which is obtained from the module INT of (arbitrary size)
integers, but is distributed in a separate file machine-int.maude.

As explained in Section 4.4.10, many operators in predefined modules are
declared with the special attribute, so that they are to be treated as built-in
operators associated with appropriate C++ code by “hooks” specified after
the special attribute. In what follows, to lighten the exposition, we will omit
the details about such hooks in special operators, writing special (...)

instead. The full definitions can be found in the file prelude.maude.
Most built-in data types are algebraically constructed, that is, they are

built out of constants and constructor operators; however, floating point num-
bers (floats), strings, and quoted identifiers (qids) are treated as countable sets
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CONVERSIONQID

RATSTRING FLOAT
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Fig. 9.1. Importation (protecting) graph of predefined modules

of constants and are represented by “special” operators <Floats>, <Strings>,
and <Qids>, respectively. These operators are used in specifying the hooks
mentioned above, but they cannot be used explicitly in terms.

9.1 Boolean values

There are five modules involving Boolean values, namely, TRUTH-VALUE,
TRUTH, BOOL-OPS, BOOL, and EXT-BOOL. The most basic one is TRUTH-VALUE,
which has the following definition.

fmod TRUTH-VALUE is

sort Bool .

op true : -> Bool [ctor special (...)] .
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op false : -> Bool [ctor special (...)] .

endfm

This module just declares the two Boolean values true and false as con-
stants of sort Bool. The key thing to note is the special attribute associated
with each of the operator declarations for these constants. In the case of
Boolean values this is especially important, because certain basic constructs
of the language such as conditions in a conditional equation, membership ax-
iom, or rule, and also sort predicates associated with membership assertions
evaluate to these built-in truth values.

The module TRUTH adds three important operators to TRUTH-VALUE.

fmod TRUTH is

protecting TRUTH-VALUE .

op if_then_else_fi : Bool Universal Universal -> Universal

[poly (2 3 0) special (...)] .

op _==_ : Universal Universal -> Bool

[poly (1 2) prec 51 special (...)] .

op _=/=_ : Universal Universal -> Bool

[poly (1 2) prec 51 special (...)] .

endfm

The operators are, respectively, if_then_else_fi, and the built-in oper-
ators for equality and inequality predicates.1 These operators are special in
a number of ways. Firstly, they are, by default, automatically added to ev-
ery module (see Section 3.9.3). Secondly, they are polymorphic, so that, for
each module, they can be considered to be normal operators that are ad-
hoc overloaded for each connected component in the module. This is done by
means of the polymorphic (or poly) attribute, as discussed in Section 4.4.4,
and the symbol Universal, that should not be considered a common sort,
as explained at the end of this section. For example, in the declaration
of the if_then_else_fi operator, the attribute poly (2 3 0) means that
if_then_else_fi is polymorphic in its second and third arguments as well
as in its result.

The if_then_else_fi operator first rewrites its first argument, the test.
If the result is of sort Bool, the then or else argument is selected, according to
whether the test evaluated to true or false, and rewritten. If the test result
is not of sort Bool the then and else arguments are rewritten. For example,
working in the INT module (see Section 9.4) we get the following reductions:

Maude> red in INT : if 4 - 2 == 2 then 0 else 1 fi .

result Zero: 0

Maude> red if 4 - 2 =/= 2 then 0 else 1 fi .

result NzNat: 1

1 The prec attribute in the last two operators assigns each of them an appropriate
precedence value for parsing purposes (see Section 3.9).
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The built-in Boolean predicates _==_ and _=/=_ have a straightforward
operational meaning: given an expression u == v with u and v ground terms
(i.e., terms without variables), then both u and v are simplified by the equa-
tions in the module (which are assumed to be Church-Rosser and terminating)
to their canonical forms (perhaps modulo some axioms such as assoc, etc.,
see Section 4.4.1) and these canonical forms are compared for equality. If they
are equal, the value of u == v is true; if they are different, it is false. The
predicate u =/= v is just the negation of u == v.

Similar in spirit to the built-in operators for equality predicates, there are
built-in operators for membership predicates: _:: S for each sort S. These
do not need to be explicitly declared, because they are part of the extended
signature associated with each module, as described in Section 3.9.3. The op-
erational meaning for membership operators is analogous to that of the equal-
ity operators. Namely, given a term u and a sort S in its kind, the built-in
predicate u :: S is evaluated by reducing u to its canonical form, comput-
ing its least sort (under the preregularity, Church-Rosser, and termination
assumptions), and checking that it is smaller than or equal to S.

But what about the mathematical meaning of these built-in predicates?
That is, do they really correspond to ordinary equations (and not to negations
or other Boolean combinations of such equations)? The point is that these
built-in and efficiently implemented equality and inequality predicates could
in principle have been defined in a more cumbersome and inefficient way by the
user. In fact, assuming that the equations and membership axioms in the user’s
module are Church-Rosser and terminating modulo the equational axioms in
the operator attributes (see Section 4.4.1) and that the operators satisfy the
preregularity requirement, the corresponding initial algebra is a computable
algebraic data type, for which equality, inequality, and membership in a sort
are also computable functions. Therefore, by a well-known theorem of Bergstra
and Tucker [21], such predicates can themselves be equationally defined by
Church-Rosser and terminating equations. It is of course very convenient, and
much more efficient, to unburden the user from having to give those explicit
equational definitions of the equality, inequality, and membership predicates
by providing them in a built-in way.

Note also that, by the above meta-argument, the use of inequality pred-
icates, negations of membership predicates, or any Boolean combination of
such predicates in abbreviated Boolean conditions does not involve any real
introduction of negation (or other Boolean connectives) in the underlying
membership equational logic, which remains a Horn logic. What we are re-
ally doing is adding more Boolean-valued functions to the module, but such
functions, although provided in a built-in way for convenience and efficiency,
could have been equationally defined by the user without any use of negation.
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The module BOOL-OPS imports TRUTH-VALUE and adds the usual conjunc-
tion, disjunction, exclusive or, negation, and implication operators.2 These
operators are defined entirely equationally.

fmod BOOL-OPS is

protecting TRUTH-VALUE .

op _and_ : Bool Bool -> Bool [assoc comm prec 55] .

op _or_ : Bool Bool -> Bool [assoc comm prec 59] .

op _xor_ : Bool Bool -> Bool [assoc comm prec 57] .

op not_ : Bool -> Bool [prec 53] .

op _implies_ : Bool Bool -> Bool [gather (e E) prec 61] .

vars A B C : Bool .

eq true and A = A .

eq false and A = false .

eq A and A = A .

eq false xor A = A .

eq A xor A = false .

eq A and (B xor C) = A and B xor A and C .

eq not A = A xor true .

eq A or B = A and B xor A xor B .

eq A implies B = not(A xor A and B) .

endfm

Finally, the module BOOL puts together all the operators in TRUTH and in
BOOL-OPS.

fmod BOOL is

protecting BOOL-OPS .

protecting TRUTH .

endfm

As noted above, the BOOL module is imported (in including mode) by default
as a submodule of any other module defined by the user. This is accomplished
by the command

set include BOOL on .

that appears in the standard library file prelude.maude. The set include

command can mention any module we wish to import—in this case BOOL.
However, this default importation can be disabled. For example, if the user
wished to have the polymorphic equality, inequality and if_then_else_fi

operators automatically added to modules, but wanted to exclude the usual
Boolean connectives for the built-in truth values, this could be accomplished
by writing

set include BOOL off .

set include TRUTH on .

2 See Section 3.9 for information on precedence values and gathering patterns.
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Similar commands are available for enabling and disabling implicit importa-
tion in extending and protecting modes (see Section 25.13). For example,
the BOOL module can be protected by default instead of included by writing

set include BOOL off .

set protect BOOL on .

The module EXT-BOOL declares short-circuit versions of the conjunction
and disjunction operators such as those found in LISP and other programming
languages. Like the operators declared in BOOL, these operators are defined
entirely equationally. The short-circuit behavior is the result of the strategy
attributes declared for the operators as discussed in Section 4.4.7.

fmod EXT-BOOL is

protecting BOOL .

op _and-then_ : Bool Bool -> Bool

[strat (1 0) gather (e E) prec 55] .

op _or-else_ : Bool Bool -> Bool

[strat (1 0) gather (e E) prec 59] .

var B : [Bool] .

eq true and-then B = B .

eq false and-then B = false .

eq true or-else B = true .

eq false or-else B = B .

endfm

When the module BOOL is imported, the system automatically adds to the
module an operator to test for membership, _:: S, for each sort S, as men-
tioned above (see also Section 3.9.3). Again, working in the NUMBERS module
we have the following examples:

Maude> red in NUMBERS : sd(zero, zero) :: Zero .

result Bool: true

Maude> red sd(zero, zero) :: NzNat .

result Bool: false

Maude> red sd(zero, zero) :: Nat .

result Bool: true

Maude> red (zero nil) :: Zero .

result Bool: true

The term sd(zero, zero) reduces to zero, which has least sort Zero but
also its supersort Nat. The term zero nil has also sort Zero because, using
the equational axioms for the assoc and id: nil attributes, zero nil is the
same as zero, which has sort Zero.

Note that these membership predicates are polymorphic on sorts, not on
kinds. This is because to be syntactically well-formed the argument term
must be of the right kind, namely the connected component containing the
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sort being tested. Thus a membership at the kind level is either trivially true
or a syntactic error. Also, the presence of the system truth values is required
for the predicates to be meaningful, so they are only added to modules that
import the module TRUTH-VALUE (which is included by default, as part of
BOOL, unless the user specifies otherwise).

Advisory. In fact, the symbol Universal does not denote a real sort: it
is instead a place holder for parsing purposes that is given an interpretation
by the polymorphic attribute (see Section 4.4.4). The concrete effect of the
interpretation of Universal is the instantiation in each connected component
of the operators with one or more Universal arguments.

9.2 Natural numbers

The natural numbers module NAT provides a Peano-like specification of the
natural numbers with an explicit successor function, while at the same time
providing efficient built-in operators thanks to the iter theory (see Sec-
tion 4.4.2) and an efficient binary representation of unbounded natural num-
bers arithmetic using the GNU GMP library.

The natural numbers sort hierarchy has top sort Nat and (disjoint) subsorts
Zero and NzNat. The sort Nat is generated from the constant 0 (of sort Zero)
and the successor operator s_.

fmod NAT is

protecting BOOL .

sorts Zero NzNat Nat .

subsort Zero NzNat < Nat .

*** constructors

op 0 : -> Zero [ctor] .

op s_ : Nat -> NzNat [ctor iter special (...)] .

Having 0 and successor as constructors means that you can define functions
on the natural numbers by matching into the successor notation; for example:

fmod FACTORIAL is

protecting NAT .

op _! : Nat -> NzNat .

var N : Nat .

eq 0 ! = 1 .

eq (s N) ! = (s N) * N ! .

endfm

Try entering this module into Maude and then entering the commands

Maude> red 100 ! .

Maude> red 1000 ! .
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(The results are omitted; the first has 158 digits and the second 2568 digits.)
Natural numbers can be input, and by default will be output, in normal

decimal notation; however 42 is just syntactic sugar for s_^42(0). The com-
mand set print number on/off controls whether or not decimal notation is
used by the pretty printer. Thus executing the command set print number

off will cause numbers to be printed using iteration notation.
Most of the usual arithmetic operators are provided in NAT. They are not

defined algebraically but could be given an algebraic definition by the user if
desired, for example for theorem proving purposes.

*** ARITHMETIC OPERATIONS

*** addition

op _+_ : NzNat Nat -> NzNat [assoc comm prec 33 special (...)] .

op _+_ : Nat Nat -> Nat [ditto] .

*** symmetric difference

op sd : Nat Nat -> Nat [comm special (...)] .

*** multiplication

op _*_ : NzNat NzNat -> NzNat [assoc comm prec 31 special (...)] .

op _*_ : Nat Nat -> Nat [ditto] .

*** quotient

op _quo_ : Nat NzNat -> Nat [prec 31 gather (E e) special (...)] .

*** remainder

op _rem_ : Nat NzNat -> Nat [prec 31 gather (E e) special (...)] .

*** exponential n^m = n * .... * n (m times)

op _^_ : Nat Nat -> Nat [prec 29 gather (E e) special (...)] .

op _^_ : NzNat Nat -> NzNat [ditto] .

*** exponential modulo modExp(n,m,p) = n^m mod p

op modExp : Nat Nat NzNat ~> Nat [special (...)] .

*** greatest common divisor

op gcd : NzNat NzNat -> NzNat [assoc comm special (...)] .

op gcd : Nat Nat -> Nat [ditto] .

*** least common multiple

op lcm : NzNat NzNat -> NzNat [assoc comm special (...)] .

op lcm : Nat Nat -> Nat [ditto] .

*** minimum

op min : NzNat NzNat -> NzNat [assoc comm special (...)] .

op min : Nat Nat -> Nat [ditto] .

*** maximum

op max : NzNat Nat -> NzNat [assoc comm special (...)] .

op max : Nat Nat -> Nat [ditto] .

The operators _+_ and _*_ compute the usual addition and multiplication
operations and _^_ is exponentiation.

The symmetric difference operator, sd, subtracts the smaller of its argu-
ments from the larger. Thus, for example,

Maude> red in NAT : sd(4, 9) .

result NzNat: 5
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Maude> red sd(9, 4) .

result NzNat: 5

The quotient and remainder operators, denoted _quo_ and _rem_, satisfy
the equation

((i quo j) * j) + (i rem j) = i,

for natural numbers i and j. For example,

Maude> red in NAT : 11 quo 4 .

result NzNat: 2

Maude> red 11 rem 4 .

result NzNat: 3

The operator modExp computes modular exponentiation, with the third
argument being the modulus. For example,

Maude> red in NAT : modExp(7, 1234, 2) .

result NzNat: 1

Maude> red modExp(8, 1234, 2) .

result Zero: 0

The operators gcd, lcm, min, and max compute the greatest common divi-
sor, the least common multiple, the minimum and the maximum, respectively.
Since these operators are associative and commutative, they can be used with
any number (at least two) of arguments. For example,

Maude> red in NAT : gcd(6, 15, 21) .

result NzNat: 3

Maude> red lcm(6, 15, 21) .

result NzNat: 210

Maude> red min(6, 15, 21) .

result NzNat: 6

Maude> red max(6, 15, 21) .

result NzNat: 21

Maude> red gcd(0, 0) .

result Zero: 0

Operators that act on the binary representation of natural numbers inter-
preted as bit strings are:

• bitwise exclusive or (_xor_);
• bitwise and (_&_);
• bitwise or (_|_);
• rightshift—quotient by a power of 2 (_>>_); and
• leftshift—multiplication by a power of 2 (_<<_).
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*** BITSTRING MANIPULATION

*** bitwise exclusive or

op _xor_ : Nat Nat -> Nat [assoc comm prec 55 special (...)] .

*** bitwise and

op _&_ : Nat Nat -> Nat [assoc comm prec 53 special (...)] .

*** bitwise or

op _|_ : NzNat Nat -> NzNat [assoc comm prec 57 special (...)] .

op _|_ : Nat Nat -> Nat [ditto] .

*** right shift -- quotient by power of 2

op _>>_ : Nat Nat -> Nat [prec 35 gather (E e) special (...)] .

*** left shift -- multiplication by power of 2

op _<<_ : Nat Nat -> Nat [prec 35 gather (E e) special (...)] .

Here are some examples using the bitwise operators.

Maude> red in NAT : 5 xor 7 .

result NzNat: 2

Maude> red 5 xor 2 .

result NzNat: 7

Maude> red 5 xor 5 .

result Zero: 0

Maude> red 5 & 7 .

result NzNat: 5

Maude> red 5 & 2 .

result Zero: 0

Maude> red 5 | 7 .

result NzNat: 7

Maude> red 5 | 2 .

result NzNat: 7

Maude> red 5 >> 2 .

result NzNat: 1

Maude> red 5 << 2 .

result NzNat: 20

The operators _<_, _<=_, _>_, and _>=_ denote the usual operations for
comparing numbers: less than, less than or equal, greater than, and greater
than or equal, respectively. The operator divides returns true if and only if
its second argument is a multiple of the first one.

*** TESTS

*** n less than m

op _<_ : Nat Nat -> Bool [prec 37 special (...)] .

*** n less than or equal to m

op _<=_ : Nat Nat -> Bool [prec 37 special (...)] .
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*** n greater than m

op _>_ : Nat Nat -> Bool [prec 37 special (...)] .

*** n greater than or equal to m

op _>=_ : Nat Nat -> Bool [prec 37 special (...)] .

*** n divides m

op _divides_ : NzNat Nat -> Bool [prec 51 special (...)] .

endfm

Note that, to avoid producing negative numbers, subtraction and bitwise
not are not provided. The symmetric difference can be used in place of sub-
traction.

The operational semantics for most of the built-in operators is such that
you only get built-in behavior when all the arguments are actually natural
numbers. The exception is associative and commutative built-in operators
which will compute as much as possible on natural number arguments and
leave the remaining arguments unchanged; for example,

Maude> red in NAT : gcd(gcd(12, X:Nat), 15) .

result Nat: gcd(X:Nat, 3)

If the built-in operator does not disappear using the built-in semantics,
then user equations are tried.

Advisory. It is easy to overload your machine’s memory by generating
huge natural numbers. There is a limit on exponentiation in that built-in be-
havior will not occur if the first argument is greater than 1 and the second
argument is too large. Similarly, leftshift does not work if the first argument
is greater than or equal to 1 and the second argument is too large. Currently
“too large” means greater than 1000000 but this may change. Modular expo-
nentiation has no such limits as its built-in semantics takes advantage of the
fact that the result cannot be larger than the modulus. This is likely to be
useful for cryptographic algorithms.

9.3 Random numbers and counters

The functional module RANDOM adds to NAT a pseudo-random number gener-
ator:

fmod RANDOM is

protecting NAT .

op random : Nat -> Nat [special (...)] .

endfm

The function random is the mapping from Nat into the range of natural
numbers [0, 232 − 1] computed by successive calls to the Mersenne Twister
Random Number Generator.3 For example,

3 For information on the Mersenne Twister Random Number Generator, see http:

//www-personal.engin.umich.edu/~wagnerr/MersenneTwister.html.

http://www-personal.engin.umich.edu/~wagnerr/MersenneTwister.html
http://www-personal.engin.umich.edu/~wagnerr/MersenneTwister.html
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Maude> red in RANDOM : random(17) .

result NzNat: 1171049868

Although random is purely functional, it caches the state of the random
number generator so that evaluating random(0) is always fast, as is evaluating
random(n+1) if random(n) was the previous call to the operator random. In
general, after generating random(n), both random(n) and random(n+1) are
computed efficiently because random(n) is a look up, while random(n+k) takes
k steps of the twister or O(k) time.

By default the seed 0 is used, but a different seed, giving rise to a different
function, may be specified by the command line option -random-seed=n,
where n is a natural number in the range [0, 232 − 1]. For example, if we
invoke the Maude interpreter with the option -random-seed=42 and run the
previous example again we get

Maude> red in RANDOM : random(17) .

result NzNat: 613608295

The predefined system module COUNTER adds a “counter” that can be used
to generate new names and new random numbers in Maude programs that do
not want to explicitly maintain this state.

mod COUNTER is

protecting NAT .

op counter : -> [Nat] [special (...)] .

endm

For the rewrite and frewrite commands (see Sections 6.4 and 25.2), as
well as the erewrite command (see later Section 11.4), the built-in constant
counter has special rule rewriting semantics: each time it has the opportunity
to do a rule rewrite, it rewrites to the next natural number, starting at 0. In
this way the predefined system module COUNTER provides a built-in strategy
for the application of the implicit nondeterministic rewrite rule

rl counter => N:Nat .

that rewrites the constant counter to a natural number. The built-in strategy
applies this rule so that the natural number obtained after applying the rule is
exactly the successor of the value obtained in the preceding rule application.

We can use the COUNTER module together with the predefined RANDOM mod-
ule described above to sample various probability distributions. This topic is
further discussed in Section 22.6, but we can illustrate the general idea with
the following SAMPLER module, which can be used to sample a Bernoulli distri-
bution corresponding to tossing a biased coin. This module also imports the
predefined module CONVERSION, described later in Section 9.9, which includes
conversion functions between different types of numbers.
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mod SAMPLER is

pr RANDOM .

pr COUNTER .

pr CONVERSION .

op rand : -> [Float] .

op sampleBernoulli : Float -> [Bool] .

rl rand => float(random(counter) / 4294967295) .

rl sampleBernoulli(P:Float) => rand < P:Float .

endm

The first rule rewrites the constant rand to a floating point number be-
tween 0 and 1 pseudo-randomly chosen according to the uniform distribu-
tion. This floating point number is obtained by converting the rational num-
ber random(counter) / 4294967295 into a floating point number, where
4294967295= 232 − 1 is the maximum value that the random function can
attain. We can then use the uniform sampling of a number between 0 and 1
to sample the tossing of a coin with a given bias P:Float between 0 and 1.
This is accomplished by the second rewrite rule in SAMPLER.

Sampling capabilities defined in this style for different probability distri-
butions can then be used to specify probabilistic models in Maude. This topic
is treated more extensively in Section 22.6, where the key notion of proba-
bilistic rewrite theory is explained. We can give a flavor for how such models
can be simulated in Maude by means of a simple battery-operated clock ex-
ample. We may represent the state of such a clock as a term clock(T,C),
with T a natural number denoting the time, and C a positive real denoting
the amount of battery charge. Each time the clock ticks, the time is increased
by one unit, and the battery charge slightly decreases; however, the lower the
battery charge, the greater the chance that the clock will stop, going into a
state of the form broken(T,C). We can model this system by means of the
following Maude specification:

mod CLOCK is

pr SAMPLER .

sort Clock .

op clock : Nat Float -> Clock [ctor] .

op broken : Nat Float -> Clock [ctor] .

var T : Nat .

var C : Float .

rl clock(T,C)

=> if sampleBernoulli(C / 1000.0)

then clock(s(T), C - (C / 1000.0))

else broken(T, C)

fi .

endm

This rule models the fact that each time the clock is going to tick a coin
is tossed; if the result is true, then the clock ticks normally, but if the result
is false, then the clock breaks down. If the battery charge is high enough,



248 9 Predefined Data Modules

the bias of the coin will be highly towards normal ticking, but as the battery
charge decreases, the bias gradually decreases, so that a breakdown becomes
increasingly likely.

One can use a module such as CLOCK above to perform Monte Carlo sim-
ulations of the probabilistic system we are interested in. Of course, we want
different arguments for the random number generator to be used each time
from the same initial state so that we obtain different behaviors. In Maude this
can be easily achieved within the same Maude session by typing the command

set clear rules off .

which turns off the automatic clearing of rule state information, including
counter values (see Section 25.2). This means that when we run several times
the same computation, a different counter value will be initially used each
time, therefore getting different behaviors in the expected Monte Carlo way.
For example, we get the following simulations for the behavior of a clock until
it breaks:

Maude> rewrite in CLOCK : clock(0, 1.0e+3) .

result Clock: broken(40, 9.607702107358117e+2)

Maude> rewrite in CLOCK : clock(0, 1.0e+3) .

result Clock: broken(46, 9.5501998182355942e+2)

Maude> rewrite in CLOCK : clock(0, 1.0e+3) .

result Clock: broken(16, 9.8411944181564002e+2)

Maude> rewrite in CLOCK : clock(0, 1.0e+3) .

result Clock: broken(6, 9.9401498001499397e+2)

Maude> rewrite in CLOCK : clock(0, 1.0e+3) .

result Clock: broken(28, 9.7237474437709557e+2)

Since it is reasonable for a program to use multiple counters, the safe way
to do this is to import renamed copies of COUNTER; for example

protecting COUNTER * (op counter to counter2) .

Counters are inactive with respect to search, model checking, and equa-
tional rewriting. Notice that there are potentially bad interactions with the
debugger (see Section 24.1.3) since another rewrite/frewrite/erewrite

executed in the debugger will lose the counter state of the interrupted
rewrite/frewrite/erewrite.

9.4 Integer numbers

The module INT extends NAT with a unary minus -_ on nonzero natural num-
bers to construct the negative integers. Integers can be input, and by default
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are output, in normal decimal notation; however, -42 is just an alternative
concrete syntax for - 42, which itself is just an alternative concrete syntax
for - s_^42(0).

fmod INT is

protecting NAT .

sorts NzInt Int .

subsorts NzNat < NzInt Nat < Int .

op -_ : NzNat -> NzInt [ctor special (...)] .

Unary minus is then extended to Int so that

- - I:Int = I:Int

- 0 = 0

The arithmetic operations of NAT are extended to integers. In addition,
there are operators for subtraction, _-_, and absolute value, abs.

*** ARITHMETIC OPERATIONS

*** unary minus

op -_ : NzInt -> NzInt [ditto] .

op -_ : Int -> Int [ditto] .

*** addition

op _+_ : Int Int -> Int [assoc comm prec 33 special (...)] .

*** subtraction

op _-_ : Int Int -> Int [prec 33 gather (E e) special (...)] .

*** multiplication

op _*_ : NzInt NzInt -> NzInt [assoc comm prec 31 special (...)] .

op _*_ : Int Int -> Int [ditto] .

*** quotient

op _quo_ : Int NzInt -> Int [prec 31 gather (E e) special (...)] .

*** remainder

op _rem_ : Int NzInt -> Int [prec 31 gather (E e) special (...)] .

*** exponentiation

op _^_ : Int Nat -> Int [prec 29 gather (E e) special (...)] .

op _^_ : NzInt Nat -> NzInt [ditto] .

*** absolute value

op abs : NzInt -> NzNat [special (...)] .

op abs : Int -> Nat [ditto] .

*** greatest common divisor

op gcd : NzInt NzInt -> NzNat [assoc comm special (...)] .

op gcd : Int Int -> Nat [ditto] .

*** least common multiple

op lcm : NzInt NzInt -> NzNat [assoc comm special (...)] .

op lcm : Int Int -> Nat [ditto] .

*** minimum

op min : NzInt NzInt -> NzInt [assoc comm special (...)] .

op min : Int Int -> Int [ditto] .

*** maximum
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op max : NzInt NzInt -> NzInt [assoc comm special (...)] .

op max : Int Int -> Int [ditto] .

op max : NzNat Int -> NzNat [ditto] .

op max : Nat Int -> Nat [ditto] .

The operators _quo_ and _rem_ satisfy the same equation for integer ar-
guments as for natural numbers. The sign of the quotient is the product of
the signs of the arguments.

Maude> red in INT : -11 quo 4 .

result NzInt: -2

Maude> red 11 quo -4 .

result NzInt: -2

Maude> red -11 quo -4 .

result NzNat: 2

Maude> red 11 rem -4 .

result NzNat: 3

Maude> red -11 rem 4 .

result NzInt: -3

Maude> red -11 rem -4 .

result NzInt: -3

Bitwise operations on negative integers use the 2’s complement represen-
tation and the operator ~_, computing the bitwise not operation, is added.

*** BITSTRING MANIPULATION (TWO’S COMPLEMENT)

*** bitwise not

op ~_ : Int -> Int [special (...)] .

*** bitwise exclusive or

op _xor_ : Int Int -> Int [assoc comm prec 55 special (...)] .

*** bitwise and

op _&_ : Nat Int -> Nat [assoc comm prec 53 special (...)] .

op _&_ : Int Int -> Int [ditto] .

*** bitwise or

op _|_ : NzInt Int -> NzInt [assoc comm prec 57 special (...)] .

op _|_ : Int Int -> Int [ditto] .

*** rightshift

op _>>_ : Int Nat -> Int [prec 35 gather (E e) special (...)] .

*** leftshift

op _<<_ : Int Nat -> Int [prec 35 gather (E e) special (...)] .

Tests on integers extend those on the natural numbers.

*** TESTS

*** less than

op _<_ : Int Int -> Bool [prec 37 special (...)] .

*** less than or equal
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op _<=_ : Int Int -> Bool [prec 37 special (...)] .

*** greater than

op _>_ : Int Int -> Bool [prec 37 special (...)] .

*** greater than or equal

op _>=_ : Int Int -> Bool [prec 37 special (...)] .

op _divides_ : NzInt Int -> Bool [prec 51 special (...)] .

endfm

Let us show with an example how a predefined module can be reused
to define new subsorts that refine the sort structure of the data type. In the
following example, we introduce additional subsorts and overload the successor
operator s_ (originally coming from the module NAT imported in protecting

mode into INT) in order to specify the sort of integers greater than three.

fmod INT-GT-3 is

protecting INT .

sorts One Two Three IntGt3 .

subsorts One Two Three IntGt3 < NzNat .

op s_ : Zero -> One [ctor ditto] .

op s_ : One -> Two [ctor ditto] .

op s_ : Two -> Three [ctor ditto] .

op s_ : Three -> IntGt3 [ctor ditto] .

op s_ : IntGt3 -> IntGt3 [ctor ditto] .

endfm

We can check the sort of a number by “reducing” the corresponding constant,
as follows:

Maude> red -1 .

result NzInt: -1

Maude> red 0 .

result Zero: 0

Maude> red 1 .

result One: 1

Maude> red 2 .

result Two: 2

Maude> red 3 .

result Three: 3

Maude> red 4 .

result IntGt3: 4

Maude> red 12345678901234567890 .

result IntGt3: 12345678901234567890

In theory, the sort of integers greater than three could also be specified by
means of membership axioms (see Sections 4.2 and 4.3). However, member-
ships are not guaranteed to work correctly with the number hierarchy, because
of the special internal representation for iterated towers of s_ symbols.
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9.5 Machine integers

Versions of Maude prior to 2.0 supported machine integers in place of arbitrary
size integers. Initially they were 32-bit in Maude 1.0 but were increased to 64-
bit in Maude 1.0.5.

For certain applications, such as specifying programming languages that
support machine integers as a built-in data type, it is convenient to have a
predefined specification for machine integers. Fortunately, it is straightforward
to efficiently emulate machine integers in terms of arbitrary size integers.

First we rename a copy of the regular integers, giving the sorts new names
consistent with the new semantics and renaming those operators that either
will not be defined on machine integers or else will have new semantics. Note
that the operators ~_, _&_, _|_, _<_, _<=_, _>_, and _=>_ are not modified
by the renaming.

fmod RENAMED-INT is

protecting INT * (sort Zero to MachineZero,

sort NzNat to NzMachineNat,

sort Nat to MachineNat,

sort NzInt to NzMachineInt,

sort Int to MachineInt,

op s_ : Nat -> NzNat to $succ,

op sd : Nat Nat -> Nat to $sd,

op -_ : Int -> Int to $neg,

op _+_ : Int Int -> Int to $add,

op _-_ : Int Int -> Int to $sub,

op _*_ : NzInt NzInt -> NzInt to $mult,

op _quo_ : Int NzInt -> Int to $quo,

op _rem_ : Int NzInt -> Int to $rem,

op _^_ : Int Nat -> Int to $pow,

op abs : NzInt -> NzNat to $abs,

op gcd : NzInt Int -> NzNat to $gcd,

op lcm : NzInt NzInt -> NzNat to $lcm,

op min : NzInt NzInt -> NzInt to $min,

op max : NzInt NzInt -> NzInt to $max,

op _xor_ : Int Int -> Int to $xor,

op _>>_ : Int Nat -> Int to $shr,

op _<<_ : Int Nat -> Int to $shl,

op _divides_ : NzInt Int -> Bool to $divides) .

endfm

We then give a parameter theory that specifies the number of bits in a
machine integer, which must be a power of 2, greater or equal to 2. No-
tice that this theory is based on the previous module, which is imported in
protecting mode. Therefore, $nrBits is a parameter constant ranging over
the NzMachineNat sort in the RENAMED-INT module, which is imported with
an initial algebra semantics.
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fth BIT-WIDTH is

protecting RENAMED-INT .

op $nrBits : -> NzMachineNat .

var N : NzMachineNat .

eq $divides(2, $nrBits) = true [nonexec] .

ceq $divides(2, N) = true

if $divides(N, $nrBits) /\ N > 1 [nonexec] .

endfth

Also provided are two predefined views that set the number of bits value
$nrBits respectively to 32 and 64, the two most common sizes.

view 32-BIT from BIT-WIDTH to RENAMED-INT is

op $nrBits to term 32 .

endv

view 64-BIT from BIT-WIDTH to RENAMED-INT is

op $nrBits to term 64 .

endv

The module MACHINE-INT takes a bit width parameter and defines those
operations that have a new semantics when applied to machine integers. In
many cases this means applying the operation $wrap to the results to correctly
simulate the wrap-around effect over an overflow on signed fixed bit width
integers by, in effect, extending the sign bit infinitely to the left. In the case of
_^_ the meaning of the operation changes to exclusive or (from exponentiation
on arbitrary size integers).

fmod MACHINE-INT{X :: BIT-WIDTH} is

vars I J : MachineInt .

var K : NzMachineInt .

op $mask : -> NzMachineInt [memo] .

eq $mask = $sub($nrBits, 1) .

op $sign : -> NzMachineInt [memo] .

eq $sign = $pow(2, $mask) .

op maxMachineInt : -> NzMachineInt [memo] .

eq maxMachineInt = $sub($sign, 1) .

op minMachineInt : -> NzMachineInt [memo] .

eq minMachineInt = $neg($sign) .

op $wrap : MachineInt -> MachineInt .

eq $wrap(I) = (I & maxMachineInt) | $neg(I & $sign) .
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op _+_ : MachineInt MachineInt -> MachineInt

[assoc comm prec 33] .

eq I + J = $wrap($add(I, J)) .

op -_ : MachineInt -> MachineInt .

eq - I = $wrap($neg(I)) .

op _-_ : MachineInt MachineInt -> MachineInt

[prec 33 gather (E e)] .

eq I - J = $wrap($sub(I, J)) .

op _*_ : MachineInt MachineInt -> MachineInt

[assoc comm prec 31] .

eq I * J = $wrap($mult(I, J)) .

op _/_ : MachineInt NzMachineInt -> MachineInt

[prec 31 gather (E e)] .

eq I / K = $wrap($quo(I, K)) .

op _%_ : MachineInt NzMachineInt -> MachineInt

[prec 31 gather (E e)] .

eq I % K = $rem(I, K) .

op _^_ : MachineInt MachineInt -> MachineInt

[prec 55 gather (E e)] .

eq I ^ J = $xor(I, J) .

op _>>_ : MachineInt MachineInt -> MachineInt

[prec 35 gather (E e)] .

eq I >> J = $shr(I, ($mask & J)) .

op _<<_ : MachineInt MachineInt -> MachineInt

[prec 35 gather (E e)] .

eq I << J = $wrap($shl(I, ($mask & J))) .

endfm

Notice that using out of range integer constants may cause incorrect re-
sults.

We consider now the instantiation with the predefined view 32-BIT, and
show the wrap-around effect in several examples.

fmod MACHINE-INT-TEST is

protecting MACHINE-INT{32-BIT} .

endfm

In the first examples, we can see the wrap-around from negative to positive
and vice versa:

Maude> red -2147483648 - 1 .

result NzMachineNat: 2147483647
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Maude> red 2147483647 + 1 .

result NzMachineInt: -2147483648

In the following product, the negative case does not wrap-around but the
positive case does:

Maude> red -1073741824 * 2 .

result NzMachineInt: -2147483648

Maude> red 1073741824 * 2 .

result NzMachineInt: -2147483648

Division can only cause a wrap-around in this one case:

Maude> red -2147483648 / -1 .

result NzMachineInt: -2147483648

Remainder never wraps around:

Maude> red -2147483648 % -1 .

result MachineZero: 0

Finally, we see that the sign bit “falls off the left end” in a left shift:

Maude> red -2147483648 << 1 .

result MachineZero: 0

The parameterized MACHINE-INT module is an interesting example of
Maude’s support for what in type theory are called dependent types (see, for

example, [236]). These are types like the power type X[n] or the ARRAY{X,[n]}
type depending on a data parameter n, for example a natural number. We
can view MACHINE-INT as the Maude analogue of a dependent type defini-
tion; however, note that the data parameter is not just any nonzero natural
number, but must also satisfy additional axioms, specified in the BIT-WIDTH

theory. For two other interesting examples of a Maude parameterized mod-
ule defining the analogue of a dependent type, see the POWER[n] module in

Section 19.3.1 (the exact analogue of the power type X[n]) and the NAT/{N}

module of natural numbers modulo N in Section 21.8. Similarly, the TUPLE[n]

module in Section 19.3.1 provides a form of dependent type that is not even
available in some type theories with dependent types.

9.6 Rational numbers

The module RAT extends INT with a binary division operator _/_ to construct
the rationals from integers and nonzero naturals. Rationals can be input,
and by default are output, in normal decimal notation; however -5/42 is
equivalent to -5 / 42, which is equivalent to - 5 / 42, which really denotes
- s_^5(0) / s_^42(0). The command
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set print rat off .

switches off the special printing for _/_ so that rational numbers will be
printed with spaces around the foreslash sign. Note that set print number

off also affects the printing of rational numbers, so with both number and
rational pretty-printing switches turned off -5/42 is printed using the final
notation given above.

The numerator and denominator of a rational may contain common factors
but these are removed by a single built-in rewrite whenever the rational is
reduced (thus _/_ is not a free constructor).

Notice that, in addition to the subsort NzRat of nonzero rational numbers,
there is a subsort PosRat of positive rational numbers.

fmod RAT is

protecting INT .

sorts PosRat NzRat Rat .

subsorts NzInt < NzRat Int < Rat .

subsorts NzNat < PosRat < NzRat .

op _/_ : NzInt NzNat -> NzRat

[ctor prec 31 gather (E e) special (...)] .

vars I J : NzInt .

vars N M : NzNat .

var K : Int .

var Z : Nat .

var Q : NzRat .

var R : Rat .

The basic arithmetic operations on integers are extended to rational num-
bers as usual. The operator _/_ is declared special for the case when the first
argument is of sort NzInt to enhance performance. The remaining operators
are defined in Maude by equations and may do some rewriting even when
their arguments are not properly constructed rationals. Note that the choice
of equations for defining operators on the rationals is motivated by perfor-
mance: simpler equations are possible in many cases but they turn out to
incur a big performance penalty.

*** ARITHMETIC OPERATIONS

op _/_ : NzNat NzNat -> PosRat [ctor ditto] .

op _/_ : PosRat PosRat -> PosRat [ditto] .

op _/_ : NzRat NzRat -> NzRat [ditto] .

op _/_ : Rat NzRat -> Rat [ditto] .

eq 0 / Q = 0 .

eq I / - N = - I / N .

eq (I / N) / (J / M) = (I * M) / (J * N) .

eq (I / N) / J = I / (J * N) .

eq I / (J / M) = (I * M) / J .

op -_ : NzRat -> NzRat [ditto] .
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op -_ : Rat -> Rat [ditto] .

eq - (I / N) = - I / N .

op _+_ : PosRat PosRat -> PosRat [ditto] .

op _+_ : PosRat Nat -> PosRat [ditto] .

op _+_ : Rat Rat -> Rat [ditto] .

eq I / N + J / M = (I * M + J * N) / (N * M) .

eq I / N + K = (I + K * N) / N .

op _-_ : Rat Rat -> Rat [ditto] .

eq I / N - J / M = (I * M - J * N) / (N * M) .

eq I / N - K = (I - K * N) / N .

eq K - J / M = (K * M - J ) / M .

op _*_ : PosRat PosRat -> PosRat [ditto] .

op _*_ : NzRat NzRat -> NzRat [ditto] .

op _*_ : Rat Rat -> Rat [ditto] .

eq Q * 0 = 0 .

eq (I / N) * (J / M) = (I * J) / (N * M).

eq (I / N) * K = (I * K) / N .

op _^_ : PosRat Nat -> PosRat [ditto] .

op _^_ : NzRat Nat -> NzRat [ditto] .

op _^_ : Rat Nat -> Rat [ditto] .

eq (I / N) ^ Z = (I ^ Z) / (N ^ Z) .

op abs : NzRat -> PosRat [ditto] .

op abs : Rat -> Rat [ditto] .

eq abs(I / N) = abs(I) / N .

The integer operations quo, rem, gcd, lcm, min, and max are also extended
to the rational numbers. The operator quo gives the number of whole times a
rational can be divided by another, rem gives the rational remainder. The op-
erator gcd returns the largest rational that divides into each of its arguments
a whole number of times, while lcm returns the smallest rational that is an
integer multiple of its arguments.

op _quo_ : PosRat PosRat -> Nat [ditto] .

op _quo_ : Rat NzRat -> Int [ditto] .

eq (I / N) quo Q = I quo (N * Q) .

eq K quo (J / M) = (K * M) quo J .

op _rem_ : Rat NzRat -> Rat [ditto] .

eq (I / N) rem (J / M) = ((I * M) rem (J * N)) / (N * M) .

eq K rem (J / M) = ((K * M) rem J) / M .

eq (I / N) rem J = (I rem (J * N)) / N .

op gcd : NzRat Rat -> PosRat [ditto] .

op gcd : Rat Rat -> Rat [ditto] .
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eq gcd(I / N, R) = gcd(I, N * R) / N .

op lcm : NzRat NzRat -> PosRat [ditto] .

op lcm : Rat Rat -> Rat [ditto] .

eq lcm(I / N, R) = lcm(I, N * R) / N .

op min : PosRat PosRat -> PosRat [ditto] .

op min : NzRat NzRat -> NzRat [ditto] .

op min : Rat Rat -> Rat [ditto] .

eq min(I / N, R) = min(I, N * R) / N .

op max : PosRat Rat -> PosRat [ditto] .

op max : NzRat NzRat -> NzRat [ditto] .

op max : Rat Rat -> Rat [ditto] .

eq max(I / N, R) = max(I, N * R) / N .

Some examples involving these operations are the following:

Maude> red in RAT : 1/2 quo 1/3 .

result NzNat: 1

Maude> red 1/2 rem 1/3 .

result PosRat: 1/6

Maude> red gcd(1/2, 1/3) .

result PosRat: 1/6

Maude> red lcm(1/2, 1/3) .

result NzNat: 1

Tests on integers are extended to rational numbers. The test divides

returns true if a rational number divides another rational number a whole
number of times.

*** tests

op _<_ : Rat Rat -> Bool [ditto] .

eq (I / N) < (J / M) = (I * M) < (J * N) .

eq (I / N) < K = I < (K * N) .

eq K < (J / M) = (K * M) < J .

op _<=_ : Rat Rat -> Bool [ditto] .

eq (I / N) <= (J / M) = (I * M) <= (J * N) .

eq (I / N) <= K = I <= (K * N) .

eq K <= (J / M) = (K * M) <= J .

op _>_ : Rat Rat -> Bool [ditto] .

eq (I / N) > (J / M) = (I * M) > (J * N) .

eq (I / N) > K = I > (K * N) .

eq K > (J / M) = (K * M) > J .
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op _>=_ : Rat Rat -> Bool [ditto] .

eq (I / N) >= (J / M) = (I * M) >= (J * N) .

eq (I / N) >= K = I >= (K * N) .

eq K >= (J / M) = (K * M) >= J .

op _divides_ : NzRat Rat -> Bool [ditto] .

eq (I / N) divides K = I divides N * K .

eq Q divides (J / M) = Q * M divides J .

There are four new operators: trunc, frac, floor, and ceiling. The
operator floor converts a rational number to an integer by rounding down
to the nearest integer, ceiling rounds up, and trunc rounds towards 0. The
operator frac gives the fraction part of its argument and this always has the
same sign as its argument.

*** ROUNDING

op trunc : PosRat -> Nat .

op trunc : Rat -> Int .

eq trunc(K) = K .

eq trunc(I / N) = I quo N .

op frac : Rat -> Rat .

eq frac(K) = 0 .

eq frac(I / N) = (I rem N) / N .

op floor : PosRat -> Nat .

op floor : Rat -> Int .

eq floor(K) = K .

eq floor(N / M) = N quo M .

eq floor(- N / M) = - ceiling(N / M) .

op ceiling : PosRat -> NzNat .

op ceiling : Rat -> Int .

eq ceiling(K) = K .

eq ceiling(N / M) = ((N + M) - 1) quo M .

eq ceiling(- N / M) = - floor(N / M) .

endfm

Here are some examples of reductions involving the rounding operators:

Maude> red in RAT : trunc(9/7) .

result NzNat: 1

Maude> red floor(9/7) .

result NzNat: 1

Maude> red ceiling(9/7) .

result NzNat: 2

Maude> red frac(9/7) .

result PosRat: 2/7
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Maude> red trunc(-9/7) .

result NzInt: -1

Maude> red floor(-9/7) .

result NzInt: -2

Maude> red ceiling(-9/7) .

result NzInt: -1

Maude> red frac(-9/7) .

result NzRat: -2/7

9.7 Floating-point numbers

The module FLOAT declares sorts and operators for manipulating floating-
point numbers, which are implemented using double precision floating-point
arithmetic of the underlying hardware platform, conforming to the IEEE-754
standard when supported by the hardware platform. Floating-point numbers
are treated as a large set of constants, that is, a floating-point number has
no algebraic structure (this is the reason for the special operator declaration
<Floats>, as explained in the introduction of this chapter).

The sort FiniteFloat consists of the floating-point numbers that have
a 64-bit representation. Finite floating-point numbers can be input, and by
default are output, in scientific notation; they can also be input using decimal
point notation. Thus 100.0 is equivalent to 1.0e+2. The constants Infinity
and -Infinity represent floating-point numbers that are outside the 64-bit
representable range. Thus Infinity and -Infinity are of sort Float but not
of sort FiniteFloat. Note that there are some surprises when using decimal
notation to input floating-point numbers. For example, in the FLOAT module
we have the reduction

Maude> red in FLOAT : 1.1 .

result FiniteFloat: 1.1000000000000001

This is because floating-point numbers are represented internally using a bi-
nary expansion rather than a decimal expansion and 1.1 does not have a finite
length binary expansion.

fmod FLOAT is

protecting BOOL .

sorts FiniteFloat Float .

subsort FiniteFloat < Float .

op <Floats> : -> FiniteFloat [special (...)] .

op <Floats> : -> Float [ditto] .
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The arithmetic operators -_, _-_, _+_, _*_, _/_, _^_, and abs have the
usual interpretation, as in the module INT. Note that 1.2 / 0.0 is just an
expression of kind [Float] and reducing it does not cause your system to
crash!

*** ARITHMETIC OPERATIONS

op -_ : Float -> Float [prec 15 special (...)] .

op -_ : FiniteFloat -> FiniteFloat [ditto] .

op _+_ : Float Float -> Float

[prec 33 gather (E e) special (...)] .

op _-_ : Float Float -> Float

[prec 33 gather (E e) special (...)] .

op _*_ : Float Float -> Float

[prec 31 gather (E e) special (...)] .

op _/_ : Float Float ~> Float

[prec 31 gather (E e) special (...)] .

op _^_ : Float Float ~> Float

[prec 29 gather (E e) special (...)] .

op abs : Float -> Float [special (...)] .

op abs : FiniteFloat -> FiniteFloat [ditto] .

The operator _rem_ computes the remainder of a division, floor rounds
down to the nearest integer, ceiling rounds up, and sqrt computes the
square root.

op _rem_ : Float Float ~> Float

[prec 31 gather (E e) special (...)] .

op floor : Float -> Float [special (...)] .

op ceiling : Float -> Float [special (...)] .

op sqrt : Float ~> Float [special (...)] .

For terms f1 and f2 of sort FiniteFloat, f1 rem f2 computes the re-
mainder of dividing f1 by f2. Specifically, f1 rem f2 is equal to f1 - n * f2,
where n is f1 / f2 rounded towards zero to the nearest integer. For example,

Maude> red in FLOAT : 5.0 rem 2.0 .

result FiniteFloat: 1.0

Maude> red -5.0 rem 2.0 .

result FiniteFloat: -1.0

Maude> red 5.0 rem 2.5 .

result FiniteFloat: 0.0

Some examples of reductions using the floor and ceiling operations are
the following:

Maude> red in FLOAT : ceiling(2.5) .

result FiniteFloat: 3.0
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Maude> red floor(2.5) .

result FiniteFloat: 2.0

Maude> red ceiling(- 2.5) .

result FiniteFloat: -2.0

Maude> red floor(- 2.5) .

result FiniteFloat: -3.0

Maude> red ceiling(Infinity) .

result Float: Infinity

Maude> red floor(-Infinity) .

result Float: -Infinity

The operators max and min for computing the maximum and the minimum,
respectively, work as expected,

op min : Float Float -> Float [special (...)] .

op max : Float Float -> Float [special (...)] .

as we can see in the following examples:

Maude> red in FLOAT : min(2.0, -2.0) .

result FiniteFloat: -2.0

Maude> red max(2.0, -2.0) .

result FiniteFloat: 2.0

Maude> red max(2.0, Infinity) .

result Float: Infinity

Maude> red in FLOAT : min(Infinity, -Infinity) .

result Float: -Infinity

The operators exp and log compute the natural exponent and logarithm,
respectively.

*** TRANSCENDENTAL OPERATIONS

op exp : Float -> Float [special (...)] .

op log : Float ~> Float [special (...)] .

Here are some examples:

Maude> red in FLOAT : exp(1.0) .

result FiniteFloat: 2.7182818284590451

Maude> red log(exp(1.0)) .

result FiniteFloat: 1.0

Maude> red log(0.0) .

result Float: -Infinity
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The constant pi approximates the value of π. The number of digits is
chosen to be the largest that can accurately be represented as a floating-point
number. The trigonometric operators sin, cos, and tan expect arguments in
radians. The operators asin, acos, atan are the corresponding inverses.

*** TRIGONOMETRIC OPERATIONS

op sin : Float -> Float [special (...)] .

op cos : Float -> Float [special (...)] .

op tan : Float -> Float [special (...)] .

op asin : Float ~> Float [special (...)] .

op acos : Float ~> Float [special (...)] .

op atan : Float -> Float [special (...)] .

op atan : Float Float -> Float [special (...)] .

op pi : -> FiniteFloat .

eq pi = 3.1415926535897931 .

Here are some examples of reductions of trigonometric expressions.

Maude> red in FLOAT : sin(0.0) .

result FiniteFloat: 0.0

Maude> red sin(pi) .

result FiniteFloat: 1.2246467991473532e-16

Maude> red cos(pi) .

result FiniteFloat: -1.0

Maude> red acos(cos(pi)) .

result FiniteFloat: 3.1415926535897931

Maude> red tan(pi) .

result FiniteFloat: -1.2246467991473532e-16

Maude> red sin(pi / 2.0) .

result FiniteFloat: 1.0

Maude> red cos(pi / 2.0) .

result FiniteFloat: 6.123233995736766e-17

Maude> red tan(pi / 2.0) .

result FiniteFloat: 1.633123935319537e+16

Maude> red atan(tan(pi / 2.0)) .

result FiniteFloat: 1.5707963267948966

Maude> red pi / 2.0 .

result FiniteFloat: 1.5707963267948966

Using the binary form of the arc tangent operator, atan(f1, f2), is sim-
ilar to computing atan(f1 / f2), except that the signs of both arguments
are used to control the quadrant of the result.
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Maude> red in FLOAT : atan(tan(pi / 3.0)) .

result FiniteFloat: 1.0471975511965976

Maude> red atan(tan(pi / 3.0), 1.0) .

result FiniteFloat: 1.0471975511965976

Maude> red atan(tan(pi / 3.0), -1.0) .

result FiniteFloat: 2.0943951023931957

Maude> red atan(- tan(pi / 3.0), -1.0) .

result FiniteFloat: -2.0943951023931957

Maude> red atan(- tan(pi / 3.0), 1.0) .

result FiniteFloat: -1.0471975511965976

Numerical comparisons have the usual meaning on floating-point numbers.

*** TESTS

op _<_ : Float Float -> Bool [prec 51 special (...)] .

op _<=_ : Float Float -> Bool [prec 51 special (...)] .

op _>_ : Float Float -> Bool [prec 51 special (...)] .

op _>=_ : Float Float -> Bool [prec 51 special (...)] .

*** approximate equality

op _=[_]_ : Float FiniteFloat Float -> Bool [prec 51] .

vars X Y : Float .

var Z : FiniteFloat .

eq X =[Z] Y = abs(X - Y) < Z .

endfm

The operator _=[_]_ tests for approximate equality, where the second
argument bounds the allowed error. For example:

Maude> red in FLOAT : 1.111111111 =[1.0e-9] 1.111111112 .

result Bool: true

Maude> red 1.111111111 =[1.0e-10] 1.111111112 .

result Bool: false

9.8 Strings

The module STRING declares sorts and operators for manipulating strings of
characters. Strings of length one form a subsort Char of String. Operations
on strings are based on the SGI rope package [24], which has been optimized
for functional programming, where copying with modification is supported
efficiently, whereas arbitrary in-place updates are not.

Strings are input and output using the usual convention of enclosing the
string characters in a pair of matching quotes "...". When a string is parsed,
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it is interpreted using a subset of ANSI C backslash escape conventions [206,
Section A2.5.2].

To define the results of searching a string for an occurrence of another
substring the sort FindResult is introduced. This sort consists of the natural
numbers, returned as the index in the string where a found substring begins
(string indexing begins with 0), and a special constant notFound, returned if
no occurrence is found.

fmod STRING is

protecting NAT .

sorts String Char FindResult .

subsort Char < String .

subsort Nat < FindResult .

op <Strings> : -> Char [special (...)] .

op <Strings> : -> String [ditto] .

op notFound : -> FindResult [ctor] .

The operators ascii and char convert between characters and ASCII
codes.

*** conversion between ascii code and character

op ascii : Char -> Nat [special (...)] .

op char : Nat ~> Char [special (...)] .

For a natural number n less than 256 and a character c, we have ascii(char(n)) =
n and char(ascii(c)) = c. For a natural number n greater than 255, char(n)
is an error term of kind [String]. For example,

Maude> red in STRING : ascii("#") .

result NzNat: 35

Maude> red char(35) .

result Char: "#"

Maude> red ascii("a") .

result NzNat: 97

Maude> red char(97) .

result Char: "a"

Maude> red char(255) .

result Char: "\377"

On strings, _+_ denotes the concatenation operation, with identity the
empty string, "". String length is computed by the length operator.

*** string concatenation

op _+_ : String String -> String

[prec 33 gather (E e) special (...)] .

*** string length

op length : String -> Nat [special (...)] .
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Here are some examples.

Maude> red in STRING : "abc" + "def" .

result String: "abcdef"

Maude> red "ab" + "cd" + "ef" .

result String: "abcdef"

Maude> red "abc" + "" .

result String: "abc"

Maude> red length("abcdef") .

result NzNat: 6

Maude> red length("") .

result Zero: 0

The operators substr, find, and rfind deal with finding and extracting
substrings. Remember that string indexing begins with 0.

*** substring

*** second argument is starting position, third is length

op substr : String Nat Nat -> String [special (...)] .

*** starting position of substring (second argument)

*** least one >= third argument (find)

*** greatest one <= third argument (rfind)

op find : String String Nat -> FindResult [special (...)] .

op rfind : String String Nat -> FindResult [special (...)] .

The expression substr(S:String, Start:Nat, Len:Nat) returns the sub-
string of S:String of length Len:Nat beginning at position Start:Nat. If the
value of the term Start:Nat + Len:Nat is greater than length(S:String)

then the returned substring is the tail of S:String starting from position
Start:Nat. This will be empty if the starting position is past the end of the
string.

Maude> red in STRING : substr("abc", 0, 2) .

result String: "ab"

Maude> red substr("abc", 1, 2) .

result String: "bc"

Maude> red substr("abc", 1, 3) .

result String: "bc"

Maude> red substr("abc", 3, 2) .

result String: ""

find searches for the first match from the beginning of the string, while
rfind searches from the end of the string backwards.



9.8 Strings 267

find(S:String, Pat:String, Start:Nat) returns the least index of an
occurrence of Pat:String in S:String that is greater than or equal to
Start:Nat. If no such index exists the constant notFound is returned.

rfind(S:String, Pat:String, Start:Nat) returns the greatest index
of an occurrence of Pat:String in S:String that is less than or equal to
Start:Nat. If no such index exists the constant notFound is returned.

Maude> red in STRING : find("abc", "b", 0) .

result NzNat: 1

Maude> red find("abc", "b", 1) .

result NzNat: 1

Maude> red find("abc", "b", 2) .

result FindResult: notFound

Maude> red find("abc", "d", 2) .

result FindResult: notFound

Maude> red rfind("abc", "b", 2) .

result NzNat: 1

Maude> red rfind("abc", "b", 1) .

result NzNat: 1

Maude> red rfind("abc", "b", 0) .

result FindResult: notFound

Maude> red rfind("abc", "d", 2) .

result FindResult: notFound

Some properties relating substr, find, and rfind are the following, where
S and P are variables of sort String, and I, J , and K are variables of sort
Nat such that length(S) = K and length(P) = J .

I ≤ find(S, P, I) ≤ K-J

0 ≤ rfind(S, P, I) ≤ min(I,K-J)

find(S, S, 0) = 0 = rfind(S, S, I)

find(S, "", I) = if I ≤ K then Ielse notFound

rfind(S, "", I) = if I ≥ K then Kelse I

find(S, P, I) 6= notFound

=⇒ substr(S, 0, find(S, P, I)) + P + substr(S, find(S, P, I)+J,K) = S

rfind(S, P, I) 6= notFound

=⇒ substr(S, 0, rfind(S, P, I)) + P + substr(S, rfind(S, P, I)+J,K) = S

The operators _<_, _<=_, _>_, and _>=_ denote string comparison oper-
ations using the lexicographic order, where characters are compared going
through their ASCII codes.
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*** lexicographic string comparison

op _<_ : String String -> Bool [prec 37 special (...)] .

op _<=_ : String String -> Bool [prec 37 special (...)] .

op _>_ : String String -> Bool [prec 37 special (...)] .

op _>=_ : String String -> Bool [prec 37 special (...)] .

endfm

Here are some examples.

Maude> red in STRING : "abc" < "abd" .

result Bool: true

Maude> red "abc" < "abb" .

result Bool: false

Maude> red "abc" < "abcd" .

result Bool: true

9.9 String and number conversions

The module CONVERSION consolidates all the conversion functions between the
three major built-in data types: Nat/Int/Rat, Float, and String.

fmod CONVERSION is

protecting RAT .

protecting FLOAT .

protecting STRING .

*** number type conversions

op float : Rat -> Float [special (...)] .

op rat : FiniteFloat -> Rat [special (...)] .

The operation float computes the floating-point number nearest to a
given rational number. If the value of the rational number falls outside the
range representable by IEEE-754 double precision finite floating-point num-
bers, Infinity or -Infinity is returned as appropriate. This is in accord with
the convention that Infinity and -Infinity are used to handle out-of-range
situations in the floating-point world.

The operator rat converts finite floating-point numbers to rational num-
bers exactly (since every IEEE-754 finite floating-point number is a rational
number). Of course, if the result happens to be a natural number or an inte-
ger, that is what you get. rat(Infinity) and rat(-Infinity) do not reduce,
since they have no reasonable representation in the world of rational numbers.
It is intended that the equation

float(rat(F:FiniteFloat)) = F:FiniteFloat
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is satisfied, although this holds only if the third party library (GNU GMP)
being used in the implementation meets its related requirements.

*** string <-> number conversions

op string : Rat NzNat ~> String [special (...)] .

op rat : String NzNat ~> Rat [special (...)] .

op string : Float -> String [special (...)] .

op float : String ~> Float [special (...)] .

The operator string converts a rational number to a string using a given
base, which must lie in the range 2..36. Rational numbers that are really
natural numbers or integers are converted to string representations of natural
numbers or integers, so we have for example

Maude> red in CONVERSION : string(-1, 10) .

result String: "-1"

The operator rat converts a string to a rational number using a given
base, which must lie in the range 2..36. Of course, if the result happens to be
a natural number or an integer, that is what you get. Currently the function
is very strict about which strings are converted: the string must be something
that the Maude parser would recognize as a natural number, an integer or a
rational number. This could be changed to a more generous interpretation in
the future.

The operators string and float for conversion between floating-point
numbers and strings satisfy the equation

float(string(F:Float)) = F:Float

A new sort, DecFloat, is introduced to provide the means for arbitrary
formatting of floating-point numbers.

sort DecFloat .

op <_,_,_> : Int String Int -> DecFloat [ctor] .

op decFloat : Float Nat -> DecFloat [special (...)] .

endfm

A DecFloat consists of a sign (1, 0 or −1), a string of digits, and a dec-
imal point position (0 is just in front of first digit, −n is n positions to the
left, and +n is n positions to the right). Thus, < -1, "123", 11 > rep-
resents -1.23e10. decFloat(F, N) converts F to a DecFloat, rounding to
N significant digits using the IEEE-754 “round to nearest” rule with trail-
ing zeros if needed. If N is 0, an exact DecFloat representation of F is
produced—this may require hundreds of digits. For any natural number N,
decFloat(Infinity, N) reduces to < 1, "Infinity", 0 >. Here are some
examples.

Maude> red in CONVERSION : decFloat(Infinity, 9) .

result DecFloat: < 1,"Infinity",0 >
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Maude> red decFloat(-Infinity, 9) .

result DecFloat: < -1,"Infinity",0 >

Maude> red decFloat(123.0, 5) .

result DecFloat: < 1,"12300",3 >

Maude> red decFloat(-123.0, 5) .

result DecFloat: < -1,"12300",3 >

Maude> red decFloat(.123, 5) .

result DecFloat: < 1,"12300",0 >

Maude> red decFloat(.00123, 5) .

result DecFloat: < 1,"12300",-2 >

Maude> red decFloat(0.0, 5) .

result DecFloat: < 0,"00000",0 >

Advisory. Counterintuitive results are possible when converting from the
approximate world of floating-point numbers to the exact world of rational
numbers. For example,

Maude> red in CONVERSION : rat(1.1) .

result PosRat: 2476979795053773/2251799813685248

This is because, as mentioned above, 1.1 cannot be represented exactly as a
floating-point number, and the nearest floating-point number is

1.100000000000000088817841970012523233890533447265625

which is the above rational number. (Note that Maude prints the number 1.1
as 1.1000000000000001, using 17 significant digits. The above representation
is obtained by reducing decFloat(1.1, 52).)

9.10 Quoted identifiers

The module QID is a wrapper for strings in order to provide a Maude represen-
tation for tokens of Maude syntax. Quoted identifiers are input and output by
preceding a Maude identifier4 with a (fore) quote sign. Thus ’abc is a quoted
identifier whose underlying string is "abc". A quoted identifier is also an iden-
tifier, as are strings. Thus ’’abc and ’"abc" are both quoted identifiers.

fmod QID is

protecting STRING .

sort Qid .

op <Qids> : -> Qid [special (...)] .

*** qid <-> string conversions

4 The syntax of Maude identifiers is discussed in Section 3.1.
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op string : Qid -> String [special (...)] .

op qid : String ~> Qid [special (...)] .

endfm

The operators qid and string do the wrapping and unwrapping. string
is injective, since every quoted identifier has a unique corresponding string.

Maude> red in QID : string(’abc) .

result String: "abc"

Maude> red qid("abc") .

result Qid: ’abc

Maude> red string(’a\b) .

result String: "a\\b"

Maude> red qid("a\\b") .

result Qid: ’a\b

Maude> red string(’a‘[b) .

result String: "a‘[b"

Maude> red qid("a[b") .

result Qid: ’a‘[b

The operator qid is only injective on strings without white space, control
characters, and certain other characters which are converted to backquote.
Thus the equation qid(string(q)) = q holds for quoted identifiers q.

Maude> red in QID : qid("a b c") .

result Qid: ’a‘b‘c

Maude> red string(’a‘b‘c) .

result String: "a‘b‘c"

Maude> red qid("a\t b") .

result Qid: ’a‘b

Maude> red string(’a‘b) .

result String: "a‘b"

An example of a string that cannot be converted to a quoted identifier is
"a\"b" since identifiers are not allowed to have unpaired double quotes. Thus
qid("a\"b") has kind [Qid] but does not reduce to something of sort Qid.

9.11 Basic theories and standard views

The library of predefined modules provided by Maude in the prelude.maude

file includes some well-known parameterized data types that will be described
in the following sections. Here we will introduce the standard theories that
provide the requirements for those parameterized modules.
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9.11.1 TRIV

As already described in Section 8.3.1, the simplest non-empty theory is called
TRIV and consists of a single sort. A model of this theory is just a set of any
cardinality (finite or infinite). The intuition behind this simple theory is that
the minimum requirement possible on a parameterized data type construction
is having a data type as a set of basic elements to build more data on top of it.
For example, in the LIST{X :: TRIV} parameterized data type construction
we need a data type (set) of basic elements satisfying TRIV to then build lists
of such elements.

fth TRIV is

sort Elt .

endfth

The file prelude.maude includes many views out of TRIV that select the
main sort of the built-in modules that we have already described in the pre-
vious sections. All these views are named in the same way: by the sort they
select; for example, the standard view from TRIV into RAT selecting the sort
Rat is also named Rat.

view Bool from TRIV to BOOL is

sort Elt to Bool .

endv

view Nat from TRIV to NAT is

sort Elt to Nat .

endv

view Int from TRIV to INT is

sort Elt to Int .

endv

view Rat from TRIV to RAT is

sort Elt to Rat .

endv

view Float from TRIV to FLOAT is

sort Elt to Float .

endv

view String from TRIV to STRING is

sort Elt to String .

endv

view Qid from TRIV to QID is

sort Elt to Qid .

endv
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9.11.2 DEFAULT

The theory DEFAULT is slightly more complex than TRIV, in that in addition
to a sort it also requires that there be a distinguished “default” element in
such a sort. Notice that DEFAULT imports TRIV in the following presentation:

fth DEFAULT is

including TRIV .

op 0 : -> Elt .

endfth

The inclusion of the theory TRIV into the theory DEFAULT is made explicit
by the following view, whose name coincides with the name of the target
theory.

view DEFAULT from TRIV to DEFAULT is

endv

The Maude library also includes several views that map from DEFAULT

to the various built-in data type modules by selecting the main sort and a
distinguished element in it. In the case of the number sorts, this element is
the zero, while for strings it is the empty string and for quoted identifiers is
just the quote. Notice that operator mappings that are the identity (i.e., of
the form op 0 to 0) do not appear explicitly in the following views but are
left implicit. These views are named by appending “0” to the name of the
selected sort; for example, the standard view from DEFAULT into RAT selecting
the sort Rat and 0 as the default element is named Rat0.

view Nat0 from DEFAULT to NAT is

sort Elt to Nat .

endv

view Int0 from DEFAULT to INT is

sort Elt to Int .

endv

view Rat0 from DEFAULT to RAT is

sort Elt to Rat .

endv

view Float0 from DEFAULT to FLOAT is

sort Elt to Float .

op 0 to term 0.0 .

endv

view String0 from DEFAULT to STRING is

sort Elt to String .

op 0 to term "" .

endv
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view Qid0 from DEFAULT to QID is

sort Elt to Qid .

op 0 to term ’ .

endv

9.11.3 STRICT-WEAK-ORDER and STRICT-TOTAL-ORDER

Although in Section 8.3.5 we have defined the notion of sorted list as based on
a totally ordered set of elements, we will see in Section 9.12.6 how to relax this
requirement in two different ways. The first possibility is to consider a partially
strictly ordered set where the incomparability relation is transitive, that is,
if a is not comparable with b and b is not comparable with c with respect
to the given order, then a and c are not comparable either. The predefined
STRICT-WEAK-ORDER theory below specifies a strict partial order with this
additional requirement, a concept known as strict weak order. The second
possibility is to consider a total preorder, as specified in Section 9.11.4 below.

Given a strict partial order <, that is, an irreflexive and transitive binary
relation, we define the incomparability relation by x ∼ y iff both x 6< y
and y 6< x. Incomparability is symmetric by definition, and its reflexivity
follows from the irreflexivity of <. Therefore, when we impose the additional
requirement of transitivity of incomparability, we get that the relation ∼ for
a strict weak order is an equivalence relation.

Notice that STRICT-WEAK-ORDER, as presented below, imports the theory
TRIV and also (in protecting mode) the module BOOL. The three equations
express the required properties (antisymmetry is derivable from irreflexivity
and transitivity) of the binary relation _<_ on the sort Elt, as is made explicit
in the corresponding labels.

fth STRICT-WEAK-ORDER is

protecting BOOL .

including TRIV .

op _<_ : Elt Elt -> Bool .

vars X Y Z : Elt .

ceq X < Z = true if X < Y /\ Y < Z [nonexec label transitive] .

eq X < X = false [nonexec label irreflexive] .

ceq X < Y or Y < X or Y < Z or Z < Y = true if X < Z or Z < X

[nonexec label incomparability-transitive] .

endfth

The following theory extends the previous one with a totality requirement,
thus specifying a strict total order. Under these conditions, the incomparabil-
ity relation reduces to the identity (because any pair of different elements is
comparable) and the transitivity of incomparability holds trivially.

fth STRICT-TOTAL-ORDER is

including STRICT-WEAK-ORDER .

vars X Y : Elt .
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ceq X = Y if X < Y = false /\ Y < X = false [nonexec label total] .

endfth

The theory STRICT-TOTAL-ORDER is a different presentation of the equivalent
theory STOSET for strict total orders introduced in Section 8.3.1.

There is a view from TRIV to STRICT-WEAK-ORDER that forgets the order
and its properties. The name of this view coincides with the name of the target
theory.

view STRICT-WEAK-ORDER from TRIV to STRICT-WEAK-ORDER is

endv

The inclusion from the theory STRICT-WEAK-ORDER into STRICT-TOTAL-ORDER
gives rise to another view, which is also called as the target theory.

view STRICT-TOTAL-ORDER from STRICT-WEAK-ORDER

to STRICT-TOTAL-ORDER is

endv

The Maude library includes views that map from STRICT-TOTAL-ORDER to
built-in data type modules by selecting the main sort and the standard strict
total order between the corresponding elements, namely, the “less than” com-
parison between numbers and the lexicographic ordering between strings, as
described in previous sections. Again, operator mappings that are the iden-
tity (in this case of the form op < to < ) do not appear explicitly in the
following views, but are left implicit. These views are named by appending
“<” to the name of the selected sort; for example, the standard view from
STRICT-TOTAL-ORDER into RAT is named Rat<.

view Nat< from STRICT-TOTAL-ORDER to NAT is

sort Elt to Nat .

endv

view Int< from STRICT-TOTAL-ORDER to INT is

sort Elt to Int .

endv

view Rat< from STRICT-TOTAL-ORDER to RAT is

sort Elt to Rat .

endv

view Float< from STRICT-TOTAL-ORDER to FLOAT is

sort Elt to Float .

endv

view String< from STRICT-TOTAL-ORDER to STRING is

sort Elt to String .

endv
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As explained in Section 8.3.2, these views impose some proof obligations
corresponding in this case to the properties that are stated about the binary
relation selected in the target module; recall that such proof obligations are
not discharged or checked by the system.

9.11.4 TOTAL-PREORDER and TOTAL-ORDER

The predefined TOTAL-PREORDER theory specifies, as its name clearly suggests,
a total preorder, that is, a total binary relation which is reflexive and transitive.
This theory will also be used as requirement for sorting lists in Section 9.12.6.

The notions of strict weak order (see Section 9.11.3) and of total preorder
are complementary: the set-theoretic complement of a strict weak order is a
total preorder and vice versa. They can also be related in a way that preserves
the direction of the order. Given a strict weak order <, a total preorder ≤ is
obtained by defining x ≤ y whenever y 6< x. In the other direction, a strict
weak order < is obtained from a total preorder ≤ by defining x < y whenever
y 6≤ x.

Given a total preorder ≤, we say that two elements x and y are equivalent
iff both x ≤ y and y ≤ x. Then, it follows from the properties of a total
preorder that this is an equivalence relation and, furthermore, two elements
are equivalent in a total preorder if and only if they are incomparable in
the associated strict weak order (we have seen in Section 9.11.3 that the
incomparability relation ∼ associated to a strict weak order is an equivalence
relation).

Both kinds of relations capture the notion that the set of elements is split
into partitions which are linearly ordered. This situation naturally arises when
records are compared on a given field.

The theory TOTAL-PREORDER, as presented below, imports the theory TRIV

and the module BOOL. The three equations express the required properties of
the binary relation _<=_ on the sort Elt.

fth TOTAL-PREORDER is

protecting BOOL .

including TRIV .

op _<=_ : Elt Elt -> Bool .

vars X Y Z : Elt .

eq X <= X = true [nonexec label reflexive] .

ceq X <= Z = true if X <= Y /\ Y <= Z [nonexec label transitive] .

eq X <= Y or Y <= X = true [nonexec label total] .

endfth

A total order is a total preorder that, in addition, is antisymmetric.

fth TOTAL-ORDER is

inc TOTAL-PREORDER .

vars X Y : Elt .

ceq X = Y if X <= Y /\ Y <= X [nonexec label antisymmetric] .

endfth
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The theory TOTAL-ORDER is a different presentation of the equivalent theory
NSTOSET for non-strict total orders introduced in Section 8.3.1. Its name fol-
lows the usual convention according to which, when nothing is said, a total
order is assumed to be reflexive, that is, non-strict.

There is a view from TRIV to TOTAL-PREORDER, named like the target
theory, that forgets the binary relation and its preorder properties.

view TOTAL-PREORDER from TRIV to TOTAL-PREORDER is

endv

The following view represents the inclusion from the TOTAL-PREORDER the-
ory into TOTAL-ORDER.

view TOTAL-ORDER from TOTAL-PREORDER to TOTAL-ORDER is

endv

In the Maude prelude we can also find views that map from TOTAL-ORDER

to several built-in data type modules by selecting the main sort and the stan-
dard non-strict total order between the corresponding elements, namely, the
“less than or equal to” comparison between numbers and the lexicographic
ordering between strings. These views are named by appending “<=” to the
name of the selected sort; for example, the standard view from TOTAL-ORDER

into FLOAT is named Float<.

view Nat<= from TOTAL-ORDER to NAT is

sort Elt to Nat .

endv

view Int<= from TOTAL-ORDER to INT is

sort Elt to Int .

endv

view Rat<= from TOTAL-ORDER to RAT is

sort Elt to Rat .

endv

view Float<= from TOTAL-ORDER to FLOAT is

sort Elt to Float .

endv

view String<= from TOTAL-ORDER to STRING is

sort Elt to String .

endv

Again, these views impose some proof obligations that are not discharged
or checked by the system.
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X :: TRIV

SET*SET

LIST-AND-SET

LIST

NAT

LIST*

Fig. 9.2. Importation graph of parameterized list and set modules

9.12 Containers: lists and sets

The current Maude prelude includes two parameterized containers: lists and
sets.

Figure 9.2 shows the relationships between the modules described in this
section specifying parameterized lists and sets, including the theory TRIV.
The module specifying sortable lists is not included in this figure, because
its relationship is more complex than protecting importations (see later
Figure 9.4).

Other container data types may be added to the Maude prelude in the
future.

9.12.1 Lists

Lists over a given sort of elements (provided by the theory TRIV) are con-
structed from the constant nil (representing the empty list) and singleton lists
(identified with the corresponding elements by means of a subsort declaration)
by means of an associative concatenation operator written as juxtaposition
with empty syntax __.

Since there are several operations that are not well defined over the empty
list, it is most useful to define the subsort of non-empty lists.

fmod LIST{X :: TRIV} is

protecting NAT .

sorts NeList{X} List{X} .

subsort X$Elt < NeList{X} < List{X} .

op nil : -> List{X} [ctor] .

op __ : List{X} List{X} -> List{X} [ctor assoc id: nil prec 25] .

op __ : NeList{X} List{X} -> NeList{X} [ctor ditto] .



9.12 Containers: lists and sets 279

op __ : List{X} NeList{X} -> NeList{X} [ctor ditto] .

vars E E’ : X$Elt .

vars A L : List{X} .

var C : Nat .

The operator append is just another name for concatenation.

op append : List{X} List{X} -> List{X} .

op append : NeList{X} List{X} -> NeList{X} .

op append : List{X} NeList{X} -> NeList{X} .

eq append(A, L) = A L .

The operations head and tail take and discard, respectively, the first
(leftmost) element in a list. Analogously, the operations last and front take
and discard, respectively, the last (rightmost) element in a list. It is enough
to have one equation for each operation, because the case of a singleton list
is obtained by matching modulo identity with L = nil.

op head : NeList{X} -> X$Elt .

eq head(E L) = E .

op tail : NeList{X} -> List{X} .

eq tail(E L) = L .

op last : NeList{X} -> X$Elt .

eq last(L E) = E .

op front : NeList{X} -> List{X} .

eq front(L E) = L .

The predicate occurs checks whether an element appears in any position
in a list. The two equations in its specification correspond to the typical
case analysis (or structural induction) over lists: either the list is empty or we
consider the corresponding first element (in the latter case, again one equation
is enough).

op occurs : X$Elt List{X} -> Bool .

eq occurs(E, nil) = false .

eq occurs(E, E’ L) = if E == E’ then true else occurs(E, L) fi .

Reversing a list is accomplished by means of the operator reverse, which
is efficiently defined through an auxiliary operator $reverse that has an ad-
ditional accumulator argument. With this argument, $reverse has a simple
tail-recursive and thus efficient definition.

op reverse : List{X} -> List{X} .

op reverse : NeList{X} -> NeList{X} .

eq reverse(L) = $reverse(L, nil) .
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op $reverse : List{X} List{X} -> List{X} .

eq $reverse(nil, A) = A .

eq $reverse(E L, A) = $reverse(L, E A).

The tail-recursive method of definition just described will be used in the
specification of several other operators, including the size operator on lists,
which computes the number of elements in a list.

op size : List{X} -> Nat .

op size : NeList{X} -> NzNat .

eq size(L) = $size(L, 0) .

op $size : List{X} Nat -> Nat .

eq $size(nil, C) = C .

eq $size(E L, C) = $size(L, C + 1) .

endfm

In the Maude prelude there are two list instantiations on built-in data types
(natural numbers and quoted identifiers) that are needed by the metalevel (see
Chapter 14).

fmod NAT-LIST is

protecting LIST{Nat} * (sort NeList{Nat} to NeNatList,

sort List{Nat} to NatList) .

endfm

fmod QID-LIST is

protecting LIST{Qid} * (sort NeList{Qid} to NeQidList,

sort List{Qid} to QidList) .

endfm

Other instantiations can be built as desired. For example, we can use the
view Int from TRIV to INT, and then test some reductions, as follows.

fmod INT-LIST is

pr LIST{Int} .

endfm

Maude> red in INT-LIST : reverse(0 -1 2 -3 4 -5 6) .

result NeList{Int}: 6 -5 4 -3 2 -1 0

Maude> red occurs(7, 0 -1 2 -3 4 -5 6) .

result Bool: false

Maude> red size(0 -1 2 -3 4 -5 6) .

result NzNat: 7
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9.12.2 Sets

Sets over a given sort of elements (provided by the theory TRIV) are built
from the constant empty and singleton sets (identified with the corresponding
elements by means of a subsort declaration) with an associative, commutative,
and idempotent union operator written _,_. The first two such properties are
declared as attributes, while the third is written as an equation; remember that
the attributes idem and assoc cannot be used together (see Section 4.4.1).

fmod SET{X :: TRIV} is

protecting EXT-BOOL .

protecting NAT .

sorts NeSet{X} Set{X} .

subsort X$Elt < NeSet{X} < Set{X} .

op empty : -> Set{X} [ctor] .

op _,_ : Set{X} Set{X} -> Set{X}

[ctor assoc comm id: empty prec 121 format (d r os d)] .

op _,_ : NeSet{X} Set{X} -> NeSet{X} [ctor ditto] .

var E : X$Elt .

var N : NeSet{X} .

vars A S S’ : Set{X} .

var C : Nat .

eq N, N = N .

The prefix operator union is just another name for the infix operator
_,_. Moreover, given the identification between elements and singleton sets,
inserting an element is a particular case of union.

op union : Set{X} Set{X} -> Set{X} .

op union : NeSet{X} Set{X} -> NeSet{X} .

op union : Set{X} NeSet{X} -> NeSet{X} .

eq union(S, S’) = S, S’ .

op insert : X$Elt Set{X} -> Set{X} .

eq insert(E, S) = E, S .

The definitions of the operators delete, that deletes an element from a
set, and in , that checks if an element belongs to a set, are based on the
statement attribute otherwise (see Section 4.5.4):

1. When a given term representing a set matches the pattern (E, S) (modulo
the equational attributes of the _,_ operator), then we can delete the
element E (and continue deleting, since there may be repetitions of such
element in the given term), and state that indeed the element E belongs
to the set.
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2. Otherwise, the element E does not belong to the set and deleting such
element does not change the set.

op delete : X$Elt Set{X} -> Set{X} .

eq delete(E, (E, S)) = delete(E, S) .

eq delete(E, S) = S [owise] .

op _in_ : X$Elt Set{X} -> Bool .

eq E in (E, S) = true .

eq E in S = false [owise] .

The operator | | computes the cardinality of a set. Its definition goes
through an auxiliary operator $card with an additional accumulator argu-
ment that allows a tail-recursive definition. In turn, the specification of $card
is based on an equation that eliminates repetitions of elements in a term
representing a set; when such equation can no longer be applied (hence the
owise attribute in the last equation), the accumulator argument does its job
by counting once each different element.

op |_| : Set{X} -> Nat .

op |_| : NeSet{X} -> NzNat .

eq | S | = $card(S, 0) .

op $card : Set{X} Nat -> Nat .

eq $card(empty, C) = C .

eq $card((N, N, S), C) = $card((N, S), C) .

eq $card((E, S), C) = $card(S, C + 1) [owise] .

Both the intersection and set difference operations also use an auxiliary
operation with a tail-recursive efficient definition. The accumulator argument
keeps the elements that belong to both sets (for intersection) or to the first
but not to the second set (for difference).

op intersection : Set{X} Set{X} -> Set{X} .

eq intersection(S, empty) = empty .

eq intersection(S, N) = $intersect(S, N, empty) .

op $intersect : Set{X} Set{X} Set{X} -> Set{X} .

eq $intersect(empty, S’, A) = A .

eq $intersect((E, S), S’, A)

= $intersect(S, S’, if E in S’ then E, A else A fi) .

op _\_ : Set{X} Set{X} -> Set{X} [gather (E e)].

eq S \ empty = S .

eq S \ N = $diff(S, N, empty) .

op $diff : Set{X} Set{X} Set{X} -> Set{X} .

eq $diff(empty, S’, A) = A .

eq $diff((E, S), S’, A)

= $diff(S, S’, if E in S’ then A else E, A fi) .
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The following two predicates check whether their first argument is a
(proper) subset of the second argument. The second one is defined in terms of
the first, and in both cases the corresponding equations use the short-circuit
version _and-then_ of conjunction imported from the EXT-BOOL module.

op _subset_ : Set{X} Set{X} -> Bool .

eq empty subset S’ = true .

eq (E, S) subset S’ = E in S’ and-then S subset S’ .

op _psubset_ : Set{X} Set{X} -> Bool .

eq S psubset S’ = S =/= S’ and-then S subset S’ .

endfm

The Maude metalevel (see Chapter 14) imports a set instantiation on the
built-in data type of quoted identifiers.

fmod QID-SET is

protecting SET{Qid} * (sort NeSet{Qid} to NeQidSet,

sort Set{Qid} to QidSet) .

endfm

Another example of instantiation with some reductions is the following:

fmod INT-SET is

pr SET{Int} .

endfm

Maude> red in INT-SET : | -1, 2, -3, 3, 2, -1 | .

result NzNat: 4

Maude> red 4 in (-1, 2, -3, 3, 2, -1) .

result Bool: false

Maude> red insert(4, (-1, 2, -3, 3, 2, -1)) .

result NeSet{Int}: 2, 3, 4, -1, -3

Maude> red union((2, 3, 4, -1, -3, 0), (-1, 2, -3, 3, 2, -1)) .

result NeSet{Int}: 0, 2, 3, 4, -1, -3

Maude> red intersection((2, 3, 4, -1, -3, 0),

(-1, 2, -3, 3, 2, -1)) .

result NeSet{Int}: 2, 3, -1, -3

Maude> red (2, 3, 4, -1, -3, 0) \ (-1, 2, -3, 3, 2, -1) .

result NeSet{Int}: 0, 4
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9.12.3 Relating lists and sets

The following module provides some operations that involve both lists and
sets; since these data types are not affected by the new operations, both of
them are imported in protecting mode.

fmod LIST-AND-SET{X :: TRIV} is

protecting LIST{X} .

protecting SET{X} .

var E : X$Elt .

vars A L : List{X} .

var S : Set{X} .

The operation makeSet transforms a list into a set, that is, it forgets
the order between the elements and its repetitions; operationally, it simply
transforms the constructors nil and __ for lists into the constructors empty

and _,_ for sets, but this is done in an efficient way by using an auxiliary
operator $makeSet with an accumulator argument that allows a tail-recursive
definition by structural induction on the list given as first argument. Notice
that both operators are overloaded to take into account in their declarations
whether their arguments are empty or not.

op makeSet : List{X} -> Set{X} .

op makeSet : NeList{X} -> NeSet{X} .

eq makeSet(L) = $makeSet(L, empty) .

op $makeSet : List{X} Set{X} -> Set{X} .

op $makeSet : NeList{X} Set{X} -> NeSet{X} .

op $makeSet : List{X} NeSet{X} -> NeSet{X} .

eq $makeSet(nil, S) = S .

eq $makeSet(E L, S) = $makeSet(L, (E, S)) .

An inverse operation makeList that transforms a set into a list will be
seen in Section 9.12.7, because it only makes sense when we have additional
information to put the elements of the set in a sequence in a univocally defined
way.

The operations filter and filterOut take a list and a set as arguments,
and return the list formed by those elements of the given list that belong
and that do not belong, respectively, to the given set, in their original order.
Again, both are defined by means of auxiliary operations with accumulator
arguments allowing efficient tail-recursive definitions.

op filter : List{X} Set{X} -> List{X} .

eq filter(L, S) = $filter(L, S, nil) .

op $filter : List{X} Set{X} List{X} -> List{X} .

eq $filter(nil, S, A) = A .

eq $filter(E L, S, A)



9.12 Containers: lists and sets 285

= $filter(L, S, if E in S then A E else A fi) .

op filterOut : List{X} Set{X} -> List{X} .

eq filterOut(L, S) = $filterOut(L, S, nil) .

op $filterOut : List{X} Set{X} List{X} -> List{X} .

eq $filterOut(nil, S, A) = A .

eq $filterOut(E L, S, A)

= $filterOut(L, S, if E in S then A else A E fi) .

endfm

For illustration, we consider the following instantiation and some reduc-
tions.

fmod INT-LIST-AND-SET is

pr LIST-AND-SET{Int} .

endfm

Maude> red in INT-LIST-AND-SET : filter((1 -1 1 -2 1), (1, 2)) .

result NeList{Int}: 1 1 1

Maude> red filterOut((1 -1 1 -2 1), (1, 2)) .

result NeList{Int}: -1 -2

Maude> red makeSet(1 -1 1 -2 1) .

result NeSet{Int}: 1, -1, -2

9.12.4 Generalized lists

With the construction of parameterized lists described in Section 9.12.1, we
can build, for example, lists of integers, or lists of lists of integers, but we
cannot build lists in which we have as elements both integers and lists of
integers; for this, we specify in this section the container of generalized or
nestable lists.

In this specification we cannot use empty syntax in the same way as in
Section 9.12.1, because we need something to distinguish the different levels
of nesting of lists inside lists. We use an auxiliary sort Item, whose data are
both elements and generalized lists (see the subsort declarations below); then
we put such items next to each other by juxtaposition, getting in this way
data of another auxiliary sort PreList, and finally we put square brackets
around a “prelist” in order to get a generalized list. Notice that there is no
empty “prelist” and that the empty generalized list [] is declared separately.

fmod LIST*{X :: TRIV} is

protecting NAT .

sorts Item{X} PreList{X} NeList{X} List{X} .

subsort X$Elt List{X} < Item{X} < PreList{X} .

subsort NeList{X} < List{X} .
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op __ : PreList{X} PreList{X} -> PreList{X} [ctor assoc prec 25] .

op [_] : PreList{X} -> NeList{X} [ctor] .

op [] : -> List{X} [ctor] .

vars A P : PreList{X} .

var L : List{X} .

vars E E’ : Item{X} .

var C : Nat .

The operator append now corresponds to concatenation of generalized lists
and its definition is based on the juxtaposition of the “prelists” inside the
generalized lists.

op append : List{X} List{X} -> List{X} .

op append : NeList{X} List{X} -> NeList{X} .

op append : List{X} NeList{X} -> NeList{X} .

eq append([], L) = L .

eq append(L, []) = L .

eq append([P], [A]) = [P A] .

The operations head, tail, last, and front work as for “standard” lists,
but now they refer to the first or last item in the list, which can be either
an element or a nested list. Now we need two equations for each operation,
because the singleton case needs to be treated separately (recall that there is
no empty “prelist”).

op head : NeList{X} -> Item{X} .

eq head([E]) = E .

eq head([E P]) = E .

op tail : NeList{X} -> List{X} .

eq tail([E]) = [] .

eq tail([E P]) = [P] .

op last : NeList{X} -> Item{X} .

eq last([E]) = E .

eq last([P E]) = E .

op front : NeList{X} -> List{X} .

eq front([E]) = [] .

eq front([P E]) = [P] .

The predicate occurs checks whether an item (either an element or a list)
appears in any position of the first level of a generalized list (but it does not
go into deeper levels, that is, into nested lists). The three equations in its
specification correspond to the typical case analysis (or structural induction)
over these lists: either the list is empty, or it is a list with a single item, or it
is a list with two or more items.
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op occurs : Item{X} List{X} -> Bool .

eq occurs(E, []) = false .

eq occurs(E, [E’]) = (E == E’) .

eq occurs(E, [E’ P])

= if E == E’ then true else occurs(E, [P]) fi .

The operators reverse and size for generalized lists work in a similar
way to the operators with the same names in Section 9.12.1, and they are also
defined by means of auxiliary operators $reverse and $size, respectively,
with a tail-recursive definition. Notice, however, that these auxiliary operators
work on “prelists” instead of lists. Moreover, size counts the number of items
in the first level of a generalized list, but it does not count the items inside
nested lists at deeper levels.

op reverse : List{X} -> List{X} .

op reverse : NeList{X} -> NeList{X} .

eq reverse([]) = [] .

eq reverse([E]) = [E] .

eq reverse([E P]) = [$reverse(P, E)] .

op $reverse : PreList{X} PreList{X} -> PreList{X} .

eq $reverse(E, A) = E A .

eq $reverse(E P, A) = $reverse(P, E A).

op size : List{X} -> Nat .

op size : NeList{X} -> NzNat .

eq size([]) = 0 .

eq size([P]) = $size(P, 0) .

op $size : PreList{X} Nat -> NzNat .

eq $size(E, C) = C + 1 .

eq $size(E P, C) = $size(P, C + 1) .

endfm

We consider the following instantiation and sample reductions:

fmod INT-LIST* is

pr LIST*{Int} .

endfm

Maude> red in INT-LIST* : append([1 []], [[] 2]) .

result NeList{Int}: [1 [] [] 2]

Maude> red reverse([[1 []] [[] 2]]) .

result NeList{Int}: [[[] 2] [1 []]]

Maude> red occurs(1, [[[] 2] [1 []]]) .

result Bool: false

Maude> red size([[[] 2] [1 []]]) .

result NzNat: 2
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9.12.5 Generalized sets

The construction of generalized or nestable sets follows exactly the same pat-
tern as the one we have seen for generalized lists in the previous section, but
now we use braces instead of square brackets to make explicit the level of
nesting. In particular, there is no empty “preset.” Note that braces {_} and
comma _,_ exactly reflect standard set theory notation.

Notice that the sort named Element plays here the same role as Item

played for nestable lists; do not confuse this sort with the sort Elt coming
from the parameter theory TRIV in the form X$Elt.

The module SET* provides for generalized sets the same operations we
have seen in Section 9.12.2 for “standard” sets, and, in addition, it specifies a
powerset operator that was not possible in the previous setting.

fmod SET*{X :: TRIV} is

protecting EXT-BOOL .

protecting NAT .

sorts Element{X} PreSet{X} NeSet{X} Set{X} .

subsort X$Elt Set{X} < Element{X} < PreSet{X} .

subsort NeSet{X} < Set{X} .

op _,_ : PreSet{X} PreSet{X} -> PreSet{X}

[ctor assoc comm prec 121 format (d r os d)] .

op {_} : PreSet{X} -> NeSet{X} [ctor] .

op {} : -> Set{X} [ctor] .

vars P Q : PreSet{X} .

vars A S : Set{X} .

var E : Element{X} .

var N : NeSet{X} .

var C : Nat .

eq {P, P} = {P} .

eq {P, P, Q} = {P, Q} .

The operations for insertion, deletion, and membership testing now work
for items that can be either basic elements or nested sets, but always at the
first level of nesting. For example, the membership predicate in cannot be
used to test if a basic element belongs to a set inside another set, but on the
other hand can check if a set is a member of another set. In other words, the
operation in exactly corresponds to the set theory membership predicate
∈. As in Section 9.12.2, the operators delete and in are defined by means
of the otherwise attribute. Moreover, each one has an additional equation
for the singleton case, which is treated separately because there is no empty
“preset.”

op insert : Element{X} Set{X} -> Set{X} .

eq insert(E, {}) = {E} .
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eq insert(E, {P}) = {E, P} .

op delete : Element{X} Set{X} -> Set{X} .

eq delete(E, {E}) = {} .

eq delete(E, {E, P}) = delete(E, {P}) .

eq delete(E, S) = S [owise] .

op _in_ : Element{X} Set{X} -> Bool .

eq E in {E} = true .

eq E in {E, P} = true .

eq E in S = false [owise] .

The cardinality operator | | computes the number of items (either basic
elements or other sets, at the first level of nesting) in a given set. It is defined
with the help of an auxiliary tail-recursive operator $card on “presets.”

op |_| : Set{X} -> Nat .

op |_| : NeSet{X} -> NzNat .

eq | {} | = 0 .

eq | {P} | = $card(P, 0) .

op $card : PreSet{X} Nat -> Nat .

eq $card(E, C) = C + 1 .

eq $card((N, N, P), C) = $card((N, P), C) .

eq $card((E, P), C) = $card(P, C + 1) [owise] .

The union operator union on generalized sets is based on the “union”
operator , on the “presets” inside the generalized sets.

op union : Set{X} Set{X} -> Set{X} .

op union : NeSet{X} Set{X} -> NeSet{X} .

op union : Set{X} NeSet{X} -> NeSet{X} .

eq union({}, S) = S .

eq union(S, {}) = S .

eq union({P}, {Q}) = {P, Q} .

The intersection and set difference operations for generalized sets have a
specification very similar to the one seen in Section 9.12.2, including the use
of tail-recursive auxiliary operations on “presets”.

op intersection : Set{X} Set{X} -> Set{X} .

eq intersection({}, S) = {} .

eq intersection(S, {}) = {} .

eq intersection({P}, N) = $intersect(P, N, {}) .

op $intersect : PreSet{X} Set{X} Set{X} -> Set{X} .

eq $intersect(E, S, A) = if E in S then insert(E, A) else A fi .

eq $intersect((E, P), S, A)

= $intersect(P, S, $intersect(E, S, A)) .
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op _\_ : Set{X} Set{X} -> Set{X} [gather (E e)] .

eq {} \ S = {} .

eq S \ {} = S .

eq {P} \ N = $diff(P, N, {}) .

op $diff : PreSet{X} Set{X} Set{X} -> Set{X} .

eq $diff(E, S, A) = if E in S then A else insert(E, A) fi .

eq $diff((E, P), S, A) = $diff(P, S, $diff(E, S, A)) .

The powerset 2^ X of a set X is computed by case analysis on the set X: it
is either the empty set {} or a singleton set {E}, or it has two or more items
{E, P}. In the last case we compute the total powerset 2^ X by computing
first the powerset 2^{P} of the set without item E and then the union of this
powerset 2^{P} with the result of inserting the distinguished item E into all
the items in the same powerset 2^{P}. The last process is done by means of
an auxiliary operation $augment.

op 2^_ : Set{X} -> Set{X} .

eq 2^{} = {{}} .

eq 2^{E} = {{}, {E}} .

eq 2^{E, P} = union(2^{P}, $augment(2^{P}, E, {})) .

op $augment : NeSet{X} Element{X} Set{X} -> Set{X} .

eq $augment({S}, E, A) = insert(insert(E, S), A) .

eq $augment({S, P}, E, A)

= $augment({P}, E, $augment({S}, E, A)) .

The specification of the subset predicates that check whether a set is in-
cluded in another is completely analogous to the specification of the corre-
sponding operations in Section 9.12.2.

op _subset_ : Set{X} Set{X} -> Bool .

eq {} subset S = true .

eq {E} subset S = E in S .

eq {E, P} subset S = E in S and-then {P} subset S .

op _psubset_ : Set{X} Set{X} -> Bool .

eq A psubset S = A =/= S and-then A subset S .

endfm

We consider the following instantiation and sample reductions:

fmod QID-SET* is

pr SET*{Qid} .

endfm

Maude> red in QID-SET* : {’a} in {{’a}, {’b}, {’a, ’b}} .

result Bool: true

Maude> red | {{’a}, {’b}, {’a, ’b}} | .

result NzNat: 3
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Maude> red union({{’a}, {’b}}, {{’a, ’b}}) .

result NeSet{Qid}: {{’a}, {’b}, {’a, ’b}}

Maude> red intersection({{’a}, {’b}}, {{’a, ’b}}) .

result Set{Qid}: {}

Maude> red 2^ {’a, ’b, ’c, ’d} .

result NeSet{Qid}:

{{}, {’a}, {’b}, {’c}, {’d}, {’a, ’b}, {’a, ’c}, {’a, ’d},

{’b, ’c}, {’b, ’d}, {’c, ’d}, {’a, ’b, ’c}, {’a, ’b, ’d},

{’a, ’c, ’d}, {’b, ’c, ’d}, {’a, ’b, ’c, ’d}}

9.12.6 Sortable lists

In Section 8.3.5 we defined the notion of sorted list requiring a totally ordered
set of elements, but this requirement can be relaxed. In principle, it is enough
to have a transitive and antisymmetric order < on a set E of elements (which
are the requirements in the theory TAOSET from Section 8.3.1) to be able to
define a sorted list L over E as a list such that for every pair (u, v) of members
in L with u occurring before v and with u 6= v, it is the case that v < u is false.
However, in what follows we are not interested in defining sorted lists, but in
specifying a sorting algorithm (more specifically, the mergesort algorithm)
in a deterministic way. We require the sorting algorithm to be stable, so that
incomparable elements remain in the same relative order as in the list provided
as argument. For this notion to be well defined, we need to require either a
strict weak order or a total preorder.

Sorting lists with respect to a strict weak order

Assume first that < is a strict weak order over a set E, that is, a strict
partial order with a transitive incomparability relation, which are precisely the
requirements in the predefined theory STRICT-WEAK-ORDER of Section 9.11.3.

In order to define a stable sorting of a list L of elements over E, we consider
each element of the list L as a pair (x, i), where x is the value of the element in
E and i is the number indicating the position of x in L. We define an ordering
� on such pairs as follows: (x, i)� (y, j) iff either x < y or (x ∼ y and i < j).
Then, it follows from the properties of < and ∼ that� is a strict total order,
i.e., it is irreflexive, transitive, and total.

We can now define the stable sorting under < of a list e1, e2, . . . , en of ele-
ments from E as follows: Take the list (e1, 1), (e2, 2), . . . , (en, n), find its unique
ordering (es1 , s1), (es2 , s2), . . . , (esn , sn) under�, and output es1 , es2 , . . . , esn .

The parameterized module WEAKLY-SORTABLE-LIST, that specifies a stable
version of mergesort on lists, imports “standard” lists (from Section 9.12.1),
but first it is necessary to match the parameter theory TRIV of lists with the
parameter theory STRICT-WEAK-ORDER. This is accomplished by means of the
predefined view STRICT-WEAK-ORDER from TRIV to STRICT-WEAK-ORDER that
forgets the order and its properties (see Section 9.11.3). A renaming is also



292 9 Predefined Data Modules

X :: TRIV X :: S-W-O X :: S-W-O

LIST LIST{S-W-O} LIST{S-W-O}*(α)

WEAKLY-SORTABLE-LIST

S-W-O

*(α)

Fig. 9.3. From lists to weakly sortable lists

applied to this instantiation in order to have more convenient sort names. This
process is illustrated in the diagram of Figure 9.3, where STRICT-WEAK-ORDER

has been abbreviated to S-W-O, the sort renaming has been abbreviated to α,
and where the different types of arrows represent the different relationships
between modules: importation (triple arrow), views between theories (dashed
arrow named S-W-O), instantiation (dashed arrow), and renaming (dotted
arrow named *(α), meaning the renaming whose second argument is α and
whose first argument is still unknown).

fmod WEAKLY-SORTABLE-LIST{X :: STRICT-WEAK-ORDER} is

pr LIST{STRICT-WEAK-ORDER}{X}

* (sort NeList{STRICT-WEAK-ORDER}{X} to NeList{X},

sort List{STRICT-WEAK-ORDER}{X} to List{X}) .

sort $Split{X} .

vars E E’ : X$Elt .

vars A A’ L L’ : List{X} .

var N : NeList{X} .

The main operation in this module is sort, that sorts a given list.5 It is
defined by case analysis on the list: if it is either the empty list or a single-
ton list, then it is already sorted; otherwise, we split the given list into two
sublists, recursively sort both of them, and then merge the sorted results in
order to obtain the final sorted list. This process is accomplished by means
of three auxiliary operations, whose names are self-explanatory: $split (for
the splitting, with an auxiliary result sort $Split), $sort (for the recursive
sorting calls), and $merge (for the final merging).

op sort : List{X} -> List{X} .

op sort : NeList{X} -> NeList{X} .

5 We realize that terminology here can be a bit confusing, because in Maude sort

is also a keyword for types.
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eq sort(nil) = nil .

eq sort(E) = E .

eq sort(E N) = $sort($split(E N, nil, nil)) .

op $sort : $Split{X} -> List{X} .

eq $sort($split(nil, L, L’)) = $merge(sort(L), sort(L’), nil) .

The auxiliary operation $split has three arguments: the first one is the
list to be split and the other two are accumulators (initially both empty) that
keep the elements as they are moved from the main list into the appropriate
sublists. In this way, we have an efficient tail-recursive definition.

op $split : List{X} List{X} List{X} -> $Split{X} [ctor] .

eq $split(E, A, A’) = $split(nil, A E, A’) .

eq $split(E L E’, A, A’) = $split(L, A E, E’ A’) .

The auxiliary operation $merge also has three arguments, but now the first
two are the lists to be merged and the third one is the accumulator where the
result is incrementally computed by means of another efficient tail-recursive
definition.

The module also provides an operation merge that simply calls the previ-
ous operation with the empty accumulator. Notice that if both lists are sorted
then the result of calling merge on them is a sorted list, but in general merge
is a total function that can be called on any two lists whatsoever.

op merge : List{X} List{X} -> List{X} .

op merge : NeList{X} List{X} -> NeList{X} .

op merge : List{X} NeList{X} -> NeList{X} .

eq merge(L, L’) = $merge(L, L’, nil) .

op $merge : List{X} List{X} List{X} -> List{X} .

eq $merge(L, nil, A) = A L .

eq $merge(nil, L, A) = A L .

eq $merge(E L, E’ L’, A)

= if E’ < E

then $merge(E L, L’, A E’)

else $merge(L, E’ L’, A E)

fi .

endfm

The Maude prelude also provides another predefined module for sort-
ing lists, namely, SORTABLE-LIST, where the required order is strict and
total, as specified in the predefined theory STRICT-TOTAL-ORDER of Sec-
tion 9.11.3. Since the theory STRICT-TOTAL-ORDER is a strengthening of
STRICT-WEAK-ORDER with the additional requirement of totality, we can use
it as a parameter theory to specialize our WEAKLY-SORTABLE-LIST mod-
ule to strict total orders, thus getting the SORTABLE-LIST module. For
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X :: S-W-O X :: S-T-O X :: S-T-O

WEAKLY-SORTABLE-LIST W-S-LIST{S-T-O} W-S-LIST{S-T-O}*(α′)

SORTABLE-LIST

S-T-O

*(α′)

Fig. 9.4. From weakly sortable lists to sortable lists

this we need a view from the theory STRICT-WEAK-ORDER into the the-
ory STRICT-TOTAL-ORDER, which is precisely the predefined inclusion view
STRICT-TOTAL-ORDER in Section 9.11.3.

Moreover, since we also use another renaming to have more convenient sort
names, the construction of the parameterized module SORTABLE-LIST on top
of WEAKLY-SORTABLE-LIST mirrors the process of constructing WEAKLY-SORTABLE-LIST

on top of LIST, as described in Figure 9.4, where the sort renaming has been
abbreviated to α′, WEAKLY-SORTABLE-LIST to W-S-LIST, STRICT-WEAK-ORDER
to S-W-O, and STRICT-TOTAL-ORDER to S-T-O. The reader should compare this
figure with Figure 9.3 to appreciate the similarity between both.

fmod SORTABLE-LIST{X :: STRICT-TOTAL-ORDER} is

pr WEAKLY-SORTABLE-LIST{STRICT-TOTAL-ORDER}{X}

* (sort NeList{STRICT-TOTAL-ORDER}{X} to NeList{X},

sort List{STRICT-TOTAL-ORDER}{X} to List{X}) .

endfm

We can use the predefined view String< from STRICT-TOTAL-ORDER to
String (where < is the lexicographic order on strings) to instantiate the pre-
vious module before doing some sample reductions.

fmod STRING-SORTABLE-LIST is

pr SORTABLE-LIST{String<} .

endfm

Maude> red in STRING-SORTABLE-LIST :

$split("a" "quick" "brown" "fox" "jumps"

"over" "the" "lazy" "dog", nil, nil) .

result $Split{STRICT-TOTAL-ORDER}{String<}:

$split(nil,

"a" "quick" "brown" "fox" "jumps",

"over" "the" "lazy" "dog")

Maude> red merge("a" "quick" "brown" "fox" "jumps",
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"over" "the" "lazy" "dog") .

result NeList{String<}:

"a" "over" "quick" "brown" "fox" "jumps" "the" "lazy" "dog"

Maude> red sort("a" "quick" "brown" "fox" "jumps"

"over" "the" "lazy" "dog") .

result NeList{String<}:

"a" "brown" "dog" "fox" "jumps" "lazy" "over" "quick" "the"

Maude> red sort("a" "quick" "brown" "fox" "jumps" "over" "the"

"lazy" "dog" "a" "quick" "brown" "fox" "jumps"

"over" "the" "lazy" "dog") .

result NeList{String<}: "a" "a" "brown" "brown" "dog" "dog" "fox"

"fox" "jumps" "jumps" "lazy" "lazy" "over" "over" "quick" "quick"

"the" "the"

Sorting lists with respect to a total preorder

Assume now that ≤ is a total preorder over a set E, that is, a binary rela-
tion satisfying the requirements in the predefined theory TOTAL-PREORDER of
Section 9.11.4.

To define a stable sorting of a list L of elements over E, we consider
again each element of the list L as a pair (x, i), where x is the value of
the element in E and i is the number indicating the position of x in L.
We define an ordering � on such pairs as follows, where now the defini-
tion of � is slightly different given the non-strict nature of total preorders:
(x, i) � (y, j) iff either y 6≤ x or (x ≤ y and i ≤ j). Then, the proper-
ties of ≤ imply that � is a (non-strict) total order, i.e., it is reflexive, anti-
symmetric, transitive, and total. From this, the definition of a stable sorting
under ≤ of a list e1, e2, . . . , en of elements from E follows exactly the same
steps as before: Take the list (e1, 1), (e2, 2), . . . , (en, n), find its unique ordering
(es1 , s1), (es2 , s2), . . . , (esn , sn) under �, and output es1 , es2 , . . . , esn .

The following modules WEAKLY-SORTABLE-LIST’ and SORTABLE-LIST’

specify the mergesort algorithm with respect to a total preorder and a (non-
strict) total order, respectively. Their structure is completely analogous to the
structure of WEAKLY-SORTABLE-LIST and SORTABLE-LIST already explained
above. It is described in the two diagrams of Figure 9.5, where the sort re-
namings have been abbreviated to γ and γ′, TOTAL-PREORDER to T-PREORDER,
TOTAL-ORDER to T-ORDER, and WEAKLY-SORTABLE-LIST’ W-S-LIST’.

fmod WEAKLY-SORTABLE-LIST’{X :: TOTAL-PREORDER} is

pr LIST{TOTAL-PREORDER}{X}

* (sort NeList{TOTAL-PREORDER}{X} to NeList{X},

sort List{TOTAL-PREORDER}{X} to List{X}) .

sort $Split{X} .

vars E E’ : X$Elt .

vars A A’ L L’ : List{X} .

var N : NeList{X} .
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X :: TRIV X :: T-PREORDER X :: T-PREORDER

LIST LIST{T-PREORDER} LIST{T-PREORDER}*(γ)

WEAKLY-SORTABLE-LIST’

T-PREORDER

*(γ)

X :: T-PREORDER X :: T-ORDER X :: T-ORDER

WEAKLY-SORTABLE-LIST’ W-S-LIST’{T-ORDER} W-S-LIST’{T-ORDER}*(γ′)

SORTABLE-LIST’

T-ORDER

*(γ′)

Fig. 9.5. Another version of sortable lists

op sort : List{X} -> List{X} .

op sort : NeList{X} -> NeList{X} .

eq sort(nil) = nil .

eq sort(E) = E .

eq sort(E N) = $sort($split(E N, nil, nil)) .

op $sort : $Split{X} -> List{X} .

eq $sort($split(nil, L, L’)) = $merge(sort(L), sort(L’), nil) .

op $split : List{X} List{X} List{X} -> $Split{X} [ctor] .

eq $split(E, A, A’) = $split(nil, A E, A’) .

eq $split(E L E’, A, A’) = $split(L, A E, E’ A’) .

op merge : List{X} List{X} -> List{X} .

op merge : NeList{X} List{X} -> NeList{X} .

op merge : List{X} NeList{X} -> NeList{X} .

eq merge(L, L’) = $merge(L, L’, nil) .

op $merge : List{X} List{X} List{X} -> List{X} .

eq $merge(L, nil, A) = A L .
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eq $merge(nil, L, A) = A L .

eq $merge(E L, E’ L’, A)

= if E <= E’

then $merge(L, E’ L’, A E)

else $merge(E L, L’, A E’)

fi .

endfm

fmod SORTABLE-LIST’{X :: TOTAL-ORDER} is

pr WEAKLY-SORTABLE-LIST’{TOTAL-ORDER}{X}

* (sort NeList{TOTAL-ORDER}{X} to NeList{X},

sort List{TOTAL-ORDER}{X} to List{X}) .

endfm

Apart from the changes in the requirement theories and the module names,
the main difference bewteen both approaches appears in the third $merge

equation. In the WEAKLY-SORTABLE-LIST module we have

eq $merge(E L, E’ L’, A)

= if E’ < E

then $merge(E L, L’, A E’)

else $merge(L, E’ L’, A E)

fi .

Here we are dealing with a strict weak order. We test E’ < E. If it is true,
then by irreflexivity we know that E < E’ is false, and the element E’ from
the second list is appended to the merged list. Whereas if E’ < E is false, we
know that either E < E’ holds or E and E’ are incomparable. Either way, the
element E from the first list is appended to the merged list, either because
it is smaller or because it is incomparable and we are preserving the original
relative positions in the list (stability).

On the other hand, in the WEAKLY-SORTABLE-LIST’ module we have

eq $merge(E L, E’ L’, A)

= if E <= E’

then $merge(L, E’ L’, A E)

else $merge(E L, L’, A E’)

fi .

In this case we are dealing with a total preorder. We test E <= E’. If it is
true, then either E’ <= E is false or E and E’ are equivalent. Either way, the
element E from the first list is appended to the merged list, either because it is
smaller or because it is equivalent and we are preserving the original relative
positions in the list (stability). If E <= E’ is false, then E’ <= E holds by
totality and therefore E’ is appended to the merged list.

We can redo with these modules the same instantiation we considered
above, but using now the predefined view String<= from TOTAL-ORDER to
String, where <= is the non-strict lexicographic order on strings.
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fmod STRING-SORTABLE-LIST’ is

pr SORTABLE-LIST’{String<=} .

endfm

Maude> red in STRING-SORTABLE-LIST’ :

sort("a" "quick" "brown" "fox" "jumps"

"over" "the" "lazy" "dog") .

result NeList{String<=}:

"a" "brown" "dog" "fox" "jumps" "lazy" "over" "quick" "the"

Maude> red sort("a" "quick" "brown" "fox" "jumps" "over" "the"

"lazy" "dog" "a" "quick" "brown" "fox" "jumps"

"over" "the" "lazy" "dog") .

result NeList{String<=}: "a" "a" "brown" "brown" "dog" "dog" "fox"

"fox" "jumps" "jumps" "lazy" "lazy" "over" "over" "quick" "quick"

"the" "the"

9.12.7 Making lists out of sets

In Section 9.12.3 we have seen an operation makeSet that transforms a list
into a set with the same elements. On the other hand, transforming a set
into a list imposes some order on the given elements, which can be done
in many different ways, and therefore only makes sense as a function when
we have additional information over those elements that allows us to choose
a unique sequence. The solution adopted here is to require either a strict
or a non-strict total order on the elements, so that the resulting list is the
corresponding sorted list. For this we use the sort operation defined either in
the SORTABLE-LIST module or in the SORTABLE-LIST’ module described in
the previous section. In both versions the main operation makeList is defined
in terms of an auxiliary operation $makeList with an accumulator in order
to have a more efficient definition.

In both versions the LIST-AND-SET module is imported with a double
renaming (different in each case), which is needed for correct sharing of a
renamed copy of the LIST module, because Core Maude does not evaluate
the composition of renamings but applies them sequentially. If we computed
manually and used this simpler renaming, we would get a different renaming of
LIST imported by each protecting declaration; then, while these renamings
would have the same effect, we would import two renamed copies of LIST

rather than a shared copy.
This is the first version, using a strict total order.

fmod SORTABLE-LIST-AND-SET{X :: STRICT-TOTAL-ORDER} is

pr SORTABLE-LIST{X} .

pr LIST-AND-SET{STRICT-WEAK-ORDER}{STRICT-TOTAL-ORDER}{X}

* (sort NeList{STRICT-WEAK-ORDER}{STRICT-TOTAL-ORDER}{X}

to NeList{STRICT-TOTAL-ORDER}{X},

sort List{STRICT-WEAK-ORDER}{STRICT-TOTAL-ORDER}{X}
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to List{STRICT-TOTAL-ORDER}{X})

* (sort NeList{STRICT-TOTAL-ORDER}{X} to NeList{X},

sort List{STRICT-TOTAL-ORDER}{X} to List{X},

sort NeSet{STRICT-WEAK-ORDER}{STRICT-TOTAL-ORDER}{X}

to NeSet{X},

sort Set{STRICT-WEAK-ORDER}{STRICT-TOTAL-ORDER}{X}

to Set{X}) .

var E : X$Elt .

var L : List{X} .

var S : Set{X} .

op makeList : Set{X} -> List{X} .

op makeList : NeSet{X} -> NeList{X} .

eq makeList(S) = $makeList(S, nil) .

op $makeList : Set{X} List{X} -> List{X} .

op $makeList : NeSet{X} List{X} -> NeList{X} .

op $makeList : Set{X} NeList{X} -> NeList{X} .

eq $makeList((E, E, S), L) = $makeList((E, S), L) .

eq $makeList((E, S), L) = $makeList(S, E L) [owise] .

endfm

Notice that makeList is only a partial inverse to makeSet, not only because
of sorting the elements, but also because in a set repetitions do not matter.
In general, for a set S and a list L we have makeSet(makeList(S)) = S, but
in general makeList(makeSet(L)) 6= L.

We consider an instantiation with the predefined view Int< and some
sample reductions.

fmod INT-SORTABLE-LIST-AND-SET is

pr SORTABLE-LIST-AND-SET{Int<} .

endfm

Notice that in the following first reduction we get a list different from
the original one, while in the second reduction we get a different representa-
tion (where repetitions have been eliminated) of the same set. Those possible
repetitions are already eliminated before producing the corresponding list, as
shown in the third reduction.

Maude> red in INT-SORTABLE-LIST-AND-SET :

makeList(makeSet(1 -1 1 -2 1 0)) .

result NeList{Int<}: -2 -1 0 1

Maude> red makeSet(makeList((5, 4, 3, 4, 5))) .

result NeSet{Int<}: 3, 4, 5

Maude> red makeList((5, 4, 3, 4, 5)) .

result NeList{Int<}: 3 4 5
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This is the second version, using a non-strict total order.

fmod SORTABLE-LIST-AND-SET’{X :: TOTAL-ORDER} is

pr SORTABLE-LIST’{X} .

pr LIST-AND-SET{TOTAL-PREORDER}{TOTAL-ORDER}{X}

* (sort NeList{TOTAL-PREORDER}{TOTAL-ORDER}{X}

to NeList{TOTAL-ORDER}{X},

sort List{TOTAL-PREORDER}{TOTAL-ORDER}{X}

to List{TOTAL-ORDER}{X})

* (sort NeList{TOTAL-ORDER}{X} to NeList{X},

sort List{TOTAL-ORDER}{X} to List{X},

sort NeSet{TOTAL-PREORDER}{TOTAL-ORDER}{X} to NeSet{X},

sort Set{TOTAL-PREORDER}{TOTAL-ORDER}{X} to Set{X}) .

var E : X$Elt .

var L : List{X} .

var S : Set{X} .

op makeList : Set{X} -> List{X} .

op makeList : NeSet{X} -> NeList{X} .

eq makeList(S) = $makeList(S, nil) .

op $makeList : Set{X} List{X} -> List{X} .

op $makeList : NeSet{X} List{X} -> NeList{X} .

op $makeList : Set{X} NeList{X} -> NeList{X} .

eq $makeList(empty, L) = sort(L) .

eq $makeList((E, E, S), L) = $makeList((E, S), L) .

eq $makeList((E, S), L) = $makeList(S, E L) [owise] .

endfm

We redo the same instantiation, now with the non-strict total order on
integers.

fmod INT-SORTABLE-LIST-AND-SET’ is

pr SORTABLE-LIST-AND-SET’{Int<=} .

endfm

Maude> red in INT-SORTABLE-LIST-AND-SET’ :

makeList(makeSet(1 -1 1 -2 1 0)) .

result NeList{Int<=}: -2 -1 0 1

Maude> red makeSet(makeList((5, 4, 3, 4, 5))) .

result NeSet{Int<=}: 3, 4, 5

Maude> red makeList((5, 4, 3, 4, 5)) .

result NeList{Int<=}: 3 4 5

9.13 Maps and arrays

Both maps and arrays represent a function f between two sets as a set of
pairs of the form
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{(a1, f(a1)), (a2, f(a2)), . . . , (an, f(an))}
in the graph of the function; each pair (ai, f(ai)) is called an entry in both
cases.

The difference between maps and arrays is that the former leave undefined
the result of f over those values not present in the set above, while the latter
assign a “default” value result in that case.

However, notice that the modules below do not check, for efficiency reasons,
that all values ai in the first components of a set of pairs like the previous
one are different (although the operations for insertion and look up make sure
that the corresponding result is well defined). The situation of having a set of
entries with repeated first components never arises if such a map or array is
initially the empty one and then it is only modified by means of the insert

operation. See Section 19.3.2 for a more careful specification of (finite) partial
functions checking these requirements.

9.13.1 Maps

As explained above, a map is defined as a “set” (built with the associative
and commutative operator _,_) of entries. Notice that Entry, whose only
constructor is the operator _|->_, is a subsort of Map.

The domain and codomain values of the map come from the parameters
of the parameterized data type, both of them satisfying the theory TRIV and
thus providing a set of elements.

The module MAP provides a constant undefined of the kind [Y$Elt] cor-
responding to the sort Y$Elt and representing the undefined result.

fmod MAP{X :: TRIV, Y :: TRIV} is

protecting BOOL .

sorts Entry{X,Y} Map{X,Y} .

subsort Entry{X,Y} < Map{X,Y} .

op _|->_ : X$Elt Y$Elt -> Entry{X,Y} [ctor] .

op empty : -> Map{X,Y} [ctor] .

op _,_ : Map{X,Y} Map{X,Y} -> Map{X,Y}

[ctor assoc comm id: empty prec 121 format (d r os d)] .

op undefined : -> [Y$Elt] [ctor] .

var D : X$Elt .

vars R R’ : Y$Elt .

var M : Map{X,Y} .

The operator insert adds a new entry to a map, but when the first ar-
gument already appears in the domain of definition of the map, the second
argument is used to update the map. Notice the use of matching and of the
otherwise attribute to distinguish these two cases in a simple way. Further-
more, in the first case, an auxiliary operation $hasMapping is used to make
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sure that in the resulting map only one entry is associated with the given
value. The operation $hasMapping checks whether a domain value actually
has an associated entry in a map.

op insert : X$Elt Y$Elt Map{X,Y} -> Map{X,Y} .

eq insert(D, R, (M, D |-> R’))

= if $hasMapping(M, D)

then insert(D, R, M)

else (M, D |-> R)

fi .

eq insert(D, R, M) = (M, D |-> R) [owise] .

op $hasMapping : Map{X,Y} X$Elt -> Bool .

eq $hasMapping((M, D |-> R), D) = true .

eq $hasMapping(M, D) = false [owise] .

The lookup operator is represented with the notation _[_]. Again, match-
ing and owise are used to distinguish whether or not the second argument ap-
pears in the domain of definition of the map provided as first argument. When
the answer is affirmative an the map contains exactly one entry associated
with such argument (as checked with the auxiliary operation $hasMapping),
the result is the value provided in that entry. When the answer is negative or
the map is not well defined because there is more than one entry associated
with the same argument, the result is the constant undefined in the kind,
with the self-explanatory meaning that in those cases the map is undefined
on the given argument.

op _[_] : Map{X,Y} X$Elt -> [Y$Elt] [prec 23] .

eq (M, D |-> R)[D]

= if $hasMapping(M, D) then undefined else R fi .

eq M[D] = undefined [owise] .

endfm

We use the predefined views String and Nat (see Section 9.11.1) to define
maps from strings to natural numbers, and do some sample reductions.

fmod STRING-NAT-MAP is

pr MAP{String, Nat} .

endfm

Maude> red in STRING-NAT-MAP :

insert("one", 1,

insert("two", 2, insert("three", 3, empty))) .

result Map{String,Nat}: "one" |-> 1, "three" |-> 3, "two" |-> 2

Maude> red insert("one", 1,

insert("two", 2,

insert("three", 3, empty)))["two"] .

result NzNat: 2
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Maude> red insert("one", 1,

insert("two", 2,

insert("three", 3, empty)))["four"] .

result [FindResult]: undefined

Maude> red ("a" |-> 3, "a" |-> 2)["a"] .

result [FindResult]: undefined

The last reduction shows that the undesired repetition of a domain value in
two entries of the same map also produces the undefined constant as result.

9.13.2 Arrays

As explained above, arrays work like maps, with the difference that an attempt
to look up an unmapped value always returns the default value, i.e., arrays
have a sparse array behavior (hence the name). In the same spirit, mappings
to the default value are never inserted.

The main difference between maps and arrays is already made explicit in
the parameters of the parameterized data type: while the first one satisfies
the theory TRIV, the second one satisfies the theory DEFAULT that in addition
to a set of data provides a default value 0 (see Section 9.11.2).

The constructor for entries is named _|->_, as for maps, while the set
constructor is denoted here _;_.

fmod ARRAY{X :: TRIV, Y :: DEFAULT} is

protecting BOOL .

sorts Entry{X,Y} Array{X,Y} .

subsort Entry{X,Y} < Array{X,Y} .

op _|->_ : X$Elt Y$Elt -> Entry{X,Y} [ctor] .

op empty : -> Array{X,Y} [ctor] .

op _;_ : Array{X,Y} Array{X,Y} -> Array{X,Y}

[ctor assoc comm id: empty prec 71 format (d r os d)] .

var D : X$Elt .

vars R R’ : Y$Elt .

var A : Array{X,Y} .

The definition of the operator insert for arrays adds a check to the def-
inition of the same operator for maps so that, as mentioned above, entries
whose second value is the default value 0 are never inserted. Note, however,
that mappings to the default value 0 that are created with the constructors
_|->_ and _;_, rather than the insert operator, are not removed as doing
this check each time a new array is formed would be excessively inefficient.
Furthermore, as we have already seen for maps, in the first case, an auxiliary
operation $hasMapping is used to make sure that in the resulting array only
one entry is associated with the given value.
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op insert : X$Elt Y$Elt Array{X,Y} -> Array{X,Y} .

eq insert(D, R, (A ; D |-> R’))

= if $hasMapping(A, D)

then insert(D, R, A)

else if R == 0 then A else (A ; D |-> R) fi

fi .

eq insert(D, R, A)

= if R == 0 then A else (A ; D |-> R) fi [owise] .

op $hasMapping : Array{X,Y} X$Elt -> Bool .

eq $hasMapping((A ; D |-> R), D) = true .

eq $hasMapping(A, D) = false [owise] .

The definition of the lookup operator for arrays only differs from the one
for maps in the occurrence of the default value 0 instead of the constant
undefined. Now, if an argument has more than one associated entry (as
checked with the auxiliar operation $hasMapping), it is considered to be “un-
mapped” and the result is also the default value.

op _[_] : Array{X,Y} X$Elt -> Y$Elt [prec 23] .

eq (A ; D |-> R)[D]

= if $hasMapping(A, D) then 0 else R fi .

eq A[D] = 0 [owise] .

endfm

We do the same instantiation for arrays as for maps, with the predefined
views String from Section 9.11.1 and Nat0 from Section 9.11.2).

fmod STRING-NAT-ARRAY is

pr ARRAY{String, Nat0} .

endfm

Maude> red in STRING-NAT-ARRAY :

insert("one", 1,

insert("two", 2, insert("three", 3, empty))) .

result Array{String,Nat0}: "one" |-> 1 ; "three" |-> 3 ; "two" |-> 2

Maude> red insert("one", 0,

insert("two", 2, insert("three", 3, empty))) .

result Array{String,Nat0}: "three" |-> 3 ; "two" |-> 2

Maude> red insert("one", 1,

insert("two", 2,

insert("three", 3, empty)))["two"] .

result NzNat: 2

Maude> red insert("one", 1,

insert("two", 2,

insert("three", 3, empty)))["four"] .

result Zero: 0
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9.14 A linear Diophantine equation solver

The Maude system includes a built-in linear Diophantine equation solver.
The interface to the solver is defined in the file linear.maude which contains
the functional module DIOPHANTINE. The current solver finds non-negative
solutions of a system S of n simultaneous linear equations in m variables
having the form Mv = c, where M is an n×m integer coefficient matrix, v is
a column vector of m variables and c is a column vector of n integer constants.

Both matrices and vectors are represented as sparse arrays with their di-
mensions implicit and their indices starting from 0. For this we make heavy
use of the parameterized module ARRAY, described in Section 9.13.2.

First, a data type of pairs of natural numbers to be used as indices for
matrices is created.

fmod INDEX-PAIR is

pr NAT .

sort IndexPair .

op _,_ : Nat Nat -> IndexPair [ctor] .

endfm

Then, we instantiate (and rename as desired) the parameterized mod-
ule ARRAY to obtain matrices of integers. Notice that Int0 is the view from
DEFAULT to INT given in Section 9.11.2

view IndexPair from TRIV to INDEX-PAIR is

sort Elt to IndexPair .

endv

fmod MATRIX{X :: DEFAULT} is

pr (ARRAY * (sort Entry{X,Y} to Entry{Y},

sort Array{X,Y} to Matrix{Y}))

{IndexPair, X} .

endfm

fmod INT-MATRIX is

pr MATRIX{Int0} * (sort Entry{Int0} to IntMatrixEntry,

sort Matrix{Int0} to IntMatrix,

op empty to zeroMatrix) .

endfm

For example, the matrices(
1 2
0 −1

)  1 2 0
0 −1 0
0 0 0


are both represented by the same term

(0,0) |-> 1 ; (0,1) |-> 2 ; (1,1) |-> -1
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Vectors are represented in a similar way as sparse arrays with natural
numbers as indices. We use here the view Int0 already mentioned above
and also the view Nat from TRIV to NAT given in Section 9.11.1. The view
IntVector defined below will be used to construct sets of vectors later on.

fmod VECTOR{X :: DEFAULT} is

pr (ARRAY * (sort Entry{X,Y} to Entry{Y},

sort Array{X,Y} to Vector{Y}))

{Nat, X} .

endfm

fmod INT-VECTOR is

pr VECTOR{Int0} * (sort Entry{Int0} to IntVectorEntry,

sort Vector{Int0} to IntVector,

op empty to zeroVector) .

endfm

view IntVector from TRIV to INT-VECTOR is

sort Elt to IntVector .

endv

No distinction is made between row and column vectors, so, for example,

both the row vector
(
−2 0 0 3

)
and its transpose

(
−2 0 0 3

)t
are represented

by the same term

0 |-> -2 ; 3 |-> 3

The constants zeroMatrix and zeroVector denote the all zero matrix and
vector, respectively.

The main module DIOPHANTINE begins defining pairs of sets of integer
vectors, as follows:

fmod DIOPHANTINE is

pr STRING .

pr INT-MATRIX .

pr SET{IntVector}

* (sort NeSet{IntVector} to NeIntVectorSet,

sort Set{IntVector} to IntVectorSet,

op _,_ : Set{IntVector} Set{IntVector} -> Set{IntVector}

to (_,_) [prec 121 format (d d ni d)]) .

sort IntVectorSetPair .

op [_|_] : IntVectorSet IntVectorSet -> IntVectorSetPair

[format (d n++i n ni n-- d)] .

Then, the solver is invoked with the built-in operator

op natSystemSolve : IntMatrix IntVector String -> IntVectorSetPair

[special (...)] .
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which takes as arguments the coefficient matrix, the constant vector, and a
string naming the algorithm to be used (see below), and returns the complete
set of solutions encoded as a pair of sets of vectors [ A | B ]. The non-
negative solutions of the linear Diophantine system correspond exactly to
those vectors that can be formed as the sum of a vector from A and a non-
negative linear combination of vectors from B.

In particular, if the system S is homogeneous (i.e., c = zeroVector) then
A contains just the constant zeroVector and B is the Diophantine basis of
S (which will be empty if S only admits the trivial solution). A homogeneous
system either has just the trivial solution or infinitely many solutions.

If S is inhomogeneous (i.e., c 6= zeroVector) then, if S has no solution,
both A and B will be empty; otherwise, B will consist of the Diophantine
basis of S′, the system formed by setting c = zeroVector, while A contains
all solutions of S that are not strictly larger than any element of B. An
inhomogeneous system may have no solution (in this case A and B are both
empty), a finite number of solutions (in this case A is non-empty and B is
empty), or infinitely many solutions (in this case A and B are both non-
empty).

In either case, the solution encoding [ A | B ] is unique.
Deciding whether a linear Diophantine system admits a non-negative, non-

trivial solution is NP-complete (stated as known in [360]). Furthermore the
size of the Diophantine basis of a homogeneous system can be very large. For
example the equation: x+ y − kz = 0, for constant k > 0, has a Diophantine
basis (i.e., set of minimal, nontrivial solutions) of size k + 1.

There are currently two algorithms implemented.
The string "cd" specifies a version of the classical Contejean-Devie algo-

rithm [83] with various improvements. The algorithm is based on incrementing
a vector of counters, one for each variable, and so it can only solve systems
where the answers involve fairly small numbers. It is fairly insensitive to the
number of degrees of freedom in the problem. The improvements in this im-
plementation take effect when an equation has zero or one unfrozen variables
with nonzero coefficients and result in either forced assignments or early prun-
ing of a branch of the search. It performs well on the following homogeneous
system from [105],1 2 −1 0 −2 −1

0 −1 −2 2 0 1
2 0 1 −1 −2 0

n1
n2
n3

 =

 0
0
0


which has a basis of size 13.

Maude> red in DIOPHANTINE :

natSystemSolve(

(0,0) |-> 1 ; (0,1) |-> 2 ; (0,2) |-> -1 ;

(0,3) |-> 0 ; (0,4) |-> -2 ; (0,5) |-> -1 ;

(1,0) |-> 0 ; (1,1) |-> -1 ; (1,2) |-> -2 ;

(1,3) |-> 2 ; (1,4) |-> 0 ; (1,5) |-> 1 ;
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(2,0) |-> 2 ; (2,1) |-> 0 ; (2,2) |-> 1 ;

(2,3) |-> -1 ; (2,4) |-> -2 ; (2,5) |-> 0,

zeroVector,

"cd") .

rewrites: 1 in 10ms cpu (46ms real) (100 rews/sec)

result IntVectorSetPair:

[

zeroVector

|

0 |-> 1 ; 1 |-> 1 ; 4 |-> 1 ; 5 |-> 1,

0 |-> 1 ; 1 |-> 4 ; 2 |-> 9 ; 3 |-> 11,

0 |-> 10 ; 1 |-> 4 ; 3 |-> 2 ; 4 |-> 9,

1 |-> 1 ; 2 |-> 1 ; 3 |-> 1 ; 5 |-> 1,

1 |-> 8 ; 2 |-> 2 ; 4 |-> 1 ; 5 |-> 12,

0 |-> 2 ; 1 |-> 4 ; 2 |-> 8 ; 3 |-> 10 ; 4 |-> 1,

0 |-> 3 ; 1 |-> 4 ; 2 |-> 7 ; 3 |-> 9 ; 4 |-> 2,

0 |-> 4 ; 1 |-> 4 ; 2 |-> 6 ; 3 |-> 8 ; 4 |-> 3,

0 |-> 5 ; 1 |-> 4 ; 2 |-> 5 ; 3 |-> 7 ; 4 |-> 4,

0 |-> 6 ; 1 |-> 4 ; 2 |-> 4 ; 3 |-> 6 ; 4 |-> 5,

0 |-> 7 ; 1 |-> 4 ; 2 |-> 3 ; 3 |-> 5 ; 4 |-> 6,

0 |-> 8 ; 1 |-> 4 ; 2 |-> 2 ; 3 |-> 4 ; 4 |-> 7,

0 |-> 9 ; 1 |-> 4 ; 2 |-> 1 ; 3 |-> 3 ; 4 |-> 8

]

The string "gcd" specifies an original algorithm based on integer Gaussian
elimination followed by a sequence of extended greatest common divisor (gcd)
computations. It can “home in” quickly on solutions involving large numbers
but it is very sensitive to the number of degrees of freedom and can easily
degenerate into a brute force search. Furthermore, termination depends on
the bound on the sum of minimal solutions established in [307], which can
cause a huge amount of fruitless search after the last minimal solution has
been found. It performs well on the “sailors and monkey” problem from [83]:

red in DIOPHANTINE :

natSystemSolve(

(0,0) |-> 1 ; (0,1) |-> -5 ; (1,1) |-> 4 ; (1,2) |-> -5 ;

(2,2) |-> 4 ; (2,3) |-> -5 ; (3,3) |-> 4 ; (3,4) |-> -5 ;

(4,4) |-> 4 ; (4,5) |-> -5 ; (5,5) |-> 4 ; (5,6) |-> -5,

0 |-> 1 ; 1 |-> 1 ; 2 |-> 1 ; 3 |-> 1 ; 4 |-> 1 ; 5 |-> 1,

"gcd") .

result IntVectorSetPair:

[

0 |-> 15621 ; 1 |-> 3124 ; 2 |-> 2499 ; 3 |-> 1999 ;

4 |-> 1599 ; 5 |-> 1279 ; 6 |-> 1023

|

0 |-> 15625 ; 1 |-> 3125 ; 2 |-> 2500 ; 3 |-> 2000 ;

4 |-> 1600 ; 5 |-> 1280 ; 6 |-> 1024

]
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Finally, the string "" can be passed as third argument of natSystemSolve,
thus allowing the system to choose which algorithm to use. For convenience,
the operator

op natSystemSolve : IntMatrix IntVector -> IntVectorSetPair .

is equationally defined to invoke the built-in operator with ""

eq natSystemSolve(M:IntMatrix, V:IntVector)

= natSystemSolve(M:IntMatrix, V:IntVector, "") .

endfm
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This chapter describes the equational specification in Maude of a series of typ-
ical data structures, complementing in this way the list and set data structures
provided as predefined modules in Maude and described in Section 9.12.

We start with the well-known stacks, queues, lists, and multisets to con-
tinue with binary and search trees; not only are the simple versions considered,
but also advanced ones such as AVL and 2-3-4 trees. The operator attributes
available in Maude allow the specification of data based on constructors that
satisfy some equational properties, like concatenation of lists which is asso-
ciative and has the empty list as identity, as opposed to the free constructors
available in other functional programming languages. Moreover, the expressive
version of equational logic on which Maude is based, namely membership equa-
tional logic, allows the faithful specification of types whose data are defined
not only by means of constructors, but also by the satisfaction of additional
properties, like sorted lists, search trees, balanced trees, etc. We will see along
this chapter how this is accomplished by means of membership assertions that
equationally characterize the properties satisfied by the corresponding data.

As already mentioned, for all the data structures specifications in this
chapter we do not need to consider rewriting logic in its full generality, but
just membership equational logic; that is, from the Maude language point of
view, all of these specifications are functional modules. In addition, all the
data types that we consider are generic, that is, they are constructions on top
of other data types that appear as parameters in the construction. Therefore,
our specifications are parameterized, making use of the powerful mechanisms
for parameterization based on theories that describe the requirements that
a data type passed as parameter must satisfy for the construction to make
sense, as explained in Section 8.3.

The simplest theory we use is TRIV, which is predefined in Maude (see
Section 9.11.1) and is used as requirement for the parameter of stacks, queues,
lists, multisets, binary trees, and general trees.

A more complex theory is the STOSET theory below, requiring a strict
total order over elements of a given sort, that we recall in flattened form
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from Section 8.3.1 (as mentioned there, the equation for antisymmetry can be
discarded in this theory, because it is implied by the equations for irreflexivity
and transitivity). This theory will be useful in the specification of search trees
and its refinements.

fth STOSET is

protecting BOOL .

sort Elt .

op _<_ : Elt Elt -> Bool .

vars X Y Z : Elt .

eq X < X = false [nonexec label irreflexive] .

ceq X < Z = true if X < Y /\ Y < Z [nonexec label transitive] .

ceq X = Y if X < Y /\ Y < X [nonexec label antisymmetric] .

ceq X = Y if X < Y = false /\ Y < X = false [nonexec label total] .

endfth

As explained in Section 8.3.4, views are used to instantiate parameterized
modules. A view shows how a particular module satisfies a theory, by mapping
sorts and operations in the theory to sorts and operations (or, more generally,
terms) in the target module, in such a way that the induced translations on
equations and membership axioms are provable in the module. In general, this
requires theorem proving, which is not done by the system but can instead be
delegated to a theorem prover like the ITP tool (see Section 23.1.1). However,
in many simple cases the proof of obligations associated with views is com-
pletely obvious, as for example in the following view from the theory TRIV to
the predefined module INT of integers, where, since TRIV has no equations, no
proof obligations are generated.

view Int from TRIV to INT is

sort Elt to Int .

endv

This view is predefined in Maude, together with many others from TRIV

to other predefined modules, as described in Section 9.11.1.
We assume some knowledge about the data structures that are specified.

There are many textbooks that describe well-known imperative and object-
oriented implementations [195, 46, 381]. Less known, but closer to our ap-
proach, are implementations in functional programming languages such as
ML or Haskell [282, 311, 296]; in some cases, our equations are very similar
to the ones given in such textbooks.

10.1 Stacks

We begin our collection of data type specifications with stacks. Since stacks
can be built over any data type, the requirement theory is TRIV. The main
sort is Stack{X}; notice that its structured name makes explicit the label of
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the parameter. In this way, when the module is instantiated with a view, like
for example Nat from TRIV to NAT (which is predefined in Maude, see Sec-
tion 9.11.1), the sort name is also instantiated becoming Stack{Nat}, which
makes clear that the data are stacks of natural numbers.

The only subtle point in a stack specification is that the top and pop

operations are partial, because they are not defined on the empty stack. In our
specification, we use a subsort NeStack{X} of non-empty stacks to handle this
situation. Then, push becomes a constructor of non-empty stacks, while both
empty and push (the latter via subsorting) are constructors of stacks. Then,
the top and pop operations can be defined as total with domain NeStack{X}.

Finally, all modules import implicitly (in including mode) the predefined
BOOL module, so that we can use the sort Bool and the Boolean values true

and false when necessary. However, since Boolean values are not modified in
any way by this importation, we make explicit that it is in protecting mode.

fmod STACK{X :: TRIV} is

protecting BOOL .

sorts NeStack{X} Stack{X} .

subsort NeStack{X} < Stack{X} .

op empty : -> Stack{X} [ctor] .

op push : X$Elt Stack{X} -> NeStack{X} [ctor] .

op pop : NeStack{X} -> Stack{X} .

op top : NeStack{X} -> X$Elt .

op isEmpty : Stack{X} -> Bool .

var S : Stack{X} .

var E : X$Elt .

eq pop(push(E, S)) = S .

eq top(push(E, S)) = E .

eq isEmpty(empty) = true .

eq isEmpty(push(E, S)) = false .

endfm

We instantiate this parameterized module with the predefined view Int

from the theory TRIV to the predefined module INT of integers, so that we can
have an example of term reduction, invoked with the Maude command red.

fmod STACK-TEST is

protecting STACK{Int} .

endfm

Maude> red top(push(4, push(5, empty))) .

result NzNat : 4

For two alternative, object-oriented specifications of stacks, see Section 21.4.3.
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10.2 Queues

The specification for queues is very similar to the one for stacks:

• The requirement theory is TRIV.
• The main sort is Queue{X}.
• The first and dequeue operations are partial, because they are not de-

fined on the empty queue.
• We use a subsort NeQueue{X} of non-empty queues.
• enqueue becomes a constructor of non-empty queues, while both empty

and enqueue (via subsorting) are constructors of queues.
• dequeue and first are defined as total with domain NeQueue{X}.
• The operation isEmpty returns a Boolean value, taking into account the

importation of the predefined BOOL module, which we make explicit in
protecting mode.

fmod QUEUE{X :: TRIV} is

protecting BOOL .

sort NeQueue{X} Queue{X} .

subsort NeQueue{X} < Queue{X} .

op empty : -> Queue{X} [ctor] .

op enqueue : Queue{X} X$Elt -> NeQueue{X} [ctor] .

op dequeue : NeQueue{X} -> Queue{X} .

op first : NeQueue{X} -> X$Elt .

op isEmpty : Queue{X} -> Bool .

var Q : Queue{X} .

var E : X$Elt .

eq dequeue(enqueue(empty, E)) = empty .

ceq dequeue(enqueue(Q, E)) = enqueue(dequeue(Q), E)

if Q =/= empty .

eq first(enqueue(empty, E)) = E .

ceq first(enqueue(Q, E)) = first(Q) if Q =/= empty .

eq isEmpty(empty) = true .

eq isEmpty(enqueue(Q, E)) = false .

endfm

We consider queues of identifiers by means of the predefined view Qid and
show a sample reduction.

fmod QUEUE-TEST is

protecting QUEUE{Qid} .

endfm

Maude> red first(enqueue(enqueue(empty, ’a), ’b)) .

result Qid: ’a
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10.3 Priority queues

For the specification of priority queues, a stronger requirement than TRIV

is needed. We are going to identify priorities with elements in the queue,
which can be compared by means of a total order. Since priorities can be
repeated, the order should be non-strict, like in the NSTOSET theory introduced
in Section 8.3.1. However, in the specification of some operations it is more
convenient to have available also the strict version of the order. Therefore,
we are going to use as requirement the theory TOSET that specifies together
both the strict _<_ and the non-strict _<=_ order relations. This theory was
also introduced in Section 8.3.1, but we recall it here as an extension of the
STOSET theory, also recalled earlier in this chapter.

fth TOSET is

including STOSET .

op _<=_ : Elt Elt -> Bool .

vars X Y : Elt .

eq X <= X = true [nonexec] .

ceq X <= Y = true if X < Y [nonexec] .

ceq X = Y if X <= Y /\ X < Y = false [nonexec] .

endfth

We have as constructors of priority queues the constant empty and the
insert operator, that adds a new element to the priority queue. However,
these constructors are not free, because the order of insertion does not mat-
ter, the priority being the information that determines the actual order in the
queue. This is made explicit in a “commutativity” equation for the insert

operator, but this is not a standard commutativity equation for a binary op-
erator with both arguments of the same sort, and thus it cannot be expressed
as a comm attribute; in any case, it is not terminating, and therefore it has
been stated as nonexecutable by means of the nonexec attribute.

We consider the version of priority queues in which the first element is the
minimum. Both findMin and deleteMin are easily specified as total opera-
tions on non-empty priority queues by structural induction and, when there
are two or more elements in the queue, by comparing the priorities of two
elements.

fmod PRIORITY-QUEUE{X :: TOSET} is

sort NePQueue{X} PQueue{X} .

subsort NePQueue{X} < PQueue{X} .

op empty : -> PQueue{X} [ctor] .

op insert : PQueue{X} X$Elt -> NePQueue{X} [ctor] .

op deleteMin : NePQueue{X} -> PQueue{X} .

op findMin : NePQueue{X} -> X$Elt .

op isEmpty : PQueue{X} -> Bool .

var PQ : PQueue{X} .

vars E F : X$Elt .
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eq insert(insert(PQ, E), F) = insert(insert(PQ, F), E) [nonexec] .

eq deleteMin(insert(empty, E)) = empty .

ceq deleteMin(insert(insert(PQ, E), F))

= insert(deleteMin(insert(PQ, E)), F)

if findMin(insert(PQ, E)) <= F .

ceq deleteMin(insert(insert(PQ, E), F)) = insert(PQ, E)

if F < findMin(insert(PQ, E)) .

eq findMin(insert(empty, E)) = E .

ceq findMin(insert(insert(PQ, E), F)) = findMin(insert(PQ, E))

if findMin(insert(PQ, E)) <= F .

ceq findMin(insert(insert(PQ, E), F)) = F

if F < findMin(insert(PQ, E)) .

eq isEmpty(empty) = true .

eq isEmpty(insert(PQ, E)) = false .

endfm

Even though this is a very abstract specification, it is directly executable
after instantiating the parameter with an appropriate view, for example to
integers, as follows:

view IntAsToset from TOSET to INT is

sort Elt to Int .

endv

fmod PRIORITY-QUEUE-TEST is

protecting PRIORITY-QUEUE{IntAsToset} .

endfm

Maude> red findMin(insert(insert(empty, 4), 5)) .

result NzNat: 4

We consider a slightly more complex instantiation with elements that are
pairs, so that the first component of the pair can be thought of as the pri-
ority and the second one as related information. For this we define first a
parameterized module with a pair constructor and the corresponding order
operations that simply reflect the order in the first component.

fmod PRIORITY-PAIR{X :: TOSET, Y :: TRIV} is

sort Priority-Pair{X, Y} .

op <_,_> : X$Elt Y$Elt -> Priority-Pair{X, Y} .

ops _<_ _<=_ : Priority-Pair{X, Y} Priority-Pair{X, Y} -> Bool .

vars A A’ : X$Elt .

vars B B’ : Y$Elt .

eq < A, B > < < A’, B’ > = A < A’ .

eq < A, B > <= < A’, B’ > = A <= A’ .

endfm
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Using the IntAsToset view above and the predefined view String we
instantiate this parameterized module and then define the following view:

view IntStringAsToset from TOSET to

PRIORITY-PAIR{IntAsToset, String} is

sort Elt to Priority-Pair{IntAsToset, String} .

endv

Now we instantiate again the PRIORITY-QUEUE module and perform a sim-
ple reduction.

fmod PRIORITY-QUEUE-TEST-PAIR is

protecting PRIORITY-QUEUE{IntStringAsToset} .

endfm

Maude> red findMin(insert(insert(insert(empty, < 4, "d" >),

< 8, "h" >),

< 1, "a" >)) .

result Priority-Pair{IntAsToset, String}: < 1, "a" >

10.4 Lists

There are different ways of building lists. One possibility is to begin with the
empty list and the singleton lists, and then use the concatenation operation
to get bigger lists. However, concatenation cannot be a free list constructor,
because it satisfies an associativity equation and has the empty list as identity.
This approach was applied to concrete lists in Section 5.3, is also used in the
predefined module for generic lists described in Section 9.12.1, and appears
in many similar examples throughout this book. Given the support for equa-
tional attributes (associativity, commutativity, etc.) in Maude, as explained in
Section 4.4.1, one can argue that this is indeed the most natural specification
for lists in Maude.

Here we use instead the two standard free constructors for lists that can
be found in many functional programming languages: the empty list nil, here
denoted [], and the cons operation that adds an element to the beginning of a
list, here denoted with the mixfix syntax _:_. This approach facilitates prov-
ing list properties by structural induction in the ITP (see Section 23.1.1), or
using tools like the Church-Rosser Checker (see Section 23.1.3) or the Maude
Termination Tool (see Section 23.1.2), and provides a simple basis for speci-
fying sorted lists and sorting operations on them in Section 10.5.

As usual, head and tail are the selectors associated with the _:_ construc-
tor. Since they are not defined on the empty list, we avoid their partiality in
the same way as we have done for stacks and queues in the previous sections
by means of a subsort NeList{X} of non-empty lists.

fmod LIST-CONS{X :: TRIV} is

protecting NAT .



318 10 Specifying Parameterized Data Structures in Maude

sorts NeList{X} List{X} .

subsort NeList{X} < List{X} .

op [] : -> List{X} [ctor] .

op _:_ : X$Elt List{X} -> NeList{X} [ctor] .

op tail : NeList{X} -> List{X} .

op head : NeList{X} -> X$Elt .

var E : X$Elt .

var N : Nat .

vars L L’ : List{X} .

eq tail(E : L) = L .

eq head(E : L) = E .

Three interesting operations on lists are list concatenation (here denoted
with mixfix syntax _++_), the length of a list, and reversing a list. The length
operator has a result of sort Nat, that comes from the predefined module NAT,
imported in protecting mode. These three operations are defined as usual by
structural induction on the two constructors, with an equation for the empty
base case and another for the cons case E : L.

Here, like in most specifications in this chapter, we are not concerned
with efficiency and therefore we just specify the operations in a simple way,
without using, for example, tail-recursive auxiliary operations in the style of
Section 9.12.1.

op _++_ : List{X} List{X} -> List{X} .

op length : List{X} -> Nat .

op reverse : List{X} -> List{X} .

eq [] ++ L = L .

eq (E : L) ++ L’ = E : (L ++ L’) .

eq length([]) = 0 .

eq length(E : L) = 1 + length(L) .

eq reverse([]) = [] .

eq reverse(E : L) = reverse(L) ++ (E : []) .

In this specification of generic lists we also add two operations that will be
useful later, in Section 10.5, when sorting lists: take_from_ and throw_from_.
The first one builds a list by taking the first n elements of the given list, while
the second one deletes the first n elements of the given list. Both of them are
defined by structural induction on both arguments, the base case being when
either the first is 0 or the second is empty. As usual, s_ denotes the successor
operator on natural numbers.

op take_from_ : Nat List{X} -> List{X} .

op throw_from_ : Nat List{X} -> List{X} .
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eq take 0 from L = [] .

eq take N from [] = [] .

eq take s N from (E : L) = E : take N from L .

eq throw 0 from L = L .

eq throw N from [] = [] .

eq throw s N from (E : L) = throw N from L .

endfm

The following sample reduction shows the result of reversing a list of char-
acter strings.

fmod LIST-CONS-TEST is

protecting LIST-CONS{String} .

endfm

Maude> red reverse("one" : "two" : "three" : []) .

result NeList{String}: "three" : "two" : "one" : []

10.5 Sorted lists

In order-sorted equational specifications, subsorts must be defined by means
of constructors, but it is not possible to have a subsort of sorted lists, for
example, defined by a property over lists; a more expressive formalism is
needed.1 Membership equational logic allows subsort definition by means of
conditions involving equations and/or sort predicates. In this example we use
this technique to define a subsort of sorted lists, included in the sort of lists
imported from the module LIST-CONS in Section 10.4. A similar technique is
used in Sections 8.3.5 and 24.2.8 to define sorted lists as a subsort of lists
based on associative concatenation with identity. Furthermore, we will also
specify here different well-known sorting algorithms.

Parameterized sorted lists need a stronger requirement than TRIV, because
a total order over the elements to be sorted is needed. Since repetitions pose no
problems for sorting a list, the order relation should be non-strict, like in the
NSTOSET theory introduced in Section 8.3.1 and also used in the specification
of sorted lists in Section 8.3.5. However, for the specification of the sorting
algorithms, it is more convenient to use also the strict version of the order. For
these reasons, we will use as requirement for parameterized sorted lists the
theory TOSET, also introduced in Section 8.3.1 and recalled in Section 10.3.

The parameterized module for sorted lists imports the parameterized list
module. However, note that we want lists over a totally ordered set, instead

1 This lack of expressiveness was understood from within order-sorted algebra,
leading to the proposal of sort constraints in [175], a precursor of membership
axioms. However, the logical basis of sort constraints was never fully developed
within order-sorted algebra.
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of lists over any set; therefore, first we partially instantiate LIST-CONS with
an inclusion view from the theory TRIV to the theory TOSET.

view TOSET from TRIV to TOSET is

endv

We are still left with a parameterized module and corresponding dependent
sorts, but now with respect to the TOSET requirement. This is the reason
justifying the notation LIST-CONS{TOSET}{X} in the protecting importation
below, as well as NeList{TOSET}{X} and List{TOSET}{X} as names of the
imported sorts.

Notice the three membership axioms defining the subsort SortedList{X}:
the empty and singleton lists are always sorted, and a longer list is sorted
when the first element is less than or equal to the second, and the list without
the first element is also sorted.

fmod SORTED-LIST{X :: TOSET} is

protecting LIST-CONS{TOSET}{X} .

sorts SortedList{X} NeSortedList{X} .

subsorts NeSortedList{X} < SortedList{X} < List{TOSET}{X} .

subsort NeSortedList{X} < NeList{TOSET}{X} .

vars N M : X$Elt .

vars L L’ : List{TOSET}{X} .

vars OL OL’ : SortedList{X} .

var NEOL : NeSortedList{X} .

mb [] : SortedList{X} .

mb (N : []) : NeSortedList{X} .

cmb (N : NEOL) : NeSortedList{X} if N <= head(NEOL) .

As part of this module, we also define several well-known sorting op-
erations: insertion-sort, quicksort, and mergesort, based on appro-
priate auxiliary operations. The important point is that we are able to
give finer typing to all these sorting operations than the usual typing in
other algebraic specification frameworks or functional programming lan-
guages. For example, insertion-sort is declared as an operation from
List{TOSET}{X} to SortedList{X}, instead of the much less informative typ-
ing from List{TOSET}{X} to List{TOSET}{X}. The same applies to each of
the auxiliary operations. Furthermore, a function that requires its input ar-
gument to be a sorted list can now be defined as a total function, whereas in
less expressive typing formalisms it would have to be either partial, or to be
defined with exceptional behavior on the erroneous arguments.

The operation insert-list inserts an element in the appropriate position
of an already sorted list, so that the resulting list is also sorted. The sorting
operation insertion-sort recursively sorts the list without the first element
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and then calls insert-list, which inserts the missing element in the correct
position.

op insertion-sort : List{TOSET}{X} -> SortedList{X} .

op insert-list : SortedList{X} X$Elt -> SortedList{X} .

eq insertion-sort([]) = [] .

eq insertion-sort(N : L) = insert-list(insertion-sort(L), N) .

eq insert-list([], M) = M : [] .

ceq insert-list(N : OL, M) = M : N : OL if M <= N .

ceq insert-list(N : OL, M) = N : insert-list(OL, M) if N < M .

The sorting operation mergesort splits a given list in half by means of
the operations take_from_ and throw_from_ described in Section 10.4 above,
recursively sorts each sublist, and then calls the commutative merge operation
on the sorted sublists to obtain the final sorted result. In Section 9.12.6 on
sortable lists there is a more efficient (albeit more complex) definition of the
mergesort algorithm on lists.

op mergesort : List{TOSET}{X} -> SortedList{X} .

op merge : SortedList{X} SortedList{X} -> SortedList{X} [comm] .

eq mergesort([]) = [] .

eq mergesort(N : []) = N : [] .

ceq mergesort(L)

= merge(mergesort(take (length(L) quo 2) from L),

mergesort(throw (length(L) quo 2) from L))

if length(L) > 1 .

eq merge(OL, []) = OL .

ceq merge(N : OL, M : OL’) = N : merge(OL, M : OL’) if N <= M .

Finally, quicksort works on a list by separating its elements into those
smaller than the first element (taken as the pivot) and those bigger than
the first, recursively sorts each of the resulting lists, and simply puts them
together by concatenating them with the pivot in the middle.

op quicksort : List{TOSET}{X} -> SortedList{X} .

op leq-elems : List{TOSET}{X} X$Elt -> List{TOSET}{X} .

op gr-elems : List{TOSET}{X} X$Elt -> List{TOSET}{X} .

eq quicksort([]) = [] .

eq quicksort(N : L)

= quicksort(leq-elems(L,N)) ++ (N : quicksort(gr-elems(L,N))) .

eq leq-elems([], M) = [] .

ceq leq-elems(N : L, M) = N : leq-elems(L, M) if N <= M .

ceq leq-elems(N : L, M) = leq-elems(L, M) if M < N .
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eq gr-elems([], M) = [] .

ceq gr-elems(N : L, M) = gr-elems(L, M) if N <= M .

ceq gr-elems(N : L, M) = N : gr-elems(L, M) if M < N .

endfm

We now apply the sorting operations to lists of natural numbers.

view NatAsToset from TOSET to NAT is

sort Elt to Nat .

endv

fmod SORTED-LIST-TEST is

protecting SORTED-LIST{NatAsToset} .

endfm

Maude> red insertion-sort(5 : 4 : 3 : 2 : 1 : 0 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []

Maude> red mergesort(5 : 3 : 1 : 0 : 2 : 4 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []

Maude> red quicksort(0 : 1 : 2 : 5 : 4 : 3 : []) .

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : []

We study the efficiency of these sorting algorithms using Maude’s profiler
in Section 24.1.4.

10.6 Multisets

In this section we specify multisets by means of a union constructor that satis-
fies associativity, commutativity, and identity structural axioms, all declared
as attributes. This approach was introduced for concrete multisets in Sec-
tion 5.4 and is here generalized to the case of generic multisets parameterized
over TRIV.

Moreover, in order to have a more complete multiset specification we add
several additional interesting operations, again defined in a simple way with-
out taking into account efficiency concerns.

Notice that singleton multisets are identified with elements by declaring
X$Elt as a subsort of Mset{X}.

fmod MULTISET{X :: TRIV} is

protecting NAT .

sort Mset{X} .

subsort X$Elt < Mset{X} .

op empty : -> Mset{X} [ctor] .

op __ : Mset{X} Mset{X} -> Mset{X} [ctor assoc comm id: empty] .
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The operation isEmpty checks if a multiset is empty, while size calculates
the size of a multiset, i.e., the total number of elements taking into account
the multiplicity of each one.

op isEmpty : Mset{X} -> Bool .

op size : Mset{X} -> Nat .

vars E E’ : X$Elt .

vars S S’ : Mset{X} .

eq isEmpty(empty) = true .

eq isEmpty(E S) = false .

eq size(empty) = 0 .

eq size(E S) = 1 + size(S) .

The isIn operation checks if an element appears in a multiset and mult

calculates the multiplicity of a given element. Both are specified by means of
the otherwise attribute (explained in Section 4.5.4).

To see if a natural number E is in a multiset, we can match the multiset
against the pattern E S; if the matching succeeds, then the result is true,
otherwise, we know that the element does not occur in the multiset and the
result is false.

The same technique can be used to count the number of occurrences of
a given element in a given multiset: if the multiset matches the pattern E S,
then we know that E appears at least once and count recursively the remaining
occurrences; otherwise, E does not occur and thus its multiplicity is zero.

op isIn : X$Elt Mset{X} -> Bool .

op mult : X$Elt Mset{X} -> Nat .

eq isIn(E, E S) = true .

eq isIn(E, S) = false [owise] .

eq mult(E, E S) = 1 + mult(E, S) .

eq mult(E, S) = 0 [owise] .

The delete operation removes all occurrences of an element from a mul-
tiset, while delete1 removes just one occurrence. In both cases, the multiset
does not change when the element does not appear in it. The equational def-
inition of both operations is also based on the otherwise attribute.

op delete : X$Elt Mset{X} -> Mset{X} .

op delete1 : X$Elt Mset{X} -> Mset{X} .

eq delete(E, E S) = delete(E, S) .

eq delete(E, S) = S [owise] .

eq delete1(E, E S) = S .

eq delete1(E, S) = S [owise] .
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The intersection and difference operations over multisets are similar to the
operations with the same name on sets, but they need to take into account
the multiplicity of elements, as expected. We define them in a very simple
way using again the otherwise attribute: if two multisets have an element in
common, which is checked by means of matching with a common variable E,
either we take such element in the case of the intersection or discard it in the
case of the difference; otherwise, we know the intersection is empty and the
difference coincides with the first argument.

op intersection : Mset{X} Mset{X} -> Mset{X} .

op difference : Mset{X} Mset{X} -> Mset{X} .

eq intersection(E S, E S’) = E intersection(S, S’) .

eq intersection(S, S’) = empty [owise] .

eq difference(E S, E S’) = difference(S, S’) .

eq difference(S, S’) = S [owise] .

endfm

We show several sample reductions on multisets of integers.

fmod MULTISET-TEST is

protecting MULTISET{Int} .

endfm

Maude> red mult(2, 2 2 1 2 3 2) .

result NzNat: 4

Maude> red intersection(2 2 3 4, 2 2 1 3 3 2) .

result Mset{Int}: 2 2 3

Maude> red difference(2 2 3 4, 2 2 1 3 3 2) .

result NzNat: 4

Notice that Maude computes the least sort of the result. While in the first
reduction above we expect a natural number as the result of the multiplicity
operation, in the last reduction we expect a multiset as the result of the
difference operation; indeed, in this example we get a singleton multiset, which
is identified with the corresponding number and given the least sort according
to the subsort relationships NzNat < Int < Mset{Int}.

10.7 Binary trees

Section 5.1 introduces non-empty binary trees over natural numbers, where
elements can only appear in the leaves. Here we consider a parameterized
version of the more standard binary trees with elements in all nodes, including
the empty tree. Such binary trees (parameterized by the theory TRIV) are built
with two free constructors: the empty tree, denoted empty, and an operation
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_[_]_ that puts a data element in the root above two given trees, its left
and right children. The three selectors associated to this constructor (root,
left, and right) only make sense for non-empty trees, that belong to the
corresponding subsort.

fmod BIN-TREE{X :: TRIV} is

protecting LIST-CONS{X} .

sorts NeBinTree{X} BinTree{X} .

subsort NeBinTree{X} < BinTree{X} .

op empty : -> BinTree{X} [ctor] .

op _[_]_ : BinTree{X} X$Elt BinTree{X} -> NeBinTree{X} [ctor] .

ops left right : NeBinTree{X} -> BinTree{X} .

op root : NeBinTree{X} -> X$Elt .

var E : X$Elt .

vars L R : BinTree{X} .

vars NEL NER : NeBinTree{X} .

eq left(L [E] R) = L .

eq right(L [E] R) = R .

eq root(L [E] R) = E .

The operation that calculates the depth (or height) of a binary tree calls
the max operation on natural numbers (see Section 9.2) in the recursive non-
empty case to obtain the maximum of two such numbers. Notice that the mod-
ule NAT is indirectly imported through the explicit importation (in protecting

mode) of the module LIST-CONS.

op depth : BinTree{X} -> Nat .

eq depth(empty) = 0 .

eq depth(L [E] R) = 1 + max(depth(L), depth(R)) .

Finally, we also have three operations that calculate the standard binary
tree traversals and another operation that returns the list of leaves of a binary
tree, all of them with List{X} as value sort; this is the reason why this
module imports the LIST-CONS module (of course, we could instead import
the predefined module LIST of Section 9.12.1). Since these four operations
have the same rank, they are all declared together by means of the keyword
ops.

ops leaves preorder inorder postorder : BinTree{X} -> List{X} .

eq leaves(empty) = [] .

eq leaves(empty [E] empty) = E : [] .

eq leaves(NEL [E] R) = leaves(NEL) ++ leaves(R) .

eq leaves(L [E] NER) = leaves(L) ++ leaves(NER) .
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eq preorder(empty) = [] .

eq preorder(L [E] R) = E : (preorder(L) ++ preorder(R)) .

eq inorder(empty) = [] .

eq inorder(L [E] R) = inorder(L) ++ (E : inorder(R)) .

eq postorder(empty) = [] .

eq postorder(L [E] R)

= postorder(L) ++ (postorder(R) ++ (E : [])) .

endfm

We calculate the postorder traversal of a binary tree over integers as fol-
lows:

fmod BIN-TREE-TEST is

protecting BIN-TREE{Int} .

endfm

Maude> red postorder((empty [1] empty) [2] (empty [3] empty)) .

result NeList{Int}: 1 : 3 : 2 : []

10.8 General trees

General trees can have a variable number of children for each node. One can
specify them by using an auxiliary data type of forests that behave like lists
of trees, with constructors empty-forest and _:_. Then the only constructor
_[_] for general trees has as first argument the element stored in the root
node of the tree, and as second argument the forest formed by the children.
The operations root and children are the selectors associated with this con-
structor.

The operation #children calculates the number of children of a tree by
calculating the length of the corresponding forest. A tree is a leaf when it has
no children, that is, the corresponding forest is empty. In the equation below,
the operation leaf? is defined by means of #children but other equivalent
definitions are possible.

fmod GEN-TREE{X :: TRIV} is

protecting LIST-CONS{X} .

sorts Tree{X} Forest{X} .

op _[_] : X$Elt Forest{X} -> Tree{X} [ctor] .

op empty-forest : -> Forest{X} [ctor] .

op _:_ : Tree{X} Forest{X} -> Forest{X} [ctor] .

op root : Tree{X} -> X$Elt .

op children : Tree{X} -> Forest{X} .

op #children : Tree{X} -> Nat .
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op length : Forest{X} -> Nat .

op leaf? : Tree{X} -> Bool .

var E : X$Elt .

var T : Tree{X} .

var F : Forest{X} .

eq root(E [F]) = E .

eq children(E [F]) = F .

eq length(empty-forest) = 0 .

eq length(T : F) = 1 + length(F) .

eq #children(E [F]) = length(F) .

eq leaf?(T) = #children(T) == 0 .

Most operations on general trees are defined by means of corresponding
operations on forests (i.e., lists of trees), so that each pair of such operations
is defined in a mutually recursive fashion. For example, the depth of a tree is
one plus the depth of its forest, while the depth of a forest is the maximum
of the depths of all its trees.

The degree of a general tree is the maximum number of children that a
node has, and it is defined in a similar way by means of an auxiliary operation
on forests that calculates the maximum number of children that a node in any
one of the trees in a given forest has.

ops depth degree : Tree{X} -> Nat .

ops depth-forest degree-forest : Forest{X} -> Nat .

eq depth(E [F]) = 1 + depth-forest(F) .

eq depth-forest(empty-forest) = 0 .

eq depth-forest(T : F) = max(depth(T), depth-forest(F)) .

eq degree(E [F]) = max(length(F), degree-forest(F)) .

eq degree-forest(empty-forest) = 0 .

eq degree-forest(T : F) = max(degree(T), degree-forest(F)) .

On general trees we consider preorder and postorder traversals, which, like
the previous operations, are defined by means of corresponding “traversals”
on forests. A traversal of a forest is obtained by concatenating the traversals
of all the trees in such forest.

ops preorder postorder : Tree{X} -> List{X} .

ops preorder-forest postorder-forest : Forest{X} -> List{X} .

eq preorder(E [F]) = E : preorder-forest(F) .

eq preorder-forest(empty-forest) = [] .

eq preorder-forest(T : F) = preorder(T) ++ preorder-forest(F) .

eq postorder(E [F]) = postorder-forest(F) ++ (E : []) .



328 10 Specifying Parameterized Data Structures in Maude

eq postorder-forest(empty-forest) = [] .

eq postorder-forest(T : F) = postorder(T) ++ postorder-forest(F) .

endfm

The following example shows the result of traversing in postorder a general
tree over the integers.

fmod GEN-TREE-TEST is

protecting GEN-TREE{Int} .

endfm

Maude> red postorder(

1 [ 3 [ 4 [ empty-forest ] : empty-forest ]

: (2 [ empty-forest ] : empty-forest) ]) .

result NeList{Int}: 4 : 3 : 2 : 1 : []

10.9 Binary search trees

This example is similar in style to the one for sorted lists in Section 10.5, but
it is a bit more complex. We specify a subsort of (binary) search trees by using
several membership axioms over terms of the sort of binary trees defined in
Section 10.7.

Even though we allowed repeated elements in a sorted list, this should not
be the case in a search tree, where all nodes must contain different values. A
binary search tree is either the empty binary tree or a non-empty binary tree
such that all elements in the left child are strictly smaller than the element in
the root, all elements in the right child are strictly bigger than it, and both the
left and right children are also binary search trees. This is checked by means
of auxiliary operations that calculate the minimum and maximum elements
in a non-empty search tree, and that are also useful when deleting an element.
Again, the most important point is that membership equational logic allows us
both to define the corresponding subsort by means of membership assertions
(we consider five cases in the specification below) and to assign typings in the
best possible way to all the operations defined for this data type.

Although we could parameterize binary search trees just with respect to a
strict total order given by the theory STOSET (introduced in Section 8.3.1 and
recalled at the beginning of this chapter), we specify here the version of search
trees containing in the nodes pairs formed by a key and its associated contents,
so that we think of search trees as dictionaries. The search tree structure is
with respect to a strict total order on keys, but contents can be over an
arbitrary sort. When we insert a pair 〈K,C〉 and the key K already appears
in the tree in a pair 〈K,C ′〉, insertion takes place by combining the contents
C ′ and C. This combination can be replacing the first with the second, just
forgetting the second, addition if the trees are used to implement multisets
and the Cs represent multiplicities, etc. Therefore, as part of the requirement
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parameter theory for the contents we will have an associative binary operator
combine on the sort Contents.

fth CONTENTS is

sort Contents .

op combine : Contents Contents -> Contents [assoc] .

endfth

In principle, a pair construction should be enough to put together the
information that we have just described, but we will import the module for
search trees in the specifications of more complex data structures that happen
to be particular cases of search trees, such as AVL and red-black trees. In those
cases, it is important to add new information in the nodes: for AVL trees, one
needs the depth of the tree hanging in each node, while for red-black trees
one needs the appropriate node color. Therefore, taking this into account, it
is important to define a data type that is extensible, and we have considered
records for this, defined in the following module RECORD. A record is defined as
a collection of pairs consisting of a field name and an associated value. Notice
that the associative and commutative union operator is denoted by _,_ and
is declared at the level of kinds, because it is partial in the sense that the
union of two records is not a record unless some additional constraints are
satisfied. These constraints will be made explicit by means of memberships,
which also require the associative operator to be declared at the kind level
(see Section 24.2.8).

fmod RECORD is

sort Record .

op null : -> Record [ctor] .

op _,_ : [Record] [Record] -> [Record] [ctor assoc comm id: null] .

endfm

In the SEARCH-TREE module below, after importing the binary trees instan-
tiated with a Record view, we define the fields for keys (with syntax key:_)
and for contents (with syntax contents:_), together with corresponding pro-
jection operations that extract the appropriate values from records that have
those fields, belonging to a subsort SearchRecord of search records. But no-
tice that these operations, as well as the operations on trees, can be applied
to records that have additional fields, unknown yet at this time, by using a
variable Rec that takes care of “the rest of the record.” The auxiliary opera-
tions numContents and numKeys are used to make sure that a search record
has exactly one field contents and one field key, respectively.

This construction of adding fields to records is adding new data to the sort
Record, whose elements are the data in the nodes of the trees; in this way, we
are also adding new data to the NeBinTree{Record} and BinTree{Record}

sorts of binary trees. For this reason, we have imported the module BIN-TREE

(after instantiating it with the view Record) in extending mode.
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view Record from TRIV to RECORD is

sort Elt to Record .

endv

In addition to operations for insertion and deletion, we have a lookup op-
eration that returns the contents associated with a given key, when the key
appears in the tree. However, this last operation is partial, not being defined
when the key does not appear in the tree; this partiality cannot be handled
by means of a subsort, because the partiality condition depends on the con-
crete values of the arguments. Instead, we use the technique of declaring this
operation as total with coarity a supersort of the expected sort, containing
a special value not-found which is returned by the lookup operation when
the key does not appear in the tree. This is done by instantiating the pa-
rameterized module MAYBE, introduced in Section 8.3.3, with the following
view

view Contents from TRIV to CONTENTS is

sort Elt to Contents .

endv

and renaming the constant maybe to not-found.
The operations on binary search trees are specified as usual, by structural

induction, and in the non-empty case by comparing the given key K with the
key in the root of the tree and distinguishing the three cases according to
whether K is smaller than, equal to, or bigger than the root key.

fmod SEARCH-TREE{X :: STOSET, Y :: CONTENTS} is

extending BIN-TREE{Record} .

protecting MAYBE{Contents}{Y} * (op maybe to not-found) .

sorts SearchRecord{X, Y} SearchTree{X, Y} NeSearchTree{X, Y} .

subsort SearchRecord{X, Y} < Record .

subsorts NeSearchTree{X, Y} < SearchTree{X, Y} < BinTree{Record} .

subsort NeSearchTree{X, Y} < NeBinTree{Record} .

--- Search records, used as nodes in search trees.

var Rec : [Record] .

var K : X$Elt .

var C : Y$Contents .

op key:_ : X$Elt -> Record [ctor] .

op key : Record ~> X$Elt .

op numKeys : Record -> Nat .

eq numKeys(key: K, Rec) = 1 + numKeys(Rec) .

eq numKeys(Rec) = 0 [owise] .

ceq key(Rec, key: K) = K if numKeys(Rec, key: K) = 1 .

op contents:_ : Y$Contents -> Record [ctor] .

op numContents : Record -> Nat .
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op contents : Record ~> Y$Contents .

eq numContents(contents: C, Rec) = 1 + numContents(Rec) .

eq numContents(Rec) = 0 [owise] .

ceq contents(Rec, contents: C) = C

if numContents(Rec, contents: C) = 1 .

cmb Rec : SearchRecord{X, Y}

if numContents(Rec) = 1 /\ numKeys(Rec) = 1 .

--- Definition of binary search trees.

ops min max : NeSearchTree{X, Y} -> SearchRecord{X, Y} .

var SRec : SearchRecord{X, Y} .

vars L R : SearchTree{X, Y} .

vars L’ R’ : NeSearchTree{X, Y} .

var C’ : Y$Contents .

mb empty : SearchTree{X, Y} .

mb empty [SRec] empty : NeSearchTree{X, Y} .

cmb L’ [SRec] empty : NeSearchTree{X, Y}

if key(max(L’)) < key(SRec) .

cmb empty [SRec] R’ : NeSearchTree{X, Y}

if key(SRec) < key(min(R’)) .

cmb L’ [SRec] R’ : NeSearchTree{X, Y}

if key(max(L’)) < key(SRec) /\ key(SRec) < key(min(R’)) .

eq min(empty [SRec] R) = SRec .

eq min(L’ [SRec] R) = min(L’) .

eq max(L [SRec] empty) = SRec .

eq max(L [SRec] R’) = max(R’) .

--- Operations for binary search trees.

op insert : SearchTree{X, Y} X$Elt Y$Contents

-> SearchTree{X, Y} .

op lookup : SearchTree{X, Y} X$Elt -> Maybe{Contents}{Y} .

op delete : SearchTree{X, Y} X$Elt -> SearchTree{X, Y} .

op find : SearchTree{X, Y} X$Elt -> Bool .

eq insert(empty, K, C) = empty [key: K, contents: C] empty .

ceq insert(L [Rec, key: K, contents: C] R, K, C’)

= L [Rec, key: K, contents: combine(C, C’)] R

if numKeys(Rec) = 0 /\ numContents(Rec) = 0 .

ceq insert(L [SRec] R, K, C) = insert(L, K, C) [SRec] R

if K < key(SRec) .

ceq insert(L [SRec] R, K, C) = L [SRec] insert(R, K, C)

if key(SRec) < K .

eq lookup(empty, K) = not-found .

ceq lookup(L [SRec] R, K) = C
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if key(SRec) = K /\ C := contents(SRec) .

ceq lookup(L [SRec] R, K) = lookup(L, K) if K < key(SRec) .

ceq lookup(L [SRec] R, K) = lookup(R, K) if key(SRec) < K .

eq delete(empty, K) = empty .

ceq delete(L [SRec] R, K) = delete(L, K) [SRec] R

if K < key(SRec) .

ceq delete(L [SRec] R, K) = L [SRec] delete(R, K)

if key(SRec) < K .

ceq delete(empty [SRec] R, K) = R if key(SRec) = K .

ceq delete(L [SRec] empty, K) = L if key(SRec) = K .

ceq delete(L’ [SRec] R’, K) = L’ [min(R’)] delete(R’, key(min(R’)))

if key(SRec) = K .

eq find(empty, K) = false .

ceq find(L [SRec] R, K) = true if key(SRec) = K .

ceq find(L [SRec] R, K) = find(L, K) if K < key(SRec) .

ceq find(L [SRec] R, K) = find(R, K) if key(SRec) < K .

endfm

We instantiate this parameterized module, in such a way that keys become
integers and contents become strings, by means of the following views:

view StringAsContents from CONTENTS to STRING is

sort Contents to String .

op combine to _+_ .

endv

view IntAsStoset from STOSET to INT is

sort Elt to Int .

endv

fmod SEARCH-TREE-TEST is

protecting SEARCH-TREE{IntAsStoset, StringAsContents} .

endfm

Maude> red insert(insert(empty, 1, "a"), 2, "b") .

result NeSearchTree{IntAsStoset, StringAsContents}:

empty

[key: 1, contents: "a"]

(empty [key: 2, contents: "b"] empty)

Maude> red lookup(insert(insert(insert(empty, 1, "a"),

2, "b"),

1, "c"),

1) .

result String: "ac"
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10.10 AVL trees

It is well known that in order to have better efficiency on search trees one has
to keep them balanced. One nice solution to this problem is provided by AVL
trees; these are binary search trees satisfying the additional constraint that
in each node the difference between the depth of its children is at most one.
This constraint guarantees that the depth of the tree is always logarithmic
with respect to the number of nodes, thus obtaining a logarithmic cost for
the operations of search, lookup, insertion, and deletion, assuming that the
last two are implemented in such a way that they keep the properties of the
balanced tree [195, 46, 381].

As we have already anticipated in Section 10.9, it is convenient to have
in each node as additional data the depth of the tree having this node as
root, so that comparing the depths of children to check the balance property
of the AVL trees becomes very quick. This is accomplished by importing the
module SEARCH-TREE of search trees and adding a depth field to the record
structure, together with the corresponding projection and the auxiliary oper-
ation numDepths that is used in defining an appropriate subsort AVLRecord

of SearchRecord.

fmod AVL{X :: STOSET, Y :: CONTENTS} is

extending SEARCH-TREE{X, Y} .

--- Add depth to search records.

var N : Nat .

var Rec : Record .

sort AVLRecord{X, Y} .

subsort AVLRecord{X, Y} < SearchRecord{X, Y} .

op depth:_ : Nat -> Record [ctor] .

op numDepths : Record -> Nat .

op depth : Record ~> Nat .

eq numDepths(depth: N, Rec) = 1 + numDepths(Rec) .

eq numDepths(Rec) = 0 [owise] .

ceq depth(Rec,depth: N) = N if numDepths(Rec) = 0 .

var SRec : SearchRecord{X, Y} .

cmb SRec : AVLRecord{X, Y} if numDepths(SRec) = 1 .

The sort AVL{X,Y} of AVL trees is a subsort of the sort SearchTree{X,Y}
of search trees, defined by means of additional membership assertions; in the
specification below, just two memberships are enough, one for the empty tree
and the other for non-empty AVL trees. Notice the use of the symmetric
difference operator sd on natural numbers; the result of this operation applied
to two natural numbers is the result of subtracting the least from the greatest
of the two (see Section 9.2). The commutativity of this operation is very
convenient here, because we do not need to care about which one of the two
trees is higher.



334 10 Specifying Parameterized Data Structures in Maude

Rec’

Rec

L

Rec’’

RL RR

T2

LR

Rec’’

Rec

L RL

Rec’

RR T2

Fig. 10.1. Left-right rotation in an AVL tree

sorts NeAVL{X, Y} AVL{X, Y} .

subsorts NeAVL{X, Y} < AVL{X, Y} < SearchTree{X, Y} .

subsorts NeAVL{X, Y} < NeSearchTree{X, Y} .

vars AVLRec AVLRec’ AVLRec’’ : AVLRecord{X, Y} .

vars L R L’ R’ RL RR LR LL T1 T2 : AVL{X, Y} .

var ST : NeSearchTree{X, Y} .

mb empty : AVL{X, Y} .

cmb ST : NeAVL{X, Y}

if L [AVLRec] R := ST /\ sd(depth(L), depth(R)) <= 1

/\ 1 + max(depth(L), depth(R)) = depth(AVLRec) .

For lookup we use the same operation as for search trees, imported from
the module SEARCH-TREE; on the other hand, insertion and deletion have to be
redefined so that they keep the AVL properties. They work as in the general
case, by comparing the given key with the one in the root, but the final
result is built by means of an auxiliary join operation that checks that the
difference between the depths of the two children is less than one, using again
the symmetric difference operator sd; when this is not the case, appropriate
rotation operations are invoked. It is enough to have a left rotation lRotate

and a right rotation rRotate. This is quite similar to the typical imperative
or object-oriented versions of these operations [195, 46, 381]. For example, the
second equation for lRotate is illustrated in Figure 10.1.

op insertAVL : AVL{X, Y} X$Elt Y$Contents -> NeAVL{X, Y} .

op deleteAVL : X$Elt AVL{X, Y} -> AVL{X, Y} .

op depthAVL : AVL{X, Y} -> Nat .

op buildAVL : AVL{X, Y} Record AVL{X, Y} ~> AVL{X, Y} .

op join : AVL{X, Y} Record AVL{X, Y} ~> AVL{X, Y} .

op lRotate : AVL{X, Y} AVLRecord{X, Y} AVL{X, Y} ~> AVL{X, Y} .

op rRotate : AVL{X, Y} AVLRecord{X, Y} AVL{X, Y} ~> AVL{X, Y} .

vars K K’ : X$Elt .
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vars C C’ : Y$Contents .

eq insertAVL(empty, K, C)

= buildAVL(empty, (depth: 0, key: K, contents: C), empty) .

ceq insertAVL(L [Rec, key: K, contents: C’] R, K, C)

= L [Rec, key: K, contents: combine(C, C’)] R

if numKeys(Rec) = 0 /\ numContents(Rec) = 0

/\ numDepths(Rec) = 1 .

ceq insertAVL(L [AVLRec] R, K, C)

= join(insertAVL(L, K, C), AVLRec, R)

if K < key(AVLRec) .

ceq insertAVL(L [AVLRec] R, K, C)

= join(L, AVLRec, insertAVL(R, K, C))

if key(AVLRec) < K .

eq depthAVL(empty) = 0 .

eq depthAVL(L [AVLRec] R) = depth(AVLRec) .

ceq buildAVL(T1, (Rec, depth: N), T2)

= T1 [Rec, depth: (max(depthAVL(T1), depthAVL(T2)) + 1)] T2

if numDepths(Rec) = 0 /\ numKeys(Rec) = 1

/\ numContents(Rec) = 1 .

ceq join(T1, AVLRec, T2) = buildAVL(T1, AVLRec, T2)

if sd(depthAVL(T1),depthAVL(T2)) <= 1 .

ceq join(T1, AVLRec, T2) = lRotate(T1, AVLRec, T2)

if depthAVL(T1) = depthAVL(T2) + 2 .

ceq join(T1, AVLRec, T2) = rRotate(T1, AVLRec, T2)

if depthAVL(T1) + 2 = depthAVL(T2) .

ceq lRotate(L [AVLRec] R, AVLRec’, T2)

= buildAVL(L, AVLRec, buildAVL(R, AVLRec’, T2))

if depthAVL(L) >= depthAVL(R) .

ceq lRotate(L [AVLRec] R, AVLRec’, T2)

= buildAVL(buildAVL(L, AVLRec, RL), AVLRec’’,

buildAVL(RR, AVLRec’, T2))

if depthAVL(L) < depthAVL(R) /\ RL [AVLRec’’] RR := R .

ceq rRotate(T1, AVLRec, L [AVLRec’] R)

= buildAVL(buildAVL(T1, AVLRec, L), AVLRec’, R)

if depthAVL(L) <= depthAVL(R) .

ceq rRotate(T1, AVLRec, L [AVLRec’] R)

= buildAVL(buildAVL(T1, AVLRec, LL), AVLRec’’,

buildAVL(LR, AVLRec’, R))

if depthAVL(L) > depthAVL(R) /\ LL [AVLRec’’] LR := L .

--- deleteAVL and auxiliary ops.

sort Pair{X, Y} . --- used for deleteAVLMax

op pair : AVL{X, Y} AVLRecord{X, Y} -> Pair{X, Y} [ctor].
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op deleteAVLMax : NeAVL{X, Y} -> Pair{X, Y} .

eq deleteAVL(K, empty) = empty .

ceq deleteAVL(K, empty [AVLRec] R) = R

if K = key(AVLRec) .

ceq deleteAVL(K, L [AVLRec] R) = join(L’, AVLRec’, R)

if K = key(AVLRec)

/\ pair(L’, AVLRec’) := deleteAVLMax(L)

[owise] .

ceq deleteAVL(K, L [AVLRec] R) = join(L, AVLRec, deleteAVL(K, R))

if key(AVLRec) < K .

ceq deleteAVL(K, L [AVLRec] R) = join(deleteAVL(K, L), AVLRec, R)

if K < key(AVLRec) .

eq deleteAVLMax(L [AVLRec] empty) = pair(L, AVLRec) .

ceq deleteAVLMax(L [AVLRec] R) = pair(join(L, AVLRec, R’), AVLRec’)

if pair(R’, AVLRec’) := deleteAVLMax(R)

[owise] .

endfm

In the following example of instantiation we use the same views, namely,
IntAsStoset and StringAsContents, from the previous section.

fmod AVL-TEST is

protecting AVL{IntAsStoset, StringAsContents} .

endfm

Maude> red insertAVL(

insertAVL(

insertAVL(

insertAVL(

insertAVL(insertAVL(empty, 1, "a"),

2, "b"),

3, "c"),

4, "d"),

5, "e"),

6, "f") .

result NeAVL{IntAsStoset, StringAsContents}:

((empty [key: 1, contents: "a", depth: 1] empty)

[key: 2, contents: "b", depth: 2]

(empty [key: 3, contents: "c", depth: 1] empty))

[key: 4, contents: "d", depth:3]

(empty

[key: 5, contents: "e", depth: 2]

(empty [key: 6, contents: "f", depth: 1] empty))

The AVL tree obtained as result is displayed in Figure 10.2.
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4, "d", 3

2, "b", 2

1, "a", 1 3, "c", 1

5, "e", 2

6, "f", 1

Fig. 10.2. An example of an AVL tree

10.11 2-3-4 trees

Other solutions to the problem of keeping balanced search trees are provided
by 2-3 trees, which are not treated here, and 2-3-4 trees, whose specification
we consider in this section. These search trees generalize binary search trees to
a version of general trees of degree 4, so that a non-leaf node can have either
2, 3 or 4 children, and nodes can hold more than one value. The number of
values in the node depends on the number of children; for example, there
are two different values (let us call N1 the smallest of the two, and N2 the
greatest) in the node when it has three children. Moreover, the values in the
children are well organized with respect to the values in the node; in the same
example, all the values in the first child must be strictly smaller than N1, all
the values in the second child must be strictly greater than N1 and strictly
smaller than N2, and all the values in the third child must be strictly greater
than N2 (for the case of two children this organization coincides with binary
search trees, and it is easy to see how it is generalized for more than three
children). Furthermore, the children must have exactly the same depth, and
recursively they have to satisfy the same properties. As expected, all of these
properties can be stated by means of membership assertions, as shown below.

Since these trees need a different set of constructors, they have no direct
relationship to binary search trees. Moreover, in order to simplify the pre-
sentation we just parameterize the specification with respect to the theory
STOSET requiring a strict total order, that is, we consider only values in the
nodes, instead of keys and associated values as we did in previous sections.

fmod 234TREES{T :: STOSET} is

protecting NAT .

sort Ne234Tree?{T} 234Tree?{T} Ne234Tree{T} 234Tree{T} .

subsort Ne234Tree?{T} < 234Tree?{T} .

subsort Ne234Tree{T} < 234Tree{T} < 234Tree?{T} .

subsort Ne234Tree{T} < Ne234Tree?{T} .

op empty234 : -> 234Tree{T} [ctor] .

op _[_]_ : 234Tree?{T} T$Elt 234Tree?{T} -> Ne234Tree?{T} [ctor] .

op _<_>_<_>_ : 234Tree?{T} T$Elt 234Tree?{T} T$Elt 234Tree?{T}

-> Ne234Tree?{T} [ctor] .
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op _{_}_{_}_{_}_ : 234Tree?{T} T$Elt 234Tree?{T} T$Elt

234Tree?{T} T$Elt 234Tree?{T} -> Ne234Tree?{T} [ctor] .

vars N N1 N2 N3 : T$Elt .

vars TL TLM TC TRM TR : 234Tree{T} .

cmb TL [ N ] TR : Ne234Tree{T}

if greaterKey(N, TL) /\ smallerKey(N, TR)

/\ depth(TL) = depth(TR) .

cmb TL < N1 > TC < N2 > TR : Ne234Tree{T}

if N1 < N2

/\ greaterKey(N1, TL) /\ smallerKey(N1, TC)

/\ greaterKey(N2, TC) /\ smallerKey(N2, TR)

/\ depth(TL) = depth(TC) /\ depth(TC) = depth(TR) .

cmb TL { N1 } TLM { N2 } TRM { N3 } TR : Ne234Tree{T}

if N1 < N2 /\ N2 < N3

/\ greaterKey(N1, TL) /\ smallerKey(N1, TLM)

/\ greaterKey(N2, TLM) /\ smallerKey(N2, TRM)

/\ greaterKey(N3, TRM) /\ smallerKey(N3, TR)

/\ depth(TL) = depth(TLM) /\ depth(TL) = depth(TRM)

/\ depth(TL) = depth(TR) .

--- Auxiliary operations

op depth : 234Tree?{T} -> Nat .

op greaterKey : T$Elt 234Tree{T} -> Bool .

--- true if first argument is greater than all keys in the tree.

op smallerKey : T$Elt 234Tree{T} -> Bool .

--- true if first argument is smaller than all keys in the tree.

op maxKey : Ne234Tree{T} -> T$Elt .

--- greatest element in a tree.

op minKey : Ne234Tree{T} -> T$Elt .

--- smallest element in a tree.

Although the number of cases to consider increases according to all the
possible different nodes and situations, the specification of the find operation
is immediate.

op find : T$Elt 234Tree{T} -> Bool .

eq find(M, empty234) = false .

ceq find(M, T1 [N1] T2) = find(M, T1) if M < N1 .

eq find(M, T1 [M] T2) = true .

ceq find(M, T1 [N1] T2) = find(M, T2) if N1 < M .

ceq find(M, T1 < N1 > T2 < N2 > T3) = find(M, T1) if M < N1 .

eq find(M, T1 < M > T2 < N2 > T3) = true .

ceq find(M, T1 < N1 > T2 < N2 > T3) = find(M, T2)

if N1 < M /\ M < N2 .

eq find(M, T1 < N1 > T2 < M > T3) = true .
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ceq find(M, T1 < N1 > T2 < N2 > T3) = find(M, T3) if N2 < M .

ceq find(M, T1 { N1 } T2 { N2 } T3 { N3 } T4) = find(M, T1)

if M < N1 .

eq find(M, T1 { M } T2 { N2 } T3 { N3 } T4) = true .

ceq find(M, T1 { N1 } T2 { N2 } T3 { N3 } T4) = find(M, T2)

if N1 < M /\ M < N2 .

eq find(M, T1 { N1 } T2 { M } T3 { N3 } T4) = true .

ceq find(M, T1 { N1 } T2 { N2 } T3 { N3 } T4) = find(M, T3)

if N2 < M /\ M < N3 .

eq find(M, T1 { N1 } T2 { N2 } T3 { M } T4) = true .

ceq find(M, T1 { N1 } T2 { N2 } T3 { N3 } T4) = find(M, T4)

if N3 < M .

On the other hand, even though the main ideas of insertion are quite sim-
ple, the details of its implementation become much lengthier than expected,
requiring several auxiliary operations and several equations to treat the differ-
ent cases arising from combining the different constructors. Even worse is the
implementation of deletion, which needs a zillion of equations to deal with all
possible cases. All these details are not shown here and can be found in the
set of book examples in http://maude.cs.uiuc.edu and in the companion
cd-rom.

We do some reductions with an example of instantiation that uses the view
IntAsStoset from STOSET to INT.

fmod 234TREES-TEST is

protecting 234TREES{IntAsStoset} .

op tree : -> 234Tree{IntAsStoset} .

eq tree

= insert(100, insert(90, insert(15, insert(80,

insert(70, insert(40, insert(50, insert(20,

insert(60, insert(30, insert(10, empty234))))))))))) .

endfm

Maude> red tree .

result Ne234Tree{IntAsStoset}:

((empty234 {10} empty234 {15} empty234 {20} empty234)

[30]

(empty234 [40] empty234))

[50]

((empty234 [60] empty234)

[70]

(empty234 {80} empty234 {90} empty234 {100} empty234))

Maude> red find(30, tree) .

result Bool: true

Maude> red delete(30, tree) .

http://maude.cs.uiuc.edu
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result Ne234Tree{IntAsStoset}:

(empty234 < 10 > empty234 < 15 > empty234)

{20}

empty234 [40] empty234

{50}

empty234 [60] empty234

{70}

(empty234 {80} empty234 {90} empty234 {100} empty234)

10.12 Red-black trees

Yet another solution to the problem of keeping search trees balanced are red-
black search trees. These are standard binary search trees that satisfy several
additional constraints that are related to a color (hence the name!) that can
be associated with each node (in some presentations, to the edges). One can
think of red-black trees as a binary representation of 2-3-4 search trees, and
this provides helpful intuition.

Since the color is additional information in each node, we again make use
of the record construction described in Section 10.9, defining a new subsort
RBRecord of SearchRecord.

fmod RB-TREES{X :: STOSET, Y :: CONTENTS} is

extending SEARCH-TREE{X, Y} .

--- Add color to search records.

var Rec : Record .

var Co : Color .

sorts Color RBRecord{X, Y} .

subsort RBRecord{X, Y} < SearchRecord{X, Y} .

ops r b : -> Color [ctor].

op color:_ : Color -> Record [ctor] .

op numColors : Record -> Nat .

op color : Record ~> Color .

eq numColors(color: Co, Rec) = 1 + numColors(Rec) .

eq numColors(Rec) = 0 [owise] .

ceq color(Rec, color: Co) = Co if numColors(Rec) = 0 .

var SRec : SearchRecord{X, Y} .

cmb SRec : RBRecord{X, Y} if numColors(SRec) = 1 .

Once more, memberships allow a faithful specification of all the con-
straints.

sorts NeRBTree{X, Y} RBTree{X, Y} .

subsort NeRBTree{X, Y} < RBTree{X, Y} < SearchTree{X, Y} .

subsort NeRBTree{X, Y} < NeSearchTree{X, Y} .
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var RBRec : RBRecord{X, Y} .

vars ST RBTL? RBTR? : SearchTree{X, Y} .

mb empty : RBTree{X, Y} .

cmb ST : NeRBTree{X, Y}

if RBTL? [RBRec] RBTR? := ST /\ color(RBRec) = b

/\ blackDepth(RBTR?) = blackDepth(RBTR?)

/\ blackBalance(RBTL?) /\ blackBalance(RBTR?)

/\ not twoRed(RBTL?) /\ not twoRed(RBTR?) .

--- Auxiliary operations.

op blackDepth : BinTree{Record} ~> Nat .

op blackBalance : BinTree{Record} -> Bool .

op twoRed : BinTree{Record} ~> Bool .

The specification of the insertion and deletion operations is quite long,
making use of several additional auxiliary operations. All the corresponding
details can be found in the set of book examples in http://maude.cs.uiuc.

edu and in the companion cd-rom.
In the following example of instantiation we use again the two views

IntAsStoset and StringAsContents, that were introduced in Section 10.9
above.

fmod RB-TREES-TEST is

protecting RB-TREES{IntAsStoset, StringAsContents} .

op tree : -> RBTree{IntAsStoset, StringAsContents} .

eq tree = insertRB(3, "mi",

insertRB(1, "do",

insertRB(5, "sol",

insertRB(2, "re",

insertRB(4, "fa", empty))))) .

endfm

Maude> red tree .

result NeRBTree{IntAsStoset, StringAsContents}:

(empty [key: 1, contents: "do", color: b] empty)

[key: 2, contents: "re", color: b]

( (empty [key: 3, contents: "mi", color: r] empty)

[key: 4, contents: "fa", color: b]

(empty [key: 5, contents: "sol", color: r] empty))

Maude> red delete(4, delete(3, tree)) .

result NeRBTree{IntAsStoset, StringAsContents}:

(empty [key: 1, contents: "do", color: b] empty)

[key: 2, contents: "re", color: b]

(empty [key: 5, contents: "sol", color: b] empty)

http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu
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10.13 Efficiency concerns

As we have already mentioned in some examples, we have not been especially
concerned about efficiency in the specification of the previous data structures
in Maude.

There are a number of techniques to improve the efficiency, like the sys-
tematic use of unconditional equations with the help of the if then else fi

operator and the owise attribute (see Section 24.1.4). Some of these tech-
niques (for example, the use of owise) have the drawback of making formal
reasoning about the specifications much more difficult or even unfeasible with
the currently available tools, like the ITP tool (see Section 23.1.1). Since we
were interested in formally verifying some properties of these data structures,
we have used simpler although less efficient specifications; some formal proofs
appear in the paper [235], from which this chapter has been adapted.

There is also the tradeoff between efficiency and very precise typing by
means of memberships; these require typechecking during execution. If one is
willing to work with less refined types, as it is the case with other functional
languages, one can forget about most of the memberships that appear in our
specifications, thus obtaining another considerable speedup.

The main moral of this discussion is that within the same logical framework
we have a spectrum of possibilities: we may place the emphasis on formal
specification and reasoning, as we have done in this chapter, or we may instead
focus on efficient programming solutions. And we can relate both kinds of
solutions by using refinement techniques. This gives us a way to negotiate the
usual tensions between ease of proof and efficient implementation.
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Object-Based Programming

Distributed systems can be naturally modeled in Maude as multisets of en-
tities, loosely coupled by some suitable communication mechanism. An im-
portant example is object-based distributed systems in which the entities are
objects, each with a unique identity, and the communication mechanism is
message passing.

Core Maude supports the modeling of object-based systems by providing
a predefined module CONFIGURATION that declares sorts representing the es-
sential concepts of object, message, and configuration, along with a notation
for object syntax that serves as a common language for specifying object-
based systems. In addition, there is an object-message fair rewriting strategy
that is well suited for executing object system configurations. To specify an
object-based system, the user can import CONFIGURATION and then define the
particular objects, messages, and rules for interaction that are of interest. In
addition to simple asynchronous message passing, Maude also supports com-
plex patterns of synchronous interaction that can be used to model higher-
level communication abstractions. The user is also free to define his/her own
notation for configurations and objects, and can still take advantage of the
object-message rewriting strategy, simply by making the appropriate declara-
tions. All this is explained in detail below.

Furthermore, Maude also supports external objects, so that objects inside
a Maude configuration can interact with different kinds of objects outside it.
At present, the external objects directly supported are internet sockets; but
through them it is possible to interact with other external objects. In addition,
sockets make possible distributed programming with rewrite rules. External
objects are discussed in Section 11.4. A substantial case study using sockets
to build a mobile language is presented in Chapter 17.

As discussed in Chapter 21, Full Maude provides additional support for
object-oriented programming with classes, subclassing, and convenient abbre-
viations for rule syntax.
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11.1 Configurations

The predefined module CONFIGURATION in the file prelude.maude provides
basic sorts and constructors for modeling object-based systems.

mod CONFIGURATION is

*** basic object system sorts

sorts Object Msg Configuration .

*** construction of configurations

subsort Object Msg < Configuration .

op none : -> Configuration [ctor] .

op __ : Configuration Configuration -> Configuration

[ctor config assoc comm id: none] .

The basic sorts needed to describe an object system are: Object, Msg

(messages), and Configuration. A configuration is a multiset of objects and
messages that represents (a snapshot of) a possible system state. Configura-
tions are formed by multiset union (represented by empty syntax, __) starting
from singleton objects and messages. The empty configuration is represented
by the constant none. The attribute config declares that configurations con-
structed with __ support the special object-message fair rewriting behavior
(see Section 11.2).

A typical configuration will have the form

〈Ob-1 〉 ... 〈Ob-k 〉 〈Mes-1 〉 ... 〈Mes-n 〉

where 〈Ob-1 〉, . . . , 〈Ob-k 〉 are objects, 〈Mes-1 〉, . . . , 〈Mes-n 〉 are messages,
and the order is immaterial.

In general, a rewrite rule for an object system has the form

rl 〈Ob-1 〉 ... 〈Ob-k 〉 〈Mes-1 〉 ... 〈Mes-n 〉
=> 〈Ob’-1 〉 ... 〈Ob’-j 〉 〈Ob-k+1 〉 ... 〈Ob-m 〉 〈Mes’-1 〉 ... 〈Mes’-p 〉 .

where 〈Ob’-1 〉, . . . , 〈Ob’-j 〉 are updated versions of 〈Ob-1 〉, . . . , 〈Ob-j 〉 for
j ≤ k, 〈Ob-k+1 〉, . . . , 〈Ob-m 〉 are newly created objects, and 〈Mes’-1 〉, . . . ,
〈Mes’-p 〉 are new messages. An important special case are rules with a sin-
gle object and at most one message on the lefthand side. These are called
asynchronous rules. They directly model asynchronous distributed interac-
tions. Rules involving multiple objects are called synchronous; they are used
to model higher-level communication abstractions.

The user is free to define any object or message syntax that is conve-
nient. However, for uniformity in identifying objects and message receivers,
the adopted convention is that the first argument of an object or message
constructor should be an object’s name. This facilitates defining object system
rewriting strategies independently of the particular choice of syntax and is
essential for using Maude’s object-message fair rewriting strategy.
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The remainder of the CONFIGURATION module provides an object syn-
tax that serves as a common notation that can be used by developers of
object-based system specifications. This syntax is also used by Full Maude
(see Chapter 21). For this purpose four new sorts are introduced: Oid (object
identifiers), Cid (class identifiers), Attribute (a named element of an object’s
state), and AttributeSet (multisets of attributes). Further details about the
CONFIGURATION module are discussed later in Section 11.4.

*** Maude object syntax

sorts Oid Cid .

sorts Attribute AttributeSet .

subsort Attribute < AttributeSet .

op none : -> AttributeSet [ctor] .

op _,_ : AttributeSet AttributeSet -> AttributeSet

[ctor assoc comm id: none] .

op <_:_|_> : Oid Cid AttributeSet -> Object [ctor object] .

endm

In this syntax, objects have the general form

< O : C | 〈att-1 〉, ..., 〈att-k 〉 >

where O is an object identifier, C is a class identifier, and 〈att-1 〉, . . . , 〈att-k 〉
are the object’s attributes. Attribute sets are formed from singleton attributes
by a multiset union operator _,_ with identity none (the empty multiset). The
object attribute in the <_:_|_> operator declares that objects made with this
constructor have object-message fair rewriting behavior (see Section 11.2).

Although the user is free to define the syntax of elements of sort Attribute
according to taste, we will follow the standard Maude notation in most of
our examples. The module BANK-ACCOUNT illustrates the use of the Maude
object syntax to define simple bank account objects. Note that by defining
the attribute bal with syntax bal :_ we are able to write account objects as
< A : Account | bal : N >.

mod BANK-ACCOUNT is

protecting INT .

inc CONFIGURATION .

op Account : -> Cid [ctor] .

op bal :_ : Int -> Attribute [ctor gather (&)] .

ops credit debit : Oid Nat -> Msg [ctor] .

vars A B : Oid .

vars M N N’ : Nat .

rl [credit] :

< A : Account | bal : N >

credit(A, M)

=> < A : Account | bal : N + M > .

crl [debit] :
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< A : Account | bal : N >

debit(A, M)

=> < A : Account | bal : N - M >

if N >= M .

endm

The class identifier for bank account objects is Account. Each account
object has a single attribute named bal of sort Nat (the account balance).
There are two message constructors credit and debit, each taking an ob-
ject identifier (the receiver) and a number (the amount to credit or debit).
The rule labeled credit describes the processing of a credit message and the
rule labeled debit describes the processing of a debit message. Suppose that
constants A-001, A-002, and A-003 of sort Oid have been declared. Then, the
following is an example of a bank account configuration.

< A-001 : Account | bal : 300 >

< A-002 : Account | bal : 250 >

< A-003 : Account | bal : 1250 >

debit(A-001, 200)

debit(A-002, 400)

debit(A-003, 300)

credit(A-002, 300)

Note that the messages debit(A-001, 200) and debit(A-003, 300)

can be delivered concurrently, either before or after the other messages.
However, the message debit(A-002, 400) cannot be delivered until after
credit(A-002, 300) has been delivered, due to the balance condition for
the debit rule.

The credit and debit rules are examples of asynchronous message passing
rules involving one object and one message on the lefthand side. In these
examples no new objects are created and no new messages are sent.

In order to combine the debit(A-003, 300) and credit(A-002, 300)

messages so that the delivery of these two messages becomes a single atomic
transaction, we could define a new message constructor from_to_transfer_.
The rule for handling a transfer message involves the joint participation of
two bank accounts in the transfer, as well as the transfer message. This is an
example of a synchronous rule.

op from_to_transfer_ : Oid Oid Nat -> Msg [ctor] .

crl [transfer] :

(from A to B transfer M)

< A : Account | bal : N >

< B : Account | bal : N’ >

=> < A : Account | bal : N - M >

< B : Account | bal : N’ + M >

if N >= M .

Now we could replace
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debit(A-003, 300) credit(A-002,300)

by

from A-003 to A-002 transfer 300

in the example configuration. The module BANK-ACCOUNT-TEST declares the
object identifiers introduced above and defines a configuration constant bankConf.

mod BANK-ACCOUNT-TEST is

ex BANK-ACCOUNT .

ops A-001 A-002 A-003 : -> Oid .

op bankConf : -> Configuration .

eq bankConf

= < A-001 : Account | bal : 300 >

debit(A-001, 200)

debit(A-001, 150)

< A-002 : Account | bal : 250 >

debit(A-002, 400)

< A-003 : Account | bal : 1250 >

(from A-003 to A-002 transfer 300) .

endm

From the specification we see that only one of the debit messages for
A-001 can be processed. Using the default rewriting strategy we find that the
message debit(A-001, 150) is processed first in this strategy.

Maude> rew in BANK-ACCOUNT-TEST : bankConf .

result Configuration:

debit(A-001, 200)

< A-001 : Account | bal : 150 >

< A-002 : Account | bal : 150 >

< A-003 : Account | bal : 950 >

We use the search command to confirm that it is possible to process the
message debit(A-001, 200) as well, where the =>! symbol indicates that
we are searching for states reachable from bankConf that cannot be further
rewritten (see Sections 6.4.3 and 25.4).

Maude> search bankConf =>! C:Configuration debit(A-001, 150) .

search in BANK-ACCOUNT-TEST : bankConf

=>! C:Configuration debit(A-001, 150) .

Solution 1 (state 8)

states: 9 rewrites: 49 in 0ms cpu (0ms real) (~ rews/sec)

C:Configuration --> < A-001 : Account | bal : 100 >

< A-002 : Account | bal : 150 >

< A-003 : Account | bal : 950 >

No more solutions.

states: 9 rewrites: 49 in 0ms cpu (0ms real) (~ rews/sec)
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The BANK-MANAGER module below illustrates asynchronous message passing
with object creation.

mod BANK-MANAGER is

inc BANK-ACCOUNT .

op Manager : -> Cid [ctor] .

op new-account : Oid Oid Nat -> Msg [ctor] .

vars O C : Oid .

var N : Nat .

rl [new] :

< O : Manager | none >

new-account(O, C, N)

=> < O : Manager | none >

< C : Account | bal : N > .

endm

To open a new account, one sends a message to the bank manager with the
account name and initial balance, for example, new-account(A-000, A-004, 100).
Of course, in a real system more care would be needed to assure unique ac-
count identities. To see the bank manager in action, we define the following
module.

mod BANK-MANAGER-TEST is

ex BANK-MANAGER .

ops A-001 A-002 A-003 A-004 : -> Oid .

op mgrConf : -> Configuration .

eq mgrConf

= < A-001 : Account | bal : 300 >

< A-004 : Manager | none >

new-account(A-004, A-002, 250)

new-account(A-004, A-003, 1250) .

endm

Then, we rewrite the configuration mgrConf:

Maude> rew in BANK-MANAGER-TEST : mgrConf .

result Configuration:

< A-001 : Account | bal : 300 >

< A-002 : Account | bal : 250 >

< A-003 : Account | bal : 1250 >

< A-004 : Manager | none >

The relationships between all the modules involved in this example are
illustrated in Figure 11.1, where the different types of arrows correspond to
the different modes of importation: single arrow for including, double arrow
for extending, and triple arrow for protecting.

The examples above illustrate object-based programming in Maude using
the common object syntax. Notice that message constructors obey the “first
argument is an object identifier” convention. Alternative object syntax is also
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BANK-MANAGER-TEST

BANK-ACCOUNT-TEST BANK-MANAGER

BANK-ACCOUNT

CONFIGURATIONINT

Fig. 11.1. Importation graph of bank modules

possible, by defining an associative and commutative configuration construc-
tor and suitable object and message syntax. It is of course also possible not
to use the config attribute when defining the multiset union operator, but
this will prevent taking advantage of object-message fair rewriting (see Sec-
tion 11.2). As an example (not using for the moment the config attribute, to
illustrate different forms of rewriting with objects), we model a ticker, the clas-
sic example of an actor [1, 351]. First we specify the configurations, objects,
and messages of the actor world in the module ACTOR-CONF. Actor configura-
tions (of sort AConf) are multisets of actors (of sort Actor) and messages (of
sort Msg). Messages are constructed uniformly from an actor identifier and a
message body. Thus we introduce sorts Aid (actor identifier) and MsgBody,
and a message constructor _<|_.

mod ACTOR-CONF is

sorts Actor Msg AConf .

subsorts Actor Msg < AConf .

op none : -> AConf [ctor] .

op __ : AConf AConf -> AConf [ctor assoc comm id: none] .

*** actor messages

sorts Aid MsgBody .

op _<|_ : Aid MsgBody -> Msg [ctor] .

endm

A ticker maintains a counter that it updates in response to a tick message.
Ticker(T:Aid, N:Nat) is an actor with identifier T:Aid and counter value
N:Nat. The ticker sends the current value of its counter in response to a
timeReq message.

mod TICKER is

including ACTOR-CONF .

protecting NAT .
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op Ticker : Aid Nat -> Actor [ctor] .

op tick : -> MsgBody [ctor] .

op timeReq : Aid -> MsgBody [ctor] .

op timeReply : Nat -> MsgBody [ctor] .

vars T C : Aid .

var N : Nat .

rl Ticker(T, N) (T <| tick)

=> Ticker(T, s N) (T <| tick) .

rl Ticker(T, N) (T <| timeReq(C))

=> Ticker(T, N) (C <| timeReply(N)) .

endm

To test the ticker we define actor identifiers for the ticker, myticker, a
customer, me, and an initial configuration with one ticker, one tick message,
and a timeReq message from me.

mod TICKER-TEST is

extending TICKER .

ops myticker me : -> Aid [ctor] .

op tConf : -> AConf .

eq tConf

= Ticker(myticker, 0)

(myticker <| tick)

(myticker <| timeReq(me)) .

endm

If we ask Maude to rewrite the configuration tConf without placing an
upper bound on the number of rewrites, Maude will go on forever. This is
because there will always be a tick message in the configuration, and the
ticker can always process this message. Thus we rewrite with an upper bound
of, say, 10 rewrites.

Maude> rew [10] tConf .

rewrite [10] in TICKER-TEST : tConf myticker <| timeReq(me) .

result AConf:

(myticker <| tick) (me <| timeReply(1)) Ticker(myticker, 9)

We see that the timeReq message was processed after just one tick was
processed.

An interesting property of this configuration is that the reply to the
timeReq message can contain an arbitrarily large natural number, since any
number of ticks could be processed before the timeReq. For particular num-
bers this can be checked using the search command.

Maude> search [1] tConf =>+ tc:AConf me <| timeReply(100) .

search [1] in TICKER-TEST :

tConf =>+ tc:AConf me <| timeReply(100) .
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Solution 1 (state 5152)

states: 5153 rews: 5153 in 0ms cpu (285ms real)(~ rews/sec)

tc:AConf --> (myticker <| tick) Ticker(myticker, 100)

Notice that we used the search relation =>+ (one or more steps) rather than
=>! (terminating rewrites) since there are no terminal configurations starting
from tConf. Moreover, we have searched only for the first ([1]) solution.

There are two important considerations regarding object systems that are
not illustrated by the preceding examples: uniqueness of object names and
fairness of message delivery. To illustrate some of the issues we elaborate the
ticker example by defining a ticker factory that creates tickers, and a ticker-
customer. The ticker factory accepts requests for new tickers newReq(c) where
c is the customer’s name. When such a request is received, a ticker is created
and its name is sent to the requesting customer (newReply(o(a, i))). To
make sure that each ticker has a fresh (unused) name, the ticker factory keeps
a counter. It generates ticker names of the form o(a, i), where a is the factory
name and i is the counter value. The counter is incremented each time a ticker
is created. This is just one possible method for assuring unique names for
dynamically created objects. If objects are only created by factories that use
the above method for generating names, then starting from a configuration
of objects with unique names (not of the form o(a, i)) the unique name
property will be preserved.

mod TICKER-FACTORY is

inc TICKER .

op TickerFactory : Aid Nat -> Actor [ctor] .

ops newReq newReply : Aid -> MsgBody [ctor] .

op o : Aid Nat -> Aid [ctor] .

vars A C : Aid .

vars I J : Nat .

rl [newReq] :

TickerFactory(A, I) (A <| newReq(C))

=> TickerFactory(A, s I) (C <| newReply(o(A, I)))

Ticker(o(A, I), 0) (o(A, I) <| tick) .

endm

A ticker customer knows the name of a ticker factory. It asks for a ticker,
waits for a reply, asks the ticker for the time, waits for a reply, increments its
reply counter (used just for the user to monitor customer service) and repeats
this process.

mod TICKER-CUSTOMER is

inc TICKER-FACTORY .

ops Cust Cust1 Cust2 : Aid Aid Nat -> Actor [ctor] .

vars C TF T : Aid .
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TICKER-FACTORY-TEST

TICKER-CUSTOMER

TICKER-TEST TICKER-FACTORY

TICKER

ACTOR-CONFNAT

Fig. 11.2. Importation graph of ticker modules

vars N M : Nat .

rl [req] :

Cust(C, TF, N)

=> Cust1(C, TF, N) (TF <| newReq(C)) .

rl [newReply] :

Cust1(C, TF, N) (C <| newReply(T))

=> Cust2(C, TF, N) (T <| timeReq(C)) .

rl [timeReply] :

Cust2(C, TF, N) (C <| timeReply(M))

=> Cust(C, TF, s N) .

endm

Now we define a test configuration with a ticker factory and two customers.
The importation graph of all the modules involved at this point is shown in
Figure 11.2.

mod TICKER-FACTORY-TEST is

ex TICKER-CUSTOMER .

ops tf c1 c2 : -> Aid [ctor] .

ops ic1 ic2 : -> AConf .

eq ic1 = TickerFactory(tf, 0) Cust(c1, tf, 0) .

eq ic2 = ic1 Cust(c2, tf, 0) .

endm
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Rewriting this configuration using the rewrite command with a bound of
40 results in one ticker being created, and ticking away, while customer c2 is
not given an opportunity to execute at all.

Maude> rew [40] ic2 .

rewrite [40] in TICKER-FACTORY-TEST : ic2 .

rewrites: 42 in 0ms cpu (0ms real) (~ rewrites/second)

result AConf:

(o(tf, 0) <| tick)

Ticker(o(tf, 0), 35) TickerFactory(tf, 1)

Cust(c1, tf, 1) Cust(c2, tf, 0)

In contrast, rewriting using the frewrite strategy with the same bound of
40, several tickers are created, however only the first one gets tick messages
delivered.

Maude> frew [40] ic2 .

frewrite [40] in TICKER-FACTORY-TEST : ic2 .

rewrites: 42 in 0ms cpu (1ms real) (~ rewrites/second)

result (sort not calculated):

(o(tf, 0) <| tick) (o(tf, 1) <| tick)

(o(tf, 2) <| tick) (o(tf, 3) <| tick)

(o(tf, 4) <| tick) (o(tf, 5) <| tick)

(o(tf, 6) <| tick)

(o(tf, 6) <| timeReq(c1))

Ticker(o(tf, 0), 6) Ticker(o(tf, 1), 0)

Ticker(o(tf, 2), 0) Ticker(o(tf, 3), 0)

Ticker(o(tf, 4), 0) Ticker(o(tf, 5), 0)

Ticker(o(tf, 6), 0)

TickerFactory(tf, 7)

((tf <| newReq(c2))

Cust1(c2, tf, 3)) Cust2(c1, tf, 3)

The number of rewrites reported by Maude includes both equational and
rule rewrites. In the examples above there were 2 equational rewrites (the two
equations defining the initial configuration ic2 and its subconfiguration ic1)
and 40 rule rewrites. If you execute the command

Maude> set profile on .

(see Section 24.1.4) before rewriting and then execute

Maude> show profile .

you will discover that executing the rewrite command the rule delivering the
tick message is used 35 times and the other rules are each used once, while
executing the frewrite command the tick rule is executed only 6 times and
each of the other rules are executed between 6 and 8 times.

Turning profiling on substantially reduces performance, so you will want
to turn it off



354 11 Object-Based Programming

Maude> set profile off .

when you have found out what you want to know.
Note that frewrite uses a fair rewriting strategy, but since it does

not know about objects, messages, and configurations, it can only follow a
position-fair strategy. As we will explain in the next section, in order to en-
able the object-message fair rewriting we need only do three things:

• give to the constructor of object and message configurations the config

attribute,
• give to the message constructor the message attribute, and
• give to each object constructor the object attribute.

To maintain the separate rewriting semantics we also modify the name of
each module by putting an O at the front (except for ACTOR-CONF which we
rename ACTOR-O-CONF). Thus we modify the configuration, actor, and message
constructor declarations as follows.

mod ACTOR-O-CONF is

...

op __ : AConf AConf -> AConf [ctor config assoc comm id: none] .

op _<|_ : Aid MsgBody -> Msg [ctor message] .

...

endm

mod O-TICKER is

...

op Ticker : Aid Nat -> Actor [ctor object] .

...

endm

mod O-TICKER-FACTORY is

...

op TickerFactory : Aid Nat -> Actor [ctor object] .

...

endm

mod O-TICKER-CUSTOMER is

...

ops Cust Cust1 Cust2 : Aid Aid Nat -> Actor [ctor object] .

...

endm

Now the frewrite command will use object-message fair rewriting, as
explained in detail in the next section. The counting of object-message rewrites
has two aspects: for the purposes of the rewrite argument given to frewrite,
a visit to a configuration that results in one or more rewrites counts as a
single rewrite; though for other accounting purposes all rewrites are counted.
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For example, with an upper bound of 40 as above, thirteen tickers are created.
To simplify the output we show the results for rewriting with a bound of 20.

Maude> frew [20] ic2 .

frewrite [20] in O-TICKER-FACTORY-TEST : ic2 .

rewrites: 76 in 0ms cpu (1ms real) (~ rewrites/second)

result (sort not calculated):

(o(tf, 0) <| tick) (o(tf, 1) <| tick)

(o(tf, 2) <| tick) (o(tf, 3) <| tick)

(o(tf, 4) <| tick) (o(tf, 5) <| tick)

Ticker(o(tf, 0), 11) Ticker(o(tf, 1), 11)

Ticker(o(tf, 2), 7) Ticker(o(tf, 3), 7)

Ticker(o(tf, 4), 3) Ticker(o(tf, 5), 3)

TickerFactory(tf, 6)

((tf <| newReq(c1)) Cust1(c1, tf, 3))

(tf <| newReq(c2)) Cust1(c2, tf, 3)

Notice that each ticker gets a chance to tick (tickers created later will show
less time passed), and each customer is treated fairly. In fact using profiling
we find that the tick rule is used 42 times (which is the total of the counts
for the six tickers created), while the other rules are used 6-8 times and there
are 2 equational rewrites as before.

Suppose that we try to violate the unique name condition, for example by
adding a copy of customer c1 to the test configuration. When Maude discovers
this (it may take a few rewrites), a warning is issued.

Maude> frew [4] ic2 Cust(c1, tf, 0) .

Warning: saw duplicate object: Cust1(c1, tf, 0)

frewrite [4] in O-TICKER-FACTORY-TEST : ic2 Cust(c1, tf, 0) .

rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)

result AConf:

(c1 <| newReply(o(tf, 0))) (c1 <| newReply(o(tf, 1)))

(c2 <| newReply(o(tf, 2)))

(o(tf, 0) <| tick) (o(tf, 1) <| tick) (o(tf, 2) <| tick)

Ticker(o(tf, 0), 0) Ticker(o(tf, 1), 0) Ticker(o(tf, 2), 0)

TickerFactory(tf, 3)

Cust1(c1, tf, 0) Cust1(c1, tf, 0) Cust1(c2, tf, 0)

11.2 Object-message fair rewriting

Object-message fair rewriting is a special rewriting strategy associated with
configuration constructors which are declared with the config attribute.
Configuration constructors must be associative and commutative, and may
optionally have an identity element. The empty syntax constructors in the
CONFIGURATION and ACTOR-O-CONF modules above (which have been given
the config attribute) are examples of valid configuration constructors, but
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such default syntax can easily be changed by renaming the __ operator (see
Section 8.2.2). Configurations only have their special behavior with respect
to arguments that are constructed using operators that are object or message
constructors, that is, they are declared with the object or message attribute.
Such object and message constructors must have at least one argument. Ex-
amples include the Maude object constructor in CONFIGURATION, the various
actor constructors imported into O-TICKER-FACTORY-TEST, all of which have
been given the object attribute, and the actor message constructor which has
been given the message attribute (which can be abbreviated as msg).

An operator can have at most one of the three attributes: config, object,
and message. For object constructors, the first argument is considered to be
the object’s name. For message constructors, the first argument is considered
to be the message’s target or addressee. There may be multiple configuration,
object and message constructors. A rule is considered to be an object-message
rule if the following requirements hold:

1. Its lefthand side has a configuration constructor on top with two argu-
ments A and B,

2. A and B are stable (that is, they cannot change their top symbol under
a substitution),

3. A has a message constructor on top,
4. B has an object constructor on top, and
5. The first arguments of A and B are identical.

For example, the rules newReply and timeReply in the O-TICKER-CUSTOMER
module are object-message rules (because configurations are associative and
commutative A and B can appear in the rule in either order) while the rule
labeled req is not, because there is no message term, only an object, in its
lefthand side. This rule will be applied in the rewriting that happens after all
the enabled object-message rules have been applied, as discussed below.

The object-message fair behavior appears with the command frewrite

(and at the metalevel with the descent function metaFrewrite—see Sec-
tion 14.5.3). When the fair traversal attempts to perform a single rewrite
on a term headed by a configuration constructor, the following happens:

1. Arguments headed by object constructors are collected. It is a runtime
error for more than one object to have the same name.

2. For each object, messages with its name as first argument are collected
and placed in a queue.

3. Any remaining arguments are placed on a remainder list.
4. For each object, and for each message in its queue, an attempt is made to

deliver the message by performing a rewrite with an object-message rule.
If all applicable rules fail, the message is placed on the remainder list. If a
rule succeeds, the righthand side is constructed, reduced, and the result is
searched for the object. Any other arguments in the result configuration
go onto the remainder list. If the object cannot be found, any messages
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left in its queue go onto the remainder list. Once its message queue is
exhausted, the object itself is placed on the remainder list.

5. A new term is constructed using the configuration constructor on top of
the arguments in the remainder list. This is reduced, and a single rewrite
using the non-object-message rules is attempted.

There is no restriction on object names, other than uniqueness. An object
may change its object constructor during the course of a rewrite and delivery
of any remaining message will still be attempted.1 If the configuration con-
structor changes during the course of a rewrite, the resulting term is considered
alien, and does not participate any further in the object-message rewriting for
the original term. The order in which objects are considered and messages are
delivered is system-dependent, but note that newly created messages are not
delivered until some future visit to the configuration (though all arguments
including new messages and alien configurations could potentially participate
in the single non-object-message rewrite attempt). Message delivery is “just”
rather than “fair”: in order for message delivery to be guaranteed, an object
must always be willing to accept the message.2 If multiple object-message
rules contain the same message constructor, they are tried in a round-robin
fashion. Non-object-message rules are also tried in a round-robin fashion for
the single non-object-message rewrite attempt.

The counting of object-message rewrites is nonstandard: for the purposes
of the rewrite argument given to frewrite, a visit to a configuration that
results in one or more rewrites counts as a single rewrite, though for other
accounting purposes all rewrites are counted. Finally, for tracing, profiling,
and breakpoints only, there is a fake rewrite at the top of the configuration in
the case that object-message rewriting takes place but the single non-object-
message rewrite attempt fails. It is not included in the reported rewrite total,
but it is inserted to keep tracing consistent.

11.3 Example: data agents

In this section we give an example of a simple distributed dataset in which
each agent in a collection of data agents manages a local version of a global
data dictionary that maps keys to values. An agent may only have part of
the data locally, and must contact other agents to get the value of a key that
is not in its local version. To simplify the presentation, we assume that data
agents work in pairs.

This example illustrates one way of representing request-reply style of
object-based programming in Maude, and also a way of representing informa-

1 Assuming, as it should be the case, that both object constructors have been
declared with the object attribute.

2 There are program transformations that internalize conditions on message deliv-
ery to ensure a stronger fairness condition [238].



358 11 Object-Based Programming

tion about the state of the task an object is working on when it needs to make
one or more requests to other objects in order to answer a request itself. As
in the ticker example, we define a uniform syntax for messages. Here, mes-
sages have both a receiver and a sender in addition to a message body, and
are constructed with the msg constructor. The technique for maintaining task
information is to define a sort Request and a requests attribute that holds
the set of pending requests. The constant empty indicates that an object has
no pending request. The request w4(O:Oid, C:Oid, MB:MsgBody) indicates
that the object is processing a message from C:Oid with body MB:MsgBody

and is waiting for a message from O:Oid.
The module DATA-AGENTS-CONF extends CONFIGURATION with the uniform

message syntax and the specification of the sort Request.

mod DATA-AGENTS-CONF is

ex CONFIGURATION .

*** my msg syntax

sort MsgBody .

op msg : Oid Oid MsgBody -> Msg [ctor message] .

*** agents may be pending on requests

sort Request .

op w4 : Oid Oid MsgBody -> Request [ctor] .

endm

A data agent stores a dictionary, mapping keys to data elements. To specify
such dictionaries, we use the predefined parameterized module MAP (see Sec-
tion 9.13), renaming the main sort as well as the lookup and update operators
as follows:

MAP{K, V} * (sort Map{K, V} to Dict{K, V},

op _[_] to lookup,

op insert to update) .

Remember that the constant undefined is the result returned by the lookup
operators when the map is not defined on the given key.

We split the specification of data agents into two modules: the parameter-
ized functional module DATA-AGENTS-INTERFACE, which defines the interface,
and the parameterized system module DATA-AGENTS , which gives the rules
for agent behavior. This illustrates a technique for modularizing object-based
system specifications in order to allow the same interface to be shared by more
than one “implementation” (rule set). We already applied this technique in
the specification of a vending machine as a system module in Section 6.1.
Notice also that DATA-AGENTS-CONF is imported in extending mode, because
we add data to the old sorts, but without making further identifications (the
interface module has no equation).

mod DATA-AGENTS-INTERFACE{K :: TRIV, V :: TRIV} is

ex DATA-AGENTS-CONF .



11.3 Example: data agents 359

*** messages

op getReq : K$Elt -> MsgBody [ctor] .

op getReply : K$Elt [V$Elt] -> MsgBody [ctor] .

op setReq : K$Elt V$Elt -> MsgBody [ctor] .

op setReply : K$Elt [V$Elt] -> MsgBody [ctor] .

op tellReq : K$Elt V$Elt -> MsgBody [ctor] .

op tellReply : K$Elt V$Elt -> MsgBody [ctor] .

op lookupReq : K$Elt -> MsgBody [ctor] .

op lookupReply : K$Elt [V$Elt] -> MsgBody [ctor] .

endm

In a request-reply style of interaction, message body constructors come
in pairs. For example, (lookupReq, lookupReply) and (tellReq, tellReply)
are the message body pairs used when a customer interacts with a data agent
in order to access and set data values. Similarly, (getReq, getReply) and
(setReq, setReply) constitute the message body pairs for an agent to access
and set data values from a pal.

A data agent has class identifier DataAgent. In addition to the requests

attribute, each data agent has a data attribute holding the agent’s local ver-
sion of the data dictionary, and a pal attribute holding the identifier of the
other agent. If sam and joe are collaborating data agents, then their initial
state might look like

< sam : DataAgent | data : empty, pal : joe, requests : empty >

< joe : DataAgent | data : empty, pal : sam, requests : empty >

The module DATA-AGENTS specifies a data agent’s behavior by giving a
rule for handling each type of message it expects to receive (other messages
will simply be ignored).

Since we are adding rules acting on the sort Configuration, coming from
the CONFIGURATION module via DATA-AGENTS-CONF, we need to make ex-
plicit that such modules are imported in including mode. We also import
in protecting mode the predefined parameterized module SET, instantiated
with the following Request view, to define the sets of requests stored in the
requests attribute.

view Request from TRIV to DATA-AGENTS-CONF is

sort Elt to Request .

endv

mod DATA-AGENTS{K :: TRIV, V :: TRIV} is

inc DATA-AGENTS-INTERFACE{K, V} .

inc DATA-AGENTS-CONF .

inc CONFIGURATION .

pr MAP{K, V} * (sort Map{K, V} to Dict{K, V},

op _[_] to lookup,

op insert to update) .

pr SET{Request} .
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vars A O C : Oid .

var D : Dict{K, V} .

var Key : K$Elt .

vars Val Val’ : [V$Elt] .

var Atts : AttributeSet .

var RS : Set{Request} .

*** class structure

op DataAgent : -> Cid [ctor] .

op data :_ : Dict{K, V} -> Attribute [ctor] .

op pal :_ : Oid -> Attribute [ctor] .

op requests :_ : Set{Request} -> Attribute [ctor] .

*** lookup request

rl [lookup] :

< A : DataAgent | data : D, pal : O, requests : RS >

msg(A, C, lookupReq(Key))

=> if lookup(D, Key) == undefined

then < A : DataAgent | data : D, pal : O,

requests : (RS, w4(O, C, lookupReq(Key))) >

msg(O, A, getReq(Key))

else < A : DataAgent | data : D, pal : O, requests : RS >

msg(C, A, lookupReply(Key, lookup(D, Key)))

fi .

*** lookup request missing data from pal

rl [getReq] :

< A : DataAgent | data : D, pal : O, Atts >

msg(A, O, getReq(Key))

=> < A : DataAgent | data : D, pal : O, Atts >

msg(O, A, getReply(Key, lookup(D, Key))) .

*** receive lookup requested missing data from pal

rl [getReply] :

< A : DataAgent | data : D, pal : O,

requests : (RS, w4(O, C, lookupReq(Key))) >

msg(A, O, getReply(Key, Val))

=> < A : DataAgent | pal : O, requests : RS,

data : if Val == undefined

then D

else update(Key, Val, D)

fi >

msg(C, A, lookupReply(Key, Val)) .

*** tell request

rl [tell] :

< A : DataAgent | data : D, requests : RS, pal : O >

msg(A, C, tellReq(Key, Val))
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=> if lookup(D, Key) == undefined

then < A : DataAgent |

data : D,

requests : (RS, w4(O, C, tellReq(Key, Val))),

pal : O >

msg(O, A, setReq(Key, Val))

else < A : DataAgent | data : update(Key, Val, D),

requests : RS, pal : O >

msg(C, A, tellReply(Key, Val))

fi .

*** request update for missing data from pal

rl [setReq] :

< A : DataAgent | data : D, pal : O, Atts >

msg(A, O, setReq(Key, Val))

=> if lookup(D, Key) == undefined

then < A : DataAgent | data : D, pal : O, Atts >

msg(O, A, setReply(Key, undefined))

else < A : DataAgent | data : update(Key, Val, D),

pal : O, Atts >

msg(O, A, setReply(Key, Val))

fi .

*** receive requested update for missing data from pal

rl [setReply] :

< A : DataAgent | data : D, pal : O,

requests : (RS, w4(O, C, tellReq(Key, Val))) >

msg(A, O, setReply(Key, Val’))

=> < A : DataAgent | pal : O, requests : RS,

data : if Val’ == undefined

then update(Key, Val, D)

else D

fi >

msg(C, A, tellReply(Key, Val)) .

endm

The rule labeled lookup specifies how an agent handles a lookupReq mes-
sage. The agent first looks to see if its local dictionary contains the requested
entry. If lookup(D, Key) == undefined, then a getReq is sent to the pal

and the agent waits for a reply, remembering the pending lookup request
(w4(O, C, lookupReq(Key))). If the agent has the requested entry, then it
is returned in a lookupReply message.

The rules labeled getReq and getReply specify how agents exchange dic-
tionary entries. An agent can always answer a getReq message, since the
Atts variable will match any status attribute. The agent simply replies
with the result, possibly undefined, of looking up the requested key in
its local dictionary. An agent only expects a getReply message if it has
made a request, and this only happens if the agent is trying to handle a
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lookupReq message. Thus the rule only matches if the agent has the appro-
priate request w4(O, C, lookupReq(Key)) in its requests attribute. The
agent records the received reply with update(Key, Val, D) when this re-
ply is not undefined, and in any case sends it on to the customer with the
message msg(C, A, lookupReply(Key, Val)).

The rules labeled tell, setReq, and setReply specify how an agent han-
dles a tellReq message, following a protocol similar to the one described for
the lookup request.

Note that in the case of agents with just these three attributes, using the
Atts variable of sort AttributeSet or the requests : RS expression, with
RS a variable of sort Set{Request}, are equivalent ways of saying that the
rule matches any set of requests. The first way is more extensible, in that the
rule would still work for agents belonging to a subclass of DataAgent that
uses additional attributes.

To test the data agent specification, we define a module AGENT-TEST. This
module defines object identifiers sam and joe for data agents, and me to
name an external customer. It also defines an initial configuration containing
two agents named sam and joe with empty data dictionaries, and two initial
tellReq messages for each agent. We take both keys and data elements to be
quoted identifiers, by instantiating the parameterized DATA-AGENTS module
with the predefined Qid view.

mod AGENT-TEST is

ex DATA-AGENTS{Qid, Qid} .

ops sam joe me : -> Oid [ctor] .

op iconf : -> Configuration .

eq iconf

= < sam : DataAgent | data : empty,

pal : joe, requests : empty >

msg(sam, me, tellReq(’a, ’bc))

msg(sam, me, tellReq(’d, ’ef))

< joe : DataAgent | data : empty,

pal : sam, requests : empty >

msg(joe, me, tellReq(’g, ’hi))

msg(joe, me, tellReq(’j, ’kl)) .

endm

The importation graph of all the modules involved in this example is shown
in Figure 11.3, where the three different types of arrows correspond to the
three different modes of importation.

The following are results from test runs. First we rewrite the initial config-
uration iconf, resulting in a configuration in which the agents have updated
appropriately their data, and there is one reply for each tellReq message.

Maude> rew iconf .

result Configuration:

< sam : DataAgent | data : (’a |-> ’bc, ’d |-> ’ef),
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AGENT-TEST

DATA-AGENTS{Qid, Qid}

MAP{Qid, Qid} * (γ) SET{Request}DATA-AGENTS-INTERFACE{Qid, Qid}

DATA-AGENTS-CONF

CONFIGURATIONQID

Fig. 11.3. Importation graph of data-agents modules

pal : joe, requests : empty >

< joe : DataAgent | data : (’g |-> ’hi, ’j |-> ’kl),

pal : sam, requests : empty >

msg(me, sam, tellReply(’a, ’bc))

msg(me, sam, tellReply(’d, ’ef))

msg(me, joe, tellReply(’g, ’hi))

msg(me, joe, tellReply(’j, ’kl))

Next we try adding a lookup request and discover that, using Maude’s de-
fault rewriting strategy, the lookup request is delivered before the tell requests,
so the reply is undefined.

Maude> rew iconf msg(sam, me, lookupReq(’a)) .

result Configuration:

< sam : DataAgent | data : (’a |-> ’bc, ’d |-> ’ef),

pal : joe, requests : empty >

< joe : DataAgent | data : (’g |-> ’hi, ’j |-> ’kl),

pal : sam, requests : empty >

msg(me, sam, tellReply(’a, ’bc))

msg(me, sam, tellReply(’d, ’ef))

msg(me, sam, lookupReply(’a, undefined))

msg(me, joe, tellReply(’g, ’hi))

msg(me, joe, tellReply(’j, ’kl))

To see if a good answer can be obtained, we use the search command
to look for a state in which there is a lookupReply with data entry different
from undefined.
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Maude> search iconf msg(sam, me, lookupReq(’a))

=>! msg(me, sam, lookupReply(’a, Q:Qid)) C:Configuration .

Solution 1 (state 1081)

C:Configuration -->

< sam : DataAgent | data : (’a |-> ’bc, ’d |-> ’ef),

pal : joe, requests : empty >

< joe : DataAgent | data : (’g |-> ’hi, ’j |-> ’kl),

pal : sam, requests : empty >

msg(me, sam, tellReply(’a, ’bc))

msg(me, sam, tellReply(’d, ’ef))

msg(me, joe, tellReply(’g, ’hi))

msg(me, joe, tellReply(’j, ’kl))

Q:Qid --> ’bc

No more solutions.

Indeed, there is just one such reply.
Notice that two collaborating agents may get inconsistent data, that is,

different values for the same key, if they receive simultaneously tell requests
for the same key. We may use the search command to illustrate how this may
happen.

Maude> search iconf

msg(sam, me, tellReq(’m, ’no))

msg(joe, me, tellReq(’m, ’pq))

=>! C:Configuration

< sam : DataAgent |

data : (’m |-> Q:Qid, R:Dict{Qid, Qid}),

Atts:AttributeSet >

< joe : DataAgent |

data : (’m |-> Q’:Qid, R’:Dict{Qid, Qid}),

Atts’:AttributeSet >

such that Q:Qid =/= Q’:Qid .

Solution 1 (state 5117)

C:Configuration -->

msg(me, sam, tellReply(’a, ’bc))

msg(me, sam, tellReply(’d, ’ef))

msg(me, sam, tellReply(’m, ’no))

msg(me, joe, tellReply(’g, ’hi))

msg(me, joe, tellReply(’j, ’kl))

msg(me, joe, tellReply(’m, ’pq))

Atts:AttributeSet --> pal : joe, requests : empty

R:Dict{Qid,Qid} --> ’a |-> ’bc, ’d |-> ’ef

Q:Qid --> ’no

Atts’:AttributeSet --> pal : sam, requests : empty

R’:Dict{Qid,Qid} --> ’g |-> ’hi, ’j |-> ’kl

Q’:Qid --> ’pq
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No more solutions.

Note the use of the such that condition to filter search solutions (see Sec-
tion 6.4.3 and 25.4).

11.4 External objects

This section explains Maude’s support for rewriting with external objects and
an implementation of sockets as the first such external objects.

Configurations that want to communicate with external objects must con-
tain at least one portal, where

sort Portal .

subsort Portal < Configuration .

op <> : -> Portal [ctor] .

is part of the predefined module CONFIGURATION in the file prelude.maude.
Rewriting with external objects is started by the external rewrite command
erewrite (abbreviated erew) which is like frewrite (see Sections 6.4 and
11.2) except that it allows messages to be exchanged with external objects
that do not reside in the configuration. Currently the command erewrite

has some severe limitations, which might be fixed in future releases:

1. Maude only checks for external rewrites when no “internal” rewrites are
possible, so if, for example, there is a clock tick rewrite rule that is always
enabled, external rewrites won’t take place.

2. Rewrites that involve messages entering or leaving the configuration do
not show up in tracing, profiling or rewrite counts.

3. It is possible to have bad interactions with break points and the debugger.
4. There is a potential race condition with ^C.

Note that, even if there are no more rewrites possible, erewrite may not
terminate; if there are requests made to external objects that have not yet
been fulfilled because of waiting for external events from the operating system,
the Maude interpreter will suspend until at least one of those events occurs,
at which time rewriting will resume. While the interpreter is suspended, the
command erewrite may be aborted with ^C. External objects created by
an erewrite command do not survive to the next erewrite. If a message
to an external object is ill-formed or inappropriate, or the external object is
not ready for it, it just stays in the configuration for future acceptance or for
debugging purposes.

11.4.1 Sockets

The first example of external objects is sockets, which are accessed using
the messages declared in the following SOCKET module, included in the file
socket.maude which is part of the Maude distribution.
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mod SOCKET is

protecting STRING .

including CONFIGURATION .

op socket : Nat -> Oid [ctor] .

op createClientTcpSocket : Oid Oid String Nat -> Msg

[ctor msg format (b o)] .

op createServerTcpSocket : Oid Oid Nat Nat -> Msg

[ctor msg format (b o)] .

op createdSocket : Oid Oid Oid -> Msg [ctor msg format (m o)] .

op acceptClient : Oid Oid -> Msg [ctor msg format (b o)] .

op acceptedClient : Oid Oid String Oid -> Msg

[ctor msg format (m o)] .

op send : Oid Oid String -> Msg [ctor msg format (b o)] .

op sent : Oid Oid -> Msg [ctor msg format (m o)] .

op receive : Oid Oid -> Msg [ctor msg format (b o)] .

op received : Oid Oid String -> Msg [ctor msg format (m o)] .

op closeSocket : Oid Oid -> Msg [ctor msg format (b o)] .

op closedSocket : Oid Oid String -> Msg [ctor msg format (m o)] .

op socketError : Oid Oid String -> Msg [ctor msg format (r o)] .

op socketManager : -> Oid [special (...)] .

endm

Currently only IPv4 TCP sockets are supported; other protocol families
and socket types may be added in the future. The external object named by
the constant socketManager is a factory for socket objects.

To create a client socket, you send socketManager a message

createClientTcpSocket(socketManager, ME, ADDRESS, PORT)

where ME is the name of the object the reply should be sent to, ADDRESS is the
name of the server you want to connect to (say “www.google.com”), and PORT

is the port you want to connect to (say 80 for HTTP connections). You may
also specify the name of the server as an IPv4 dotted address or as “localhost”
for the same machine where the Maude system is running on.

The reply will be either

createdSocket(ME, socketManager, NEW-SOCKET-NAME)

or

socketError(ME, socketManager, REASON)
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where NEW-SOCKET-NAME is the name of the newly created socket and REASON

is the operating system’s terse explanation of what went wrong.
You can then send data to the server with a message

send(SOCKET-NAME, ME, DATA)

which elicits either

sent(ME, SOCKET-NAME)

or

closedSocket(ME, SOCKET-NAME, REASON)

Notice that all errors on a client socket are handled by closing the socket.
Similarly, you can receive data from the server with a message

receive(SOCKET-NAME, ME)

which elicits either

received(ME, SOCKET-NAME, DATA)

or

closedSocket(ME, SOCKET-NAME, REASON)

When you are done with the socket, you can close it with a message

closeSocket(SOCKET-NAME, ME)

with reply

closedSocket(ME, SOCKET-NAME, "")

Once a socket has been closed, its name may be reused, so sending messages
to a closed socket can cause confusion and should be avoided.

Notice that TCP does not preserve message boundaries, so sending "one"

and "two" might be received as "on" and "etwo". Delimiting message bound-
aries is the responsibility of the next higher-level protocol, such as HTTP.
We will present an implementation of buffered sockets in Section 11.4.2 which
solves this problem.

The following modules implement an updated version of the five rule
HTTP/1.0 client from the paper “Towards Maude 2.0” [69] that is now exe-
cutable. The first module defines some auxiliary operations on strings.

fmod STRING-OPS is

pr STRING .

var S : String .

op extractHostName : String -> String .

op extractPath : String -> String .

op extractHeader : String -> String .



368 11 Object-Based Programming

op extractBody : String -> String .

eq extractHostName(S)

= if find(S, "/", 0) == notFound

then S

else substr(S, 0, find(S, "/", 0))

fi .

eq extractPath(S)

= if find(S, "/", 0) == notFound

then "/"

else substr(S, find(S, "/", 0), length(S))

fi .

eq extractHeader(S)

= substr(S, 0, find(S, "\r\n\r\n", 0) + 4) .

eq extractBody(S)

= substr(S, find(S, "\r\n\r\n", 0) + 4, length(S)) .

endfm

The second module requests one web page to a HTTP server.

mod HTTP/1.0-CLIENT is

pr STRING-OPS .

inc SOCKET .

sort State .

ops idle connecting sending receiving closing : -> State [ctor] .

op state:_ : State -> Attribute [ctor] .

op requester:_ : Oid -> Attribute [ctor] .

op url:_ : String -> Attribute [ctor] .

op stored:_ : String -> Attribute [ctor] .

op HttpClient : -> Cid .

op httpClient : -> Oid .

op dummy : -> Oid .

op getPage : Oid Oid String -> Msg [msg ctor] .

op gotPage : Oid Oid String String -> Msg [msg ctor] .

vars H R R’ TS : Oid .

vars U S ST : String .

First, we try to connect to the server using port 80, updating the state
and the requester attribute with the new server.

rl [getPage] :

getPage(H, R, U)

< H : HttpClient |

state: idle, requester: R’, url: S, stored: "" >

=> < H : HttpClient |



11.4 External objects 369

state: connecting, requester: R, url: U, stored: "" >

createClientTcpSocket(socketManager, H,

extractHostName(U), 80) .

Once we are connected to the server (we have received a createdSocket

message), we send a GET message (from the HTTP protocol) requesting the
page. When the message is sent, we wait for a response.

rl [createdSocket] :

createdSocket(H, socketManager, TS)

< H : HttpClient |

state: connecting, requester: R, url: U, stored: "" >

=> < H : HttpClient |

state: sending, requester: R, url: U, stored: "" >

send(TS, H, "GET " + extractPath(U) + " HTTP/1.0\r\nHost: " +

extractHostName(U) + "\r\n\r\n") .

rl [sent] :

sent(H, TS)

< H : HttpClient |

state: sending, requester: R, url: U, stored: "" >

=> < H : HttpClient |

state: receiving, requester: R, url: U, stored: "" >

receive(TS, H) .

While the page is not complete, we receive data and append it to the
string on the stored attribute. When the page is completed, the server closes
the socket, and then we show the page information by means of the gotPage

message.

rl [received] :

received(H, TS, S)

< H : HttpClient |

state: receiving, requester: R, url: U, stored: ST >

=> receive(TS, H)

< H : HttpClient | state: receiving,

requester: R, url: U, stored: (ST + S) > .

rl [closedSocket] :

closedSocket(H, TS, S)

< H : HttpClient |

state: receiving, requester: R, url: U, stored: ST >

=> gotPage(R, H, extractHeader(ST), extractBody(ST)) .

We use a special operator start to represent the initial configuration. It
receives the server URL we want to connect to. Notice the occurrence of the
portal <> in such initial configuration.

op start : String -> Configuration .

eq start(S)
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= <>

getPage(httpClient, dummy, S)

< httpClient : HttpClient | state: idle, requester: dummy,

url: "", stored: "" > .

endm

Now we can get pages from servers, say “www.google.com”, by using the
following Maude command:

Maude> erew start("www.google.com") .

It is also possible to have optional bounds on the erewrite command, and
then use the continuation commands to get more results, like, for example,

Maude> erew [1, 2] start("www.google.com") .

Maude> cont 1 .

To have communication between two Maude interpreter instances, one of
them must take the server role and offer a service on a given port; generally
ports below 1024 are protected. You cannot in general assume that a given
port is available for use. To create a server socket, you send socketManager

a message

createServerTcpSocket(socketManager, ME, PORT, BACKLOG)

where PORT is the port number and BACKLOG is the number of queue requests
for connection that you will allow (5 seems to be a good choice). The response
is either

createdSocket(ME, socketManager, SERVER-SOCKET-NAME)

or

socketError(ME, socketManager, REASON)

Here SERVER-SOCKET-NAME refers to a server socket. The only thing you can
do with a server socket (other than close it) is to accept clients, by means of
the following message:

acceptClient(SERVER-SOCKET-NAME, ME)

which elicits either

acceptedClient(ME, SERVER-SOCKET-NAME, ADDRESS, NEW-SOCKET-NAME)

or

socketError(ME, socketManager, REASON)
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Here ADDRESS is the originating address of the client and NEW-SOCKET-NAME

is the name of the socket you use to communicate with that client. This new
socket behaves just like a client socket for sending and receiving. Note that
an error in accepting a client does not close the server socket. You can always
reuse the server socket to accept new clients until you explicitly close it.

The following modules illustrate a very naive two-way communication be-
tween two Maude interpreter instances. The issues of port availability and
message boundaries are deliberately ignored for the sake of illustration (and
thus if you are unlucky this example could fail).

The first module describes the behavior of the server.

mod FACTORIAL-SERVER is

inc SOCKET .

pr CONVERSION .

op _! : Nat -> NzNat .

eq 0 ! = 1 .

eq (s N) ! = (s N) * (N !) .

op Server : -> Cid .

op aServer : -> Oid .

vars O LISTENER CLIENT : Oid .

var A : AttributeSet .

var N : Nat .

vars IP DATA S : String .

Using the following rules, the server waits for clients. If one client is ac-
cepted, the server waits for messages from it. When the message arrives, the
server converts the received data to a natural number, computes its factorial,
converts it into a string, and finally sends this string to the client. Once the
message is sent, the server closes the socket with the client.

rl [createdSocket] :

< O : Server | A > createdSocket(O, socketManager, LISTENER)

=> < O : Server | A > acceptClient(LISTENER, O) .

rl [acceptedClient] :

< O : Server | A > acceptedClient(O, LISTENER, IP, CLIENT)

=> < O : Server | A > receive(CLIENT, O)

acceptClient(LISTENER, O) .

rl [received] :

< O : Server | A > received(O, CLIENT, DATA)

=> < O : Server | A >

send(CLIENT, O, string(rat(DATA, 10)!, 10)) .

rl [sent] :

< O : Server | A > sent(O, CLIENT)

=> < O : Server | A > closeSocket(CLIENT, O) .
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rl [closedSocket] :

< O : Server | A > closedSocket(O, CLIENT, S)

=> < O : Server | A > .

endm

The Maude command that initializes the server is as follows, where the
configuration includes the portal <>.

Maude> erew <>

< aServer : Server | none >

createServerTcpSocket(socketManager, aServer, 8811, 5) .

The second module describes the behavior of the clients.

mod FACTORIAL-CLIENT is

inc SOCKET .

op Client : -> Cid .

op aClient : -> Oid .

vars O CLIENT : Oid .

var A : AttributeSet .

Using the following rules, the client connects to the server (clients must
be created after the server), sends a message representing a number,3 and
then waits for the response. When the response arrives, there are no blocking
messages and rewriting ends.

rl [createdSocket] :

< O : Client | A > createdSocket(O, socketManager, CLIENT)

=> < O : Client | A > send(CLIENT, O, "6") .

rl [sent] :

< O : Client | A > sent(O, CLIENT)

=> < O : Client | A > receive(CLIENT, O) .

endm

The initial configuration for the client will be as follows, again with portal
<>.

Maude> erew <>

< aClient : Client | none >

createClientTcpSocket(socketManager,

aClient, "localhost", 8811) .

Almost everything in the socket implementation is done in a nonblocking
way; so, for example, if you try to open a connection to some webserver and
that webserver takes 5 minutes to respond, other rewriting and transactions
happen in the meanwhile as part of the same command erewrite. The one ex-
ception is DNS resolution, which is done as part of the createClientTcpSocket
message handling and which cannot be nonblocking without special tricks.

3 In this quite simple example, it is always "6".
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11.4.2 Buffered sockets

As we said before, TCP does not preserve message boundaries; to guar-
antee it we may use a filter class BufferedSocket, defined in the module
BUFFERED-SOCKET, which is described here. We interact with buffered sock-
ets in the same way we interact with sockets, with the only difference that
all messages in the module SOCKET have been capitalized to avoid confusion.
Thus, to create a client with a buffered socket, you send socketManager a
message

CreateClientTcpSocket(socketManager, ME, ADDRESS, PORT)

instead of a message

createClientTcpSocket(socketManager, ME, ADDRESS, PORT).

All the messages have exactly the same declarations, the only difference being
their initial capitalization:

op CreateClientTcpSocket : Oid Oid String Nat -> Msg

[ctor msg format (b o)] .

op CreateServerTcpSocket : Oid Oid Nat Nat -> Msg

[ctor msg format (b o)] .

op CreatedSocket : Oid Oid Oid -> Msg [ctor msg format (m o)] .

op AcceptClient : Oid Oid -> Msg [ctor msg format (b o)] .

op AcceptedClient : Oid Oid String Oid -> Msg

[ctor msg format (m o)] .

op Send : Oid Oid String -> Msg [ctor msg format (b o)] .

op Sent : Oid Oid -> Msg [ctor msg format (m o)] .

op Receive : Oid Oid -> Msg [ctor msg format (b o)] .

op Received : Oid Oid String -> Msg [ctor msg format (m o)] .

op CloseSocket : Oid Oid -> Msg [ctor msg format (b o)] .

op ClosedSocket : Oid Oid String -> Msg [ctor msg format (m o)] .

op SocketError : Oid Oid String -> Msg [ctor msg format (r o)] .

Thus, apart from this small difference, we interact with buffered sockets
in exactly the same way we do with sockets, the boundary control being
completely transparent to the user.

When a buffered socket is created, in addition to the socket object through
which the information will be sent, a BufferedSocket object is also created
on each side of the socket (one in each one of the configurations between which
the communication is established). All messages sent through a buffered socket
are manipulated before they are sent through the socket underneath. When a
message is sent through a buffered socket, a mark is placed at the end of it;
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the BufferedSocket object at the other side of the socket stores all messages
received on a buffer, in such a way that when a message is requested the marks
placed indicate which part of the information received must be given as the
next message.

An object of class BufferedSocket has two attributes: read, of sort
String, which stores the messages read, and bState, which indicates whether
the filter is idle or active.

op BufferedSocket : -> Cid [ctor] .

op read :_ : String -> Attribute [ctor gather(&)] .

op bState :_ : BState -> Attribute [ctor gather(&)] .

sort BState .

ops idle active : -> BState [ctor] .

The identifiers of the BufferedSocket objects are marked with a b opera-
tor, i.e., the buffers associated with a socket SOCKET have identifier b(SOCKET).
Note that there is a BufferedSocket object on each side of the socket, that is,
there are two objects with the same identifier, but in different configurations.

op b : Oid -> Oid [ctor] .

A buffered socket object understands capitalized versions of the messages
a socket object understands. For most of them, it just converts them into
the corresponding uncapitalized message. There are messages AcceptClient,
CloseSocket, CreateServerTcpSocket, and CreateClientTcpSocket with
the same arities as the corresponding socket messages, with the following rules.

vars SOCKET NEW-SOCKET SOCKET-MANAGER O : Oid .

vars ADDRESS IP IP’ DATA S S’ REASON : String .

var Atts : AttributeSet .

vars PORT BACKLOG N : Nat .

rl [createServerTcpSocket] :

CreateServerTcpSocket(SOCKET-MANAGER, O, PORT, BACKLOG)

=> createServerTcpSocket(SOCKET-MANAGER, O, PORT, BACKLOG) .

rl [acceptClient] :

AcceptClient(SOCKET, O)

=> acceptClient(SOCKET, O) .

rl [closeSocket] :

CloseSocket(b(SOCKET), SOCKET-MANAGER)

=> closeSocket(SOCKET, SOCKET-MANAGER) .

rl [createClientTcpSocket] :

CreateClientTcpSocket(SOCKET-MANAGER, O, ADDRESS, PORT)

=> createClientTcpSocket(SOCKET-MANAGER, O, ADDRESS, PORT) .

Note that in these cases the buffered-socket versions of the messages are
just translated into the corresponding socket messages.
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A BufferedSocket object can also convert an uncapitalized message into
the capitalized one. The rule socketError shows this:

rl [socketError] :

socketError(O, SOCKET-MANAGER, REASON)

=> SocketError(O, SOCKET-MANAGER, REASON) .

BufferedSocket objects are created and destroyed when the correspond-
ing sockets are. Thus, we have rules

rl [acceptedclient] :

acceptedClient(O, SOCKET, IP’, NEW-SOCKET)

=> AcceptedClient(O, b(SOCKET), IP’, b(NEW-SOCKET))

< b(NEW-SOCKET) : BufferedSocket |

bState : idle, read : "" > .

rl [createdSocket] :

createdSocket(O, SOCKET-MANAGER, SOCKET)

=> < b(SOCKET) : BufferedSocket | bState : idle, read : "" >

CreatedSocket(O, SOCKET-MANAGER, b(SOCKET)) .

rl [closedSocket] :

< b(SOCKET) : BufferedSocket | Atts >

closedSocket(SOCKET, SOCKET-MANAGER, DATA)

=> ClosedSocket(b(SOCKET), SOCKET-MANAGER, DATA) .

Once a connection has been established, and a BufferedSocket object has
been created on each side, messages can be sent and received. When a Send

message is received, the buffered socket sends a send message with the same
data plus a mark4 to indicate the end of the message.

rl [send] :

< b(SOCKET) : BufferedSocket | bState : active, Atts >

Send(b(SOCKET), O, DATA)

=> < b(SOCKET) : BufferedSocket | bState : active, Atts >

send(SOCKET, O, DATA + "#") .

rl [sent] :

< b(SOCKET) : BufferedSocket | bState : active, Atts >

sent(O, SOCKET)

=> < b(SOCKET) : BufferedSocket | bState : active, Atts >

Sent(O, b(SOCKET)) .

The key is then in the reception of messages. A BufferedSocket object
is always listening to the socket. It sends a receive message at start up and
puts all the received messages in its buffer. Notice that a buffered socket goes
from idle to active in the buffer-start-up rule. A Receive message is

4 We use the character ‘#’ as mark; therefore, the user data sent through the sockets
should not contain such a character.
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then handled if there is a complete message in the buffer, that is, if there is
a mark on it, and results in the reception of the first message in the buffer,
which is removed from it.

rl [buffer-start-up] :

< b(SOCKET) : BufferedSocket | bState : idle, Atts >

=> < b(SOCKET) : BufferedSocket | bState : active, Atts >

receive(SOCKET, b(SOCKET)) .

rl [received] :

< b(SOCKET) : BufferedSocket |

bState : active, read : S, Atts >

received(b(SOCKET), O, DATA)

=> < b(SOCKET) : BufferedSocket |

bState : active, read : (S + DATA), Atts >

receive(SOCKET, b(SOCKET)) .

crl [Received] :

< b(SOCKET) : BufferedSocket |

bState : active, read : S, Atts >

Receive(b(SOCKET), O)

=> < b(SOCKET) : BufferedSocket |

bState : active, read : S’, Atts >

Received(O, b(SOCKET), DATA)

if N := find(S, "#", 0)

/\ DATA := substr(S, 0, N)

/\ S’ := substr(S, N + 1, length(S)) .

The BUFFERED-SOCKET module is used in the specification of Mobile
Maude, a mobile agent language based on Maude, which is discussed in detail
in Chapter 17.
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Model Checking Invariants Through Search

A rewrite theory, specified in Maude as a system module, provides an exe-
cutable mathematical model of a concurrent system. We can use the Maude
specification to simulate the concurrent system so specified. But we can do
more. Under appropriate conditions we can check that our mathematical
model satisfies some important properties, or obtain a useful counterexample
showing that the property in question is violated. This kind of model-checking
analysis can be quite general. Chapter 13 will explain how, under appropriate
finite reachability assumptions, we can model check any linear time tempo-
ral logic (LTL) property of a system specified in Maude as a system module.
This chapter focuses on a simpler, yet very useful, model-checking capability,
namely, the model checking of invariants, which can be accomplished just by
using the search command.

12.1 Invariants

Invariants are the most common and useful safety properties, that is, prop-
erties stating that something bad should never happen. Given a transition
system and an initial state s0, an invariant I is a predicate defining a subset
of states meeting two properties:

• it contains s0, and
• it contains any state reachable from s0 through a finite number of transi-

tions.

Therefore, an invariant is a predicate defining a set of states that contains all
the states reachable from s0. If an invariant holds, that is, if it is truly an
invariant satisfying the two properties above, then we know that something
“bad” can never happen, namely, the negation ¬I of the invariant is impossi-
ble. In other words, we view ¬I as a bad property that should never happen,
and I as a good property we want to ensure.
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Given a rewrite theory R = (Σ,E, φ,R) specified in Maude as a system
module, we can define an invariant I, yielding a decidable set of states, by:

1. choosing a given kind k in Σ as the kind of states and an initial state init
in it; and

2. specifying an equationally-defined Boolean condition I, so that the invari-
ant holds of a state if and only if such a state satisfies the condition I.

The transition system implicit in this setting is one in which a one-step transi-
tion between two states, that is, between two elements [t], [t′] ∈ TΣ/E,k, exists
if and only if there is a representative t0 ∈ [t] and a one-step rewrite with the
rules R, t0 −→1 t′0, such that t′0 ∈ [t′]. We introduce the notation

R, init |= 2I

to state that the transition system associated with R with state kind k and
initial state init satisfies the invariant I.

12.2 Model checking of invariants

The key question now is: how can we automatically verify that an invariant
I holds? The answer is very simple. Assuming that R = (Σ,E, φ,R) satisfies
reasonable executability conditions, namely, that E and R are finite sets,
(Σ,E) is ground Church-Rosser and terminating,1 and the rules R are ground
coherent with E, and assuming, further, that all the conditions for rules in R
are purely equational, then I holds if and only if the search command

search init =>* x:k such that I(x:k) =/= true .

has no solutions. Indeed, having no solutions exactly means that on init, and
on all states reachable from it, the predicate I evaluates to true, that is, that
I is an invariant. Assuming that I has been fully defined in all cases (which
is always easy with the owise feature, described in Section 4.5.4), so that it
always evaluates to either true or false, we could instead give the command

search init =>* x:k such that not I(x:k) .

Consider, for example, a simple clock that marks the hours of the day.
Such a clock can be specified with the system module

mod SIMPLE-CLOCK is

protecting INT .

sort Clock .

op clock : Int -> Clock [ctor] .

var T : Int .

rl clock(T) => clock((T + 1) rem 24) .

endm

1 As usual, the ground Church-Rosser and termination assumptions should be un-
derstood modulo any axioms A ⊆ E which in Maude are declared as equational
attributes of operators.
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A natural initial state is the state clock(0). Note that, in principle, the
clock could be in an infinite number of states, such as clock(7633157)

or clock(-33457129). The point, however, is that if our initial state is
clock(0), then only states clock(T) with times T such that 0 <= T < 24

can be reached. This suggests making the predicate 0 <= T < 24 an invari-
ant of our clock system.

Using simple linear arithmetic reasoning, we can express the negation of
such an invariant as the predicate (T < 0) or (T >= 24); thus, we can au-
tomatically verify that our simple clock satisfies the invariant by giving the
command:

Maude> search in SIMPLE-CLOCK : clock(0) =>* clock(T)

such that T < 0 or T >= 24 .

No solution.

states: 24 rewrites: 216 in 0ms cpu (2ms real) (~ rews/sec)

If, as it is the case in this clock example, the number of states reachable
from the initial state is finite, then search commands of this kind provide a
decision procedure for the satisfaction of invariants. That is, in finite time
Maude will either find no solutions to a search for a state violating the in-
variant, or will find a state violating the invariant together with a sequence
of rewrites from the initial state to it, that is, a counterexample.

But what if the number of states reachable from the initial state is infi-
nite? In such a case, if the invariant I is violated, the search command will
terminate in finite time yielding a counterexample. Termination is guaranteed
by the breadth-first nature of the search. The point is that such a counterex-
ample is a reachable state; therefore, there is a finite sequence of rewrites from
the initial state to such a violating state. Since there is only a finite number of
rules R, and therefore a finite number of ways that each state can be rewritten,
even though the number of reachable states is infinite, the number of states
reachable from the initial state by a sequence of rewrites of length less than a
given bound is always finite. This bounded subset is always explored in finite
time by the search command. This means that, for systems where the set
of reachable states is infinite, search becomes a semi-decision procedure for
detecting the violation of an invariant. That is, if the invariant is violated,
we are guaranteed to get a counterexample; but, if it is not violated, we will
search forever, never finding it.

We can illustrate the semi-decision procedure nature of search for the ver-
ification of invariant failures with a simple infinite-state example of processes
and resources. This example has some similarities with the classical dining
philosophers problem, but it is on the one hand simpler (processes and re-
sources have no identities or topology), and on the other hand more complex,
since the number of processes and resources can grow dynamically in an un-
bounded manner.

mod PROCS-RESOURCES is
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sorts State Resources Process .

subsorts Process Resources < State .

ops res null : -> Resources [ctor] .

op p : Resources -> Process [ctor] .

op __ : Resources Resources -> Resources

[ctor assoc comm id: null] .

op __ : State State -> State [ctor ditto] .

rl [acq1] : p(null) res => p(res) .

rl [acq2] : p(res) res => p(res res) .

rl [rel] : p(res res) => p(null) res res .

rl [dupl] : p(null) res => p(null) res p(null) res .

endm

The state is a soup (multiset) of processes and resources. Each process needs
to acquire two resources. Originally, each process p contains the null state;
but if a resource res is available, it can acquire it (rule acq1). If a second
resource becomes available, it can also acquire it (rule acq2). After acquiring
both resources and using them, the process can release them (rule rel). Fur-
thermore, the number of processes and resources can grow in an unbounded
manner by the duplication of each process-resource pair (rule dupl).

One invariant we might like to verify about this system is deadlock freedom.
There are two ways to model check this property: one completely straightfor-
ward, and another requiring some extra work. The straightforward manner is
to give the search command

Maude> search in PROCS-RESOURCES : res p(null) =>! X:State .

Solution 1 (state 1)

states: 3 rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

X:State --> p(res)

Solution 2 (state 5)

states: 9 rewrites: 9 in 0ms cpu (1ms real) (~ rews/sec)

X:State --> p(res) p(res)

Solution 3 (state 13)

states: 19 rewrites: 26 in 0ms cpu (3ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res)

Solution 4 (state 25)

states: 34 rewrites: 56 in 0ms cpu (4ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res)

Solution 5 (state 43)

states: 55 rewrites: 104 in 0ms cpu (23ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res) p(res)

......
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Solution 20 (state 1649)

states: 1770 rewrites: 5640 in 20ms cpu (67ms real)

(282000 rews/sec)

X:State --> p(res) p(res) p(res) p(res) p(res) p(res) p(res) p(res)

p(res) p(res) p(res) p(res) p(res) p(res) p(res) p(res)

p(res) p(res) p(res) p(res)

......

Maude will indeed continue printing all the solutions it finds. But since
there is an infinite number of deadlock states, it may be preferable to specify in
advance a bound on the number of solutions, giving, for example, a command
like the following, that looks for at most 5 solutions.

Maude> search [5] in PROCS-RESOURCES : res p(null) =>! X:State .

The nice thing about model checking deadlock freedom this way is that
there is no need to explicitly specify the invariant as a Boolean predicate. This
is because the negation of the invariant is by definition the set of deadlock
states, which is what the search command with the =>! qualification precisely
looks for.

If one wishes, one can, with a little more work, perform an equivalent model
checking of the same property by using an explicit enabledness predicate. Of
course, this cannot be done in the original module, because such a predicate
has not been defined, but this is easy enough to do:

mod PROCS-RESOURCES-ENABLED is

protecting PROCS-RESOURCES .

protecting BOOL .

op enabled : State -> Bool .

eq enabled(p(null) res X:State) = true .

eq enabled(p(res) res X:State) = true .

eq enabled(p(res res) X:State) = true .

eq enabled(X:State) = false [owise] .

endm

One can then give the command

Maude> search [5] in PROCS-RESOURCES-ENABLED : res p(null)

=>* X:State such that enabled(X:State) =/= true .

getting the following 5 solutions:

Solution 1 (state 1)

states: 2 rewrites: 4 in 0ms cpu (0ms real) (~ rews/sec)

X:State --> p(res)

Solution 2 (state 5)

states: 6 rewrites: 15 in 0ms cpu (0ms real) (~ rews/sec)
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X:State --> p(res) p(res)

Solution 3 (state 13)

states: 14 rewrites: 41 in 0ms cpu (0ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res)

Solution 4 (state 25)

states: 26 rewrites: 87 in 0ms cpu (1ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res)

Solution 5 (state 43)

states: 44 rewrites: 160 in 0ms cpu (1ms real) (~ rews/sec)

X:State --> p(res) p(res) p(res) p(res) p(res)

12.3 Bounded model checking of invariants

In cases where either the set of reachable states is infinite, or it is finite
but too large to be explored in reasonable time due to time and memory
limitations, bounded model checking is an appealing formal analysis method.
The idea of bounded model checking is that we model check a property, not
for all reachable states, but only for those states reachable within a certain
depth bound, that is, reachable by a sequence of transitions of bounded length.
Of course, our analysis is not complete anymore, since we may fail to find a
counterexample lying at greater depth. However, bounded model checking can
be quite effective in finding counterexamples and it is a widely used procedure.
Bounded model checking of invariants is supported in Maude by means of the
bounded search command.

Consider the following specification of a readers-writers system.

mod READERS-WRITERS is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

sort Config .

op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

rl < s(R), W > => < R, W > .

endm

A state is represented by a tuple < R, W > indicating the number R of readers
and the number W of writers accessing a critical resource. Readers and writers
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can leave the resource at any time, but writers can only gain access to it if
nobody else is using it, and readers only if there are no writers.

Taking < 0, 0 > as the initial state, this simple system satisfies two im-
portant invariants, namely:

• mutual exclusion: readers and writers never access the resource simulta-
neously: only readers or only writers can do so at any given time.

• one writer : at most one writer will be able to access the resource at any
given time.

We could try model checking these two invariants in two different ways:

• we can represent the invariants implicitly by representing their negations
through patterns; or

• we can represent them explicitly as Boolean predicates.

To model check our two invariants using an implicit representation we could
use the commands

Maude> search < 0, 0 > =>* < s(N:Nat), s(M:Nat) > .

Maude> search < 0, 0 > =>* < N:Nat, s(s(M:Nat)) > .

since the negation of the first invariant corresponds to the simultaneous pres-
ence of both readers and writers, which is exactly captured by the first pattern
< s(N:Nat), s(M:Nat) >; whereas the negation of the fact that zero or at
most one writer should be present at any given time is exactly captured by
the second pattern < N:Nat, s(s(M:Nat)) >.

The problem with the above two search comands is that, since the number
or readers allowed is unbounded, the set of reachable states is infinite and the
commands never terminate. We can instead perform bounded model checking
of these two invariants by giving a depth bound, for example 105, with the
commands:

Maude> search [1, 100000] in READERS-WRITERS :

< 0, 0 > =>* < s(N:Nat), s(M:Nat) > .

No solution.

states: 100002 rewrites: 200001 in 312460ms cpu (636669ms real)

(640 rews/sec)

Maude> search [1, 100000] in READERS-WRITERS :

< 0, 0 > =>* < N:Nat, s(s(M:Nat)) > .

No solution.

states: 100002 rewrites: 200001 in 70600ms cpu (623434ms real)

(2832 rews/sec)

As the reader can observe, these computations take quite a long time.
Notice that the terms appearing during the search grow very quickly. A very
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simple way of improving performance in this case is using the iter attribute
for the s operator.

op s : Nat -> Nat [ctor iter] .

Then, we obtain a much better performance:

Maude> search [1, 100000] in READERS-WRITERS :

< 0, 0 > =>* < s(N:Nat), s(M:Nat) > .

No solution.

states: 100002 rewrites: 200001 in 610ms cpu (1298ms real)

(327870 rews/sec)

Maude> search [1, 100000] in READERS-WRITERS :

< 0, 0 > =>* < N:Nat, s(s(M:Nat)) > .

No solution.

states: 100002 rewrites: 200001 in 400ms cpu (1191ms real)

(500002 rews/sec)

In the following section we will use some formal tools for checking prop-
erties about the READERS-WRITERS module. Since some of these tools cannot
handle the iter attribute, we use the module as shown above.

12.4 Verifying infinite-state systems through
abstractions

The bounded model checking of our two invariants for the readers and writers
example up to depth 106 greatly increases our confidence that the invariants
hold, but, as already mentioned, bounded model checking is an incomplete
procedure that falls short of being a proof: a counterexample at greater depth
could exist.

Can we actually fully verify such invariants in an automatic way? One
possible method is to verify the invariants through search not on the original
infinite-state system, but on a finite-state abstraction of it, that is, on an
appropriate quotient of the original system whose set of reachable states is
finite. The paper [256] describes a simple method for, given a rewrite theory
R = (Σ,E, φ,R), defining an abstraction A of it: just add equations. That is,
we can define our abstract theory as a rewrite theory A = (Σ,E ∪ G,φ,R),
with G a set of extra equations powerful enough to collapse the infinite set of
reachable states into a finite set. This method can be used (with an additional
deadlock-freedom requirement) to verify not just invariants, but in fact any
LTL formula (see Section 13.4).

Of course, the equations G we add cannot be arbitrary. First of all,
they should respect all the necessary executability assumptions, so that in
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A = (Σ,E ∪ G,φ,R) the equations E ∪ G should be ground Church-Rosser
and terminating,2 and the rules R should be ground coherent with E ∪ G.
Furthermore, the equations G should be invariant-preserving with respect to
the invariants that we want to model check; that is, for any such invariant
I and for any two ground terms t, t′ denoting states such that t =E∪G t′, it
should be the case that E ` I(t) = I(t′).

A first key observation is that, if both R and A protect the sort Bool,
that is, the only canonical forms of that sort are true and false, and
true 6= false, then the equations G are invariant-preserving. A second key
observation is that we may be able to automatically check that a module
protects the sort Bool by:

1. checking that it has no equations with true or false in the lefthand side;
2. checking that it is ground confluent and sort-decreasing with the Church-

Rosser Checker (CRC) tool, described in Section 23.1.3;
3. checking that it is terminating with the Maude Termination Tool (MTT),

described in Section 23.1.2; and
4. checking that it is sufficiently complete with the Sufficient Completeness

Checker (SCC) tool, described in Section 23.1.5.

Indeed, since true and false are the only constructors of sort Bool, (4)
ensures the “no junk” part of protection, whereas (1)–(3) ensure the “no
confusion,” true 6= false part.

For invariant verification, the key property that an abstraction meeting
these requirements satisfies is that, if I is one of the invariants preserved by
G, then we have the implication

A, init |= 2I =⇒ R, init |= 2I

Therefore, if we can verify the invariant on A, we are sure that it also holds on
R. However, the fact that we find a counterexample in A does not necessarily
mean that a counterexample exists for R: it could be a spurious counterex-
ample, caused by A being too coarse of an abstraction, and therefore having
no counterpart in R. In such cases, one possible approach is to refine our
abstraction by imposing fewer equations.

We can illustrate these ideas by defining an abstraction of our readers-
writers system. In order to check that the equations in our abstraction preserve
the invariants, we need an explicit representation of those invariants. Since at
present the CRC and MTT tools do not handle predefined modules like BOOL,
we use instead a sort NewBool.

mod READERS-WRITERS-PREDS is

protecting READERS-WRITERS .

sort NewBool .

ops tt ff : -> NewBool [ctor] .

ops mutex one-writer : Config -> NewBool [frozen] .

2 Again, possibly modulo equational attributes A ⊆ E ∪G.
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eq mutex(< s(N:Nat), s(M:Nat) >) = ff .

eq mutex(< 0, N:Nat >) = tt .

eq mutex(< N:Nat, 0 >) = tt .

eq one-writer(< N:Nat, s(s(M:Nat)) >) = ff .

eq one-writer(< N:Nat, 0 >) = tt .

eq one-writer(< N:Nat, s(0) >) = tt .

endm

We can now define our abstraction, in which all the states having more
than one reader and no writers are identified with the state having exactly
one reader and no writer.

mod READERS-WRITERS-ABS is

including READERS-WRITERS-PREDS .

including READERS-WRITERS .

eq < s(s(N:Nat)), 0 > = < s(0), 0 > .

endm

where the second including importation is needed because the READERS-WRITERS
module is not protected, but would be assumed protected by default (because
it is protected in READERS-WRITERS-PREDS) unless we explicitly declare it in
including mode (see Section 8.1.3).

In order to check both the executability and the invariant-preservation
properties of this abstraction, since we have no equations with either tt or ff
in their lefthand side, we now just need to check:

1. that the equations in both READERS-WRITERS-PREDS and READERS-WRITERS-ABS

are ground confluent, sort-decreasing, and terminating;
2. that the equations in both READERS-WRITERS-PREDS and READERS-WRITERS-ABS

are sufficiently complete; and
3. that the rules in both READERS-WRITERS-PREDS and READERS-WRITERS-ABS

are ground coherent with respect to their equations.

Regarding termination, since the equations of READERS-WRITERS-ABS con-
tain those of the module READERS-WRITERS-PREDS, it is enough to check the
termination of the equations in the former. The MTT tool, using the AProVE
termination tool, checks this automatically.

Once the READERS-WRITERS-ABS and READERS-WRITERS-PREDS modules
are available in Full Maude (see Section 19.1), we can check confluence of the
equations by invoking the CRC as follows:

Maude> (check Church-Rosser READERS-WRITERS-PREDS .)

Church-Rosser checking of READERS-WRITERS-PREDS

Checking solution:

All critical pairs have been joined. The specification is

locally-confluent.

The specification is sort-decreasing.

Maude> (check Church-Rosser READERS-WRITERS-ABS .)
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Church-Rosser checking of READERS-WRITERS-ABS

Checking solution:

All critical pairs have been joined. The specification is

locally-confluent.

The specification is sort-decreasing.

which finishes task (1).
Regarding (2), the SCC tool gives us:

Maude> (scc READERS-WRITERS-PREDS .)

Checking sufficient completeness of READERS-WRITERS-PREDS ...

Success: READERS-WRITERS-PREDS is sufficiently complete under the

assumption that it is weakly-normalizing, confluent, and

sort-decreasing.

Maude> (scc READERS-WRITERS-ABS .)

Checking sufficient completeness of READERS-WRITERS-ABS ...

Success: READERS-WRITERS-ABS is sufficiently complete under the

assumption that it is weakly-normalizing, confluent, and

sort-decreasing.

This leaves us with task (3), where the Coherence Checker (ChC) tool,
described in Section 23.1.4, responds as follows:

Maude> (check coherence READERS-WRITERS-PREDS .)

Coherence checking of READERS-WRITERS-PREDS

Coherence checking solution:

All critical pairs have been rewritten and all equations

are non-constructor.

The specification is coherent.

Maude> (check coherence READERS-WRITERS-ABS .)

Coherence checking of READERS-WRITERS-ABS

Coherence checking solution:

The following critical pairs cannot be rewritten:

cp < s(0), 0 > => < s(N*@:Nat), 0 > .

Of course, ground coherence means that all ground instances of this pair can
be rewritten by a one-step rewrite up to canonical form by the equations. We
can reason by cases and decompose this critical pair into two:

cp < s(0), 0 > => < s(0), 0 > .

cp < s(0), 0 > => < s(s(N:Nat)), 0 > .

Using the reduce command we can check that the canonical form of the term
< s(s(N:Nat)), 0 > is < s(0), 0 >. Therefore, all we need to do is to check
that < s(0), 0 > rewrites to itself (up to canonical form) in one step. We
can do this check by giving the command:
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Maude> search in READERS-WRITERS-ABS : < s(0), 0 > =>1 X:Config .

Solution 1 (state 0)

states: 1 rewrites: 2 in 0ms cpu (26ms real) (~ rews/sec)

X:Config --> < s(0), 0 >

Solution 2 (state 1)

states: 2 rewrites: 3 in 0ms cpu (124ms real) (~ rews/sec)

X:Config --> < 0, 0 >

No more solutions.

We have therefore completed all the checks (1)–(3) and can now automat-
ically verify the two invariants on the abstract system, and therefore conclude
that they hold in our original infinite-state readers-writers system, by execut-
ing the search commands:

Maude> search in READERS-WRITERS-ABS :

< 0, 0 > =>* C:Config such that mutex(C:Config) = ff .

No solution.

states: 3 rewrites: 9 in 0ms cpu (0ms real) (~ rews/sec)

Maude> search in READERS-WRITERS-ABS :

< 0, 0 > =>* C:Config such that one-writer(C:Config) = ff .

No solution.

states: 3 rewrites: 9 in 0ms cpu (0ms real) (~ rews/sec)
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LTL Model Checking

As pointed out in Section 1.4, given a Maude system module, we can distin-
guish two levels of specification:

• a system specification level, provided by the rewrite theory specified by
that system module which defines the behavior of the system, and

• a property specification level, given by some property (or properties) ϕ
that we want to state and prove about our module.

This chapter discusses how a specific property specification logic, linear
temporal logic (LTL), and a decision procedure for it, model checking, can be
used to prove properties when the set of states reachable from an initial state in
a system module is finite. It also explains how this is supported in Maude by its
MODEL-CHECKER module, and other related modules, including the SAT-SOLVER
module that can be used to check both satisfiability of an LTL formula and
LTL tautologies. These modules are found in the file model-checker.maude.

Temporal logic allows specification of properties such as safety properties
(ensuring that something bad never happens) and liveness properties (ensur-
ing that something good eventually happens). These properties are related
to the infinite behavior of a system. There are different temporal logics [64];
we focus on linear temporal logic [226, 64], because of its intuitive appeal,
widespread use, and well-developed proof methods and decision procedures.

13.1 LTL formulas and the LTL module

Given a set AP of atomic propositions, we define the formulas of the proposi-
tional linear temporal logic LTL(AP ) inductively as follows:

• True: > ∈ LTL(AP ).
• Atomic propositions: If p ∈ AP , then p ∈ LTL(AP ).
• Next operator: If ϕ ∈ LTL(AP ), then ©ϕ ∈ LTL(AP ).
• Until operator: If ϕ,ψ ∈ LTL(AP ), then ϕ U ψ ∈ LTL(AP ).
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• Boolean connectives: If ϕ,ψ ∈ LTL(AP ), then the formulas ¬ϕ, and
ϕ ∨ ψ are in LTL(AP).

Other LTL connectives can be defined in terms of the above minimal set
of connectives as follows:

• Other Boolean connectives:
– False: ⊥ = ¬>
– Conjunction: ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ))
– Implication: ϕ→ ψ = (¬ϕ) ∨ ψ.

• Other temporal operators:
– Eventually: 3ϕ = > U ϕ
– Henceforth: 2ϕ = ¬3¬ϕ
– Release: ϕ R ψ = ¬((¬ϕ) U (¬ψ))
– Unless: ϕW ψ = (ϕ U ψ) ∨ (2ϕ)
– Leads-to: ϕ; ψ = 2(ϕ→ (3ψ))
– Strong implication: ϕ⇒ ψ = 2(ϕ→ ψ)
– Strong equivalence: ϕ⇔ ψ = 2(ϕ↔ ψ).

The LTL syntax, in a typewriter approximation of the above mathematical
syntax, is supported in Maude by the following LTL functional module (in the
file model-checker.maude).

fmod LTL is

protecting BOOL .

sorts Formula .

*** primitive LTL operators

ops True False : -> Formula [ctor format (g o)] .

op ~_ : Formula -> Formula [ctor prec 53 format (r o d)] .

op _/\_ : Formula Formula -> Formula

[comm ctor gather (E e) prec 55 format (d r o d)] .

op _\/_ : Formula Formula -> Formula

[comm ctor gather (E e) prec 59 format (d r o d)] .

op O_ : Formula -> Formula [ctor prec 53 format (r o d)] .

op _U_ : Formula Formula -> Formula

[ctor prec 63 format (d r o d)] .

op _R_ : Formula Formula -> Formula

[ctor prec 63 format (d r o d)] .

*** defined LTL operators

op _->_ : Formula Formula -> Formula

[gather (e E) prec 65 format (d r o d)] .

op _<->_ : Formula Formula -> Formula [prec 65 format (d r o d)] .

op <>_ : Formula -> Formula [prec 53 format (r o d)] .

op []_ : Formula -> Formula [prec 53 format (r d o d)] .

op _W_ : Formula Formula -> Formula [prec 63 format (d r o d)] .

op _|->_ : Formula Formula -> Formula [prec 63 format (d r o d)] .

op _=>_ : Formula Formula -> Formula
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[gather (e E) prec 65 format (d r o d)] .

op _<=>_ : Formula Formula -> Formula [prec 65 format (d r o d)] .

vars f g : Formula .

eq f -> g = ~ f \/ g .

eq f <-> g = (f -> g) /\ (g -> f) .

eq <> f = True U f .

eq [] f = False R f .

eq f W g = (f U g) \/ [] f .

eq f |-> g = [](f -> (<> g)) .

eq f => g = [] (f -> g) .

eq f <=> g = [] (f <-> g) .

*** negative normal form

eq ~ True = False .

eq ~ False = True .

eq ~ ~ f = f .

eq ~ (f \/ g) = ~ f /\ ~ g .

eq ~ (f /\ g) = ~ f \/ ~ g .

eq ~ O f = O ~ f .

eq ~ (f U g) = (~ f) R (~ g) .

eq ~ (f R g) = (~ f) U (~ g) .

endfm

Note that, for the moment, no set AP of atomic propositions has been
specified in the LTL module. Section 13.2 explains how such atomic propo-
sitions are defined for a given system module M, and Section 13.3 explains
how they are added to the LTL module as a subsort Prop of Formula in the
MODEL-CHECKER module.

Note that the nonconstructor connectives have been defined in terms of
more basic constructor connectives in the first set of equations. But since there
are good reasons to put an LTL formula in negative normal form by pushing
the negations next to the atomic propositions (this is specified by the second
set of equations) we need to consider also the duals of the basic connectives
>, ©, U , and ∨ (respectively, True, O_, _U_, and _\/_) as constructors. That
is, we need to also have as constructors the dual connectives: ⊥, R, and ∧
(respectively, False, _R_, and _/\_). Note that © is self-dual.

13.2 Associating Kripke structures to rewrite theories

Since the models of temporal logic are Kripke structures, we need to explain
how we can associate a Kripke structure to the rewrite theory specified by a
Maude system module M.

Kripke structures are the natural models for propositional temporal logic.
Essentially, a Kripke structure is a (total) unlabeled transition system to which
we have added a collection of unary state predicates on its set of states.
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A binary relation R ⊆ A × A on a set A is called total if and only if for
each a ∈ A there is at least one a′ ∈ A such that (a, a′) ∈ R. If R is not total,
it can be made total by defining R• = R∪ {(a, a) ∈ A2 |6 ∃a′ ∈ A (a, a′) ∈ R}.

A Kripke structure is a triple A = (A,→A, L) such that A is a set, called
the set of states, →A is a total binary relation on A, called the transition
relation, and L : A −→ P(AP ) is a function, called the labeling function,
associating to each state a ∈ A the set L(a) of those atomic propositions in
AP that hold in the state a.

The semantics of LTL(AP ) is defined by means of a satisfaction relation

A, a |= ϕ

between a Kripke structure A having AP as its atomic propositions, a state
a ∈ A, and an LTL formula ϕ ∈ LTL(AP ). Specifically, A, a |= ϕ holds if and
only if for each path π ∈ Path(A)a the path satisfaction relation

A, π |= ϕ

holds, where we define the set Path(A)a of computation paths starting at state
a as the set of functions of the form π : N −→ A such that π(0) = a and, for
each n ∈ N, we have π(n)→A π(n+ 1).

We can define the path satisfaction relation (for any path, beginning at
any state) inductively as follows:

• We always have A, π |=LTL >.
• For p ∈ AP ,

A, π |=LTL p ⇔ p ∈ L(π(0)).

• For ©ϕ ∈ LTL(A),

A, π |=LTL ©ϕ ⇔ A, s;π |=LTL ϕ,

where s : N −→ N is the successor function, and where (s;π)(n) =
π(s(n)) = π(n+ 1).
• For ϕ U ψ ∈ LTL(A),

A, π |=LTL ϕ U ψ ⇔
(∃n ∈ N)

((A, sn;π |=LTL ψ) ∧ ((∀m ∈ N) m < n ⇒ A, sm;π |=LTL ϕ)).

• For ¬ϕ ∈ LTL(AP ),

A, π |=LTL ¬ϕ ⇔ A, π 6|=LTL ϕ.

• For ϕ ∨ ψ ∈ LTL(AP ),

A, π |=LTL ϕ ∨ ψ ⇔ A, π |=LTL ϕ or A, π |=LTL ψ.

How can we associate a Kripke structure to the rewrite theory R =
(Σ,E, φ,R) specified by a Maude system module M? We just need to make
explicit two things:
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• the intended kind k of states in the signature Σ, and
• the relevant state predicates, that is, the relevant set AP of atomic propo-

sitions.

In general, the state predicates need not be part of the system specification
and therefore they need not be specified in our system module M. They are
typically part of the property specification. This is because the state predicates
need not be related to the operational semantics of M: they are just certain
predicates about the states of the system specified by M that are needed to
specify some properties.

Therefore, after choosing a given kind, say [Foo], in M as our kind for states
we can specify the relevant state predicates in a module M-PREDS protecting
M according to the following general pattern:

mod M-PREDS is

protecting M .

including SATISFACTION .

subsort Foo < State .

...

endm

where the dots ‘...’ indicate the part in which the syntax and semantics of the
relevant state predicates are specified, as further explained in what follows.

The module SATISFACTION (contained in the model-checker.maude file)
is very simple, and has the following specification:

fmod SATISFACTION is

protecting BOOL .

sorts State Prop .

op _|=_ : State Prop -> Bool [frozen] .

endfm

where the sorts State and Prop are unspecified. However, by importing
SATISFACTION into M-PREDS and giving the subsort declaration

subsort Foo < State .

all terms of sort Foo in M are also made terms of sort State. Note that we
then have the kind identity [Foo] = [State].

The operator

op _|=_ : State Prop -> Bool [frozen] .

is crucial to define the semantics of the relevant state predicates in M-PREDS.
Each such state predicate is declared as an operator of sort Prop. In standard
LTL propositional logic, the set AP of atomic propositions is assumed to be a
set of constants. In Maude, however, we can define parametric state predicates,
that is, operators of sort Prop which need not be constants, but may have one
or more sorts as parameter arguments. We then define the semantics of such
state predicates (when the predicate holds) by appropriate equations.
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We can illustrate all this by means of a simple mutual exclusion example.
Suppose that our original system module M is the following module MUTEX, in
which two processes, one named a and another named b, can be either waiting
or in their critical section, and take turns accessing their critical section by
passing each other a different token (either $ or *).

mod MUTEX is

sorts Name Mode Proc Token Conf .

subsorts Token Proc < Conf .

op none : -> Conf [ctor] .

op __ : Conf Conf -> Conf [ctor assoc comm id: none] .

ops a b : -> Name [ctor] .

ops wait critical : -> Mode [ctor] .

op [_,_] : Name Mode -> Proc [ctor] .

ops * $ : -> Token [ctor] .

rl [a-enter] : $ [a, wait] => [a, critical] .

rl [b-enter] : * [b, wait] => [b, critical] .

rl [a-exit] : [a, critical] => [a, wait] * .

rl [b-exit] : [b, critical] => [b, wait] $ .

endm

Our obvious kind for states is the kind [Conf] of configurations. In order
to state the desired safety and liveness properties we need state predicates
telling us whether a process is waiting or is in its critical section. We can
make these predicates parametric on the name of the process and define their
semantics as follows:

mod MUTEX-PREDS is

protecting MUTEX .

including SATISFACTION .

subsort Conf < State .

op crit : Name -> Prop .

op wait : Name -> Prop .

var N : Name .

var C : Conf .

var P : Prop .

eq [N, critical] C |= crit(N) = true .

eq [N, wait] C |= wait(N) = true .

eq C |= P = false [owise] .

endm

Note the equations, defining when each of the two parametric state predicates
holds in a given state.

The above example illustrates a general method by which desired state
predicates for a module M are defined in a protecting extension, say M-PREDS,
of M which imports SATISFACTION. One specifies the desired states by choosing
a sort in M and declaring it as a subsort of State. One then defines the
syntax of the desired state predicates as operators of sort Prop, and defines
their semantics by means of a set of equations that specify for what states
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a given state predicate evaluates to true. We assume that those equations,
when added to those of M, are (ground) Church-Rosser and terminating, and,
furthermore, that M’s equational part is protected when the new operators and
equations defining the state predicates are added.

Since we should protect BOOL, it is important to make sure that satisfac-
tion of state predicates is fully defined. This can be checked with Maude’s
Sufficient Completeness Checker (SCC) tool. This means that we should give
equations for when the predicates are true and when they are false. In prac-
tice, however, this can often be reduced to specifying when a predicate is true
by means of (possibly conditional) equations of the general form,

t |= p(v1, . . . , vn) = true if C

because we can use the owise feature (described in Section 4.5.4) to cover all
the remaining cases, when it is false, with an equation

x : State |= p(y1, . . . , yn) = false [owise].

In some cases, however—for example, because we want to perform reasoning
using formal tools which do not accept owise declarations—we may fully
define the true and false cases of a predicate not by using the owise attribute,
but by explicit (possibly conditional) equations of the more general form,

t |= p(v1, . . . , vn) = bexp if C,

where bexp is an arbitrary Boolean expression.
We are now ready to associate with a system module M specifying a rewrite

theory R = (Σ,E, φ,R) (with a selected kind k of states and with state pred-
icates Π defined by means of equations D in a protecting extension M-PREDS)
a Kripke structure whose atomic predicates are specified by the set

APΠ = {θ(p) | p ∈ Π, θ ground substitution},
where by convention we use the simplified notation θ(p) to denote the ground
term θ(p(x1, . . . , xn)). This defines a labeling function LΠ on the set of states
TΣ/E,k assigning to each [t] ∈ TΣ/E,k the set of atomic propositions

LΠ([t]) = {θ(p) ∈ APΠ | (E ∪D) ` (∀ ∅) t |= θ(p) = true}.
The Kripke structure we are interested in is then

K(R, k)Π = (TΣ/E,k, (→1
R)•, LΠ),

where (→1
R)• denotes the total relation extending the one-step R-rewriting

relation →1
R among states of kind k, that is, [t] →1

R [t′] holds if and only
if there are u ∈ [t] and u′ ∈ [t′] such that u′ is the result of applying one
of the rules in R to u at some position. Under the usual assumptions that
E is (ground) Church-Rosser and terminating (possibly modulo some axioms
A contained in E) and R is (ground) coherent relative to E (again, possibly
modulo A), u can always be chosen to be the canonical form of t under the
equations E.
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13.3 LTL model checking

Suppose that, given a system module M specifying a rewrite theory R =
(Σ,E, φ,R), we have:

• chosen a kind k in M as our kind of states;
• defined some state predicates Π and their semantics in a module, say
M-PREDS, protecting M by the method already explained in Section 13.2.

Then, as explained in Section 13.2, this defines a Kripke structure K(R, k)Π
on the set of atomic propositions APΠ . Given an initial state [t] ∈ TΣ/E,k and
an LTL formula ϕ ∈ LTL(APΠ) we would like to have a procedure to decide
the satisfaction relation

K(R, k)Π , [t] |= ϕ.

In general this relation is undecidable. It becomes decidable if two conditions
hold:

1. the set of states in TΣ/E,k that are reachable from [t] by rewriting is finite,1

and
2. the rewrite theory R = (Σ,E, φ,R) specified by M plus the equations D

defining the predicates Π are such that:
• both E and E ∪D are (ground) Church-Rosser and terminating, per-

haps modulo some axioms A, with (Σ,E) ⊆ (Σ ∪ Π,E ∪ D) a pro-
tecting extension, and

• R is (ground) coherent relative to E (again, perhaps modulo some
axioms A).

Under these assumptions, both the state predicates Π and the transition
relation →1

R are computable and, given the finite reachability assumption, we
can then settle the above satisfaction problem using a model-checking proce-
dure.

Specifically, Maude uses an on-the-fly LTL model-checking procedure of
the style described in [64]. The basis of this procedure is the following. Each
LTL formula ϕ has an associated Büchi automaton Bϕ whose acceptance ω-
language is exactly that of the behaviors satisfying ϕ. We can then reduce the
satisfaction problem

K(R, k)Π , [t] |= ϕ

to the emptiness problem of the language accepted by the synchronous product
of B¬ϕ and (the Büchi automaton associated with) (K(R, k)Π , [t]). The for-
mula ϕ is satisfied if and only if such a language is empty. The model-checking
procedure checks emptiness by looking for a counterexample, that is, an in-
finite computation belonging to the language recognized by the synchronous

1 Note that this can happen even when TΣ/E,k is an infinite set: there is no re-
quirement that TΣ/E,k is finite.
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product. For a detailed explanation of this general method of on-the-fly LTL
model checking, see [64]; and for a discussion of the specific techniques used
in the Maude LTL model-checker implementation, see [139].

This makes clear our interest in obtaining the negative normal form of a
formula ¬ϕ, since we need it to build the Büchi automaton B¬ϕ. For efficiency
purposes we need to make B¬ϕ as small as possible. The following module
LTL-SIMPLIFIER (also in the model-checker.maude file) tries to further sim-
plify the negative normal form of the formula ¬ϕ in the hope of generating a
smaller Büchi automaton B¬ϕ. This module is optional (the user may choose
to include it or not when doing model checking) but tends to help building a
smaller B¬ϕ.

fmod LTL-SIMPLIFIER is

including LTL .

*** The simplifier is based on:

*** Kousha Etessami and Gerard J. Holzman,

*** "Optimizing Buchi Automata", CONCUR 2000, LNCS 1877.

*** We use the Maude sort system to do much of the work.

sorts TrueFormula FalseFormula PureFormula PE-Formula PU-Formula .

subsort TrueFormula FalseFormula < PureFormula <

PE-Formula PU-Formula < Formula .

op True : -> TrueFormula [ctor ditto] .

op False : -> FalseFormula [ctor ditto] .

op _/\_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _/\_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _/\_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op _\/_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _\/_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _\/_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op O_ : PE-Formula -> PE-Formula [ctor ditto] .

op O_ : PU-Formula -> PU-Formula [ctor ditto] .

op O_ : PureFormula -> PureFormula [ctor ditto] .

op _U_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _U_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _U_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op _U_ : TrueFormula Formula -> PE-Formula [ctor ditto] .

op _U_ : TrueFormula PU-Formula -> PureFormula [ctor ditto] .

op _R_ : PE-Formula PE-Formula -> PE-Formula [ctor ditto] .

op _R_ : PU-Formula PU-Formula -> PU-Formula [ctor ditto] .

op _R_ : PureFormula PureFormula -> PureFormula [ctor ditto] .

op _R_ : FalseFormula Formula -> PU-Formula [ctor ditto] .

op _R_ : FalseFormula PE-Formula -> PureFormula [ctor ditto] .

vars p q r s : Formula .

var pe : PE-Formula .
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var pu : PU-Formula .

var pr : PureFormula .

*** Rules 1, 2 and 3; each with its dual.

eq (p U r) /\ (q U r) = (p /\ q) U r .

eq (p R r) \/ (q R r) = (p \/ q) R r .

eq (p U q) \/ (p U r) = p U (q \/ r) .

eq (p R q) /\ (p R r) = p R (q /\ r) .

eq True U (p U q) = True U q .

eq False R (p R q) = False R q .

*** Rules 4 and 5 do most of the work.

eq p U pe = pe .

eq p R pu = pu .

*** An extra rule in the same style.

eq O pr = pr .

*** We also use the rules from:

*** Fabio Somenzi and Roderick Bloem,

*** "Efficient Buchi Automata from LTL Formulae",

*** p247-263, CAV 2000, LNCS 1633.

*** that are not subsumed by the previous system.

*** Four pairs of duals.

eq O p /\ O q = O (p /\ q) .

eq O p \/ O q = O (p \/ q) .

eq O p U O q = O (p U q) .

eq O p R O q = O (p R q) .

eq True U O p = O (True U p) .

eq False R O p = O (False R p) .

eq (False R (True U p)) \/ (False R (True U q))

= False R (True U (p \/ q)) .

eq (True U (False R p)) /\ (True U (False R q))

= True U (False R (p /\ q)) .

*** <= relation on formula

op _<=_ : Formula Formula -> Bool [prec 75] .

eq p <= p = true .

eq False <= p = true .

eq p <= True = true .

ceq p <= (q /\ r) = true if (p <= q) /\ (p <= r) .

ceq p <= (q \/ r) = true if p <= q .

ceq (p /\ q) <= r = true if p <= r .

ceq (p \/ q) <= r = true if (p <= r) /\ (q <= r) .

ceq p <= (q U r) = true if p <= r .
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ceq (p R q) <= r = true if q <= r .

ceq (p U q) <= r = true if (p <= r) /\ (q <= r) .

ceq p <= (q R r) = true if (p <= q) /\ (p <= r) .

ceq (p U q) <= (r U s) = true if (p <= r) /\ (q <= s) .

ceq (p R q) <= (r R s) = true if (p <= r) /\ (q <= s) .

*** conditional rules depending on <= relation

ceq p /\ q = p if p <= q .

ceq p \/ q = q if p <= q .

ceq p /\ q = False if p <= ~ q .

ceq p \/ q = True if ~ p <= q .

ceq p U q = q if p <= q .

ceq p R q = q if q <= p .

ceq p U q = True U q if p =/= True /\ ~ q <= p .

ceq p R q = False R q if p =/= False /\ q <= ~ p .

ceq p U (q U r) = q U r if p <= q .

ceq p R (q R r) = q R r if q <= p .

endfm

Suppose that all the requirements listed above to perform model checking
are satisfied. How do we then model check a given LTL formula in Maude for
a given initial state [t] in a module M? We define a new module, say M-CHECK,
according to the following pattern:

mod M-CHECK is

protecting M-PREDS .

including MODEL-CHECKER .

including LTL-SIMPLIFIER . *** optional

op init : -> k . *** optional

eq init = t . *** optional

endm

The declaration of a constant init of the kind of states is not necessary: it is
a matter of convenience, since the initial state t may be a large term.

The module MODEL-CHECKER (in the file model-checker.maude) is as fol-
lows:

fmod MODEL-CHECKER is

protecting QID .

including SATISFACTION .

including LTL .

subsort Prop < Formula .

*** transitions and results

sorts RuleName Transition TransitionList ModelCheckResult .

subsort Qid < RuleName .

subsort Transition < TransitionList .

subsort Bool < ModelCheckResult .

ops unlabeled deadlock : -> RuleName .
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op {_,_} : State RuleName -> Transition [ctor] .

op nil : -> TransitionList [ctor] .

op __ : TransitionList TransitionList -> TransitionList

[ctor assoc id: nil] .

op counterexample :

TransitionList TransitionList -> ModelCheckResult [ctor] .

op modelCheck : State Formula ~> ModelCheckResult

[special (...)] .

endfm

Its key operator is modelCheck (whose special attribute has been omitted
here), which takes a state and an LTL formula and returns either the Boolean
true if the formula is satisfied, or a counterexample when it is not satisfied.
Note that the sort Prop coming from the SATISFACTION module is declared
as a subsort of Formula in LTL. In each concrete use of MODEL-CHECKER, such
as that in M-CHECK above, the atomic propositions in Prop will have been
specified in a module such as M-PREDS.

Let us illustrate the use of this operator with our MUTEX example. Following
the pattern described above, we can define the module

mod MUTEX-CHECK is

protecting MUTEX-PREDS .

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

ops initial1 initial2 : -> Conf .

eq initial1 = $ [a, wait] [b, wait] .

eq initial2 = * [a, wait] [b, wait] .

endm

The relationships between all the modules involved at this point is illus-
trated in Figure 13.1, where a single arrow represents an including impor-
tation and a triple arrow represents a protecting importation.

We are then ready to model check different LTL properties of MUTEX. The
first obvious property to check is mutual exclusion:

Maude> red modelCheck(initial1, [] ~(crit(a) /\ crit(b))) .

reduce in MUTEX-CHECK :

modelCheck(initial1, []~ (crit(a) /\ crit(b))) .

result Bool: true

Maude> red modelCheck(initial2, [] ~(crit(a) /\ crit(b))) .

reduce in MUTEX-CHECK :

modelCheck(initial2, []~ (crit(a) /\ crit(b))) .

result Bool: true

We can also model check the strong liveness property that if a process
waits infinitely often, then it is in its critical section infinitely often:
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MUTEX-CHECK

MUTEX-PREDSMODEL-CHECKERLTL-SIMPLIFIER

MUTEXSATISFACTIONLTL QID

BOOL

Fig. 13.1. Importation graph of model-checking modules

Maude> red modelCheck(initial1, ([]<> wait(a)) -> ([]<> crit(a))) .

reduce in MUTEX-CHECK :

modelCheck(initial1, []<> wait(a) -> []<> crit(a)) .

result Bool: true

Maude> red modelCheck(initial1, ([]<> wait(b)) -> ([]<> crit(b))) .

reduce in MUTEX-CHECK :

modelCheck(initial1, []<> wait(b) -> []<> crit(b)) .

result Bool: true

Maude> red modelCheck(initial2, ([]<> wait(a)) -> ([]<> crit(a))) .

reduce in MUTEX-CHECK :

modelCheck(initial2, []<> wait(a) -> []<> crit(a)) .

result Bool: true

Maude> red modelCheck(initial2, ([]<> wait(b)) -> ([]<> crit(b))) .

reduce in MUTEX-CHECK :

modelCheck(initial2, []<> wait(b) -> []<> crit(b)) .

result Bool: true

Of course, not all properties are true. Therefore, instead of a success we
can get a counterexample showing why a property fails. Suppose that we want
to check whether, beginning in the state initial1, process b will always be
waiting. We then get the counterexample:

Maude> red modelCheck(initial1, [] wait(b)) .

reduce in MUTEX-CHECK : modelCheck(initial1, []wait(b)) .

result ModelCheckResult:
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counterexample({$ [a, wait] [b, wait], ’a-enter}

{[a, critical] [b, wait], ’a-exit}

{* [a, wait] [b, wait], ’b-enter},

{[a, wait] [b, critical], ’b-exit}

{$ [a, wait] [b, wait], ’a-enter}

{[a, critical] [b, wait], ’a-exit}

{* [a, wait] [b, wait], ’b-enter})

The main constructors used in the syntax of a counterexample term are:

op {_,_} : State RuleName -> Transition .

op nil : -> TransitionList [ctor] .

op __ : TransitionList TransitionList -> TransitionList

[ctor assoc id: nil] .

op counterexample :

TransitionList TransitionList -> ModelCheckResult [ctor] .

Therefore, a counterexample is a pair consisting of two lists of transitions,
where the first corresponds to a finite path beginning in the initial state, and
the second describes a loop. This is because, if an LTL formula ϕ is not satisfied
by a finite Kripke structure, it is always possible to find a counterexample for
ϕ having the form of a path of transitions followed by a cycle [64]. Note that
each transition is represented as a pair, consisting of a state and the label of
the rule applied to reach the next state.

Let us finish this section with an example of how not to use the model
checker. Consider the following specification:

mod MODEL-CHECK-BAD-EX is

including MODEL-CHECKER .

extending LTL .

sort Foo .

op a : -> Foo .

op f : Foo -> Foo .

rl a => f(a) .

subsort Foo < State .

op p : -> Prop .

endm

This module describes an infinite transition system of the form

a→ f(a)→ f(f(a))→ f(f(f(a)))→ · · · ,
where the property p is not satisfied anywhere. Therefore the state a does not
satisfy, e.g., the property []p. However, if we try to invoke Maude with the
command

Maude> red in MODEL-CHECK-BAD-EX : modelCheck(a, []p) .

we run into a nonterminating computation.
Making explicit that p does not hold in a by adding the equation
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eq (a |= p) = false .

does not help. We run into the same problem even if the formula does not
contain a temporal operator: modelCheck(a, p) does not terminate either.
The reason is that the set of states reachable from a is not finite, and hence
one of the main requirements for the model-checking algorithm is not satisfied.

13.4 Equational abstractions

As already explained in Section 12.4, when a system, specified as a rewrite
theoryR = (Σ,E, φ,R) in a Maude system module, cannot be model checked,
either because it is infinite-state or because it is finite-state but it is too large
to be model checked in practice, an appealing possibility is to try to model
check a finite-state equational abstraction of it. That is, we try to model check
a rewrite theory A = (Σ,E ∪G,φ,R) obtained from R by adding some extra
equations G to R.

In order for A to be a correct abstraction that we can model check in
practice, the equations E∪G should be ground Church-Rosser and terminating
(possibly modulo A), and the rules R should be ground coherent with E ∪G
(again, possibly modulo A). Furthermore, the equations G should preserve
the atomic propositions2 involved in the formulas that we want to model
check [256]. This last requirement means that for any two ground terms t, t′

denoting states, if t =E∪G t′, then the states [t]E and [t′]E satisfy exactly the
same atomic propositions inR. A further technical requirement for LTL model
checking is that the theory R should be deadlock free, at least for the states
reachable from an initial state; that is, that we cannot reach a terminating
state. For rewrite theories R with no rules with rewrites in their conditions,
this requirement does not involve any practical loss of generality, since if R
is not deadlock free, we can always transform it into another theory bisimilar
to it that is deadlock free, as described in [256] and Section 16.3.

Under these assumptions, it is proved in [256] that for any LTL formula
ϕ involving those atomic propositions and any initial state init we have the
implication

A, init |= ϕ =⇒ R, init |= ϕ.

Therefore, if we verify by model checking that ϕ holds for A, then we can be
sure that it also holds for R. However, a counterexample for A may or may
not lift to a counterexample for R. We presented in Section 12.4 an example
of equational abstraction and illustrated its use in model checking invariants.
Here we present another example showing how, more generally, we can use
equational abstractions to model check LTL properties.

2 We assume here that the equations E already contain those defining the semantics
of the atomic propositions.
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Our example is a simplified version of Lamport’s bakery protocol. This is
an infinite-state protocol that achieves mutual exclusion between processes by
the usual method common in bakeries and deli shops: there is a number dis-
penser, and customers are served in sequential order according to the number
that they hold. A simple Maude specification for the case of two processes is
as follows:

mod BAKERY is

protecting NAT .

sorts Mode BState .

ops sleep wait crit : -> Mode [ctor] .

op <_,_,_,_> : Mode Nat Mode Nat -> BState [ctor] .

op initial : -> BState .

eq initial = < sleep, 0, sleep, 0 > .

vars P Q : Mode .

vars X Y : Nat .

rl [p1_sleep] : < sleep, X, Q, Y > => < wait, s Y, Q, Y > .

rl [p1_wait] : < wait, X, Q, 0 > => < crit, X, Q, 0 > .

crl [p1_wait] : < wait, X, Q, Y > => < crit, X, Q, Y >

if not (Y < X) .

rl [p1_crit] : < crit, X, Q, Y > => < sleep, 0, Q, Y > .

rl [p2_sleep] : < P, X, sleep, Y > => < P, X, wait, s X > .

rl [p2_wait] : < P, 0, wait, Y > => < P, 0, crit, Y > .

crl [p2_wait] : < P, X, wait, Y > => < P, X, crit, Y >

if Y < X .

rl [p2_crit] : < P, X, crit, Y > => < P, X, sleep, 0 > .

endm

In this module, states are represented by terms of sort BState, which are con-
structed by a 4-tuple operator <_,_,_,_> ; the first two components describe
the status of the first process (the mode it is currently in, and its priority as
given by the number according to which it will be served), and the last two
components the status of the second process. The rules describe how each pro-
cess passes from being sleeping to waiting, from waiting to its critical section,
and then back to sleeping.

We may wish to verify two basic properties about this protocol, namely:

• mutual exclusion, that is, the two processes are never simultaneously in
their critical section, and

• liveness, that is, whenever a process enters the waiting mode, it will even-
tually enter its critical section.

Since the set of states reachable from initial is infinite, we should model
check these properties using an abstraction. We can define the abstraction by
adding to the equations of BAKERY a set G of additional equations defining a
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quotient of the set of states. We can do so in the following module extending
BAKERY by equations and leaving the rules unchanged:

mod ABSTRACT-BAKERY is

including BAKERY .

vars P Q : Mode .

vars X Y : Nat .

eq < P, 0, Q, s s Y > = < P, 0, Q, s 0 > .

eq < P, s s X, Q, 0 > = < P, s 0, Q, 0 > .

eq < P, s s s X, Q, s s s Y > = < P, s s X, Q, s s Y > .

eq < P, s s s X, Q, s s 0 > = < P, s s 0, Q, s 0 > .

eq < P, s s s X, Q, s 0 > = < P, s s 0, Q, s 0 > .

eq < P, s s 0, Q, s s Y > = < P, s 0, Q, s 0 > .

eq < P, s 0, Q, s s Y > = < P, s 0, Q, s 0 > .

endm

Three key questions are:

• Is the set of states now finite?
• Does this abstraction correspond to a rewrite theory whose equations are

ground confluent, sort-decreasing, and terminating?
• Are the rules still ground coherent?

The check of termination for the ABSTRACT-BAKERY module follows from
that for the bigger module ABSTRACT-BAKERY-PREDS, which is discussed later.

When we give to the Maude Church-Rosser Checker (CRC) tool a version
without predefined modules of the ABSTRACT-BAKERY module to check local
confluence we get:

Maude> (check Church-Rosser ABSTRACT-BAKERY .)

Church-Rosser checking of ABSTRACT-BAKERY

Checking solution:

All critical pairs have been joined. The specification is

locally-confluent.

The specification is sort-decreasing.

It is also clear that the set of states is now finite, since in the canonical
forms obtained with these equations the natural numbers possible in the state
can never be greater than s(s(0)) (i.e., 2). In fact, it is easy to see that
the equivalence on states defined by the above equations is: 〈P,N,Q,M〉 ≡
〈P ′, N ′, Q′,M ′〉 iff

• P = P ′ and Q = Q′,
• N = 0 iff N ′ = 0,
• M = 0 iff M ′ = 0,
• M < N iff M ′ < N ′.

This leaves us with the ground coherence question. Checking with Maude’s
Coherence Checker (ChC) a version without predefined modules, in which
true and false are replaced by tt and ff, respectively, gives us:



406 13 LTL Model Checking

Maude> (check coherence ABSTRACT-BAKERY .)

Coherence checking of ABSTRACT-BAKERY

Coherence checking solution:

The following critical pairs cannot be rewritten:

cp < sleep, 0, Q@:Mode, s 0 >

=> < wait, s s s Y*@:Nat, Q@:Mode, s s Y*@:Nat > .

cp < sleep, s 0, Q@:Mode, s 0 >

=> < wait, s s s Y*@:Nat, Q@:Mode, s s Y*@:Nat > .

cp < P@:Mode, s 0, sleep, 0 >

=> < P@:Mode, s s X*@:Nat, wait, s s s X*@:Nat > .

cp < P@:Mode, s s 0, sleep, s 0 >

=> < P@:Mode, s s X*@:Nat, wait, s s s X*@:Nat > .

ccp < wait, s s 0, Q@:Mode, s 0 >

=> < crit, s s 0, Q@:Mode, s 0 >

if s 0 < s s s X*@:Nat = ff .

ccp < wait, s s 0, Q@:Mode, s 0 >

=> < crit, s s 0, Q@:Mode, s 0 >

if s s 0 < s s s X*@:Nat = ff .

ccp < wait, s s X*@:Nat, Q@:Mode, s s Y*@:Nat >

=> < crit, s s X*@:Nat, Q@:Mode, s s Y*@:Nat >

if s s s Y*@:Nat < s s s X*@:Nat = ff .

ccp < P@:Mode, s 0, wait, s 0 >

=> < P@:Mode, s 0, crit, s 0 >

if s s Y*@:Nat < s 0 = tt .

ccp < P@:Mode, s 0, wait, s 0 >

=> < P@:Mode, s 0, crit, s 0 >

if s s Y*@:Nat < s s 0 = tt .

ccp < P@:Mode, s s X*@:Nat, wait, s s Y*@:Nat >

=> < P@:Mode, s s X*@:Nat, crit, s s Y*@:Nat >

if s s s Y*@:Nat < s s s X*@:Nat = tt .

To interpret these pairs the first key observation is that both NAT and BOOL are
protected in ABSTRACT-BAKERY. This follows from the above check for conflu-
ence, plus the (postponed) proof of termination, plus the following sufficient
completeness check,

Maude> (scc ABSTRACT-BAKERY .)

Success: ABSTRACT-BAKERY is sufficiently complete under the

assumption that it is weakly-normalizing, confluent, and

sort-decreasing.

plus the observation that no equations involving either the successor function
or zero, or tt or ff have been added in ABSTRACT-BAKERY. But since NAT and
BOOL are protected, the only pairs with satisfiable conditions are the following:

cp < sleep, 0, Q@:Mode, s 0 >

=> < wait, s s s Y*@:Nat, Q@:Mode, s s Y*@:Nat > .

cp < sleep, s 0, Q@:Mode, s 0 >

=> < wait, s s s Y*@:Nat, Q@:Mode, s s Y*@:Nat > .

cp < P@:Mode, s 0, sleep, 0 >
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=> < P@:Mode, s s X*@:Nat, wait, s s s X*@:Nat > .

cp < P@:Mode, s s 0, sleep, s 0 >

=> < P@:Mode, s s X*@:Nat, wait, s s s X*@:Nat > .

ccp < wait, s s X*@:Nat, Q@:Mode, s s Y*@:Nat >

=> < crit, s s X*@:Nat, Q@:Mode, s s Y*@:Nat >

if s s s Y*@:Nat < s s s X*@:Nat = ff .

ccp < P@:Mode, s s X*@:Nat, wait, s s Y*@:Nat >

=> < P@:Mode, s s X*@:Nat, crit, s s Y*@:Nat >

if s s s Y*@:Nat < s s s X*@:Nat = tt .

all of which can be inductively rewritten. We can illustrate the method of
inductive proof with the first unconditional and the first conditional pair.

The first unconditional pair is:

cp < sleep, 0, Q@:Mode, s 0 >

=> < wait, s s s Y*@:Nat, Q@:Mode, s s Y*@:Nat > .

We can first inductively prove the equation

eq < wait, s s s Y:Nat, Q:Mode, s s Y:Nat >

= < wait, 2, Q, 1 > .

in the module ABSTRACT-BAKERY. We can induct on Y:Nat, which gives us the
following two goals:

eq < wait, s s s 0, Q:Mode, s s 0 > = < wait, 2, Q, 1 > .

ceq < wait, s s s s Y:Nat, Q:Mode, s s s Y:Nat >

= < wait, 2, Q, 1 >

if < wait, s s s Y:Nat, Q:Mode, s s Y:Nat >

= < wait, 2, Q, 1 > .

These two goals can be easily proved either using the ITP, or directly in
Maude by simplifying the first goal to a syntactic identity, and by applying
the Theorem of Constants to the second goal and adding the premise (instan-
tiated with a constant) as an extra lemma to simplify the conclusion (also
instantiated with a constant) to a syntactic identity.

We can then check that the above critical pair fills in by giving the search
command:

Maude> search in ABSTRACT-BAKERY :

< sleep, 0, Q, 1 > =>1 X:BState .

Solution 1 (state 1)

states: 2 rewrites: 1 in 0ms cpu (54ms real) (~ rews/sec)

X:BState --> < wait, 2, Q, 1 >

No more solutions.

Similarly, consider the first conditional critical pair, where, using the first
equation among the inductive lemmas below
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eq s X < s Y = X < Y .

eq 0 < s X = true .

eq s X < 0 = false .

eq X < s X = true .

eq s X < X = false .

ceq X < s Y = true if X < Y .

ceq s X < Y = false if X < Y = false .

we can simplify its condition as follows:

ccp < wait, s s X:Nat, Q:Mode, s s Y:Nat >

=> < crit, s s X:Nat, Q:Mode, s s Y:Nat >

if Y:Nat < X:Nat = ff .

Using the Theorem of Constants, we can convert the variables X and Y

into constants a and b and add an equation assuming the condition b < a =

ff. Then, using also the above equations as extra lemmas, we can fill in this
conditional critical pair by giving the search command:

Maude> search in ABSTRACT-BAKERY :

< wait, s s a, Q, s s b > =>1 X:BState .

Solution 1 (state 1)

X:BState --> < crit, s_^2(a), Q, s_^2(b) >

No more solutions.

What about state predicates? Are they preserved by the abstraction? In
order to specify the desired mutual exclusion and liveness properties, it is
enough to specify in Maude the following state predicates:

mod BAKERY-PREDS is

protecting BAKERY .

including SATISFACTION .

subsort BState < State .

ops 1wait 2wait 1crit 2crit : -> Prop [ctor] .

vars P Q : Mode .

vars X Y : Nat .

eq < wait, X, Q, Y > |= 1wait = true .

eq < sleep, X, Q, Y > |= 1wait = false .

eq < crit, X, Q, Y > |= 1wait = false .

eq < P, X, wait, Y > |= 2wait = true .

eq < P, X, sleep, Y > |= 2wait = false .

eq < P, X, crit, Y > |= 2wait = false .

eq < crit, X, Q, Y > |= 1crit = true .

eq < sleep, X, Q, Y > |= 1crit = false .

eq < wait, X, Q, Y > |= 1crit = false .

eq < P, X, crit, Y > |= 2crit = true .

eq < P, X, sleep, Y > |= 2crit = false .

eq < P, X, wait, Y > |= 2crit = false .

endm
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These predicates are then imported without change, together with ABSTRACT-BAKERY,
in the module:

mod ABSTRACT-BAKERY-PREDS is

protecting ABSTRACT-BAKERY .

including BAKERY-PREDS .

endm

The preservation of these state predicates can be guaranteed if we show
that both BAKERY-PREDS and ABSTRACT-BAKERY-PREDS protect BOOL. This
follows from the absence of any equations having true or false in their
lefthand sides plus the following facts, all of which are checked by Maude
tools (after replacing the predefined modules NAT and BOOL by equivalent
specifications when necessary):

1. both BAKERY-PREDS and ABSTRACT-BAKERY-PREDS are sufficiently com-
plete;

2. both BAKERY-PREDS and ABSTRACT-BAKERY-PREDS are locally confluent
and sort-decreasing;

3. both BAKERY-PREDS and ABSTRACT-BAKERY-PREDS are terminating.

The SCC tool checks fact (1):

Maude> (scc BAKERY-PREDS .)

Success: BAKERY-PREDS is sufficiently complete under the assumption

that it is weakly-normalizing, confluent, and sort-decreasing.

Maude> (scc ABSTRACT-BAKERY-PREDS .)

Success: ABSTRACT-BAKERY-PREDS is sufficiently complete under

the assumption that it is weakly-normalizing, confluent, and

sort-decreasing.

The CRC tool checks fact (2):

Maude> (check Church-Rosser BAKERY-PREDS .)

All critical pairs have been joined. The specification is

locally-confluent.

The specification is sort-decreasing.

Maude> (check Church-Rosser ABSTRACT-BAKERY-PREDS .)

All critical pairs have been joined. The specification is

locally-confluent.

The specification is sort-decreasing.

All we have left is checking termination of the equations in BAKERY-PREDS

and ABSTRACT-BAKERY-PREDS, that is, fact (3), plus the pending proof of
terminating equations for ABSTRACT-BAKERY. But since the equations in
ABSTRACT-BAKERY-PREDS are precisely the union of those in ABSTRACT-BAKERY

and BAKERY-PREDS, it is enough to check that ABSTRACT-BAKERY-PREDS is
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terminating. This check succeeds with the Maude Termination Tool (MTT),
described in Section 23.1.2.

This finishes all the checks of correctness and executability. The only re-
maining issue is deadlock freedom, which is required for the correctness of
the abstraction. To ensure deadlock freedom we can perform the automatic
module transformation described in Section 16.3, that preserves all the desired
executability properties to obtain a semantically equivalent, deadlock-free ver-
sion, say DF-BAKERY, of BAKERY. After loading the BAKERY module, we can
obtain its deadlock-free version DF-BAKERY by performing this transformation
in Full Maude (with the extension described in Section 16.3) as follows:

(mod DF-BAKERY is

protecting DEADLOCK-FREE[BAKERY, BState] .

endm)

Note that the kind of states in DEADLOCK-FREE[BAKERY, BState] has
changed. It is now [EConfig] and there is an operator

op {_} : State -> EConfig .

wrapping each state of kind [BState] into a state of kind [EConfig]. This
means that we have to slightly redefine our state predicates, since they take
now states of kind [EConfig], as follows:

(mod DF-BAKERY-PREDS is

protecting DF-BAKERY .

including SATISFACTION .

subsort EConfig < State .

ops 1wait 2wait 1crit 2crit : -> Prop [ctor] .

vars P Q : Mode .

vars X Y : Nat .

eq {< wait, X, Q, Y >} |= 1wait = true .

eq {< sleep, X, Q, Y >} |= 1wait = false .

eq {< crit, X, Q, Y >} |= 1wait = false .

eq {< P, X, wait, Y >} |= 2wait = true .

eq {< P, X, sleep, Y >} |= 2wait = false .

eq {< P, X, crit, Y >} |= 2wait = false .

eq {< crit, X, Q, Y >} |= 1crit = true .

eq {< sleep, X, Q, Y >} |= 1crit = false .

eq {< wait, X, Q, Y >} |= 1crit = false .

eq {< P, X, crit, Y >} |= 2crit = true .

eq {< P, X, sleep, Y >} |= 2crit = false .

eq {< P, X, wait, Y >} |= 2crit = false .

endm)

Our desired module DF-ABSTRACT-BAKERY has exactly the same equations
as before, but now includes DF-BAKERY instead of BAKERY.

(mod DF-ABSTRACT-BAKERY is

including DF-BAKERY .
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vars P Q : Mode .

vars X Y : Nat .

eq < P, 0, Q, s s Y > = < P, 0, Q, s 0 > .

eq < P, s s X, Q, 0 > = < P, s 0, Q, 0 > .

eq < P, s s s X, Q, s s s Y > = < P, s s X, Q, s s Y > .

eq < P, s s s X, Q, s s 0 > = < P, s s 0, Q, s 0 > .

eq < P, s s s X, Q, s 0 > = < P, s s 0, Q, s 0 > .

eq < P, s s 0, Q, s s Y > = < P, s 0, Q, s 0 > .

eq < P, s 0, Q, s s Y > = < P, s 0, Q, s 0 > .

endm)

Finally we can verify our two desired properties as follows:

(mod DF-ABSTRACT-BAKERY-PREDS is

protecting DF-ABSTRACT-BAKERY .

including DF-BAKERY-PREDS .

endm)

(mod DF-ABSTRACT-BAKERY-CHECK is

including MODEL-CHECKER .

including DF-ABSTRACT-BAKERY-PREDS .

endm)

Maude> (red modelCheck({initial}, []~(1crit /\ 2crit)) .)

reduce in DF-ABSTRACT-BAKERY-CHECK :

modelCheck({initial}, []~(1crit /\ 2crit))

result Bool :

true

Maude> (red modelCheck({initial},

(1wait |-> 1crit) /\ (2wait |-> 2crit)) .)

reduce in DF-ABSTRACT-BAKERY-CHECK :

modelCheck({initial}, (1wait |-> 1crit) /\ (2wait |-> 2crit))

result Bool :

true

The reason why if an LTL formula holds in an equational abstraction
A it also holds in the original theory R is that an equational abstraction
defines a simulation map q : K(R, k)Π −→ K(A, k)Π , mapping each state
[t]E in R to its corresponding abstract state [t]E∪G in A, and such simulation
maps reflect satisfaction of LTL formulas (see [256]). We can consider other
forms of abstraction based, not just on simulation maps (which require each
transition in K(R, k)Π to be mimicked by a transition in K(A, k)Π), but, more
generally, on stuttering simulation maps q : K(R, k)Π −→ K(A, k)Π , which
relate finite sequences of transitions in K(R, k)Π and in K(A, k)Π . Such maps
reflect satisfaction of LTL−© formulas, that is, of LTL formulas not involving
the next operator ©. Therefore, for such formulas a stuttering simulation
map can be used to prove the formula for R by model checking it for A. Two
abstraction techniques based on stuttering simulations, that complement the
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method of equational abstraction presented here and are applicable to rewrite
theories in general, are the method of theoroidal maps presented in [233] and
the state-space reduction technique proposed in [154]. A further, stuttering-
bisimulation-based abstraction technique applicable to real-time systems and
supported by the Real-Time Maude tool is described in [290].

13.5 The LTL satisfiability and tautology checker

A formula ϕ ∈ LTL(AP ) is satisfiable if there is a Kripke structure A =
(A,→A, L), with L : A −→ P(AP ), and a computation path π such
that A, π |= ϕ. Satisfiability of a formula ϕ ∈ LTL(AP ) is a decidable
property. In Maude, the satisfiability decision procedure is supported by
the following predefined functional module SAT-SOLVER (also in the file
model-checker.maude).

fmod SAT-SOLVER is

protecting LTL .

*** formula lists and results

sorts FormulaList SatSolveResult TautCheckResult .

subsort Formula < FormulaList .

subsort Bool < SatSolveResult TautCheckResult .

op nil : -> FormulaList [ctor] .

op _;_ : FormulaList FormulaList -> FormulaList

[ctor assoc id: nil] .

op model : FormulaList FormulaList -> SatSolveResult [ctor] .

op satSolve : Formula ~> SatSolveResult [special (...)] .

op counterexample :

FormulaList FormulaList -> TautCheckResult [ctor] .

op tautCheck : Formula ~> TautCheckResult .

op $invert : SatSolveResult -> TautCheckResult .

var F : Formula .

vars L C : FormulaList .

eq tautCheck(F) = $invert(satSolve(~ F)) .

eq $invert(false) = true .

eq $invert(model(L, C)) = counterexample(L, C) .

endfm

One can define the desired atomic predicates in a module extending
SAT-SOLVER, such as, for example,

fmod SAT-SOLVER-TEST is

extending SAT-SOLVER .

extending LTL .



13.5 The LTL satisfiability and tautology checker 413

"!
# 

a -"!
# 

b -"!
# 
¬c

-
� "!
# 

c

Fig. 13.2. Graphical representation of a Kripke structure

ops a b c d e p q r : -> Formula .

endfm

The user can then decide the satisfiability of an LTL formula involving
those atomic propositions by applying the operator satSolve (whose special
attribute has also been omitted in the module above) to the given formula and
evaluating the expression. The resulting solution of sort SatSolveResult is
then either false, if no model exists, or a finite model satisfying the formula.
Such a model is described by a comma-separated pair of finite paths of states:
an initial path leading to a cycle. Each state is described by a conjunction
of atomic propositions or negated atomic propositions, with the propositions
not mentioned in the conjunction being “don’t care” ones. For example, we
can evaluate

Maude> red satSolve(a /\ (O b) /\ (O O ((~ c) /\ [](c \/ (O c))))) .

reduce in SAT-SOLVER-TEST :

satSolve(O O (~ c /\ [](c \/ O c)) /\ (a /\ O b)) .

result SatSolveResult: model(a ; b, (~ c) ; c)

which is satisfied by a four-state model with a holding in the first state, b
holding in the second, c not holding in the third but holding in the fourth,
and the fourth state going back to the third, as shown in Figure 13.2.

We call ϕ ∈ LTL(AP ) a tautology if and only if A, a |=LTL ϕ holds for
every Kripke structure A = (A,→A, L) with L : A −→ P(AP ), and every
state a ∈ A. It then follows easily that ϕ is a tautology if and only if ¬ϕ
is unsatisfiable. Therefore, the module SAT-SOLVER can also be used as a
tautology checker. This is accomplished by using the tautCheck, $invert, and
counterexample operators and their corresponding equations in SAT-SOLVER.
The tautCheck function returns either true if the formula is a tautology, or a
finite model that does not satisfy the formula. For example, we can evaluate:

Maude> red tautCheck((a => (O a)) <-> (a => ([] a))) .

reduce in SAT-SOLVER-TEST : tautCheck((a => O a) <-> a => []a) .

result Bool: true

Maude> red tautCheck((a -> (O a)) <-> (a -> ([] a))) .

reduce in SAT-SOLVER-TEST : tautCheck((a -> O a) <-> a -> []a) .

result TautCheckResult: counterexample(a ; a ; (~ a), True)

The tautology checker gives us also a decision procedure for semantic LTL
equality, which is further discussed in [139].
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13.6 Verifying LTL properties of imperative concurrent
programs

How can the rewriting logic approach that we have been developing in the pre-
vious sections be applied to the verification of imperative concurrent programs,
say in an imperative language L? Essentially we have to do three things:

1. specify precisely the semantics of the imperative concurrent language L
as a rewrite theory RL,

2. choose an appropriate kind k of states in RL and define appropriate state
predicates Π in an equational theory extending that of RL in protecting
mode,

3. express the desired verification of properties of a program P in L as the
satisfaction of, for example, an LTL formula (or formulas) ϕ by the Kripke
structure K(RL, k)Π , and apply some verification or proof method (model
checking, search, abstraction, deductive proof, etc.) to either verify or
disprove ϕ.

13.6.1 The semantics of a simple parallel language

We illustrate step (1) in the above process by defining in Maude the seman-
tics of a simple parallel language as a rewrite theory. The language and its
specification are exactly those in [139]. First, a model of the memory itself
has to be developed; then the syntax of the programs used by the processes is
defined. All this can be done in a series of functional modules that we proceed
to present in detail.

In the following MEMORY module, a memory is represented as a set of pairs
formed by an identifier and an integer.

fmod MEMORY is

protecting INT .

protecting QID .

sorts Memory .

op none : -> Memory [ctor] .

op __ : Memory Memory -> Memory [ctor assoc comm id: none] .

op [_,_] : Qid Int -> Memory [ctor] .

endfm

Then we define an equality test comparing the contents of a named memory
location to a given integer, in another functional module.

fmod TESTS is

protecting MEMORY .

sort Test .

op _=_ : Qid Int -> Test [ctor] .

op eval : Test Memory ~> Bool .
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var Q : Qid .

var M : Memory .

vars N N’ : Int .

eq eval(Q = N, [Q, N’] M) = N == N’ .

endfm

The following functional module SEQUENTIAL provides syntax for a very
simple sequential programming language. We can abstract certain terminat-
ing, or potentially nonterminating, program fragments as constants of sorts
UserStatement and LoopingUserStatement, respectively.

fmod SEQUENTIAL is

protecting TESTS .

sorts UserStatement LoopingUserStatement Program .

subsort LoopingUserStatement < UserStatement < Program .

op skip : -> Program [ctor] .

op _;_ : Program Program -> Program [ctor prec 61 assoc id: skip] .

op _:=_ : Qid Int -> Program [ctor] .

op if_then_fi : Test Program -> Program [ctor] .

op while_do_od : Test Program -> Program [ctor] .

op repeat_forever : Program -> Program [ctor] .

endfm

Using the above modules, we can then define our simple parallel language
in a system module PARALLEL. The global state is a triple consisting of:

1. a “soup” (set) of processes;
2. the shared memory; and
3. a process identifier recording the last process that touched the memory or,

in any event, performed some computation; this is used to express fairness
properties.

Processes themselves are pairs having a process identifier and a program.

mod PARALLEL is

protecting SEQUENTIAL .

sorts Pid Process Soup MachineState .

subsort Process < Soup .

op [_,_] : Pid Program -> Process [ctor] .

op empty : -> Soup [ctor] .

op _|_ : Soup Soup -> Soup [ctor prec 61 assoc comm id: empty] .

op {_,_,_} : Soup Memory Pid -> MachineState [ctor] .

vars P R : Program .

var S : Soup .

var U : UserStatement .

var L : LoopingUserStatement .

vars I J : Pid .

var M : Memory .

var Q : Qid .



416 13 LTL Model Checking

vars N X : Int .

var T : Test .

The operational semantics of this programming language is given by just
six rules. The first two rules deal with terminating and potentially nonter-
minating user statements. Note that there is no need to give a rule for skip,
because it is the identity element for the sequential composition operator _;_.

rl {[I, U ; R] | S, M, J} => {[I, R] | S, M, I} .

rl {[I, L ; R] | S, M, J} => {[I, L ; R] | S, M, I} .

rl {[I, (Q := N) ; R] | S, [Q, X] M, J}

=> {[I, R] | S, [Q, N] M, I} .

rl {[I, if T then P fi ; R] | S, M, J}

=> {[I, if eval(T, M) then P else skip fi ; R] | S, M, I} .

rl {[I, while T do P od ; R] | S, M, J}

=> {[I, if eval(T, M) then (P ; while T do P od)

else skip fi ; R] | S, M, I} .

rl {[I, repeat P forever ; R] | S, M, J}

=> {[I, P ; repeat P forever ; R] | S, M, I} .

endm

13.6.2 Model checking Dekker’s algorithm

We illustrate steps (2) and (3) in the verification of imperative concurrent
programs, as well as the use of the Maude model checker, with the example
of Dekker’s algorithm, one of the earliest correct solutions to the mutual ex-
clusion problem. The Maude specification of this algorithm is exactly as in
[139].

The algorithm assumes processes that execute concurrently on a shared
memory machine and communicate with each other through shared variables.
There are two processes: p1 and p2. Process p1 sets a Boolean variable c1 to
1 to indicate that it wishes to enter its critical section. Process p2 does the
same with variable c2. If one process, after setting its variable to 1, finds that
the variable of its competitor is 0, then it enters its critical section right away.
In case of a tie (both variables set to 1) the tie is broken using a variable turn

that takes values in {1, 2}.
We can then define the two processes for Dekker’s algorithm as programs

in our simple language, as well as the desired initial state, in the following
module extending PARALLEL.

mod DEKKER is

extending PARALLEL .

subsort Int < Pid .
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op crit : -> UserStatement .

op rem : -> LoopingUserStatement .

ops p1 p2 : -> Program .

op initialMem : -> Memory .

op initial : -> MachineState .

eq p1

= repeat

’c1 := 1 ;

while ’c2 = 1 do

if ’turn = 2 then

’c1 := 0 ;

while ’turn = 2 do skip od ;

’c1 := 1

fi

od ;

crit ;

’turn := 2 ;

’c1 := 0 ;

rem

forever .

eq p2

= repeat

’c2 := 1 ;

while ’c1 = 1 do

if ’turn = 1 then

’c2 := 0 ;

while ’turn = 1 do skip od ;

’c2 := 1

fi

od ;

crit ;

’turn := 1 ;

’c2 := 0 ;

rem

forever .

eq initialMem = [’c1, 0] [’c2, 0] [’turn, 1] .

eq initial = { [1, p1] | [2, p2], initialMem, 0 } .

endm

In this module the fragments of code for the critical section and for the
remaining part of the program are respectively abstracted as constants crit

and rem. We assume that crit is terminating, but no such assumption is made
about rem. This is achieved by declaring subsorts (in module SEQUENTIAL) and
constants,

subsorts LoopingUserStatement < UserStatement < Program .
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op crit : -> UserStatement .

op rem : -> LoopingUserStatement .

and by semantic rules where a UserStatement not in LoopingUserStatement

always terminates, but a LoopingUserStatement may not terminate.
To specify relevant properties of Dekker’s algorithm we define three state

predicates parameterized by the process identifier: enterCrit, when the pro-
cess enters its critical section; in-rem, when it is in its rem part; and exec,
when the process has just executed.

mod DEKKER-CHECK is

protecting DEKKER .

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

subsort MachineState < State .

ops enterCrit in-rem exec : Pid -> Prop .

var M : Memory .

var R : Program .

var S : Soup .

vars I J : Pid .

eq {[I, crit ; R] | S, M, J} |= enterCrit(I) = true .

eq {[I, rem ; R] | S, M, J} |= in-rem(I) = true .

eq {S, M, J} |= exec(J) = true .

endm

In the following reduction examples making use of the model checker, we
will get a bit more of information about the number of states by means of the
setting:

Maude> set verbose on .

We first verify that the mutual exclusion property is indeed satisfied.

Maude> reduce in DEKKER-CHECK :

modelCheck(initial, []~ (enterCrit(1) /\ enterCrit(2))) .

ModelChecker: Property automaton has 2 states.

ModelCheckerSymbol: Examined 263 system states.

rewrites: 1156 in 60ms cpu (91ms real) (19266 rews/sec)

result Bool: true

However, the strong liveness property that executing infinitely often im-
plies entering one’s critical section infinitely often fails. The Maude LTL model
checker returns a counterexample as follows, where we have only shown the
first state in the counterexample.

Maude> reduce in DEKKER-CHECK :

modelCheck(initial, []<> exec(1) -> []<> enterCrit(1)) .

ModelChecker: Property automaton has 3 states.

ModelCheckerSymbol: Examined 16 system states.
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rewrites: 148 in 10ms cpu (7ms real) (14800 rews/sec)

result ModelCheckResult:

counterexample({

{ [1, repeat ’c1 := 1 ; while ’c2 = 1 do if ’turn = 2

then ’c1 := 0 ; while ’turn = 2 do skip od ;

’c1 := 1 fi od ; crit ; ’turn := 2 ; ’c1 := 0 ; rem

forever] |

[2, repeat ’c2 := 1 ; while ’c1 = 1 do if ’turn = 1

then ’c2 := 0 ; while ’turn = 1 do skip od ;

’c2 := 1 fi od ; crit ; ’turn := 1 ; ’c2 := 0 ; rem

forever],

[’c1,0] [’c2,0] [’turn,1], 0 }, unlabeled }

{ ... })

Moreover, since rem may not terminate, the weaker liveness property that
if both p1 and p2 execute infinitely often, then both enter their critical sections
infinitely often also fails, as shown by the following counterexample returned
by Maude. Again, we only show the first state for the counterexample that in
full occupies three pages.

Maude> reduce in DEKKER-CHECK :

modelCheck(initial, []<> exec(1) /\ []<> exec(2)

-> []<> enterCrit(1) /\ []<> enterCrit(2)) .

ModelChecker: Property automaton has 7 states.

ModelCheckerSymbol: Examined 236 system states.

rewrites: 1463 in 70ms cpu (215ms real) (20900 rews/sec)

result ModelCheckResult:

counterexample({

{ [1, repeat ’c1 := 1 ; while ’c2 = 1 do if ’turn = 2

then ’c1 := 0 ; while ’turn = 2 do skip od ;

’c1 := 1 fi od ; crit ; ’turn := 2 ; ’c1 := 0 ; rem

forever] |

[2, repeat ’c2 := 1 ; while ’c1 = 1 do if ’turn = 1

then ’c2 := 0 ; while ’turn = 1 do skip od ;

’c2 := 1 fi od ; crit ; ’turn := 1 ; ’c2 := 0 ; rem

forever],

[’c1,0] [’c2,0] [’turn,1], 0 }, unlabeled }

{ ... })

What does hold is the more subtle weak liveness property that if p1 and
p2 both get to execute infinitely often, then if p1 is infinitely often out of its
rem section, then p1 enters its critical section infinitely often. Of course, the
symmetric statement holds true for p2.

Maude> reduce in DEKKER-CHECK :

modelCheck(initial, []<> exec(1) /\ []<> exec(2)

-> []<> ~ in-rem(1) -> []<> enterCrit(1)) .

ModelChecker: Property automaton has 5 states.

ModelCheckerSymbol: Examined 263 system states.
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rewrites: 1661 in 80ms cpu (223ms real) (20762 rews/sec)

result Bool: true

The above Dekker algorithm example illustrates a general capability to
model check in Maude any program (or abstraction of a program) having
finitely many reachable states in any programing language: we just have to
define in Maude the language’s rewriting semantics and the state predicates.

PARALLEL is a toy, yet nontrivial, language; but the same methodology
works in fact very well for “real” languages such as Java and the JVM. By
“very well” we mean that the program analysis tools, such as search for failures
of invariants and model checking of LTL properties, that are obtained for free
by defining the semantics of a real language in Maude compare favorably
with state-of-the-art language-specific tools using standard benchmarks (see
Section 23.2.5, and [156, 153]).

13.7 Crossing the river (revisited)

In Section 7.8 we showed how to solve in Maude the classic puzzle in which a
shepherd takes a wolf, a goat and a cabbage across a river using a boat with
only two seats. While crossing the river was modelled by means of rules, the
facts that the goat and the wolf would eat, respectively, the cabbage and the
goat if they were left alone by the shepherd were modelled with equations; we
showed that those equations gave rise to coherence problems and explained
how to solve them. Here we present an alternative solution in which such
equations disappear altogether and a safe path is found with the help of the
model checker.

The idea is simple: we only specify in Maude the transitions that corre-
spond to crossing the river, and use atomic propositions in LTL to take care
of unwanted situations. Thus, the system specification level is captured by the
module

mod RIVER-CROSSING-2 is

sorts Side Group .

ops left right : -> Side [ctor] .

op change : Side -> Side .

--- shepherd, wolf, goat, cabbage

ops s w g c : Side -> Group [ctor] .

op __ : Group Group -> Group [ctor assoc comm] .

op initial : -> Group .

vars S S’ : Side .

eq change(left) = right .

eq change(right) = left .
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eq initial = s(left) w(left) g(left) c(left) .

rl [shepherd-alone] : s(S) => s(change(S)) .

rl [wolf] : s(S) w(S) => s(change(S)) w(change(S)) .

rl [goat] : s(S) g(S) => s(change(S)) g(change(S)) .

rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

endm

and the property specification level by

mod RIVER-CROSSING-2-PROP is

protecting RIVER-CROSSING-2 .

including MODEL-CHECKER .

subsort Group < State .

ops disaster success : -> Prop .

vars S S’ S’’ : Side .

ceq (w(S) g(S) s(S’) c(S’’) |= disaster) = true if S =/= S’ .

ceq (w(S’’) g(S) s(S’) c(S) |= disaster) = true if S =/= S’ .

eq (s(right) w(right) g(right) c(right) |= success) = true .

endm

That is, a state satisfies the disaster condition if either the wolf or the
goat can eat, whereas the success property only holds if everybody is on the
right riverbank.

Note now that the model checker only returns paths that are counterex-
amples of properties. Then, to find a safe path we need to find a formula that
somehow expresses the negation of the property we are interested in: a coun-
terexample will then witness a safe path for the shepherd. For this problem,
if no safe path exists then it should be true that whenever success is reached
a disastrous state must have been traversed before:

<> success -> (<> disaster /\ ((~ success) U disaster))

We can use the model checker to ask for a counterexample to this formula,
that will correspond to a safe path.

Maude> red modelCheck(initial,

<> success -> (<> disaster /\ ((~ success) U disaster))) .

result ModelCheckResult: counterexample(

{s(left) w(left) l(left) c(left),’lamb}

{s(right) w(left) l(right) c(left),’shepherd}

{s(left) w(left) l(right) c(left),’wolf}

{s(right) w(right) l(right) c(left),’lamb}

{s(left) w(right) l(left) c(left),’cabbage}

{s(right) w(right) l(left) c(right),’shepherd}

{s(left) w(right) l(left) c(right),’lamb}

{s(right) w(right) l(right) c(right),’lamb}
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{s(left) w(right) l(left) c(right),’shepherd}

{s(right) w(right) l(left) c(right),’wolf}

{s(left) w(left) l(left) c(right),’lamb}

{s(right) w(left) l(right) c(right),’cabbage}

{s(left) w(left) l(right) c(left),’wolf},

{s(right) w(right) l(right) c(left),’lamb}

{s(left) w(right) l(left) c(left),’lamb})

The first eight states in this path are the same returned by the search

command in Section 7.8; the remaining ones are there because the model
checker always return a counterexample that consists of a path followed by a
cycle.

13.8 Other model-checking examples

In Section 17.6 some properties of a Mobile Maude application are model
checked. This example is interesting because two levels of reflection (see Chap-
ter 14) are involved: the object level, at which Mobile Maude system code
executes, and the metalevel, at which application code is executed.

The model checker can also be executed in Full Maude. This is illustrated
with an example in Section 21.8. This example, though quite simple, is in-
teresting in several ways. The use of parameterization is exploited at both
the system and the property level. At the system level, it allows a succinct
specification of a parametric system. At the property level, it makes possible
the specification of the relevant properties for each value of the parameter,
also in a very succinct way. This is quite useful, because the property formulas
vary as the parameter changes, and the parametric description encompasses
an infinite number of instance formulas.



14

Reflection, Metalevel Computation, and
Strategies

Informally, a reflective logic is a logic in which important aspects of its
metatheory can be represented at the object level in a consistent way, so
that the object-level representation correctly simulates the relevant metathe-
oretic aspects. In other words, a reflective logic is a logic which can be faith-
fully interpreted in itself. Maude’s language design and implementation make
systematic use of the fact that rewriting logic is reflective [76, 66, 77, 78].
This makes the metatheory of rewriting logic accessible to the user in a clear
and principled way. However, since a naive implementation of reflection can
be computationally expensive, a good implementation must provide efficient
ways of performing reflective computations. This chapter explains how this is
achieved in Maude through its predefined META-LEVEL module, that can be
found in the prelude.maude file.

14.1 Reflection and metalevel computation

Rewriting logic is reflective in a precise mathematical way, namely, there is a
finitely presented rewrite theory U that is universal in the sense that we can
represent in U any finitely presented rewrite theory R (including U itself) as
a term R, any terms t, t′ in R as terms t, t′, and any pair (R, t) as a term
〈R, t〉, in such a way that we have the following equivalence

R ` t −→ t′ ⇔ U ` 〈R, t〉 −→ 〈R, t′〉.

Since U is representable in itself, we can achieve a “reflective tower” with
an arbitrary number of levels of reflection:

R ` t→ t′ ⇔ U ` 〈R, t〉 → 〈R, t′〉 ⇔ U ` 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉 . . .

In this chain of equivalences we say that the first rewriting computation
takes place at level 0, the second at level 1, and so on. In a naive implemen-
tation, each step up the reflective tower comes at considerable computational
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cost, because simulating a single step of rewriting at one level involves many
rewriting steps one level up. It is therefore important to have systematic ways
of lowering the levels of reflective computations as much as possible, so that
a rewriting subcomputation happens at a higher level in the tower only when
this is strictly necessary.

In Maude, key functionality of the universal theory U has been efficiently
implemented in the functional module META-LEVEL. This module includes the
modules META-VIEW, META-MODULE, and META-TERM. As an overview,

• in the module META-TERM, Maude terms are metarepresented as elements
of a data type Term of terms;
• in the module META-MODULE, Maude modules are metarepresented as terms

in a data type Module of modules;
• in the module META-VIEW, Maude views are metarepresented as terms in

a data type View of views; and
• in the module META-LEVEL,

– operations upModule, upTerm, downTerm, and others allow moving be-
tween reflection levels;

– the process of reducing a term to canonical form using Maude’s reduce
command is metarepresented by a built-in function metaReduce;

– the processes of rewriting a term in a system module using Maude’s
rewrite and frewrite commands are metarepresented by built-in
functions metaRewrite and metaFrewrite;

– the process of applying (without extension) a rule of a system mod-
ule at the top of a term is metarepresented by a built-in function
metaApply;

– the process of applying (with extension) a rule of a system module
at any position of a term is metarepresented by a built-in function
metaXapply;

– the process of matching (without extension) two terms at the top is
reified by a built-in function metaMatch;

– the process of matching (with extension) a pattern to any subterm of
a term is reified by a built-in function metaXmatch;

– the process of searching for a term satisfying some conditions start-
ing in an initial term is reified by built-in functions metaSearch and
metaSearchPath; and

– parsing and pretty-printing of a term in a module, as well as key sort
operations such as comparing sorts in the subsort ordering of a signa-
ture, are also metarepresented by corresponding built-in functions.

The functions metaReduce, metaApply, metaXapply, metaRewrite, metaFrewrite,
metaMatch, and metaXmatch are called descent functions, since they allow us
to descend levels in the reflective tower. The paper [70] provides a formal def-
inition of the notion of descent function, and a detailed explanation of how
they can be used to achieve a systematic, conservative way of lowering the
levels of reflective computations.
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META-LEVEL

META-VIEW

META-MODULE

NAT-LISTQID-LIST META-TERM

QID

QID-SET*(β)

QID-SET

*(β)

Fig. 14.1. Importation graph of metalevel modules

The importation graph in Figure 14.1 shows the relationships between
all the modules in the metalevel. The modules NAT-LIST and QID-LIST pro-
vide lists of natural numbers and quoted identifiers, respectively (see Sec-
tion 9.12.1), and the module QID-SET provides sets of quoted identifiers (see
Section 9.12.2). Notice that QID-SET is imported (in protecting mode) with
renaming

(op empty to none, op _,_ to _;_ [prec 43])

abbreviated to β in the figure.

14.2 The META-TERM module

14.2.1 Metarepresenting sorts and kinds

In the META-TERM module, sorts and kinds are metarepresented as data in
specific subsorts of the sort Qid of quoted identifiers.
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A term of sort Sort is any quoted identifier not containing the following
characters: ‘:’, ‘.’, ‘[’, and ‘]’. Moreover, the characters ‘{’, ‘}’, and ‘,’ can
only appear in structured sort names (see Section 3.3). For example, ’Bool,
’NzNat, a‘{X‘}, a‘{X‘,Y‘}, a‘{b‘,c‘{d‘}‘}‘{e‘}, and a‘{‘(‘} are terms
of sort Sort.

An element of sort Kind is a quoted identifier of the form ’‘[SortList‘]
where SortList is a single identifier formed by a list of unquoted elements
of sort Sort separated by backquoted commas. For example, ’‘[Bool‘] and
’‘[NzNat‘,Zero‘,Nat‘] are valid elements of the sort Kind. Note the use of
backquotes to force them to be single identifiers.

Since commas and square brackets are used to metarepresent kinds, these
characters are forbidden in sort names, in order to avoid undesirable ambigu-
ities. Periods and colons are also forbidden, due to the metarepresentation of
constants and variables, as explained in the next section.

Since operator declarations can use both sorts and kinds, we denote by
Type the union of Sort and Kind.

sorts Sort Kind Type .

subsorts Sort Kind < Type < Qid.

op <Qids> : -> Sort [special (...)] .

op <Qids> : -> Kind [special (...)] .

Remember from the introduction of Chapter 9 that <Qids> is a special
operator declaration used to represent sets of constants that are not alge-
braically constructed, but are instead associated with appropriate C++ code
by “hooks” which are specified following the special attribute; see the func-
tional module META-TERM in file prelude.maude for the details omitted here.

14.2.2 Metarepresenting terms

In the module META-TERM, terms are metarepresented as elements of the data
type Term of terms. The base cases in the metarepresentation of terms are
given by subsorts Constant and Variable of the sort Qid.

sorts Constant Variable Term .

subsorts Constant Variable < Qid Term .

op <Qids> : -> Constant [special (...)] .

op <Qids> : -> Variable [special (...)] .

Constants are quoted identifiers that contain the constant’s name and its
type separated by a ‘.’, e.g., ’0.Nat. Similarly, variables contain their name
and type separated by a ‘:’, e.g., ’N:Nat. Appropriate selectors then extract
their names and types.

op getName : Constant -> Qid .

op getName : Variable -> Qid .

op getType : Constant -> Type .

op getType : Variable -> Type .
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Since ‘.’ and ‘:’ are not allowed in sort names (see Section 3.3), the name and
type of a constant or variable can be calculated easily. Note that there is no
restriction in operator or in variable names, and thus the scanning for ‘.’ or
‘:’ is done from right to left in the identifier. That is,

getName(’:-D:Smile) = ’:-D

getType(’:-.|.‘[Smile‘]) = ’‘[Smile‘]

A term different from a constant or a variable is constructed in the usual
way, by applying an operator symbol to a nonempty list of terms.

sorts NeTermList TermList .

subsorts Term < NeTermList < TermList .

op _,_ : TermList TermList -> TermList

[ctor assoc id: empty gather (e E) prec 121] .

op _,_ : NeTermList TermList -> NeTermList [ctor ditto] .

op _,_ : TermList NeTermList -> NeTermList [ctor ditto] .

op _[_] : Qid NeTermList -> Term [ctor] .

The actual sort infrastructure provided by the module META-TERM is a bit
more complex, because there are also subsorts and operators for the metarep-
resentation of ground terms and the corresponding lists of ground terms that
we do not describe here (see the file prelude.maude for details).

Since terms in the module META-TERM can be metarepresented just as terms
in any other module, the metarepresentation of terms can be iterated.

For example, the term c q M:Marking in the module VENDING-MACHINE

in Section 6.1 is metarepresented by

’__[’c.Item, ’__[’q.Coin, ’M:Marking]]

and meta-metarepresented by

’_‘[_‘][’’__.Qid,

’_‘,_[’’c.Item.Constant,

’_‘[_‘][’’__.Qid,

’_‘,_[’’q.Coin.Constant,

’’M:Marking.Variable]]]]

Note that the metarepresentation of a natural number such as, e.g., 42 is
’s_^42[’0.Zero] instead of ’42.NzNat, since, as explained in Section 9.2,
42 is just syntactic sugar for s_^42(0).

14.3 The META-MODULE module: Metarepresenting modules

In the module META-MODULE, which imports META-TERM, functional and system
modules, as well as functional and system theories, are metarepresented in a
syntax very similar to their original user syntax.

The main differences are that:



428 14 Reflection, Metalevel Computation, and Strategies

1. terms in equations, membership axioms, and rules are now metarepre-
sented as we have already explained in Section 14.2.2;

2. in the metarepresentation of modules and theories we follow a fixed or-
der in introducing the different kinds of declarations for sorts, subsort
relations, equations, etc., whereas in the user syntax there is considerable
flexibility for introducing such different declarations in an interleaved and
piecemeal way;

3. there is no need for variable declarations—in fact, there is no syntax for
metarepresenting them—and

4. sets of identifiers—used in declarations of sorts—are metarepresented as
sets of quoted identifiers built with an associative and commutative oper-
ator _;_.

The syntax for the top-level operators metarepresenting functional and
system modules and functional and system theories (just modules in gen-
eral) is as follows, where Header means just an identifier in the case of non-
parameterized modules or an identifier together with a list of parameter dec-
larations in the case of a parameterized module.

sorts FModule SModule FTheory STheory Module .

subsorts FModule < SModule < Module .

subsorts FTheory < STheory < Module .

sort Header .

subsort Qid < Header .

op _{_} : Qid ParameterDeclList -> Header [ctor] .

op fmod_is_sorts_.____endfm : Header ImportList SortSet

SubsortDeclSet OpDeclSet MembAxSet EquationSet -> FModule

[ctor gather (& & & & & & &)] .

op mod_is_sorts_._____endm : Header ImportList SortSet

SubsortDeclSet OpDeclSet MembAxSet EquationSet RuleSet

-> SModule [ctor gather (& & & & & & & &)] .

op fth_is_sorts_.____endfth : Qid ImportList SortSet SubsortDeclSet

OpDeclSet MembAxSet EquationSet -> FTheory

[ctor gather (& & & & & & &)] .

op th_is_sorts_._____endth : Qid ImportList SortSet SubsortDeclSet

OpDeclSet MembAxSet EquationSet RuleSet -> STheory

[ctor gather (& & & & & & & &)] .

Appropriate selectors then extract from the metarepresentation of modules
the metarepresentations of their names, imported submodules, and declared
sorts, subsorts, operators, memberships, equations, and rules.

op getName : Module -> Qid .

op getImports : Module -> ImportList .

op getSorts : Module -> SortSet .

op getSubsorts : Module -> SubsortDeclSet .

op getOps : Module -> OpDeclSet .

op getMbs : Module -> MembAxSet .

op getEqs : Module -> EquationSet .
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op getRls : Module -> RuleSet .

Without going into all the syntactic details, we show only the operators
used to metarepresent sets of sorts and kinds, conditions, equations, and rules.
The complete syntax used for metarepresenting modules can be found in the
module META-MODULE in the file prelude.maude.

sorts EmptyTypeSet NeSortSet NeKindSet

NeTypeSet SortSet KindSet TypeSet .

subsort EmptyTypeSet < SortSet KindSet < TypeSet < QidSet .

subsort Sort < NeSortSet < SortSet .

subsort Kind < NeKindSet < KindSet .

subsort Type NeSortSet NeKindSet < NeTypeSet < TypeSet NeQidSet .

op none : -> EmptyTypeSet [ctor] .

op _;_ : TypeSet TypeSet -> TypeSet

[ctor assoc comm id: none prec 43] .

op _;_ : SortSet SortSet -> SortSet [ctor ditto] .

op _;_ : KindSet KindSet -> KindSet [ctor ditto] .

sorts EqCondition Condition .

subsort EqCondition < Condition .

op nil : -> EqCondition [ctor] .

op _=_ : Term Term -> EqCondition [ctor prec 71] .

op _:_ : Term Sort -> EqCondition [ctor prec 71] .

op _:=_ : Term Term -> EqCondition [ctor prec 71] .

op _=>_ : Term Term -> Condition [ctor prec 71] .

op _/\_ : EqCondition EqCondition -> EqCondition

[ctor assoc id: nil prec 73] .

op _/\_ : Condition Condition -> Condition

[ctor assoc id: nil prec 73] .

sorts Equation EquationSet .

subsort Equation < EquationSet .

op eq_=_[_]. : Term Term AttrSet -> Equation [ctor] .

op ceq_=_if_[_]. : Term Term EqCondition AttrSet -> Equation

[ctor] .

op none : -> EquationSet [ctor] .

op __ : EquationSet EquationSet -> EquationSet

[ctor assoc comm id: none] .

sorts Rule RuleSet .

subsort Rule < RuleSet .

op rl_=>_[_]. : Term Term AttrSet -> Rule [ctor] .

op crl_=>_if_[_]. : Term Term Condition AttrSet -> Rule [ctor] .

op none : -> RuleSet [ctor] .

op __ : RuleSet RuleSet -> RuleSet [ctor assoc comm id: none] .

For example, we show here the metarepresentations of the modules intro-
duced in Section 6.1 VENDING-MACHINE-SIGNATURE and VENDING-MACHINE.
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fmod ’VENDING-MACHINE-SIGNATURE is

nil

sorts ’Coin ; ’Item ; ’Marking .

subsort ’Coin < ’Marking .

subsort ’Item < ’Marking .

op ’__ : ’Marking ’Marking -> ’Marking

[assoc comm id(’null.Marking)] .

op ’a : nil -> ’Item [format(’b! ’o)] .

op ’null : nil -> ’Marking [none] .

op ’$ : nil -> ’Coin [format(’r! ’o)] .

op ’q : nil -> ’Coin [format(’r! ’o)] .

op ’c : nil -> ’Item [format(’b! ’o)] .

none

none

endfm

mod ’VENDING-MACHINE is

including ’VENDING-MACHINE-SIGNATURE .

sorts none .

none

none

none

none

rl ’M:Marking => ’__[’M:Marking, ’q.Coin] [label(’add-q)] .

rl ’M:Marking => ’__[’M:Marking, ’$.Coin] [label(’add-$)] .

rl ’$.Coin => ’c.Item [label(’buy-c)] .

rl ’$.Coin => ’__[’a.Item, ’q.Coin] [label(’buy-a)] .

rl ’__[’q.Coin, ’__[’q.Coin, ’__[’q.Coin, ’q.Coin]]]

=> ’$.Coin [label(’change)] .

endm

Since VENDING-MACHINE-SIGNATURE has no list of imported submodules,
no membership axioms, and no equations, those fields are filled, respectively,
with the constants nil of sort ImportList, none of sort MembAxSet, and
none of sort EquationSet. Similarly, since the module VENDING-MACHINE has
no subsort declarations and no operator declarations, those fields are filled,
respectively, with the constants none of sort SubsortDeclSet and none of sort
OpDeclSet. Variable declarations are not metarepresented, but rather each
variable is metarepresented in its “on the fly”-declaration form, i.e., with its
sort or kind.

As mentioned above, parameterized modules are also metarepresented
through the notion of a header, which is either an identifier (for non-
parameterized modules) or an identifier together with a list of parameter
declarations (for parameterized modules). Such parameter declarations are
metarepresented again with a syntax similar to the user syntax.

sorts ParameterDecl NeParameterDeclList ParameterDeclList .

subsorts ParameterDecl < NeParameterDeclList < ParameterDeclList .

op _::_ : Sort ModuleExpression -> ParameterDecl .



14.3 The META-MODULE module: Metarepresenting modules 431

op nil : -> ParameterDeclList [ctor] .

op _,_ : ParameterDeclList ParameterDeclList -> ParameterDeclList

[ctor assoc id: nil prec 121] .

Module expressions involving renamings and summations can also be
metarepresented with the expected syntax:

sort ModuleExpression .

subsort Qid < ModuleExpression .

op _+_ : ModuleExpression ModuleExpression -> ModuleExpression

[ctor assoc comm] .

op _*(_) : ModuleExpression RenamingSet -> ModuleExpression

[ctor prec 39 format (d d s n++i n--i d)] .

sorts Renaming RenamingSet .

subsort Renaming < RenamingSet .

op sort_to_ : Qid Qid -> Renaming [ctor] .

op op_to_[_] : Qid Qid AttrSet -> Renaming

[ctor format (d d d d s d d d)] .

op op_:_->_to_[_] : Qid TypeList Type Qid AttrSet -> Renaming

[ctor format (d d d d d d d d s d d d)] .

op label_to_ : Qid Qid -> Renaming [ctor] .

op _,_ : RenamingSet RenamingSet -> RenamingSet

[ctor assoc comm prec 43 format (d d ni d)] .

Finally, the instantiation of a parameterized module is metarepresented as
follows:

op _{_} : ModuleExpression ParameterList -> ModuleExpression

[ctor prec 37].

sort EmptyCommaList NeParameterList ParameterList .

subsorts Sort < NeParameterList < ParameterList .

subsort EmptyCommaList < GroundTermList ParameterList .

op empty : -> EmptyCommaList [ctor] .

op _,_ : ParameterList ParameterList -> ParameterList [ctor ditto] .

The rules for constructing parameterized metamodules and instantiating
parameterized modules existing in the database reflect the object-level rules.
In particular, bound parameters are permitted; for example, the following
term metarepresents a parameterized module:

fmod ’PARMODEX{’X :: ’TRIV} is

including ’MAP{’String, ’X} .

sorts ’Foo .

none

none

none

none

endfm
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Although, as we will see in the following section, views can be metarepre-
sented as terms of the View sort, it is not possible to use the views constructed
at the metalevel in module expressions. The views used in the module expres-
sions occurring in metamodules must have been declared at the object level,
so that they are present in the database of modules and views declared in
the given session. Such views are written in quoted form within metamodule
expressions, like ’String in ’MAP{’String, ’X} in the example above.

Note that terms of sort Module can be metarepresented again, yielding
then a term of sort Term, and this can be iterated an arbitrary number of
times. This is in fact necessary when a metalevel computation has to operate
at higher levels.

14.4 The META-VIEW module: Metarepresenting views

In the module META-VIEW, which imports META-MODULE, views are metarepre-
sented in a syntax very similar to their original user syntax.

sort View .

op view_from_to_is__endv : Header ModuleExpression ModuleExpression

SortMappingSet OpMappingSet -> View [ctor gather (& & & & &)

format (d d d d d d d n++i ni n--i d)] .

The first argument corresponds to the name of the view, while the second
and third are module expressiones corresponding to the source (usually a
theory) and target (usually a module) of the view, respectively. The fourth
and fifth arguments are the sort mappings and the operator mappings defining
the view.

The following syntax defines sets of sort mappings in a way completely
similar to the user syntax.

sorts SortMapping SortMappingSet .

subsort SortMapping < SortMappingSet .

op sort_to_. : Sort Sort -> SortMapping [ctor] .

op none : -> SortMappingSet [ctor] .

op __ : SortMappingSet SortMappingSet -> SortMappingSet

[ctor assoc comm id: none format (d ni d)] .

eq S:SortMapping S:SortMapping = S:SortMapping .

Analogously, the following syntax is used to define set of operator map-
pings.

sorts OpMapping OpMappingSet .

subsort OpMapping < OpMappingSet .

op (op_to_.) : Qid Qid -> OpMapping [ctor] .

op (op_:_->_to_.) : Qid TypeList Type Qid -> OpMapping [ctor] .

op (op_to term_.) : Term Term -> OpMapping [ctor] .

op none : -> OpMappingSet [ctor] .
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op __ : OpMappingSet OpMappingSet -> OpMappingSet

[ctor assoc comm id: none format (d ni d)] .

eq O:OpMapping O:OpMapping = O:OpMapping .

Finally, appropriate selectors are used to extract from the metarepresenta-
tion of a view the corresponding components, namely, the metarepresentations
of its name, of its source, of its target, of its set of sort mappings, and of its
set of operator mappings.

op getName : View -> Qid .

op getFrom : View -> ModuleExpression .

op getTo : View -> ModuleExpression .

op getSortMappings : View -> SortMappingSet .

op getOpMappings : View -> OpMappingSet .

For example, the metarepresentation of the view RingToRat (see Sec-
tion 8.3.2) from the theory RING to the predefined RAT module is as follows:

view ’RingToRat from ’RING to ’RAT is

sort ’Ring to ’Rat .

op ’z to ’0 .

op ’e.Ring to term ’s_[’0.Zero] .

endv

Then, we can extract some components of this metarepresented view:

Maude> reduce in META-VIEW :

getFrom(view ’RingToRat from ’RING to ’RAT is

sort ’Ring to ’Rat .

op ’z to ’0 .

op ’e.Ring to term ’s_[’0.Zero] .

endv) .

result Sort: ’RING

Maude> reduce in META-VIEW :

getOpMappings(view ’RingToRat from ’RING to ’RAT is

sort ’Ring to ’Rat .

op ’z to ’0 .

op ’e.Ring to term ’s_[’0.Zero] .

endv) .

result OpMappingSet:

op ’z to ’0 .

op ’e.Ring to term ’s_[’0.Zero] .

14.5 The META-LEVEL module: Metalevel operations

The META-LEVEL module, which imports META-VIEW, has several built-in de-
scent functions that provide useful and efficient ways of reducing metalevel
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computations to object-level ones, as well as several useful operations on
sorts and kinds. Since, in general, these operations take among their argu-
ments the metarepresentations of modules, sorts, kinds, terms, and so on, the
META-LEVEL modules also provides several built-in functions for moving con-
veniently between reflection levels. Notice that most of the operations in the
module META-LEVEL are partial (as explicitly stated by using the arrow ~>

in the corresponding operator declaration). This is due to the fact that they
do not make sense on terms that, although may be of the correct sort, for
example, Module or Term, either are not correct metarepresentations of mod-
ules or are not correct metarepresentations of terms in the module provided
as another argument.

Concerning partial operations, the criteria used to choose between using
a supersort for the result and having an operator map to a kind is as follows.

If the error return value is built from constructors, say

op noParse : Nat -> ResultPair? [ctor] .

op ambiguity : ResultPair ResultPair -> ResultPair? [ctor] .

it goes to a supersort. In some sense these are not errors, but merely exceptions
or out-of-band results for which there is a carefully defined semantics.

The kind is reserved for nonconstructors which may not be able to reduce
at all on illegal arguments, like, for example, in the function (notice the form
of the arrow)

op metaParse : Module QidList Type? ~> ResultPair? [special (...)] .

In this second case, an expression that does not evaluate to the appropriate
sort represents a real error.

So, for example, a call to metaParse with an ill-formed module would
produce an unreduced term metaParse(...) in the kind, whereas a call
to metaParse with valid arguments but a list of tokens that could not be
parsed to a term of the desired type in the metamodule would produce a term
noParse(...) of sort ResultPair? indicating where the parse first failed.

14.5.1 Moving between reflection levels: upModule, upTerm,
downTerm, and others

For a module R that has already been loaded into Maude, the operations
upSorts, upSubsortDecl, upOpDecls, upMbs, upEqs, upRls, and upModule

take as arguments the metarepresentation of the name of R and a Boolean
value b, and return, respectively, the metarepresentations of the module R,
of its sorts, subsort declarations, operator declarations, membership axioms,
equations, and rules. If the second argument of these functions is true, then
the resulting metarepresentations will include the corresponding statements
that R imports from its submodules; but if the second argument is false,
the resulting metarepresentations will only contain the metarepresentations
of the statements explicitly declared in R.
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op upModule : Qid Bool ~> Module [special (...)] .

op upSorts : Qid Bool ~> SortSet [special (...)] .

op upSubsortDecls : Qid Bool ~> SubsortDeclSet [special (...)] .

op upOpDecls : Qid Bool ~> OpDeclSet [special (...)] .

op upMbs : Qid Bool ~> MembAxSet [special (...)] .

op upEqs : Qid Bool ~> EquationSet [special (...)] .

op upRls : Qid Bool ~> RuleSet [special (...)] .

We give below simple examples of using these functions. Note that, since
BOOL is automatically imported by all modules, its equations are shown when
upEqs is called with true as its second argument. For the same reason, the
metarepresentation of the VENDING-MACHINE-SIGNATURE module includes an
including declaration that was not explicit in that module. Here, and in
the rest of this section, we assume that the modules NUMBERS and SIEVE

from Chapter 4, as well as the modules VENDING-MACHINE-SIGNATURE and
VENDING-MACHINE from Chapter 6, have already been loaded into Maude.

Maude> reduce in META-LEVEL :

upModule(’VENDING-MACHINE-SIGNATURE, false) .

result FModule:

fmod ’VENDING-MACHINE-SIGNATURE is

including ’BOOL .

sorts ’Coin ; ’Item ; ’Marking .

subsort ’Coin < ’Marking .

subsort ’Item < ’Marking .

op ’$ : nil -> ’Coin [format(’r! ’o)] .

op ’__ : ’Marking ’Marking -> ’Marking

[assoc comm id(’null.Marking)] .

op ’a : nil -> ’Item [format(’b! ’o)] .

op ’c : nil -> ’Item [format(’b! ’o)] .

op ’null : nil -> ’Marking [none] .

op ’q : nil -> ’Coin [format(’r! ’o)] .

none

none

endfm

Maude> reduce in META-LEVEL : upEqs(’VENDING-MACHINE, true) .

result EquationSet:

eq ’_and_[’true.Bool, ’A:Bool] = ’A:Bool [none] .

eq ’_and_[’A:Bool, ’A:Bool] = ’A:Bool [none] .

eq ’_and_[’A:Bool, ’_xor_[’B:Bool, ’C:Bool]]

= ’_xor_[’_and_[’A:Bool, ’B:Bool], ’_and_[’A:Bool, ’C:Bool]]

[none] .

eq ’_and_[’false.Bool, ’A:Bool] = ’false.Bool [none] .

eq ’_or_[’A:Bool,’B:Bool]

= ’_xor_[’_and_[’A:Bool, ’B:Bool],’_xor_[’A:Bool, ’B:Bool]]

[none] .

eq ’_xor_[’A:Bool, ’A:Bool] = ’false.Bool [none] .

eq ’_xor_[’false.Bool, ’A:Bool] = ’A:Bool [none] .
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eq ’not_[’A:Bool] = ’_xor_[’true.Bool, ’A:Bool] [none] .

eq ’_implies_[’A:Bool, ’B:Bool]

= ’not_[’_xor_[’A:Bool, ’_and_[’A:Bool, ’B:Bool]]] [none] .

Maude> reduce in META-LEVEL : upEqs(’VENDING-MACHINE, false) .

result EquationSet: (none).EquationSet

Maude> reduce in META-LEVEL : upRls(’VENDING-MACHINE, true) .

result RuleSet:

rl ’$.Coin => ’c.Item [label(’buy-c)] .

rl ’$.Coin => ’__[’q.Coin,’a.Item] [label(’buy-a)] .

rl ’M:Marking => ’__[’$.Coin,’M:Marking] [label(’add-$)] .

rl ’M:Marking => ’__[’q.Coin,’M:Marking] [label(’add-q)] .

rl ’__[’q.Coin,’q.Coin,’q.Coin,’q.Coin] => ’$.Coin

[label(’change)] .

In addition to the upModule operator, there is another operator allowing
the use of an already loaded module at the metalevel. This operator is defined
in the module META-MODULE as follows:

op [_] : Qid -> Module .

eq [Q:Qid] = (th Q:Qid is including Q:Qid .

sorts none . none none none none none endth) .

This operator is just syntactic sugar for accessing the corresponding mod-
ule. Notice that the module is not moved up to the metalevel as upModule

does, it is just a way of referring to it, and therefore more efficient.
The META-LEVEL module also provides a function upImports that takes

as argument the metarepresentation of the name of a module R . When R is
already in the Maude module database, then upImports returns the metarep-
resentation of its list of imported submodules. The function upImports does
not take a Boolean argument, as the previous up-functions, since it is not
useful to ask for the list of imported submodules of a flattened module.

op upImports : Qid ~> ImportList [special (...)] .

In the same way, the META-LEVEL module provides a function upView that
takes as argument the metarepresentation of the name of a view; when such a
view is in the Maude view database, then upView returns the corresponding
metarepresentation.

op upView : Qid ~> View [special (...)] .

As a simple example, let us consider the view String0 from the predefined
theory DEFAULT to the predefined module STRING, all of them provided in
prelude.maude; then,

Maude> reduce in META-LEVEL : upView(’String0) .

result View:

view ’String0 from ’DEFAULT to ’STRING is
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sort ’Elt to ’String .

op ’0.Elt to term ’"".String .

endv

Finally, the META-LEVEL module introduces two polymorphic functions.
The function upTerm takes a term t and returns the metarepresentation of
its canonical form. The function downTerm takes the metarepresentation of a
term t as its first argument and a term t′ as its second argument, and returns
the canonical form of t, if t is a term in the same kind as t′; otherwise, it
returns the canonical form of t′.

op upTerm : Universal -> Term [poly (1) special (...)] .

op downTerm : Term Universal -> Universal

[poly (2 0) special (...)] .

As simple examples, we can use the function upTerm to obtain the metarep-
resentation of the term f(a, f(b, c)) in the module UP-DOWN-TEST be-
low, and the function downTerm to recover the term f(a, f(b, c)) from
its metarepresentation.

fmod UP-DOWN-TEST is

protecting META-LEVEL .

sort Foo .

ops a b c d : -> Foo .

op f : Foo Foo -> Foo .

op error : -> [Foo] .

eq c = d .

endfm

Maude> reduce in UP-DOWN-TEST : upTerm(f(a, f(b, c))) .

result GroundTerm: ’f[’a.Foo,’f[’b.Foo,’d.Foo]]

Notice in the previous example that the given argument has been reduced
before obtaining its metarepresentation, more specifically, the subterm c has
become d. In the following examples we can observe the same behavior with
respect to downTerm.

Maude> reduce in UP-DOWN-TEST :

downTerm(’f[’a.Foo,’f[’b.Foo,’c.Foo]], error) .

result Foo: f(a, f(b, d))

Maude> reduce in UP-DOWN-TEST :

downTerm(upTerm(f(a, f(b, c))), error) .

result Foo: f(a, f(b, d))

In our last example, we show the result of downTerm when its first argu-
ment does not correspond to the metarepresentation of a term in the module
UP-DOWN-TEST; notice the constant e in the metarepresented term that does
not correspond to a declared constant in the module.



438 14 Reflection, Metalevel Computation, and Strategies

Maude> reduce in UP-DOWN-TEST :

downTerm(’f[’a.Foo,’f[’b.Foo,’e.Foo]], error) .

Advisory: could not find a constant e of

sort Foo in meta-module UP-DOWN-TEST.

result [Foo]: error

Due to the failure in moving down the metarepresented term given as first
argument, the result is the term given as second argument, namely, error,
which was declared in the module UP-DOWN-TEST as a constant of kind [Foo].

14.5.2 Simplifying: metaReduce and metaNormalize

metaReduce

The (partial) operation metaReduce takes as arguments the metarepresenta-
tion of a module R and the metarepresentation of a term t.

sort ResultPair .

op {_,_} : Term Type -> ResultPair [ctor] .

op metaReduce : Module Term ~> ResultPair [special (...)] .

When t is a term in R, metaReduce(R,t) returns the metarepresenta-
tion of the canonical form of t, using the equations in R, together with the
metarepresentation of its corresponding sort or kind. The reduction strategy
used by metaReduce coincides with that of the reduce command (see Sec-
tions 4.9 and 25.2).

As said above, in general, when either the first argument of metaReduce

is a term of sort Module but not a correct metarepresentation R of an object
module R, or the second argument is not the correct metarepresentation t
of a term t in R, the operation metaReduce is undefined, that is, the term
metaReduce(u,v) does not reduce and it does not get evaluated to a term of
sort ResultPair, but only to an expression in the kind [ResultPair].

Appropriate selectors extract from the result pairs their two components:

op getTerm : ResultPair -> Term .

op getType : ResultPair -> Type .

Using metaReduce we can simulate at the metalevel the primes computa-
tion example at the end of Section 4.4.7.

Maude> reduce in META-LEVEL :

metaReduce(upModule(’SIEVE, false),

’show_upto_[’primes.NatList, ’s_^10[’0.Zero]]) .

result ResultPair:

{’_._[’s_^2[’0.Zero], ’s_^3[’0.Zero], ’s_^5[’0.Zero],

’s_^7[’0.Zero], ’s_^11[’0.Zero], ’s_^13[’0.Zero],

’s_^17[’0.Zero], ’s_^19[’0.Zero], ’s_^23[’0.Zero],

’s_^29[’0.Zero]],

’NatList}
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We can also insert a new element into an empty map of the type declared
in the module PARMODEX at the end of Section 14.3 as follows:

Maude> red in META-LEVEL :

metaReduce(

fmod ’PARMODEX{’X :: ’TRIV} is

including ’MAP{’String, ’X} .

sorts ’Foo .

none

none

none

none

endfm,

’insert[’"foo".String, ’A:X$Elt,

’empty.Map‘{String‘,X‘}]) .

result ResultPair:

{’_|->_[’"foo".String,’A:X$Elt],’Entry‘{String‘,X‘}}

Notice that the module expression ’MAP{’String, ’X} has a bound param-
eter X, which appears also in the sort X$Elt in the on-the-fly declaration of
the variable A:X$Elt.

metaNormalize

The (partial) operation metaNormalize takes as arguments the metarepre-
sentation of a module R and the metarepresentation of a term t.

op metaNormalize : Module Term ~> ResultPair [special (...)] .

When t is a term in R, metaNormalize(R,t) returns the metarepresenta-
tion of the normal form of t with respect to the equational theory consisting
of the equational attributes of the operators in t, without doing any simplifi-
cation or rewriting with respect to equations or rules in R, together with the
metarepresentation of its corresponding sort or kind. For example, from the
declarations in the predefined NAT module

op s_ : Nat -> NzNat [ctor iter special (...)] .

op _+_ : NzNat Nat -> NzNat [assoc comm prec 33 special (...)] .

op _+_ : Nat Nat -> Nat [ditto] .

we know that the successor operator satisfies the iter theory (see Sec-
tion 4.4.2) and that the addition operator is associative and commutative (see
Section 4.4.1). With this information it is easy to make sense of the following
results:

Maude> red in META-LEVEL :

metaNormalize(upModule(’NAT, false), ’s_[’s_[’0.Zero]]) .

result ResultPair: {’s_^2[’0.Zero],’NzNat}

Maude> red in META-LEVEL :
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metaNormalize(upModule(’NAT, false),

’_+_[’s_[’s_[’0.Zero]],’0.Zero]) .

result ResultPair: {’_+_[’0.Zero,’s_^2[’0.Zero]],’NzNat}

Maude> red in META-LEVEL :

metaNormalize(upModule(’NAT, false),

’_+_[’0.Zero,’_+_[’s_[’s_[’0.Zero]],’0.Zero]]) .

result ResultPair: {’_+_[’0.Zero,’0.Zero,’s_^2[’0.Zero]],’NzNat}

Notice that associative terms are flattened and, if they are also commutative,
the subterms are sorted with respect to an internal order. Notice also that
in the last two examples the subterm ’0.Zero does not disappear. This is
because 0 is not declared as an identity element for _+_.

14.5.3 Rewriting: metaRewrite and metaFrewrite

metaRewrite

The (partial) operation metaRewrite takes as arguments the metarepresen-
tation of a module R, the metarepresentation of a term t, and a value b of
the sort Bound, i.e., either a natural number or the constant unbounded.

sort Bound .

subsort Nat < Bound .

op unbounded :-> Bound [ctor] .

op metaRewrite : Module Term Bound ~> ResultPair [special (...)] .

The operation metaRewrite is entirely analogous to metaReduce, but in-
stead of using only the equational part of a module it now uses both the
equations and the rules to rewrite the term. The reduction strategy used by
metaRewrite coincides with that of the rewrite command (see Sections 6.4
and 25.2). That is, the result of metaRewrite(R, t, b) is the metarepresen-
tation of the term obtained from t after at most b applications of the rules
in R using the rewrite strategy, together with the metarepresentation of its
corresponding sort or kind. When the value unbounded is given as the third
argument, no bound is imposed to the number of rewrites, and rewriting pro-
ceeds to the bitter end.

Using metaRewrite we can redo at the metalevel the examples in Sec-
tion 6.4.

Maude> reduce in META-LEVEL :

metaRewrite(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’$.Coin, ’__[’q.Coin, ’q.Coin]]], 1) .

result ResultPair:

{’__[’$.Coin, ’$.Coin, ’q.Coin, ’q.Coin, ’q.Coin], ’Marking}

Maude> reduce in META-LEVEL :

metaRewrite(upModule(’VENDING-MACHINE, false),
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’__[’$.Coin, ’__[’$.Coin, ’__[’q.Coin, ’q.Coin]]], 2) .

result ResultPair:

{’__[’$.Coin, ’$.Coin, ’$.Coin, ’q.Coin, ’q.Coin, ’q.Coin],

’Marking}

metaFrewrite

Position fair rewriting, which was described in Section 6.4, is metarepresented
by the operation metaFrewrite. This (partial) operation takes as arguments
the metarepresentation of a module, the metarepresentation of a term, a value
of sort Bound, and a natural number.

op metaFrewrite : Module Term Bound Nat ~> ResultPair

[special (...)] .

The reduction strategy used by metaFrewrite coincides with that of the
frewrite command in Maude, except that a final (semantic) sort calcula-
tion is performed at the end in order to produce a correct ResultPair. That
is, frewrite(R, t, b, n) results in the metarepresentation of the term ob-
tained from t after at most b applications of the rules in R using the frewrite
strategy, with at most n rewrites at each entitled position on each traversal
of a subject term, together with the metarepresentation of its corresponding
sort or kind. When the value unbounded is given as the third argument, no
bound is imposed to the number of rewrites.

Using metaFrewrite we can redo at the metalevel the examples in Sec-
tion 6.4.

Maude> reduce in META-LEVEL :

metaFrewrite(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’$.Coin, ’__[’q.Coin, ’q.Coin]]],

1, 1) .

result ResultPair:

{’__[’$.Coin, ’q.Coin, ’q.Coin, ’c.Item], ’Marking}

Maude> reduce in META-LEVEL :

metaFrewrite(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’$.Coin, ’__[’q.Coin, ’q.Coin]]],

12, 1) .

result ResultPair:

{’__[’$.Coin, ’$.Coin, ’$.Coin, ’$.Coin, ’q.Coin, ’q.Coin,

’q.Coin, ’q.Coin, ’q.Coin, ’q.Coin, ’q.Coin, ’q.Coin,

’q.Coin,’a.Item,’c.Item],

’Marking}

14.5.4 Applying rules: metaApply and metaXapply

metaApply

The (partial) operation metaApply takes as arguments the metarepresentation
of a module, the metarepresentation of a term, the metarepresentation of a
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rule label, the metarepresentation of a set of assignments (possibly empty)
defining a partial substitution, and a natural number.

sorts Assignment Substitution .

subsort Assignment < Substitution .

op _<-_ : Variable Term -> Assignment [ctor prec 63] .

op none : -> Substitution [ctor] .

op _;_ : Substitution Substitution -> Substitution

[assoc comm id: none prec 65] .

sort ResultTriple ResultTriple? .

subsort ResultTriple < ResultTriple? .

op {_,_,_} : Term Type Substitution -> ResultTriple [ctor] .

op failure : -> ResultTriple? [ctor] .

op metaApply : Module Term Qid Substitution Nat ~> ResultTriple?

[special (...)] .

The operation metaApply(R, t, l, σ, n) is evaluated as follows:

1. the term t is first fully reduced using the equations in R;
2. the resulting term is matched at the top against all rules with label l

in R partially instantiated with σ, with matches that fail to satisfy the
condition of their rule discarded;

3. the first n successful matches are discarded; if there is an (n+1)th match,
its rule is applied using that match and the steps 4 and 5 below are taken;
otherwise failure is returned;

4. the term resulting from applying the given rule with the (n+ 1)th match
is fully reduced using the equations in R;

5. the triple formed by the metarepresentation of the resulting fully reduced
term, the metarepresentation of its corresponding sort or kind, and the
metarepresentation of the substitution used in the reduction is returned.

The failure value should not be confused with the “undefined” value for
the metaApply operation. As already mentioned before for descent functions
in general, this operation is partial because it does not make sense on some
nonvalid arguments that are terms of the appropriate sort but are not correct
metarepresentations. However, even if all arguments are valid in this sense,
the intended rule application may fail, either because there is no match or
because the match does not satisfy the corresponding rule condition, and then
failure is used to represent this situation, which is important to distinguish
from ill-formed invocations, for example, for error recovery purposes.

Note also that, according to the information in step 3 above, the last
argument of metaApply is a natural number used to enumerate (starting from
0) all the possible solutions of the intended rule application. For efficiency,
the different solutions should be generated in order, that is, starting with the
argument 0 and increasing it until a failure is obtained, indicating that there
are no more solutions.
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Appropriate selectors extract from the result triples their three compo-
nents:

op getTerm : ResultTriple -> Term .

op getType : ResultTriple -> Type .

op getSubstitution : ResultTriple -> Substitution .

As an example, we can force at the metalevel the rewriting of the term
$ in the module VENDING-MACHINE, so that only the rule buy-c is used, and
only once.

Maude> reduce in META-LEVEL :

metaApply(upModule(’VENDING-MACHINE, false),

’$.Coin, ’buy-c, none, 0) .

result ResultTriple: {’c.Item, ’Item, none}

Similarly, we can force the rewriting of the same term so that this time
only the rule add-$ is applied.

Maude> reduce in META-LEVEL :

metaApply(upModule(’VENDING-MACHINE, false),

’$.Coin, ’add-$, none, 0) .

result ResultTriple:

{’__[’$.Coin, ’$.Coin], ’Marking, ’M:Marking <- ’$.Coin}

However, using metaApply, we cannot force the term q $ to be rewritten
with the rule buy-c, since its lefthand side, $, does not match (without exten-
sion) this term. In this case, we should use instead the metaXapply operation
described below.

Maude> reduce in META-LEVEL :

metaApply(upModule(’VENDING-MACHINE, false),

’__[’q.Coin, ’$.Coin], ’buy-c, none, 0) .

result ResultTriple?: (failure).ResultTriple?

metaXapply

The (partial) operation metaXapply takes as arguments the metarepresenta-
tion of a module, the metarepresentation of a term, the metarepresentation of
a rule label, the metarepresentation of a set of assignments (possibly empty)
defining a partial substitution, a natural number, a Bound value, and another
natural number.

The operation metaXapply(R, t, l, σ, n, b, m) is evaluated as the
function metaApply but using extension (see Section 4.8) and in any possible
position, not only at the top. The arguments n and b can be used to localize
the part of the term where the rule application can take place:

• n is the lower bound on depth in terms of nested operators, and should
be set to 0 to start searching from the top, while
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• the Bound argument b indicates the upper bound, and should be set to
unbounded to have no cut off.

Notice that nested occurrences of an operator with the assoc attribute
are counted as a single operator for depth purposes, that is, matching takes
place on the flattened term (see Section 4.8). The same idea applies to iter

operators (see section 4.4.2): a whole stack of an iter operator counts as a
single operator. Furthermore, because of matching with extension, the solution
may have an extra layer, as illustrated in the matching examples at the end
of Section 14.5.5.

The last Nat argument m in metaXapply(R, t, l, σ, n, b, m), as in
the case of the operation metaApply, is the solution number, used to enu-
merate multiple solutions. The first solution is 0, and they should again be
generated in order for efficiency.

The result of metaXapply has an additional component, giving the context
(a term with a single “hole”, represented []) inside the given term t, where the
rewriting has taken place. The sort NeCTermList represents nonempty lists of
terms with exactly one “hole,” that is, exactly one term of sort Context, the
rest being of sort Term. The sort GTermList is the supersort of NeCTermList
and TermList needed for the assoc attribute (hidden in the following decla-
rations in the ditto attribute) to make sense.

sorts Context NeCTermList GTermList .

subsorts Context < NeCTermList < GTermList .

subsort TermList < GTermList .

op [] : -> Context [ctor] .

op _,_ : TermList NeCTermList -> NeCTermList [ctor ditto] .

op _,_ : NeCTermList TermList -> NeCTermList [ctor ditto] .

op _,_ : GTermList GTermList -> GTermList [ctor ditto] .

op _[_] : Qid NeCTermList -> Context [ctor] .

sorts Result4Tuple Result4Tuple? .

subsort Result4Tuple < Result4Tuple? .

op {_,_,_,_} : Term Type Substitution Context -> Result4Tuple

[ctor] .

op failure : -> Result4Tuple? [ctor] .

op metaXapply :

Module Term Qid Substitution Nat Bound Nat ~> Result4Tuple?

[special (...)] .

Appropriate selectors extract from the result 4-tuples their four compo-
nents:

op getTerm : Result4Tuple -> Term .

op getType : Result4Tuple -> Type .

op getSubstitution : Result4Tuple -> Substitution .

op getContext : Result4Tuple -> Context .
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As an example, we can force at the metalevel the rewriting of the term $ q

in the module VENDING-MACHINE so that only the rule buy-c is used (compare
with the last metaApply example).

Maude> reduce in META-LEVEL :

metaXapply(upModule(’VENDING-MACHINE, false),

’__[’q.Coin, ’$.Coin], ’buy-c, none, 0, unbounded, 0) .

result Result4Tuple:

{’__[’q.Coin, ’c.Item], ’Marking, none, ’__[’q.Coin, []]}

Notice the fragment ’__[’q.Coin, []] of the result, providing the con-
text where the rule has been applied. Since this is the only possible solution,
if we request the “next” solution (by increasing to 1 the last argument), the
result will be a failure.

Maude> reduce in META-LEVEL :

metaXapply(upModule(’VENDING-MACHINE, false),

’__[’q.Coin, ’$.Coin], ’buy-c, none, 0, unbounded, 1) .

result Result4Tuple?: (failure).Result4Tuple?

14.5.5 Matching: metaMatch and metaXmatch

The (partial) operation metaMatch takes as arguments the metarepresentation
of a module, the metarepresentations of two terms, the metarepresentation of
a condition, and a natural number.

sort Substitution? .

subsort Substitution < Substitution? .

op noMatch : -> Substitution? [ctor] .

op metaMatch : Module Term Term Condition Nat ~> Substitution?

[special (...)] .

The operation metaMatch(R, t, t′, Cond, n) tries to match at the top
the terms t and t′ in the module R in such a way that the resulting substi-
tution satisfies the condition Cond . The last argument is used to enumerate
possible matches. If the matching attempt is successful, the result is the corre-
sponding substitution; otherwise, noMatch is returned. The generalization to
metaXmatch follows exactly the same ideas as for metaXapply. Notice that the
operation metaMatch provides the metalevel counterpart of the object-level
command match, while the operation metaXmatch provides a generalization
of the object-level command xmatch (see Sections 4.7, 4.8, and 25.3) in that
it is possible to specify min and max depths (in terms of theory layers) and
search for proper subterms that do not belong to the top theory layer. The
object-level behavior of the xmatch command is obtained by setting both min
and max depth to 0.

sorts MatchPair MatchPair? .

subsort MatchPair < MatchPair? .
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op {_,_} : Substitution Context -> MatchPair [ctor] .

op noMatch : -> MatchPair? [ctor] .

op metaXmatch :

Module Term Term Condition Nat Bound Nat ~> MatchPair?

[special (...)] .

Appropriate selectors extract from the result pairs their two components:

op getSubstitution : MatchPair -> Substitution .

op getContext : MatchPair -> Context .

In the following examples, we try to match the pattern M:Marking $ with
the term $ q c a in several different ways:

• at the top, asking for the first solution,

Maude> reduce in META-LEVEL :

metaMatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],

’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

nil, 0) .

result Assignment:

’M:Marking <- ’__[’q.Coin, ’a.Item, ’c.Item]

• at the top, asking for the second solution (that does not exist in this
example)

Maude> reduce metaMatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],

’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

nil, 1) .

result Substitution?: (noMatch).Substitution?

• anywhere, asking for the first solution,

Maude> reduce metaXmatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],

’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

nil, 0, unbounded, 0) .

result MatchPair:

{’M:Marking <- ’__[’q.Coin, ’a.Item, ’c.Item], []}

• anywhere, asking for the second solution,

Maude> reduce metaXmatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],

’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

nil, 0, unbounded, 1) .

result MatchPair:

{’M:Marking <- ’__[’a.Item, ’c.Item], ’__[’q.Coin, []]}

• at the top, asking for the first solution satisfying a given condition (that
again does not exist),
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Maude> reduce metaMatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],

’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

’M:Marking = ’a.Item, 0) .

result Substitution?: (noMatch).Substitution?

• anywhere, asking for the first solution satisfying a given condition,

Maude> reduce metaXmatch(upModule(’VENDING-MACHINE, false),

’__[’M:Marking, ’$.Coin],

’__[’$.Coin, ’q.Coin, ’a.Item, ’c.Item],

’M:Marking = ’a.Item, 0, unbounded, 0) .

result MatchPair:

{’M:Marking <- ’a.Item, ’__[’__[’q.Coin, ’c.Item], []]}

As mentioned in the previous section, when matching with extension, the
solution may have an extra layer. Let us consider, for example, the following
module:

fmod METAXMATCH-EX is

pr META-LEVEL .

op foo : QidSet ~> QidSet .

endfm

Then we take at the metalevel the pattern _;_(’A, QS:QidSet) and the
(flattened) subject term foo(_;_(’A, ’B, ’C)), and ask for matches with
extension under at most 1 theory layer, as shown in the following reductions:

Maude> red metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm((’A ; QS:QidSet)),

upTerm(foo(’A ; ’B ; ’C)), nil, 0, 1, 0) .

result MatchPair: {’QS:QidSet <- ’_;_[’’B.Sort, ’’C.Sort], ’foo[[]]}

Maude> red metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm((’A ; QS:QidSet)),

upTerm(foo(’A ; ’B ; ’C)), nil, 0, 1, 1) .

result MatchPair: {’QS:QidSet <- ’’C.Sort, ’foo[’_;_[’’B.Sort, []]]}

Maude> red metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm((’A ; QS:QidSet)),

upTerm(foo(’A ; ’B ; ’C)), nil, 0, 1, 2) .

result MatchPair: {’QS:QidSet <- ’’B.Sort, ’foo[’_;_[’’C.Sort, []]]}

Maude> red metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm((’A ; QS:QidSet)),

upTerm(foo(’A ; ’B ; ’C)), nil, 0, 1, 3) .

result MatchPair?: (noMatch).MatchPair?

Obviously, there is no match at the top, but under one theory layer (the foo

operator) we have _;_(’A, ’B, ’C). The first solution is the expected one,
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with the variable QS:QidSet matching the subterm _;_(’B, ’C). However,
in the next two solutions we see that we also have the variable QS:QidSet

matching either the fragment ’C or ’B while the other fragment goes into the
extension. Then the context in the solution has 2 theory layers but this is just
a feature of matching with extension: some solutions will have an extra layer.

As another example of this situation, let us consider the following reduc-
tions:

Maude> reduce in META-LEVEL :

metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm(s N:Nat), upTerm(prec(s_^2(0))), nil, 0, 1, 0) .

result MatchPair: {’N:Nat <- ’s_[’0.Zero], ’prec[[]]}

Maude> red metaXmatch(upModule(’METAXMATCH-EX, false),

upTerm(s N:Nat), upTerm(prec(s_^2(0))), nil, 0, 1, 1) .

result MatchPair: {’N:Nat <- ’0.Zero, ’prec[’s_[[]]]}

Here the context in the first solution has one theory layer while the context
in the second has two, but the actual matching problem solved (with exten-
sion), namely, s N <=? s_^2(0) under the single theory layer provided by
the operator prec is the same in both reductions.

14.5.6 Searching: metaSearch and metaSearchPath

metaSearch

The operation metaSearch takes as arguments the metarepresentation of a
module, the metarepresentation of the starting term for search, the metarep-
resentation of the pattern to search for, the metarepresentation of a condition
to be satisfied, the metarepresentation of the kind of search to carry on, a
Bound value, and a natural number.

op metaSearch :

Module Term Term Condition Qid Bound Nat ~> ResultTriple?

[special (...)] .

The searching strategy used by metaSearch coincides with that of the
object-level search command in Maude (see Sections 6.4 and 25.4). The Qid

values that are allowed as arguments are: ’* for a search involving zero or
more rewrites (corresponding to =>* in the search command), ’+ for a search
consisting in one or more rewrites (=>+), and ’! for a search that only matches
canonical forms (=>!). The Bound argument indicates the maximum depth of
the search, and the Nat argument is the solution number. To indicate a search
consisting in exactly one rewrite, we set the maximum depth of the search to
the number 1.

Using metaSearch we can redo at the metalevel the last example in Sec-
tion 6.4. The results give us the answer to the question: if I have already
inserted one dollar and three quarters in the vending machine, can I get two
cakes and an apple? The answer is yes; in fact, there are several ways.
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Maude> reduce in META-LEVEL :

metaSearch(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’q.Coin, ’q.Coin,’q.Coin],

’__[’c.Item, ’a.Item, ’c.Item, ’M:Marking],

nil, ’+, unbounded, 0) .

result ResultTriple:

{’__[’q.Coin,’q.Coin,’q.Coin,’q.Coin,’a.Item,’c.Item,’c.Item],

’Marking,

’M:Marking <- ’__[’q.Coin, ’q.Coin, ’q.Coin, ’q.Coin]}

Maude> reduce in META-LEVEL :

metaSearch(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’q.Coin, ’q.Coin, ’q.Coin],

’__[’c.Item, ’a.Item, ’c.Item, ’M:Marking],

nil, ’+, unbounded, 1) .

result ResultTriple:

{’__[’a.Item, ’c.Item, ’c.Item],

’Marking,

’M:Marking <- ’null.Marking}

metaSearchPath

The operation metaSearchPath is complementary to metaSearch and carries
out the same search, but instead of returning the final state and matching
substitution it returns the sequence of states and rules on a path starting
with the reduced initial state and leading to (but not including) the final
state.

op metaSearchPath :

Module Term Term Condition Qid Bound Nat ~> Trace?

[special (...)] .

The sort Trace is used to represent the path as a list of triples by means
of the following syntax:

sorts TraceStep Trace Trace? .

subsorts TraceStep < Trace < Trace? .

op {_,_,_} : Term Type Rule -> TraceStep [ctor] .

op nil : -> Trace [ctor] .

op __ : Trace Trace -> Trace [ctor assoc id: nil format (d n d)] .

op failure : -> Trace? [ctor] .

We run again the same two examples as above, with the following results.

Maude> reduce in META-LEVEL :

metaSearchPath(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’q.Coin, ’q.Coin,’q.Coin],

’__[’c.Item, ’a.Item, ’c.Item, ’M:Marking],

nil, ’+, unbounded, 0) .

result Trace:

{’__[’$.Coin,’q.Coin,’q.Coin,’q.Coin],
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’Marking,

rl ’M:Marking => ’__[’$.Coin,’M:Marking] [label(’add-$)] .}

{’__[’$.Coin,’$.Coin,’q.Coin,’q.Coin,’q.Coin],

’Marking,

rl ’M:Marking => ’__[’$.Coin,’M:Marking] [label(’add-$)] .}

{’__[’$.Coin,’$.Coin,’$.Coin,’q.Coin,’q.Coin,’q.Coin],

’Marking,

rl ’$.Coin => ’c.Item [label(’buy-c)] .}

{’__[’$.Coin,’$.Coin,’q.Coin,’q.Coin,’q.Coin,’c.Item],

’Marking,

rl ’$.Coin => ’c.Item [label(’buy-c)] .}

{’__[’$.Coin,’q.Coin,’q.Coin,’q.Coin,’c.Item,’c.Item],

’Marking,

rl ’$.Coin => ’__[’q.Coin,’a.Item] [label(’buy-a)] .}

Maude> reduce in META-LEVEL :

metaSearchPath(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’q.Coin, ’q.Coin, ’q.Coin],

’__[’c.Item, ’a.Item, ’c.Item, ’M:Marking],

nil, ’+, unbounded, 1) .

result Trace:

{’__[’$.Coin,’q.Coin,’q.Coin,’q.Coin],

’Marking,

rl ’M:Marking => ’__[’$.Coin,’M:Marking] [label(’add-$)] .}

{’__[’$.Coin,’$.Coin,’q.Coin,’q.Coin,’q.Coin],

’Marking,

rl ’$.Coin => ’c.Item [label(’buy-c)] .}

{’__[’$.Coin,’q.Coin,’q.Coin,’q.Coin,’c.Item],

’Marking,

rl ’$.Coin => ’__[’q.Coin,’a.Item] [label(’buy-a)] .}

{’__[’q.Coin,’q.Coin,’q.Coin,’q.Coin,’a.Item,’c.Item],

’Marking,

rl ’__[’q.Coin,’q.Coin,’q.Coin,’q.Coin] => ’$.Coin

[label(’change)] .}

{’__[’$.Coin,’a.Item,’c.Item],

’Marking,

rl ’$.Coin => ’c.Item [label(’buy-c)] .}

The operations metaSearchPath and metaSearch share caching, so calling
one after the other on the same arguments only performs a single search.

14.5.7 Parsing and pretty-printing: metaParse and metaPrettyPrint

metaParse

The (partial) operation metaParse takes as arguments the metarepresentation
of a module, a list of quoted identifiers metarepresenting a list of tokens, and
a value of the sort Type?, i.e., either the metarepresentation of a component
or the constant anyType.
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sort Type? .

subsort Type < Type? .

op anyType : -> Type? [ctor] .

sort ResultPair? .

subsort ResultPair < ResultPair? .

op noParse : Nat -> ResultPair? [ctor] .

op ambiguity : ResultPair ResultPair -> ResultPair? [ctor] .

op metaParse : Module QidList Type? ~> ResultPair? [special (...)] .

The operation metaParse reflects the parse command in Maude (see Sec-
tion 3.9.4); that is, it tries to parse the given list of tokens as a term of the
given type in the module given as first argument; the constant anyType allows
any component. If metaParse succeeds, it returns the metarepresentation of
the parsed term with its corresponding sort or kind. Otherwise, it returns:

• noParse(n) if there was no parse, where n is the index of the first bad
token (counting from 0), or the number of tokens in the case of unexpected
end of input; or

• ambiguity(r1, r2) if there were multiple parses, where r1 and r2 are the
result pairs corresponding to two distinct parses.

These are simple examples of using metaParse:

Maude> reduce in META-LEVEL :

metaParse(upModule(’VENDING-MACHINE, false),

’$ ’q ’q ’q, ’Marking) .

result ResultPair:

{’__[’$.Coin,’__[’q.Coin,’__[’q.Coin,’q.Coin]]],’Marking}

Maude> reduce in META-LEVEL :

metaParse(upModule(’VENDING-MACHINE, false),

’$ ’q ’d ’q, ’Marking) .

result ResultPair?: noParse(2)

metaPrettyPrint

The (partial) operation metaPrettyPrint takes as arguments the metarep-
resentations of a module R and of a term t together with a set of printing
options, and it returns a list of quoted identifiers that metarepresents the
string of tokens produced by pretty-printing the term t in the signature of R.
In the event of an error an empty list of quoted identifiers is returned.

op metaPrettyPrint : Module Term PrintOptionSet ~> QidList

[special (...)] .

Pretty-printing a term involves more than just naively using the mixfix
syntax for operators. Precedence and gathering information and the relative
positions of underscores in an operator and its parent in the term must be
considered to determine whether parentheses need to be inserted around any
given subterm to avoid ambiguity. If there is ad-hoc overloading in the module,
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additional checks must be done to determine if and where sort disambiguation
syntax is needed.

The print options argument is built with the following syntax:

sorts PrintOption PrintOptionSet .

subsort PrintOption < PrintOptionSet .

ops mixfix with-parens flat format number rat : -> PrintOption

[ctor] .

op none : -> PrintOptionSet [ctor] .

op __ : PrintOptionSet PrintOptionSet -> PrintOptionSet

[ctor assoc comm id: none] .

The available print options form a subset of the global print options described
in Section 25.8, which are ignored by this operation.

As an example, we can use metaPrettyPrint to pretty print the re-
sult of parsing at the metalevel the list of tokens $ q q q in the module
VENDING-MACHINE, first with prefix syntax, then with mixfix syntax, and fi-
nally with mixfix syntax and taking into account the format attribute.

Maude> reduce in META-LEVEL :

metaPrettyPrint(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’q.Coin, ’__[’q.Coin, ’q.Coin]]],

none) .

result NeQidList:

’__ ’‘( ’$ ’‘, ’__ ’‘( ’q ’‘, ’__ ’‘( ’q ’‘, ’q ’‘) ’‘) ’‘)

Maude> reduce in META-LEVEL :

metaPrettyPrint(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’q.Coin, ’__[’q.Coin, ’q.Coin]]],

mixfix) .

result NeTypeList: ’$ ’q ’q ’q

Maude> reduce in META-LEVEL :

metaPrettyPrint(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’q.Coin, ’__[’q.Coin, ’q.Coin]]],

mixfix format) .

result NeTypeList:

’\r ’\! ’$ ’\o ’\r ’\! ’q ’\o ’\r ’\! ’q ’\o ’\r ’\! ’q ’\o

It is important to notice that metaPrettyPrint uses the information pro-
vided by the format attribute in the last reduction above. For example, the
operator $ in the module VENDING-MACHINE-SIGNATURE in Section 6.1 was de-
clared with attribute format (r! o), and therefore it is meta-pretty-printed
as ’\r ’\! ’$ ’\o.

For backwards compatibility there is available the following variation of
the metaPrettyPrint operation, which provides a set of default print options.

op metaPrettyPrint : Module Term ~> QidList .

eq metaPrettyPrint(M:Module, T:Term)
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= metaPrettyPrint(M:Module, T:Term,

mixfix flat format number rat) .

For example,

Maude> reduce in META-LEVEL :

metaPrettyPrint(upModule(’VENDING-MACHINE, false),

’__[’$.Coin, ’__[’q.Coin, ’__[’q.Coin, ’q.Coin]]]) .

result NeTypeList:

’\r ’\! ’$ ’\o ’\r ’\! ’q ’\o ’\r ’\! ’q ’\o ’\r ’\! ’q ’\o

14.5.8 Sort operations

The META-LEVEL module also provides in a built-in way commonly needed
operations on the poset of sorts of a given module.

All these operations, related to sorts and kinds, take as first argument a
term of sort Module. Assuming that this term is indeed the metarepresentation
of a module, the remaining arguments might be terms representing sorts or
kinds that do not correspond to sorts or kinds declared in such a module; in
this case, the operation is undefined.

In the following we include descriptions together with simple examples of
using these operations.

sortLeq

The operation sortLeq takes as arguments the metarepresentation of a mod-
ule R and the metarepresentations of two types, that is, either sorts or kinds.

op sortLeq : Module Type Type ~> Bool [special (...)] .

According to whether the types passed to sortLeq as arguments are
metarepresented sorts or kinds, we can distinguish the following cases:

• Assume first that both types given as arguments are two sorts s and s′.
Let S be the set of sorts in R and let ≤R be its subsort relation. When
s, s′ ∈ S, sortLeq returns true if s ≤R s′ and false otherwise. For
example,

Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’Zero, ’Nat) .

result Bool: true

Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’Zero, ’NzNat) .

result Bool: false

• If both types given as arguments are kinds in R, then sortLeq returns
false when both kinds are different and true when they are equal. For
example,
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Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’‘[Zero‘], ’‘[Nat‘]) .

result Bool: true

Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’‘[Zero‘], ’‘[Bool‘]) .

result Bool: false

• If one type is one sort in R and the other one is a kind in R, then sortLeq

checks whether the given sort belongs to the given kind or not. For exam-
ple,

Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’‘[Zero‘], ’Bool) .

result Bool: false

Maude> reduce in META-LEVEL :

sortLeq(upModule(’NUMBERS, false), ’Zero, ’‘[NatSet‘]) .

result Bool: true

sameKind

The operation sameKind takes as arguments the metarepresentation of a mod-
ule R and the metarepresentations of two types, that is, either sorts or kinds.

op sameKind : Module Type Type ~> Bool [special (...)] .

Let S be the set of sorts in R and let ≤R be its subsort relation. When the
two types passed as arguments to sameKind are sorts s, s′ ∈ S, the operation
sameKind returns true if s and s′ belong to the same connected component
in the subsort ordering ≤R, that is, if they belong to the same kind, and
false otherwise. When the two arguments are kinds in R, sameKind returns
true when they are indeed the same, and false otherwise. Finally, when one
argument is one sort and the other is a kind, this operation ckecks whether
the sort belongs to the kind.

For example, we have the following reductions about sorts and kinds in
the module NUMBERS.

Maude> reduce in META-LEVEL :

sameKind(upModule(’NUMBERS, false), ’Zero, ’NzNat) .

result Bool: true

Maude> reduce in META-LEVEL :

sameKind(upModule(’NUMBERS, false), ’Zero, ’Nat3) .

result Bool: false

Maude> reduce in META-LEVEL :

sameKind(upModule(’NUMBERS, false), ’‘[Zero‘], ’‘[NzNat‘]) .

result Bool: true

Maude> reduce in META-LEVEL :

sameKind(upModule(’NUMBERS, false), ’‘[Zero‘], ’NzNat) .

result Bool: true
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completeName

The operation completeName takes as arguments the metarepresentation of
a module R and the metarepresentation of a sort s or a kind k. When its
second argument is the metarepresentation of a sort s, it returns the same
metarepresentation of s. But if its second argument is the metarepresentation
of a kind k, then it returns the metarepresentation of the complete name of k
in R, i.e., the metarepresentation of the comma-separated list of the maximal
elements of the corresponding connected component.

op completeName : Module Type ~> Type [special (...)] .

For example,

Maude> reduce in META-LEVEL :

completeName(upModule(’NUMBERS, false), ’Zero) .

result Sort: ’Zero

Maude> reduce in META-LEVEL :

completeName(upModule(’NUMBERS, false), ’‘[Zero‘]) .

result Kind: ’‘[NatSeq‘,NatSet‘]

getKind and getKinds

The operation getKind takes as arguments the metarepresentation of a mod-
ule R and the metarepresentation of a type, i.e., a sort or a kind. When
its second argument is the metarepresentation of a type in R, it returns the
metarepresentation of the complete name of the corresponding kind.

op getKind : Module Type ~> Kind [special (...)] .

For example,

Maude> reduce in META-LEVEL :

getKind(upModule(’NUMBERS, false), ’Zero) .

result Kind: ’‘[NatSeq‘,NatSet‘]

Maude> reduce in META-LEVEL :

getKind(upModule(’NUMBERS, false), ’‘[Zero‘]) .

result Kind: ’‘[NatSeq‘,NatSet‘]

The operation getKinds takes as its only argument the metarepresentation
of a module R and returns the metarepresentation of the set of kinds declared
in R, with kinds metarepresented using their complete names.

op getKinds : Module ~> KindSet [special (...)] .

For example,

Maude> reduce in META-LEVEL : getKinds(upModule(’NUMBERS, false)) .

result NeKindSet: ’‘[Bool‘] ; ’‘[Nat3‘] ; ’‘[NatSeq‘,NatSet‘]
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lesserSorts

The operation lesserSorts takes as arguments the metarepresentation of a
module R and the metarepresentation of a type, i.e., a sort or a kind.

op lesserSorts : Module Type ~> SortSet [special (...)] .

Let S be the set of sorts in R. When s ∈ S, lesserSorts returns the
metarepresentation of the set of sorts strictly smaller than s in S. For example,

Maude> reduce in META-LEVEL :

lesserSorts(upModule(’NUMBERS, false), ’Nat) .

result NeSortSet: ’NzNat ; ’Zero

Maude> reduce in META-LEVEL :

lesserSorts(upModule(’NUMBERS, false), ’Zero) .

result EmptyTypeSet: (none).EmptyTypeSet

Maude> reduce in META-LEVEL :

lesserSorts(upModule(’NUMBERS, false), ’NatSeq) .

result NeSortSet: ’Nat ; ’NzNat ; ’Zero

When the second argument of lesserSorts metarepresents a kind in R,
this operation returns the metarepresentation of the set of all sorts in such
kind. For example,

Maude> reduce in META-LEVEL :

lesserSorts(upModule(’NUMBERS, false), ’‘[NatSeq‘]) .

result NeSortSet: ’Nat ; ’NatSeq ; ’NatSet ; ’NzNat ; ’Zero

Maude> reduce in META-LEVEL :

lesserSorts(upModule(’NUMBERS, false), ’‘[Bool‘]) .

result Sort: ’Bool

leastSort

The operation leastSort takes as arguments the metarepresentation of a
module R and the metarepresentation of a term t, and it returns the metarep-
resentation of the least sort or kind of t in R, obtained without reducing the
term, that is, the memberships in the module are used to get the information,
but equations are not used to reduce the term.

op leastSort : Module Term ~> Type [special (...)] .

For example,

Maude> reduce in META-LEVEL :

leastSort(upModule(’NUMBERS, false), ’p[’s_[’zero.Zero]]) .

result Sort: ’Nat
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glbSorts

The operation glbSorts takes as arguments the metarepresentation of a mod-
ule R and the metarepresentations of two types, that is, either sorts or kinds.

op glbSorts : Module Type Type ~> TypeSet [special (...)] .

According to whether the types passed to glbSorts as arguments are
metarepresented sorts or kinds, we can distinguish the following cases:

• If both types given as arguments are sorts in R, then glbSorts returns
the metarepresentation of the set (which can be empty) consisting of the
largest sorts that are common subsorts of the two given sorts, that is, the
set of maximal lower bounds of the two sorts; when this set is a singleton
set {s}, then s will be the greatest lower bound of the two sorts, thus the
operation name glbSorts.
For example, we have the following reductions concerning sorts in the
module NUMBERS.

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’Zero, ’Nat) .

result Sort: ’Zero

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’NatSet, ’NatSeq) .

result Sort: ’Nat

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’NzNat, ’NzNat) .

result Sort: ’NzNat

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’Zero, ’NzNat) .

result EmptyTypeSet: (none).EmptyTypeSet

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’NzNat, ’Bool) .

result EmptyTypeSet: (none).EmptyTypeSet

• If both types given as arguments are kinds in R, then glbSorts returns
the empty set when both kinds are different, and the metarepresentation
of the kind (using the corresponding complete name) when both kinds are
equal. For example,

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’‘[Nat‘], ’‘[Bool‘]) .

result EmptyTypeSet: (none).EmptyTypeSet

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false),’‘[Nat‘],’‘[NatSeq‘]) .

result Kind: ’‘[NatSeq‘,NatSet‘]
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• If one type is one sort inR and the other one is a kind inR, then glbSorts

returns the metarepresentation of the sort when the sort belongs to the
kind, and the empty set otherwise. For example,

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’‘[Nat‘], ’Bool) .

result EmptyTypeSet: (none).EmptyTypeSet

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’‘[NatSeq‘], ’Zero) .

result Sort: ’Zero

Maude> reduce in META-LEVEL :

glbSorts(upModule(’NUMBERS, false), ’NzNat, ’‘[NatSet‘]) .

result Sort: ’NzNat

maximalSorts and minimalSorts

The operations maximalSorts and minimalSorts take as arguments the
metarepresentation of a module R and the metarepresentation of a kind k.
If k is a kind in R, maximalSorts returns the metarepresentation of the set
of the maximal sorts in the connected component of k, while minimalSorts

returns the metarepresentation of the set of its minimal sorts.

op maximalSorts : Module Kind ~> SortSet [special (...)] .

op minimalSorts : Module Kind ~> SortSet [special (...)] .

For example,

Maude> reduce in META-LEVEL :

maximalSorts(upModule(’NUMBERS, false), ’‘[Zero‘]) .

result NeSortSet: ’NatSeq ; ’NatSet

Maude> reduce in META-LEVEL :

minimalSorts(upModule(’NUMBERS, false), ’‘[Zero‘]) .

result NeSortSet: ’Zero ; ’NzNat

maximalAritySet

The operation maximalAritySet takes as arguments the metarepresentation
of a module R, the metarepresentation of an operator f in R, the metarepre-
sentation of an arity (list of types) for f and the metarepresentation of a sort
s, and then computes the set of maximal arities (lists of types) that f could
take and have a sort s′ ≤R s. This result might be the empty set if s is small
or f is only defined at the kind level.

Notice that the result of this operation is a set of lists of types, which is
built by means of the following syntax, extending the syntax for building lists
of types that we only show partially here and whose full specification can be
found in the module META-MODULE in the file prelude.maude available with
the Maude distribution.
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sort NeTypeList TypeList .

op nil : -> TypeList [ctor] .

op __ : TypeList TypeList -> TypeList [ctor ditto] .

sort TypeListSet .

subsort TypeList TypeSet < TypeListSet .

op _;_ : TypeListSet TypeListSet -> TypeListSet [ctor ditto] .

eq T:TypeList ; T:TypeList = T:TypeList .

op maximalAritySet : Module Qid TypeList Sort ~> TypeListSet

[special (...)] .

Let us consider for example the operator _+_ in the module NUMBERS,
where it is overloaded by means of the following declarations:

op _+_ : Nat Nat -> Nat [assoc comm].

op _+_ : NzNat Nat -> NzNat [ditto] .

op _+_ : Nat3 Nat3 -> Nat3 [comm] .

With this information, we obtain the following reductions concerning this
operator:

Maude> reduce in META-LEVEL :

maximalAritySet(upModule(’NUMBERS, false),

’_+_, ’NzNat ’NzNat, ’NzNat) .

result TypeListSet: ’Nat ’NzNat ; ’NzNat ’Nat

Maude> reduce in META-LEVEL :

maximalAritySet(upModule(’NUMBERS, false),

’_+_, ’Nat ’Nat, ’NzNat) .

result TypeListSet: ’Nat ’NzNat ; ’NzNat ’Nat

Maude> reduce in META-LEVEL :

maximalAritySet(upModule(’NUMBERS, false),

’_+_, ’Nat ’Nat, ’Nat) .

result NeTypeList: ’Nat ’Nat

Maude> reduce in META-LEVEL :

maximalAritySet(upModule(’NUMBERS, false),

’_+_, ’Nat3 ’Nat3, ’Nat3) .

result NeTypeList: ’Nat3 ’Nat3

Notice that if the operator f and the list of types passed as arguments to
maximalAritySet do not match, then the result is an error, which is repre-
sented as a non-reduced term in a metalevel kind. We have for instance the
following example where we have omitted the lengthy metarepresentation of
the NUMBERS module.

Maude> reduce in META-LEVEL :

maximalAritySet(upModule(’NUMBERS, false),

’_+_, ’Nat3 ’Nat3, ’NzNat) .
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result [GTermList,ParameterList,QidList,

TypeListSet,Type?,ModuleExpression,Header]:

maximalAritySet(fmod ’NUMBERS is ... endfm,

’_+_, ’Nat3 ’Nat3, ’NzNat)

14.5.9 Other metalevel operations: wellFormed

The operation wellFormed can take as arguments the metarepresentation of
a module R, or the metarepresentation of a module R and a term t, or the
metarepresentation of a module R and a substitution σ. In the first case,
it returns true if R is a well-formed module, and false otherwise. In the
second case, if t is a well-formed term in R, it returns true; otherwise, it
returns false. Finally, in the third case, if σ is a well-formed substitution in
R, it returns true; otherwise, it returns false.

op wellFormed : Module -> Bool [special (...)] .

op wellFormed : Module Term ~> Bool [special (...)] .

op wellFormed : Module Substitution ~> Bool [special (...)] .

Note that the first operation is total, while the other two are partial (notice
the form of the arrow in the declarations). The reason is that the last two are
not defined when the term given as first argument does not represent a module,
and then it does not make sense to check whether a term or substitution is
well formed with respect to such a wrong “module.” For example,

Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false)) .

result Bool: true

Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false), ’p[’zero.Zero]) .

result Bool: true

Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false),

’s_[’zero.Zero, ’zero.Zero]) .

Advisory: could not find an operator s_ with appropriate domain

in meta-module NUMBERS when trying to interprete metaterm

’s_[’zero.Zero,’zero.Zero].

result Bool: false

Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false),

’N:Zero <- ’zero.Zero) .

result Bool: true

Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false),

’N:Nat <- ’p[’zero.Zero]) .

result Bool: false
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Maude> reduce in META-LEVEL :

wellFormed(upModule(’NUMBERS, false),

’N:Zero <- ’s_[’zero.Zero,’zero.Zero]) .

Advisory: could not find an operator s_ with appropriate domain

in meta-module NUMBERS when trying to interprete metaterm

’s_[’zero.Zero,’zero.Zero].

result Bool: false

14.6 Internal strategies

System modules in Maude are rewrite theories that do not need to be Church-
Rosser and terminating. Therefore, we need to have good ways of controlling
the rewriting inference process—which in principle could not terminate or go
in many undesired directions—by means of adequate strategies. In Maude,
thanks to its reflective capabilities, strategies can be made internal to the
system. That is, they can be defined using statements in a normal module in
Maude, and can be reasoned about as with statements in any other module.
In general, strategies are defined in extensions of the META-LEVEL module by
using metaReduce, metaApply, metaXapply, etc., as building blocks.

We illustrate some of these possibilities by implementing the following
strategies for controlling the execution of the rules in the VENDING-MACHINE

module in Section 6.1:

1. insert either a dollar or a quarter in the vending machine;
2. only buy cakes, and buy as many cakes as possible, with the coins already

inserted;
3. only buy either cakes or apples, and buy at most n of them, with the coins

already inserted;
4. buy the same number of apples and cakes, and buy as many as possible,

with the coins already inserted.

Consider the module BUYING-STRATS below, which imports the META-LEVEL

module.

fmod BUYING-STRATS is

protecting META-LEVEL .

The function insertCoin below defines the strategy (1): it expects as
first argument either ’add-q or ’add-$, for inserting a quarter or a dollar,
respectively, and as second argument the metarepresentation of the mark-
ing of a vending machine, and it applies once the rule corresponding to the
given label. The rules add-q and add-$ are applied using the descent function
metaXapply. A rule cannot be applied when the result of metaXapply-ing the
rule is not a term of sort Result4Tuple. Note the use of a matching equa-
tion in the condition to simplify the presentation of the righthand side of the
equation (see Section 4.3), as well as the use of the statement attribute owise

(see Section 4.5.4) to define the function insertCoin for unexpected cases.
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var T : Term .

var Q : Qid .

var N : Nat .

vars BuyItem? BuyCake? Change? : [Result4Tuple].

op insertCoin : Qid Term -> Term .

ceq insertCoin(Q, T)

= if BuyItem? :: Result4Tuple

then getTerm(BuyItem?)

else T

fi

if (Q == ’add-q or Q == ’add-$)

/\ BuyItem? := metaXapply(upModule(’VENDING-MACHINE, false),

T, Q, none, 0, unbounded, 0) .

eq insertCoin(Q, T) = T [owise] .

The function onlyCakes below defines the strategy (2): it applies the rule
buy-c as many times as possible, applying the rule change whenever it is nec-
essary. In particular, if the rule buy-c can be applied, then there is a recursive
call to the function onlyCakes with the term resulting from its application. If
the rule buy-c cannot be applied, then the application of the rule change is
attempted. If the rule change can be applied, then there is a recursive call to
the function onlyCakes with the term resulting from the change rule appli-
cation. Otherwise, the argument is returned unchanged. The rules buy-c and
change are also applied using the descent function metaXapply.

op onlyCakes : Term -> Term .

ceq onlyCakes(T)

= if BuyCake? :: Result4Tuple

then onlyCakes(getTerm(BuyCake?))

else (if Change? :: Result4Tuple

then onlyCakes(getTerm(Change?))

else T

fi)

fi

if BuyCake? := metaXapply(upModule(’VENDING-MACHINE, false),

T, ’buy-c, none, 0, unbounded, 0)

/\ Change? := metaXapply(upModule(’VENDING-MACHINE, false),

T, ’change, none, 0, unbounded, 0) .

The function onlyNitems defines the strategy (3): it applies either the rule
buy-c or buy-a (but not both) at most n times. As expected, the rules are
applied using the descent function metaXapply. Note the use of the symmetric
difference operator sd (see Section 9.2) to decrement N.

op onlyNitems : Term Qid Nat -> Term .
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ceq onlyNitems(T, Q, N)

= if N == 0

then T

else (if BuyItem? :: Result4Tuple

then onlyNitems(getTerm(BuyItem?), Q, sd(N, 1))

else (if Change? :: Result4Tuple

then onlyNitems(getTerm(Change?), Q, N)

else T

fi)

fi)

fi

if (Q == ’buy-c or Q == ’buy-a)

/\ BuyItem? := metaXapply(upModule(’VENDING-MACHINE, false),

T, Q, none, 0, unbounded, 0)

/\ Change? := metaXapply(upModule(’VENDING-MACHINE, false),

T, ’change, none, 0, unbounded, 0) .

eq onlyNitems(T, Q, N) = T [owise] .

Finally, the function cakesAndApples defines the strategy (4): it applies
the rule buy-c as many times as the rule buy-a. To define this function, we
use an auxiliary Boolean function buyItem? that determines whether a given
rule (buy-c or buy-a) can be applied. In the definition of cakesAndApples the
Boolean function buyItem? is used to check if the rule buy-a can be applied
after applying the rule buy-c. When the answer is true, then buy-c and
buy-a are applied once, using the function onlyNitems with the appropriate
arguments, and the function cakesAndApples is applied again to the result.

op cakesAndApples : Term -> Term .

op buyItem? : Term Qid -> Bool .

ceq buyItem?(T, Q)

= if BuyItem? :: Result4Tuple

then true

else (if Change? :: Result4Tuple

then buyItem?(getTerm(Change?), Q)

else false

fi)

fi

if (Q == ’buy-c or Q == ’buy-a)

/\ BuyItem? := metaXapply(upModule(’VENDING-MACHINE, false),

T, Q, none, 0, unbounded, 0)

/\ Change? := metaXapply(upModule(’VENDING-MACHINE, false),

T, ’change, none, 0, unbounded, 0) .

eq buyItem?(T, Q) = false [owise] .

eq cakesAndApples(T)
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= if buyItem?(T, ’buy-c)

then (if buyItem?(onlyNitems(T, ’buy-c, 1), ’buy-a)

then cakesAndApples(onlyNitems(onlyNitems(T, ’buy-c, 1),

’buy-a, 1))

else T

fi)

else T

fi .

endfm

As examples, we apply below the buying strategies (2–4) to spend in dif-
ferent ways the same amount of money: three dollars and a quarter.

Maude> reduce in BUYING-STRATS :

onlyCakes(’__[’$.Coin, ’$.Coin, ’$.Coin, ’q.Coin]) .

result GroundTerm: ’__[’q.Coin, ’c.Item, ’c.Item, ’c.Item]

Maude> reduce in BUYING-STRATS :

onlyNitems(’__[’$.Coin, ’$.Coin, ’$.Coin, ’q.Coin],

’buy-a, 3) .

result GroundTerm:

’__[’q.Coin, ’q.Coin, ’q.Coin, ’q.Coin, ’a.Item, ’a.Item, ’a.Item]

Maude> reduce in BUYING-STRATS :

cakesAndApples(’__[’$.Coin, ’$.Coin, ’$.Coin, ’q.Coin]) .

result GroundTerm: ’__[’$.Coin, ’q.Coin, ’q.Coin, ’a.Item, ’c.Item]

There is in fact great freedom for defining many different types of strate-
gies, or even many different strategy languages inside Maude. As illustrated
above with simple examples, this can be done in a completely user-definable
way, so that users are not limited by a fixed and closed particular strat-
egy language. Another example is presented in Section 21.7. See [66] for a
general methodology for defining internal strategy languages using reflection,
and [68, 70] for other examples of rewriting strategies defined in Maude.

However, the great freedom of defining internal strategies at the metalevel
is purchased at some cost. First, some familiarity with Maude’s metalevel
features is required; and second, some cost in performance is incurred in com-
parison with what might be possible in a direct implementation using Maude’s
rewrite engine. To address these two issues, a strategy language for Maude,
that can be used entirely at the object level, has been proposed and has been
implemented in prototype form [234]. Work on an implementation of this
strategy language at the level of the Maude rewrite engine has already begun.
We expect that this object-level strategy language will be available in future
Maude releases.
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Unification and Variant Generation

15.1 Introduction

Unification is the solving of equations, either in free algebras of the form
TΣ(X), or in relatively free algebras modulo a set E of equations, that is, in
algebras of the form TΣ/E(X). The first case is sometimes called syntactic
unification. The second case is sometimes called E-unification, or, if E is not
explicitly mentioned, equational unification, or semantic unification.

In solving any equation, such as, for example,

f(x, h(y)) = f(g(y), z)

we look for instances of the variables appearing in the equation that make
both sides equal. Variables can of course be instantiated by substitutions. A
substitution that makes both sides of the equation equal, that is, a solution
of the equation, is called a unifier. For example, if we are solving the above
equation in the free algebra TΣ(X) with X a countable set of variables and
with Σ having a single sort (unsorted unification), the substitution σ = {x 7→
g(y), z 7→ h(y)} is a unifier, and indeed the so-called most general unifier, so
that for any other unifier ρ there exists a substitution µ such that ρ = σ;µ,
where σ;µ denotes composition of substitutions in diagrammatic order. That
is, any other solution of the equation is an instance of the most general solution
provided by σ.

Of course, some equations may not have syntactic unifiers, but may have
semantic unifiers modulo some equations E. Consider, for example, the equa-
tion

f(h(y), x) = f(g(y), z)

which obviously does not have any solution in TΣ(X). It does, however, have
a solution in TΣ/C(X), where C is the commutativity axiom f(x, y) = f(y, x).
Indeed, the exact same substitution σ solving the first equation f(x, h(y)) =
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f(g(y), z) in a syntactic way, is now a unifier solving the second equa-
tion f(h(y), x) = f(g(y), z) modulo C, because we have f(h(y), g(y)) =C

f(g(y), h(y)).
Unification is a fundamental deductive mechanism used in many auto-

mated deduction tasks (see Section 15.6 for a discussion of some of them).
It is also very important in combining the paradigms of functional program-
ming and logic programming (in the Prolog sense of “logic programming”).
Furthermore, in the context of Maude, unification can be very useful to rea-
son not only about equational theories (functional modules or theories), but
also, as explained in Section 15.6.2, about rewrite theories (system modules
or theories).

Therefore, it is very useful to have an efficient implementation of unifica-
tion available in Core Maude, which is what this chapter describes. Specifi-
cally, we explain both how order-sorted unification modulo frequently occur-
ring equational axioms and variant-based unification are supported in Maude.

15.2 Order-sorted unification modulo a set of axioms

Although the most general equational theories supported by Maude are mem-
bership equational theories, to obtain practical unification algorithms, allowing
us to effectively compute the solutions of an equational unification problem,
it is important to restrict ourselves to order-sorted equational theories. Fur-
thermore, for an arbitrary set of equations E no unification algorithm may be
known; even if one is known, the number of solutions may be infinite.

This suggests a hybrid approach, in which we take advantage of Maude’s
structuring of a module’s equations into equational axioms Ax, such as as-
sociativity, and/or commutativity, and/or identity, and equations E, which
are assumed to be coherent,1 confluent, and terminating modulo Ax. We can
then consider order-sorted equational theories of the form (Σ,E ∪ Ax) and
decompose the E ∪ Ax-unification problem into two problems: one of Ax-
unification, and another of E ∪ Ax-unification that uses an Ax-unification
algorithm as a subroutine. This decomposition, as well as a similar one for
membership equational theories, is explained in Section 15.6. The point of

1 Coherence of E modulo Ax is very closely related to the notion of coherence
of rules relative to equations explained in Section 6.3; see [200] for the precise
definition of coherence in the equational case. The main role of coherence of E
modulo Ax is to get the effect of rewriting in Ax-equivalence classes with E. For
example, for Ax = AC, coherence modulo AC is easily achieved by adding to
each equation in E with a top AC function symbol in its lefthand side a similar
equation with an extra “extension variable” argument added to the AC function
symbol, as explained in Section 4.8. Section 4.8 also explains how, for rewriting
modulo axioms Ax supported by Maude, Maude automatically performs such a
coherence completion in an implicit, built-in way using extension variables and
“extension aware” Ax-matching algorithms; see also Section 19.5.
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this decomposition is that Ax-unification needs to be built-in at the level
of Core Maude’s C++ implementation for efficiency purposes and E ∪ Ax-
unification can then be built on top of Ax-unification. Since the axioms Ax
are well-known and unification algorithms exist for them, the task of build-
ing in efficient Ax-unification algorithms, although highly nontrivial, becomes
manageable. Maude 2.6 implemented E ∪Ax-unification in Maude itself, but
Maude 2.7 implements E ∪Ax-unification also in Core Maude’s C++ level.

We can, however, define the basic concepts of order-sorted E-unification
in full generality, even though in the Core Maude implementation E will al-
ways be a particular combination of equational axioms declared as equational
attributes in a module or a theory.

Given an order-sorted equational theory (Σ,E), an E-unification problem
consists of a nonempty set of unification equations of the form t =? t′, written
in the notation

t1 =? t′1 ∧ . . . ∧ tn =? t′n

where n ≥ 1 and the “conjunction” operator ∧ is assumed to be associative
and commutative.

Given such an E-unification problem, an E-unifier for it is an order-sorted
substitution2 σ : Vars(t1, t

′
1, . . . , tn, t

′
n) −→ TΣ(X) (where we assume that the

set X of variables contains a countable number of variables for each sort) such
that, for all i = 1, . . . , n,

E ` (∀Yi) σ(ti) = σ(t′i),

where Yi = Vars(σ(ti), σ(t′i)), that is, all the equations (∀Yi) σ(ti) = σ(t′i)
can be deduced in (membership) equational logic from the set of equations E.

A set of unifiers U is called a complete set of E-unifiers for a given E-
unification problem t1 =? t′1∧ . . .∧ tn =? t′n iff for any other E-unifier ρ of the
same E-unification problem there exists a substitution µ and a unifier σ ∈ U
such that ρ =E σ;µ, that is, for each variable x in the domain of ρ we have
E ` ρ(x) = µ(σ(x)). A complete set of E-unifiers U is called minimal if any
proper subset of U fails to be complete.

For an order-sorted equational theory (Σ,E), unification is said to be
finitary if for any E-unification problem there is always a finite complete set
of unifiers U . Similarly, unification for (Σ,E) is called unitary if it is finitary
and for any E-unification problem a minimal complete set of unifiers is always
either empty or a singleton set.

We say that (Σ,E) has a unification algorithm if there is an algorithm gen-
erating a complete set of E-unifiers for any E-unification problem in (Σ,E).

Unlike unsorted syntactic unification, which always either fails or has a
single most general unifier, order-sorted syntactic unification is not necessar-
ily unitary, that is, there is in general no single most general unifier. What

2 That is, a sort-preserving mapping from Vars(t1, t
′
1, . . . , tn, t

′
n), the set of all vari-

ables appearing in the terms ti or t′i, to TΣ(X).
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exists (if Σ is finite) is a finite minimal complete set of syntactic unifiers.
For some commonly occurring theories having a unification algorithm, such
as the theory A of associativity of a binary function symbol, it is well-known
that unification is not finitary: in general an infinite number of solutions may
exist. However, for other theories, such as commutativity or associativity-
commutativity, unification is finitary, both when Σ is unsorted and when Σ
is order-sorted (and finite).

15.3 Theories currently supported

As mentioned in Section 15.2, a practical way of dealing with order-sorted
equational unification is to consider order-sorted theories of the form (Σ,E ∪
Ax), with Ax a set of commonly occurring axioms, declared in Maude as equa-
tional attributes (see Section 4.4.1), and E the remaining equations specified
with the eq or ceq keywords. We can then decompose the E ∪Ax-unification
problem into an Ax-unification problem and an E ∪ Ax-unification problem
that uses an Ax-unification algorithm as a subroutine. In such a decomposi-
tion, the efficiency of the Ax-unification algorithm becomes crucial.

Maude currently provides an order-sorted Ax-unification algorithm for all
order-sorted theories (Σ,E ∪ Ax) such that the order-sorted signature Σ is
preregular modulo Ax (see Sections 3.8 and 24.2.5) and the axioms Ax asso-
ciated to function symbols are as follows:

• there can be arbitrary function symbols and constants with no equational
attributes;
• the iter equational attribute can be declared for some unary symbols;
• different equational attributes can be declared for some binary function

symbols:
– the comm attribute; usually referred to as C (for commutative),
– the assoc comm attributes; usually referred to as AC (for associative

and commutative),
– the assoc comm id: attributes; usually referred to as ACU (for as-

sociative and commutative with identity, or unit),
– the comm id: attributes; usually referred to as CU (for commutative

and identity, or unit),
– the id: attribute; usually referred to as U (for identity, or unit),
– the left id: attribute; usually referred to as Ul (for left identity, or

unit), and
– the right id: attribute; usually referred to as Ur (for right identity,

or unit),
but no other equational attributes must be given for such symbols.

Explicitly excluded are theories with binary function symbols having any
combination of:

• the idem attribute, or
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• the assoc attribute without comm.

The reason for excluding the assoc attribute without comm is the already-
mentioned fact that associative unification is not finitary.

If we give to Maude a unification problem in a functional module of the
form fmod (Σ,Ax) endfm where Σ and Ax satisfy the above requirements,
we get a complete set of order-sorted unifiers modulo the theory (Σ,Ax). If,
instead, we give the same problem to Maude in the functional module fmod

(Σ,E∪Ax) endfm, then the equations E are ignored and we still get a complete
set of order-sorted unifiers modulo the theory (Σ,Ax). Similarly, if we provide
the same unification problem in a functional theory fth (Σ,E∪Ax) endfth, a
system module mod (Σ,E∪Ax,R) endm or a system theory th (Σ,E∪Ax,R)
endth, we again get a complete set of order-sorted unifiers modulo the theory
(Σ,Ax). All this is consistent with the decomposition idea mentioned above:
to deal with order-sorted E∪Ax-unification, other methods, that use the Ax-
unification algorithm as a component, can later be defined as we explain in
Section 15.6.

Maude is even more tolerant than this. The user can give to Maude a
unification problem in a functional module (or functional theory, or system
module, or system theory) of the form fmod (Σ,E ∪M ∪ Ax ∪ Ax′) endfm

(or the analogous specification in the other cases), where (Σ,Ax) satisfies the
conditions mentioned above, but M is an optional set of membership axioms
(that is, (Σ,E∪M∪Ax∪Ax′) can be a membership equational theory and not
just an order-sorted theory), and the axioms Ax′ violate those requirements
(as explained in conditions (i)–(iii) above). Then what will happen is:

1. As before, the additional equations E (or rules R) are completely ignored,
and the membership axioms M are likewise ignored.

2. If a unification problem involves the occurrence of a symbol satisfying
axioms Ax′ at the root position of a non-ground subterm, the unification
process will fail and a warning will be printed.

3. If a unification problem involves the occurrence of symbols satisfying ax-
ioms Ax′, but all such occurrences are always in ground subterms of the
problem, then this special case of Ax∪Ax′-unification is handled by Maude
and the corresponding Ax ∪Ax′-unifiers are returned.

Furthermore, the functional module fmod (Σ,E ∪M ∪ Ax ∪ Ax′) endfm

(or the analogous functional theory or system module or theory) may import
predefined modules such as BOOL or NAT, so that function symbols in such
predefined modules can also be used in unification problems.

15.4 The unify command

Given a functional module or theory, or a system module or theory, 〈ModId 〉,
the user can give to Maude a unification command of the form:
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unify [ n ] in 〈ModId 〉 :

〈Term-1 〉 =? 〈Term’-1 〉 /\ ... /\ 〈Term-k 〉 =? 〈Term’-k 〉 .

where k ≥ 1; n is an optional argument providing a bound on the number
of unifiers requested, so that if the cardinality of the set of unifiers is greater
than the specified bound, the unifiers beyond that bound are omitted; and
〈ModId 〉 can be any module or theory declared in the current Maude session
(as usual, if no module is mentioned, the current module is used).

For a simple example of syntactic order-sorted unification problem illus-
trating:

• the use of the unify command;
• the use of the predefined operator _^_ in the NAT module, representing

exponentiation on natural numbers; and
• the in general non-unitary nature of order-sorted unification,

we can define the module

fmod UNIFICATION-EX1 is

protecting NAT .

op f : Nat Nat -> Nat .

op f : NzNat Nat -> NzNat .

op f : Nat NzNat -> NzNat .

endfm

and then give to Maude the following command:

Maude> unify f(X:Nat, Y:Nat) ^ B:NzNat =? A:NzNat ^ f(Y:Nat, Z:Nat) .

Solution 1

X:Nat --> #1:Nat

Y:Nat --> #2:NzNat

B:NzNat --> f(#2:NzNat, #3:Nat)

A:NzNat --> f(#1:Nat, #2:NzNat)

Z:Nat --> #3:Nat

Solution 2

X:Nat --> #1:NzNat

Y:Nat --> #2:Nat

B:NzNat --> f(#2:Nat, #3:NzNat)

A:NzNat --> f(#1:NzNat, #2:Nat)

Z:Nat --> #3:NzNat

The next example in the same module illustrates the use of the unify

command with a unification problem consisting of two unification equations:

Maude> unify f(X:Nat, Y:NzNat) =? f(Z:NzNat, U:Nat)

/\ V:NzNat =? f(X:Nat, U:Nat) .

Solution 1
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X:Nat --> #1:NzNat

Y:NzNat --> #2:NzNat

Z:NzNat --> #1:NzNat

U:Nat --> #2:NzNat

V:NzNat --> f(#1:NzNat, #2:NzNat)

Note that, as already mentioned, we could instead invoke the unify com-
mand in a functional or system module or theory having additional equations,
memberships, or rules, which are always ignored. For example, we could have
instead declared the system theory

th UNIFICATION-EX2 is

protecting NAT .

op f : Nat Nat -> Nat .

op f : NzNat Nat -> NzNat .

op f : Nat NzNat -> NzNat .

eq f(f(N:Nat, M:Nat), K:Nat) = f(N:Nat, M:Nat) .

rl f(N:Nat, M:Nat) => 0 .

endth

so that, if we give again the same unify commands above, we will obtain
exactly the same sets of order-sorted unifiers as for the UNIFICATION-EX1

module.
The above examples illustrate a further point about the form of the re-

turned unifiers, namely, that in each assignment X --> t in a unifier, the vari-
ables appearing in the term t are always fresh variables of the form #n:Sort.
The user is required not to use variables of this form in the submitted unifi-
cation problem. A warning is printed if this requirement is violated:

Maude> unify in NAT : X:Nat ^ #1:Nat =? #2:Nat .

Warning: unsafe variable name #1:Nat in unification problem.

15.4.1 Associative-commutative (AC ) unification examples

The use of a bound on the number of unifiers, as well as the use of the
associative-commutative (AC ) operator + in the predefined NAT module (see
Section 9.2), plus the fact that even small AC -unification problems can gen-
erate a large number of unifiers are all illustrated by the following command:

Maude> unify [100] in NAT :

X:Nat + X:Nat + Y:Nat =? A:Nat + B:Nat + C:Nat .

Solution 1

X:Nat --> #1:Nat + #2:Nat + #3:Nat + #5:Nat + #6:Nat + #8:Nat

Y:Nat --> #4:Nat + #7:Nat + #9:Nat

A:Nat --> #1:Nat + #1:Nat + #2:Nat + #3:Nat + #4:Nat

B:Nat --> #2:Nat + #5:Nat + #5:Nat + #6:Nat + #7:Nat

C:Nat --> #3:Nat + #6:Nat + #8:Nat + #8:Nat + #9:Nat

...
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Solution 100

X:Nat --> #1:Nat + #2:Nat + #3:Nat + #4:Nat

Y:Nat --> #5:Nat

A:Nat --> #1:Nat + #1:Nat + #2:Nat

B:Nat --> #2:Nat + #3:Nat

C:Nat --> #3:Nat + #4:Nat + #4:Nat + #5:Nat

The following unification command in the predefined CONVERSION module
(see Section 9.9) illustrates a further point on the handling of built-in con-
stants and functions. Built-in constants, even though infinite in number (all
strings, all quoted identifiers, all natural numbers, and so on), are handled
and can be used in unification problems. But built-in functions are not con-
sidered built-in for unification purposes; therefore, built-in evaluation of such
functions is not performed during the unification.

Maude> unify in CONVERSION :

X:String < "foo" + Y:Char =?

Z:String + string(pi) < "foo" + Z:String .

Solution 1

X:String --> #1:Char + string(pi)

Y:Char --> #1:Char

Z:String --> #1:Char

The handling of unification problems in modules with operators whose
equational axioms are excluded from the current unification algorithm can be
illustrated by means of the following module:

fmod UNIFICATION-EX3 is

protecting NAT .

op f : Nat Nat -> Nat [assoc] .

endfm

As already mentioned, a unification problem using such an associative function
symbol f in a non-ground subterm will mean that the unification attempt fails
and a warning is issued:

Maude> unify f(f(X:Nat, Y:Nat), Z:Nat) =? f(A:Nat, B:Nat) .

Warning: Term f(X:Nat, Y:Nat, Z:Nat) is non-ground and unification

for its top symbol is not currently supported.

Instead, if all symbols satisfying unsupported equational axioms Ax′ only
appear in ground subterms of the unification problem, the unification attempt
succeeds with the correct set of order-sorted Ax ∪Ax′-unifiers:

Maude> unify X:Nat + f(f(41, 42),43) =? Y:Nat + f(41,f(42,43)) .

Solution 1

X:Nat --> #1:Nat

Y:Nat --> #1:Nat
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15.4.2 Unification examples with the iter attribute

The following example illustrates the efficiency of order-sorted unification
modulo the iter theory (in this example in combination with the comm the-
ory). Consider the following module:

fmod ITER-EXAMPLE is

sorts NzEvenNat EvenNat OddNat NzNat Nat EvenInt OddInt NzInt Int .

subsorts OddNat < OddInt NzNat < NzInt < Int .

subsorts EvenNat < EvenInt Nat < Int .

subsorts NzEvenNat < NzNat EvenNat < Nat .

op 0 : -> EvenNat .

op s : EvenNat -> OddNat [iter] .

op s : OddNat -> NzEvenNat [iter] .

op s : Nat -> NzNat [iter] .

op s : EvenInt -> OddInt [iter] .

op s : OddInt -> EvenInt [iter] .

op s : Int -> Int [iter] .

op _+_ : Int Int -> Int [comm gather (E e)] .

op _+_ : OddInt OddInt -> EvenInt [ditto] .

op _+_ : EvenInt EvenInt -> EvenInt [ditto] .

op _+_ : OddInt EvenInt -> OddInt [ditto] .

op _+_ : Nat Nat -> Nat [ditto] .

op _+_ : Nat NzNat -> NzNat [ditto] .

op _+_ : OddNat OddNat -> NzEvenNat [ditto] .

op _+_ : NzEvenNat EvenNat -> NzEvenNat [ditto] .

op _+_ : EvenNat EvenNat -> EvenNat [ditto] .

op _+_ : OddNat EvenNat -> OddNat [ditto] .

endfm

We can then give the unification commands:

Maude> unify in ITER-EXAMPLE :

s^1000000(X:OddNat) =? s^100000000001(Y:Int) .

Decision time: 1ms cpu (1ms real)

Solution 1

X:OddNat --> s^99999000001(#1:EvenNat)

Y:Int --> #1:EvenNat

and

Maude> unify in ITER-EXAMPLE :

s^1000000(X:OddNat) =? s^100000000001(Y:Int + Z:Int + W:Int) .

Decision time: 2ms cpu (5ms real)

Solution 1
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X:OddNat --> s^99999000001(#1:OddNat + (#2:OddNat + #3:EvenNat))

W:Int --> #1:OddNat

Z:Int --> #2:OddNat

Y:Int --> #3:EvenNat

Solution 2

X:OddNat --> s^99999000001(#1:OddNat + (#2:EvenNat + #3:OddNat))

W:Int --> #1:OddNat

Z:Int --> #2:EvenNat

Y:Int --> #3:OddNat

Solution 3

X:OddNat --> s^99999000001(#1:EvenNat + (#2:OddNat + #3:OddNat))

W:Int --> #1:EvenNat

Z:Int --> #2:OddNat

Y:Int --> #3:OddNat

Solution 4

X:OddNat --> s^99999000001(#1:EvenNat + (#2:EvenNat + #3:EvenNat))

W:Int --> #1:EvenNat

Z:Int --> #2:EvenNat

Y:Int --> #3:EvenNat

As already mentioned, assuming that no bound on the number of unifiers
is specified by the user, Maude will always compute a complete set of order-
sorted unifiers modulo Ax, for Ax the supported equational axioms described
in Section 15.3. However, there is no guarantee that the computed set of
unifiers is minimal, that is, some of the unifiers in the computed set may be
redundant, since they could be obtained as instances (modulo Ax) of other
unifiers in the set.

15.4.3 Associative-commutative with identity (ACU ) unification
examples

To illustrate the use of the unification command in the presence of ACU oper-
ators, let us consider yet another version of the vending machine example (first
presented in Section 6.1 and in other sections of this document in different
forms):

mod UNIF-VENDING-MACHINE is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .
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ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ > => < M c > .

rl [buy-a] : < M $ > => < M a q > .

eq [change]: q q q q = $ .

endm

We can ask whether there is an equational unifier of two configurations, one
containing at least two quarters, and another containing at least one dollar.

Maude> unify in UNIF-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Solution 1

X:Marking --> $

Y:Marking --> q q

Solution 2

X:Marking --> $ #1:Marking

Y:Marking --> q q #1:Marking

Notice that the computed set of unifiers is not minimal because the first
solution is the instance of the second obtained by substituting the variable
#1:Marking with the constant empty. However, Maude computes a minimal
set of unifiers modulo axioms when invoked via the variant-based unification
command of Section 15.9 below; for instance, take the previous command
above and add the word “variant” at the beginning to obtain the minimal
set (see Section 15.9 for details on how to invoke the command):

Maude> variant unify in UNIF-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Solution 1

X:Marking --> $ #1:Marking

Y:Marking --> q q #1:Marking

Recall that memberships are discarded completely. For instance, if we mod-
ify the previous example to include a membership definition for a new sort
Quarter, any unification call with that sort may not succeed.

mod UNIF-VENDING-MACHINE-MB is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .
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sort Quarter .

subsort Quarter < Coin .

mb q : Quarter .

var M : Marking .

rl [buy-c] : < M $ > => < M c > .

rl [buy-a] : < M $ > => < M a q > .

eq [change]: q q q q = $ .

endm

We can ask whether there is an equational unifier of two configurations, one
containing at least two quarters, and another containing two quarters and a
dollar, but it fails:

Maude> unify in UNIF-VENDING-MACHINE-MB :

< q q X:Marking > =? < $ Y:Quarter Z:Quarter > .

No unifier.

despite the fact that instantiating both Y and Z to q is part of a solution
in the unification call above. The reason is that the membership is not used
during ACU unification and therefore the algorithm unification treats the sort
Quarter as empty.

15.4.4 Unification examples with an identity symbol

Let us illustrate the use of the different combinations of the identity attribute
for unification. Let us consider first a module using the left-id attribute.

mod LEFTID-UNIFICATION-EX is

sorts Magma Elem .

subsorts Elem < Magma .

op __ : Magma Magma -> Magma [gather (E e) left id: e] .

ops a b c d e : -> Elem .

endm

Then the following two unification problems have a different meaning, where
we have swapped the position of the variables. First, when we unify two terms
where variables of sort Magma are at the left of the terms, we have both a
syntactic unifier and a unifier modulo identity.

Maude> unify in LEFTID-UNIFICATION-EX : X:Magma a =? Y:Magma a a .

Solution 1

X:Magma --> a

Y:Magma --> e

Solution 2
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X:Magma --> #1:Magma a

Y:Magma --> #1:Magma

When the variables are instead at the right side of the terms of sort Magma,
there is clearly no unifier, since the term a a Y:Magma is parsed as (a a) Y:Magma

in module LEFTID-UNIFICATION-EX due to the attribute gather (E e) (see
Section 3.9).

Maude> unify in LEFTID-UNIFICATION-EX : a X:Magma =? a a Y:Magma .

No unifier.

Consider now a similar module but for the right identity.

mod RIGHTID-UNIFICATION-EX is

sorts Magma Elem .

subsorts Elem < Magma .

op __ : Magma Magma -> Magma [gather (e E) right id: e] .

ops a b c d e : -> Elem .

endm

When we unify two terms where variables of sort Magma are at the left of
the terms, there is clearly no unifier, since the term Y:Magma a a is parsed
this time as Y:Magma (a a) in module RIGHTID-UNIFICATION-EX due to the
attribute gather (e E) (see Section 3.9).

Maude> unify in RIGTHID-UNIFICATION-EX : X:Magma a =? Y:Magma a a .

No unifier.

When the variables are instead at the right side of the terms of sort Magma,
we have both a syntactic unifier and a unifier modulo identity:

Maude> unify in RIGTHID-UNIFICATION-EX : a X:Magma =? a a Y:Magma .

Solution 1

X:Magma --> a

Y:Magma --> e

Solution 2

X:Magma --> #1:Magma a

Y:Magma --> #1:Magma

Consider now a similar module but with the identity attribute.

mod ID-UNIFICATION-EX is

sorts Magma Elem .

subsorts Elem < Magma .

op __ : Magma Magma -> Magma [gather (E e) id: e] .

ops a b c d e : -> Elem .

endm
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When we unify two terms where variables of sort Magma are at the left of the
terms, we have both a syntactic unifier and a unifier modulo identity:

Maude> unify in ID-UNIFICATION-EX : X:Magma a =? Y:Magma a a .

Solution 1

X:Magma --> a

Y:Magma --> e

Solution 2

X:Magma --> #1:Magma a

Y:Magma --> #1:Magma

When the variables of sort Magma are instead at the right side of the terms of
sort Magma, we only have a unifier modulo identity:

Maude> unify in ID-UNIFICATION-EX : a X:Magma =? a a Y:Magma .

Solution 1

X:Magma --> a

Y:Magma --> e

And finally, when we add commutativity, we obtain slightly different re-
sults.

mod COMM-ID-UNIFICATION-EX is

sorts Magma Elem .

subsorts Elem < Magma .

op __ : Magma Magma -> Magma [gather (E e) comm id: e] .

ops a b c d e : -> Elem .

endm

When we unify two terms where variables of sort Magma are at the left of
the terms, we have both a syntactic unifier and a unifier modulo identity and
commutativity, but the latter is duplicated:

Maude> unify in COMM-ID-UNIFICATION-EX : X:Magma a =? Y:Magma a a .

Solution 1

X:Magma --> a

Y:Magma --> e

Solution 2

X:Magma --> a #1:Magma

Y:Magma --> #1:Magma

Solution 3

X:Magma --> a

Y:Magma --> e
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When the variables of sort Magma are instead at the right side of the terms of
sort Magma, we have several unifiers modulo identity and commutativity:

Maude> unify in COMMID-UNIFICATION-EX : a X:Magma =? a a Y:Magma .

Solution 1

X:Magma --> a a

Y:Magma --> a

Solution 2

X:Magma --> a

Y:Magma --> e

Solution 3

X:Magma --> a

Y:Magma --> e

Note that the first solution is intriguing and is obtained by unifying terms
(X:Magma a) and ((a a) Y:Magma).

15.5 Unification at the metalevel: metaUnify and
metaDisjointUnify

Following the general Maude philosophy, all Maude functionality is as much as
possible moved up to the metalevel, so that it becomes available by reflection
(see Chapter 14). This is particularly important for unification for two reasons:

1. Many of the formal reasoning applications of unification do require ac-
cess to unification functions at the metalevel. Consider, for example, the
computation of critical pairs to determine if a functional module is locally
confluent. This will be done by a function that takes the metarepresenta-
tion of the given functional module as data, and then this function will
have to invoke the unification function at the metalevel as part of its
critical pair subcomputations.

2. The unification algorithm is theory-dependent, since a different order-
sorted unification algorithm is derived for each different signature Σ and
combination of axioms Ax. Therefore, unification as a function, instead
of as a user command, must necessarily be at the metalevel, since it must
take the given theory (Σ,Ax) as a parameter.

Thus, the unification command is reflected in the META-LEVEL module (see
Section 14.5) by two descent functions:

op metaUnify :

Module UnificationProblem Nat Nat ~> UnificationPair?

[special (...)] .
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op metaDisjointUnify :

Module UnificationProblem Nat Nat ~> UnificationTriple?

[special (...)] .

These two metalevel functions work on unification problems constructed by
means of the following signature:

sorts UnificandPair UnificationProblem .

subsort UnificandPair < UnificationProblem .

op _=?_ : Term Term -> UnificandPair [ctor prec 71] .

op _/\_ : UnificationProblem UnificationProblem -> UnificationProblem

[ctor assoc comm prec 73] .

The key difference between metaUnify and metaDisjointUnify is that
the latter assumes that the variables in the left and righthand unificands are
to be considered disjoint even when they are not so, and it generates each
solution to the given unification problem not as a single substitution, but as
a pair of substitutions, one for left unificands and the other for right unifi-
cands. This functionality is very useful for applications, such as critical-pair
checking or narrowing, where a disjoint copy of the terms or rules involved
must always be computed before unification is performed. Indeed, what the
metaDisjointUnify operation avoids is precisely the need for explicitly com-
puting such disjoint copies. The need for two substitutions in each solution
is then obvious, since the terms in the given unification problem need not be
made explicitly disjoint, but their (accidentally) common variables must be
treated differently, as if they were disjoint.

Since it is convenient to reuse variable names from unifiers in new prob-
lems, for example in narrowing, this is allowed via the third argument, which
is the largest number n appearing in a unificand variable of the form #n:Sort.
Then the fresh variables in the computed unifiers will all be numbered from
n+ 1 on.

As is usual for descent functions, the last argument in the function is used
to select which result is wanted, starting from 0. Caching is used so that
if unifier i has just been returned, requesting unifier i + 1 gives rise to an
incremental computation.

Results are returned using the following constructors:

subsort UnificationPair < UnificationPair? .

subsort UnificationTriple < UnificationTriple? .

op {_,_} : Substitution Nat -> UnificationPair [ctor] .

op {_,_,_} : Substitution Substitution Nat -> UnificationTriple

[ctor] .

as appropriate for the descent function. The final Nat component is the largest
n occurring in a fresh metavariable of the form #n:Sort. In this way, when we
want to reuse variable names from unifiers, the next invocation of the function
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can use this parameter to make sure that the new variables generated are
always fresh.

When no unifier with a given index exists the constant

op noUnifier : -> UnificationPair? [ctor] .

or, respectively, the constant

op noUnifier : -> UnificationTriple? [ctor] .

is returned as appropriate for the corresponding descent function.
We can illustrate the use of these metalevel functions with a few examples.

The first one comes from the previous section, but moved up at the metalevel:

Maude> reduce in META-LEVEL :

metaUnify(upModule(’UNIFICATION-EX1, false),

’f[’X:Nat, ’Y:NzNat] =? ’f[’Z:NzNat, ’U:Nat] /\

’V:NzNat =? ’f[’X:Nat, ’U:Nat], 0, 0) .

result UnificationPair:

{’U:Nat <- ’#1:NzNat ;

’V:NzNat <- ’f[’#2:NzNat, ’#1:NzNat] ;

’X:Nat <- ’#2:NzNat ;

’Y:NzNat <- ’#1:NzNat ;

’Z:NzNat <- ’#2:NzNat, 2}

The second example shows that we can request fresh variables with arbi-
trarily large numbering:

Maude> reduce in META-LEVEL :

metaUnify(upModule(’NAT, false),

’_+_[’X:Nat,’Y:Nat] =? ’_+_[’A:Nat,’B:Nat],

100000000000000000000, 0) .

result UnificationPair:

{’A:Nat <- ’_+_[’#100000000000000000001:Nat,

’#100000000000000000002:Nat] ;

’B:Nat <- ’_+_[’#100000000000000000003:Nat,

’#100000000000000000004:Nat] ;

’X:Nat <- ’_+_[’#100000000000000000001:Nat,

’#100000000000000000003:Nat] ;

’Y:Nat <- ’_+_[’#100000000000000000002:Nat,

’#100000000000000000004:Nat],

100000000000000000004}

The following example shows a similar unification problem but with much
smaller numberings in fresh variables, and now involving an invocation of
metaDisjointUnify.
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Maude> reduce in META-LEVEL :

metaDisjointUnify(upModule(’NAT, false),

’_+_[’X:Nat, ’Y:Nat] =? ’_+_[’X:Nat, ’B:Nat], 0, 0) .

result UnificationTriple: {

’X:Nat <- ’_+_[’#1:Nat, ’#2:Nat] ;

’Y:Nat <- ’_+_[’#3:Nat, ’#4:Nat],

’B:Nat <- ’_+_[’#1:Nat, ’#3:Nat] ;

’X:Nat <- ’_+_[’#2:Nat, ’#4:Nat], 4}

Yet another example shows how using variable names in unification prob-
lems with larger numbers than declared by the third argument generates a
warning and no reduction.

Maude> reduce in META-LEVEL :

metaUnify(upModule(’NAT, false),

’_+_[’X:Nat,’Y:Nat] =? ’_+_[’#1:Nat,’Y:Nat], 0, 0) .

Warning: unsafe variable name #1:Nat in unification problem.

result [UnificationPair?]:

metaUnify(th ’NAT is

including ’NAT .

sorts none .

none

none

none

none

none

endth,

’_+_[’X:Nat, ’Y:Nat] =? ’_+_[’#1:Nat, ’Y:Nat], 0, 0)

15.6 Some applications of unification

In this section we review briefly some applications that can be developed
using a unification infrastructure like the one described in this chapter. We
begin by discussing narrowing and narrowing-based unification algorithms.
We also explain how narrowing modulo an equational theory can be used for
reachability analysis of concurrent systems described by rewrite theories, and,
more generally, for symbolic temporal logic model checking of such systems.
We then discuss briefly other automated deduction applications, including
theorem proving ones.

Chapter 20 contains more information about an implementation of nar-
rowing in Full Maude following the ideas of Section 15.6.2 below.
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15.6.1 Narrowing-based unification

If we have a dedicated algorithm (as the one supported by Maude) to solve
unification problems in an order-sorted theory (Σ,Ax), then we can use it
as a component to obtain a unification algorithm for theories of the form
(Σ,E ∪Ax), provided the equations E are unconditional, coherent, confluent
and terminating modulo Ax [200].

The technique used under such conditions to obtain an E ∪Ax-unification
algorithm from an Ax-unification algorithm is called narrowing, and is the
obvious generalization of term rewriting to handle logical variables and per-
form a kind of symbolic execution. In ordinary term rewriting, if we want to
apply a rewrite rule, say l→ r, to a term t at position p, the subterm t|p must
be an instance of the lefthand side l, that is, there must be a substitution σ
such that t|p = σ(l). Instead, in narrowing we can apply the rule l → r at a
non-variable position p in t, provided the unification problem t|p =? l (where
the variables of l and t are assumed disjoint) has a nonempty set of unifiers.
For any such unifier θ we then narrow the original term t to the substitution
instance under θ of t[r]p. We then write

t; θ(t[r]p)

for such a narrowing step. For example, in the standard, unsorted specification
of the natural numbers, we can use the equation x + s(y) = s(x + y) as a
rewrite rule to narrow the term x′ ∗ (y′ + z′) at position 2 with substitution
θ = {x 7→ y′′, y 7→ z′′, y′ 7→ y′′, z′ 7→ s(z′′)} to get the narrowing step

x′ ∗ (y′ + z′) ; x′ ∗ s(y′′ + z′′).

In this example, θ is the most general unifier for the syntactic unification
problem y′ + z′ =? x + s(y). However, in the same way as we can perform
rewriting modulo a set of axioms Ax if we have an Ax-matching algorithm,
we can likewise perform narrowing modulo a set Ax of axioms if we have an
Ax-unification algorithm. That is, the unification problems t|p =? l are now
solved, not by syntactic unification, but by Ax-unification.

If a theory (Σ,E ∪ Ax) satisfies the above coherence, confluence, and
termination modulo Ax requirements, we can systematically reduce E ∪ Ax-
unification problems to narrowing problems as follows:

1. we add a fresh new sort Truth to Σ with a constant tt;
2. for each top sort of each connected component of sorts we add a binary

predicate eq of sort Truth and add to E the equation eq(x,x) = tt,
where x has such a top sort;

3. we then reduce an E ∪ Ax-unification problem t =? t′ to the narrowing
reachability problem

eq(t, t′) ;∗ tt

modulo Ax in the theory extending (Σ,E ∪ Ax) with these new sorts,
operators, and equations, where E and the new equations are used as
rewrite rules.
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That is, we search for all narrowing paths modulo Ax from eq(t, t′) to tt. Each
such path then gives us a unifier of the equation t =? t′, just by composing the
unifiers of each narrowing step in the path. As explained in [31], narrowing
can be performed not only in order-sorted equational theories, but also in
membership equational theories.

The just-described computation of E ∪ Ax-unifiers by narrowing modulo
Ax yields a complete but in general infinite set of E ∪ Ax-unifiers. For the
case when Ax = ∅, some sufficient conditions are known ensuring termina-
tion of the basic narrowing strategy (see, e.g., [196, 11, 9]), and therefore
ensuring that the complete set of E ∪ Ax-unifiers computed by basic nar-
rowing is finite. However, for commonly occurring sets of axioms Ax, such
as associativity-commutativity (AC ), it is well-known that narrowing modulo
AC “almost never terminates” and, furthermore, that narrowing strategies fa-
cilitating termination such as basic narrowing are incomplete [373, 82]. Based
on the idea of “variants” in [82], a complete, yet quite efficient in terms of
its search space, narrowing strategy modulo Ax called folding variant nar-
rowing has been proposed in [149, 151]. Furthermore, in [148, 151, 57] suf-
ficient checkable conditions on (Σ,E ∪ Ax) have been given ensuring that
the E ∪Ax-unification algorithm provided by folding variant narrowing mod-
ulo Ax is finitary. In Maude 2.6, a narrowing library developed by Santiago
Escobar implemented the folding variant narrowing as a component, making
E ∪ Ax-unification available as part of Full Maude. Instead, Maude 2.7 im-
plements E ∪ Ax-unification via folding variant narrowing directly in Core
Maude’s C++ level (see Section 15.10).

15.6.2 Symbolic reachability analysis in rewrite theories

A rewrite theory3, say R = (Σ,E ∪ Ax,R), specified in Maude as a system
module, describes a concurrent system whose states are E ∪ Ax-equivalence
classes of ground terms, and whose local concurrent transitions are specified
by the rules R. When formally analyzing the properties of R, an important
problem is ascertaining for specific patterns t and t′ the following symbolic
reachability problem:

∃X t −→∗ t′

with X the set of variables appearing in t and t′, which for this discussion we
may assume are a disjoint union of those in t and those in t′. That is, t and
t′ symbolically describe sets of concurrent states [[t]] and [[t′]] (namely, all the
ground substitution instances of t, resp. t′, or, more precisely, the E ∪ Ax-
equivalence classes associated to such ground instances). And we are asking:
is there a state in [[t]] from which we can reach a state in [[t′]] after a finite
number of rewriting steps?

3 All we say here applies also to rewrite theories with an additional freezing function
φ specifying which arguments of each function symbol are frozen.
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For example, R may specify a cryptographic protocol, t may symbolically
describe a set of initial states, and t′ may likewise describe a set of attack
states. Then, if the above reachability question can be answered in the affir-
mative, the protocol R is insecure against the kinds of attacks described by
t′. Furthermore, if the way of answering the reachability question is some-
how constructive, we should be able to exhibit a concrete attack as a rewrite
sequence violating the security of the protocol.

As explained in [266], provided the rewrite theory R = (Σ,E ∪ Ax,R) is
topmost (that is, all rewrites take place at the root of a term), or, as in the
case of AC rewriting of object-oriented systems, R is “essentially topmost,”
and the rules R are coherent with E modulo Ax, narrowing with the rules
R modulo the equations E ∪ Ax gives a constructive, sound, and complete
method to solve reachability problems of the form ∃X t −→∗ t′, that is,
such a problem has an affirmative answer if and only if we can find a finite
narrowing sequence modulo E ∪ Ax of the form t ;∗ θ(t′) for some θ. The
method is constructive, because instantiating t with the composition of the
unifiers for each step in the narrowing sequence gives us a concrete rewrite
sequence witnessing the existential formula.

Of course, narrowing with R modulo E ∪Ax requires performing E ∪Ax-
unification at each narrowing step. As explained in Section 15.6.1, E ∪ Ax-
unification can itself be performed by narrowing with the equations E modulo
Ax, provided E is coherent, confluent, and terminating modulo Ax. Therefore,
in performing symbolic reachability analysis in a rewrite theory R = (Σ,E ∪
Ax,R) there are usually two levels of narrowing and two levels of unification:
narrowing with R modulo E ∪ Ax for reachability, and narrowing with E
modulo Ax for unification purposes. Similarly, unification modulo E ∪ Ax is
performed by narrowing, while unification modulo Ax is usually performed in
a built-in way.

This is exactly the approach taken in the Maude-NPA protocol analyzer
[144, 146], where cryptographic protocols are formally specified as rewrite
theories of the form R = (Σ,E ∪Ax,R), and the formal reachability analysis
is performed in a backwards way, from an attack state to an initial state. This
just means that we perform standard (forwards) reachability analysis with the
rewrite theory R−1 = (Σ,E ∪ Ax,R−1), where R−1 = {r −→ l | (l −→ r) ∈
R}. The equational theory E ∪Ax typically specifies the algebraic properties
of the cryptographic functions used in the given protocol, for example, public
key encryption and decryption, exclusive or, modular exponentiation, and so
on. Reasoning modulo such algebraic properties is very important to gain high
levels of assurance, since it is well-known that some cryptographic protocols
that can be proved secure under the standard Dolev-Yao model, in which
the cryptographic functions are treated as a “black box,” can actually be
broken by an attacker that makes clever use of the algebraic properties of the
cryptographic functions of the protocol. Besides using narrowing with rules
modulo equations, the Maude-NPA tool uses several state space reduction
techniques, including grammars that can describe sets of unreachable states
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that need not be explored [144], to drastically reduce the narrowing search
space, often from an infinite set of states to a finite set of them, so that finite
failure to find an attack becomes an actual proof of security.

Given a rewrite theory R = (Σ,E∪Ax,R), we may be interested in verify-
ing properties more general than existential questions of the form ∃X t −→∗ t′.
Note that we can view such questions as questions about the violation of an
invariant, because we can regard the set of states [[t′]] as the complement of an
invariant set of states, say I, which can be easily specified by an equationally-
defined predicate. That is, proving the existential formula ∃X t −→∗ t′ is
the same thing as finding a counterexample for the assertion R, t |= 2I. This
is just a temporal logic satisfaction assertion (see Chapter 13), but with the
following nonstandard features: (i) the term t does not describe a single ini-
tial state, but a possibly infinite set [[t]] of initial states; and (ii) there is no
guarantee that the set of reachable states is finite. Therefore, standard model-
checking techniques may not be usable, because of a possible double infinity:
in the number of initial states, and in the number of states reachable for each
of those initial states. One can also generalize the above reachability question
R, t |= 2I to questions of the form R, t |= ϕ, with ϕ a temporal logic formula.
The papers [147, 14] show how narrowing can be used (again, both at the
level of transitions with rules R and at the level of equations E) to perform
logical model checking to verify such temporal logic formulas; this is a a kind
of symbolic model checking not in the binary decision diagram sense of “sym-
bolic,” which still remains finite-state, but in a much more general sense in
which possibly infinite sets of states are finitely described by patterns with
logical variables.

15.6.3 Other automated deduction applications

The automated deduction application par excellence, and the one that histori-
cally, thanks to Alan Robinson, gave rise to the unification notion is resolution-
based theorem proving [315]. Subsequent work by Gordon Plotkin [302] made it
clear that not just syntactic unification, but unification modulo a set of equa-
tional axioms Ax is a very useful mechanism supporting theorem proving.
Indeed, state-of-the-art resolution-based theorem provers routinely support
unification modulo commonly occurring equational theories such as AC. Of
course, the use of equational unification need not be restricted to resolution-
based theorem provers. For example, the paper [316] shows how narrowing
with sequent rules and equational unification can be used in a sequent-based
theorem prover in which one can reason modulo both the equivalences given
by the structural rules for sequents and also Boolean equivalences between
formulas.

Yet another important application area is that of formal reasoning methods
such as Knuth-Bendix equational completion (and its associated “induction-
less induction” theorem-proving methods), checking local confluence of rewrite
rules, and checking coherence of a set of rewrite rules with respect to a set
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of equations [377]. In all these formal reasoning methods one needs to com-
pute critical pairs by unification of a term with a subterm of another term. In
particular, tools such as the Maude Church-Rosser Checker (CRC) and Coher-
ence Checker (ChC) (see Sections 23.1.3 and 23.1.4)were before restricted to
theories where the only equational axiom supported was commutativity. The
present built-in support for unification modulo a wide set Ax of axioms (fur-
ther extensible to identity axioms by narrowing as explained in Section 15.6.1)
has made it possible to have much more general versions of the Maude Church-
Rosser Checker and Coherence Checker tools to reason about the confluence
and coherence of Maude specifications modulo equational axioms specified as
equational attributes in Maude modules and theories [127, 126, 128].

15.7 Endogenous vs. exogenous order-sorted unification
algorithms

The current Maude order-sorted unification algorithm modulo axioms Ax is
what we might call an endogenous algorithm, in the sense that the compu-
tation of order-sorted unifiers is intimately integrated with the order-sorted
reasoning process, so that unifiers that do not type under the order-sorted typ-
ing restrictions are never generated. This makes such an algorithm typically
more efficient, because the order-sorted typing restrictions may drastically
cut the number of generated unifiers, particularly modulo axioms such as AC
where the number of unsorted unifiers can be very large. That is, order-sorted
unification, even though it lacks the unitary property of unsorted syntactic
unification and is in general more expensive than unsorted unification in the
syntactic case, can often be more efficient in the modulo Ax case because of
the drastic reductions that can be achieved by order-sorted typing restric-
tions in the number of Ax-unifiers. Moreover, even in the syntactic case, the
efficiency of deductive processes that use order-sorted unification can sub-
stantially increase, because order-sorted unification will fail more often than
unsorted unification, leading to smaller search spaces.

However, from the early papers on order-sorted unification such as, e.g.,
[326, 254, 331] a more modular, although typically less efficient, approach to
order-sorted unification, which we might call exogenous has been known. The
basic idea is to reuse an existing unsorted unification algorithm modulo some
axiomsAx (under some conditions onAx) to compute order-sortedAx-unifiers
in the following way:

1. type information is removed from the order-sorted Ax-unification problem
to convert it into an unsorted Ax-unification problem;

2. a complete set of unsorted Ax-unifiers is computed; and
3. the order-sorted Ax-unifiers of the original problem are obtained from

the unsorted ones by a process of filtering the unsorted unifiers through
an order-sorted reasoning process, in which the sorts of the variables in
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the original problem are taken into account. Each order-sorted unifier thus
obtained is always a specialization of a corresponding unsorted one, where
the unsorted variables have been specialized to given sorts; however, some
unsorted unifiers, perhaps many, may be filtered out by this process and
have no corresponding order-sorted unifiers.

For a state-of-the art study of the exogenous approach, allowing very general
axioms Ax and proving the correctness of an order-sorted inference system to
generate the order-sorted unifiers from the unsorted ones, see [189].

Both the endogenous and the exogenous approaches have their own ad-
vantages and disadvantages. The endogenous approach is more efficient, but
it requires dedicated algorithms and implementations, so that unsorted uni-
fication algorithms and tools cannot be reused. The exogenous algorithms
are less efficient because: (i) they can generate many unifiers that may later
be discarded; (ii) a separate order-sorted filtering process is needed; and (iii)
changes of representation, and even parsing, are required between unsorted
and order-sorted representations (particularly when existing unsorted algo-
rithms are reused). However, they are more modular and flexible, so that one
can with relatively little effort obtain an order-sorted unification algorithm
from an unsorted one.

In Maude we have experimented with, and benefited from, both an exoge-
nous algorithm and the current endogenous one. The exogenous algorithm was
developed in collaboration with Evelyn Contejean and Claude Marché from
Université Paris-Sud, and involved also the efforts of Prasanna Thati and Joe
Hendrix at UIUC. It reused the rich library of unsorted unification algorithms
modulo axioms of the CiME system [84], which could be called from Maude in
an experimental version. Inside Maude, it used the order-sorted inference sys-
tem to compute order-sorted unifiers developed by Joe Hendrix and described
in [189].

This exogenous algorithm has been extensively used in a previous ver-
sion of the Maude-NPA tool, and has been shown effective in finding attacks
to cryptographic protocols modulo nontrivial equational theories of the form
E∪Ax [142]. The exogenous algorithm has also been extremely useful in test-
ing the endogenous one. Because of the large number of unifiers generated and
the complex nature of semantic unification algorithms, their testing is a non-
trivial matter, and the automation of such testing is quite difficult. Thanks to
the exogenous algorithm, and through the efforts of Ralf Sasse and Santiago
Escobar, it has been possible to generate large numbers of random unifica-
tion problems of different sizes in which the sets of unifiers generated by the
exogenous and endogenous order-sorted unification algorithms have been au-
tomatically compared. This testing uncovered several bugs in an earlier alpha
version of the Maude endogenous algorithm, and has also served to evaluate
in practice the greater efficiency of the endogenous algorithm developed by
Steven Eker.
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15.8 Some notes on the implementation of unification

Order-sorted unification is NP-complete in general because Boolean algebra
can be encoded as an order-sorted free theory signature and hence satisfia-
bility can be reduced to an order-sorted free theory unification problem. In
practice, reasonable performance can be obtained using a binary decision di-
agram technique to compute sorts for free variables occurring in unsorted
unifiers. Furthermore in the AC case, sort information can be pushed into the
unsorted unification algorithm and used to prune the Diophantine basis and
the choice of subsets drawn from such a basis [137].

The unification theory combination framework and AC -unification algo-
rithm are based on [30], while the Diophantine system solver used by the AC
algorithm is based on [83]. The unification algorithm has been thoroughly
tested by Santiago Escobar and Ralf Sasse using CiME [84] as an oracle, and
has shown better average performance than CiME on the same problems.

The addition of ACU to the theories handled by the dedicated unification
algorithm in Maude required substantial changes to the unification infras-
tructure implemented in previous versions of Maude for C and AC theories
because of the problems associated with collapse theories. In this section we
give an overview of the techniques used and highlight a novel algorithm for
selecting sets of Diophantine basis elements during the computation of ACU
unifiers.

15.8.1 Combining unification algorithms

The basic approach to solving unification problems where function symbols are
drawn from more than one theory is variable abstraction where alien subterms,
i.e., subterms headed by a symbol from a theory different from that of the
top symbol of the parent term, are replaced by fresh variables to form pure
unification subproblems which only involve variables and function symbols
from a single theory and which can be passed to a unification algorithm for
such a theory. Proving termination of combinations of algorithms is nontrivial,
as variables are necessarily shared between theories and the unification of
variables in one theory can create new unification subproblems in another
theory, potentially ad infinitum. Stickel’s algorithm [347], which combined the
AC and free theories, required an elaborate termination proof by Fages [152].
Boudet et al. [30] proposed a much simpler approach where all unification
subproblems and variable bindings in a given theory are solved (and re-solved
if another subproblem in that theory is created) simultaneously. This method
requires a simultaneous E-unification algorithm for each theory E and was
the method implemented in Maude for C, AC, and ∅ prior to the addition of
ACU.

Collapse theories add two major complications to the combination of uni-
fication algorithms. Firstly, theory clashes where two terms with top symbols
from different theories are required to unify can no longer be treated as a
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failure, since if one of the top symbols belongs to a collapse theory, a collapse
may occur, yielding solutions. Secondly, compound cycles, that is, problems of
the form x1 =? t1(. . . , x2, . . .), x2 =? t2(. . . , x3, . . .), . . . , xn =? tn(. . . , x1, . . .)
where the terms ti are pure in different theories, can no longer be treated as
failure, since solutions may be possible via collapse.

Several authors have proposed combination schemes that can handle col-
lapse theories. We use a simplified version of an algorithm due to Boudet [29].
The original algorithm also handles nonregular theories but we omit that capa-
bility to simplify the implementation. The key idea is that each theory E needs
a restricted simultaneous E-unification algorithm which solves the simulta-
neous unification problem for pure equations that are pure in E but where
certain variables may be marked as only being allowed to unify with other vari-
ables. A theory clash subproblem f(. . .) =? g(. . .), is split into a disjunction
of two subproblems each of which is a conjunction x =? f(. . .) ∧ x =? g(. . .)
where x is a fresh variable. In one subproblem x is marked in the f equa-
tion and in the other subproblem x is marked in the g equation; either or
both branches of the search may return solutions. Restricted unification is
also used to break compound cycles. Because we do not handle nonregular
theories, Boudet-style variable-elimination algorithms are unnecessary.

Boudet’s algorithm assumes that theories are disjoint, i.e., that they do not
share function symbols. Because in Maude this is not quite true — identities
can contain symbols from other theories — we need to handle a special kind
of variable elimination. We illustrate the issue with the following example:

fmod UNIFICATION-CYCLE is

sort S .

vars X Y : S .

ops a b c d : -> S .

op f : S S -> S [assoc comm id: g(c, d)] .

op g : S S -> S [assoc comm id: f(a, b)] .

endfm

Maude> unify X =? f(Y, a, b) /\ Y =? g(X, c, d) .

Here the unification problem would already be in solved form but for the
compound cycle formed by the X and Y variables. Restricted unification can-
not break this cycle, since neither of the righthand sides can collapse out of
their theory. However, putting Y = g(c, d) eliminates Y from the first equa-
tion yielding X = f(a, b) which eliminates X from the second equation, thus
yielding a solution. This situation is somewhat pathological in Maude pro-
grams, and we do not really care about performance in its handling. Maude
handles it by looking for this kind of cyclic dependency between theories when
the signature is preprocessed and setting a flag so that a brute force variable
elimination algorithm will be used to try and break compound cycles at uni-
fication time.
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15.8.2 Diophantine basis element selection

We solve restricted simultaneous ACU unification using an extension of the
simultaneous AC unification algorithm in [30]. For an ACU function symbol
f we are presented with a set of flattened pure equations that take the form
f(xp11 , . . . , x

pn
n ) =? f(yq11 , . . . , y

qm
m ) or x1 =? f(yq11 , . . . , y

qm
m ). Each f -equation

yields a Diophantine equation p1X1 + · · · + pnXn = q1Y1 + · · · + qmYm or
respectively, X1 = q1Y1+ · · ·+qmYm where the Xi’s and Yi’s are non-negative
Diophantine variables. If an original variable is marked in some equation, the
corresponding Diophantine variable receives an upper-bound of 1. Also, we
may be able to obtain an upper-bound from order-sorting information, using
the signature analysis technique in [134].

The general solution to a set of non-negative Diophantine equations is
a set of basis elements from which all solutions can be obtained by linear
combination. Upper-bound information may trivially eliminate some basis
elements from consideration and can be used by the Diophantine solver to
terminate the search for basis elements early.

A fresh variable zk is allocated for each basis element αk and unifiers
are formed by finding sets of basis elements that satisfy certain properties
and constructing assignments xi ← f(. . . , z

αk,i

k , . . .) where k ranges over the
indices of the selected basis elements and αk,i is the value of Xi in the basis
element αk.

The criteria for choosing the sets of basis elements is the key difference
between AC unification, ACU unification, and restricted ACU unification.
With AC unification, every selection of basis elements whose sum yields a
nonzero value for each Xi and Yi must be considered. With ACU unification
that requirement is lifted because of the availability of an identity element. The
identity element also means that any assignment including basis element αk
generalizes the same assignment with αk removed by assigning the identity
element to zk and thus there is a single most general solution, formed by
selecting all the basis elements.

In the case of restricted ACU unification, we may have upper-bounds on
variables because they are marked. In Maude, order-sorted considerations may
place upper-bounds on variables, and may also place a lower-bound of 1 on
variables where the corresponding original variable has a sort that cannot
take the identity element. In order to find a complete set of unifiers we need
to find all maximal sets of basis elements whose sum satisfies the upper and
lower-bounds on the variables.

Several explicit schemes for searching the subsets of basis elements were
tried but the search was typically the dominant cost for ACU unification, often
rendering the solution of quite modest unification problems impractical. In the
current implementation this search is performed symbolically using a Binary
Decision Diagram (BDD) [41] based algorithm. A BDD variable is allocated
for each basis element, whose value, true or false, denotes whether the basis
element is included in the subset. A BDD, called legal, is constructed, which
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evaluates to true on exactly those valuations that correspond to selections of
basis elements that satisfy the upper- and lower-bound constraints on each
Diophantine variable. Enforcement of the upper-bounds on the sum is done
using dynamic programming and the BDD ite operation. Using the BDD legal,
a second BDD, called maximal, is constructed which is true on exactly those
valuations where legal is true, and changing a false into a true makes legal
false. These valuations of the BDD variables and thus the subsets of basis
elements they encode are then recovered by tracing the paths from the root
to the true terminal in maximal. This method yielded a dramatic speed up
(from hours to milliseconds) on problems of useful size.

15.9 Variants

As explained in Section 15.2, Maude 2.7 features order-sorted unification mod-
ulo axioms Ax, including commutativity (C ), associativity-commutativity
(AC ), and associativity-commutativity-identity (ACU ). However, order-sorted
equational unification in full generality considers a decomposition of an equa-
tional theory (Σ,E ∪ Ax) into two problems: one of Ax-unification, and an-
other of E∪Ax-unification that uses an Ax-unification algorithm as a subrou-
tine. As explained in Section 15.6.1, algorithms for E ∪ Ax-unification have
been extensively defined by using narrowing-based unification, where for a
unification problem t =? t′ we obtain the search space associated to narrow-
ing the term eq(t, t′) using E modulo Ax and search for all paths from eq(t, t′)
to the truth constant tt. However, we use the notion of variants of a term for
generating such a narrowing search space.

Comon-Lundh and Delaune’s notion of variant [82] characterizes the in-
stances of a term w.r.t. an equational theory E ∪Ax such that the equations
E are confluent, terminating, and coherent modulo axioms Ax. The E,Ax-
variants of a term t are pairs (t′, θ), with θ a substitution and t′ the E,Ax-
canonical form of θ(t). A preorder relation of generalization that holds between
such pairs provides a notion of most general variant and also of completeness of
a set of variants. A complete set of E,Ax-variants (up to renaming) of a term
t is a subset V of E,Ax-variants of t such that, for each substitution σ, there is
a variant (t′, θ) ∈ V and a substitution ρ such that: (i) t′ is E,Ax-irreducible,
(ii) σ(t)↓E,Ax =Ax ρ(t′), and (iii) (σ↓E,Ax)|Var(t) =Ax (θ; ρ)|Var(t).

In order to avoid clashing of algorithms and notions, we have decided
that the equations used for variant generation (and variant-based unification)
should be identifiable and clearly distinguished from standard equations in
Maude. For this purpose we have defined a new attribute for equations: the
word variant. This implies that if the user wants to use an equation t =

t’ both for variant generation and for simplification, it should be duplicated:
eq t = t’ . and eq t = t’ [variant] . No equation with the variant at-
tribute can have the owise attribute. Note that what this allows is a greater
flexibility at the operational level when combining variant generation and
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simplification: by the above method, an equation can be used for either pur-
pose (declared only once in the appropriate way), or for both, by a double
declaration.

For example, consider the following functional module defining the addi-
tion function _+_ on natural numbers built from 0 and s:

fmod NAT-VARIANT is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars X Y : Nat .

eq [base] : 0 + Y = Y [variant] .

eq [ind] : s(X) + Y = s(X + Y) [variant] .

endfm

The term X + s(0) has an infinite number of variants w.r.t. those equa-
tions, i.e.,

• (s(0), {X 7→ 0}),
• (s(s(Y)), {X 7→ s(Y)}),
• (s(s(0)), {X 7→ s(0)}),
• (s(s(s(Y))), {X 7→ s(s(Y))}),
• (s(s(s(0))), {X 7→ s(s(0))}), . . .

Indeed, there is no finite, complete, most general set of variants for that term.
However, the term 0 + X has a finite number of most general variants w.r.t.
those equations, i.e., (X, id). Obviously, there are many more variants, such as
(0, {X 7→ 0}), but they are all instances of the most general one.

An equational theory E ∪ Ax has the finite variant property iff there is a
finite complete set of most general variants for each term. This property also
ensures the existence of a generic finitary E ∪Ax-unification algorithm based
on computing variants, as shown in Section 15.10.

Consider the following equational theory for exclusive or.

fmod EXCLUSIVE-OR is

sorts Nat NatSet .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

subsort Nat < NatSet .

op mt : -> NatSet [ctor] .

op _*_ : NatSet NatSet -> NatSet [ctor assoc comm] .

vars X Y Z : [NatSet] .

eq [idem] : X * X = mt [variant] .

eq [idem-Coh] : X * X * Z = Z [variant] .

eq [id] : X * mt = X [variant] .

endfm
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This theory has the finite variant property, as proved manually in [82] and
automatically in [148]. For instance, the term X * X has a finite set of most
general variants, just (mt, id). And the term X * Y has also a finite, complete
set of most general variants:

1. (X * Y, id),
2. (Z, {X 7→ mt, Y 7→ Z}),
3. (Z, {X 7→ Z, Y 7→ mt}),
4. (Z, {X 7→ Z * U, Y 7→ U}),
5. (Z, {X 7→ U, Y 7→ Z * U}),
6. (mt, {X 7→ U, Y 7→ U}), and
7. (Z1 * Z2, {X 7→ U * Z1, Y 7→ U * Z2})

Note that if variable X in the equational theory is changed from sort
[NatSet] to Nat (or [Nat]), then the theory does not have the finite variant
property, since every pair of similar elements has to be separately eliminated,
whereas now chunks of similar elements can be eliminated at once. Also, note
that the symbol * cannot be made ACU instead of AC, because then the
equation X * X * Z = Z is not ACU -terminating.4

The finite variant property happens to be an undecidable problem [28].
However, a new semi-decision procedure for checking the finite variant prop-
erty has been developed which works well in practice: it has recently [57] been
shown that, in order to prove the finite variant property for an equational
theory (Σ,E ∪ Ax), it is enough to check, for each function symbol f ∈ Σ,
whether or not each pattern of the form f(X1, . . . , Xn) has a finite number of
variants, where the Xi are distinct variables of the appropriate kind and n is
the arity of f . This can be done by attempting to generate all the variants of
f(X1, . . . , Xn) as described in Section 15.9.2 below.

Variants are used for variant-based unification in Section 15.10, and such
a variant-based unification is later used in Section 20.3 for symbolic reacha-
bility analysis. Before defining variant-based unification, in Section 15.9.1 we
introduce the class of equational theories admissible for variant generation,
and thus for variant-based unification. We also provide in Section 15.9.2 a
command get variants for user generation of variants.

15.9.1 Theories supported for variant generation

The equational theories that are admissible for variant generation are as fol-
lows. Let fmod (Σ,E ∪ Ax) endfm (resp. fth (Σ,E ∪ Ax,R) endfth) be an
order-sorted functional module (resp. functional theory) where E is a set of
equations specified with the eq keyword and the attribute variant, and Ax
is a set of axioms such that (Σ,Ax) satisfies the restrictions explained in
Section 15.3. Furthermore, the equations E must satisfy the following extra
conditions:
4 This is the only equation necessary for ACU -coherence and the other two would

be eliminated.
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• The equations E are unconditional, confluent, terminating, sort-decreasing,
and coherent modulo Ax (see also Section 19.5 for coherence details).

• An equation’s lefthand side cannot be a variable, and the owise feature
is not allowed.

• The equational theory must satisfy the finite variant property.

Any system module mod (Σ,G ∪ E ∪ Ax,R) endm (of system theory th

(Σ,G∪E∪Ax,R) endth), where G is an additional set of equations (without
the variant attribute!) and R is a set of rules, is also considered admissible for
variant generation if the equational part (Σ,E ∪ Ax) satisfies the conditions
described above. Note that when an equational theory (Σ,G ∪ E ∪ Ax) is
entered into Maude, each equation in E (used for variant computation) must
include the variant attribute. Note that equations in G do not have any
restriction, i.e., they can be conditional equations, with the owise attribute,
etc.

15.9.2 The get variants command

Given a module 〈ModId 〉, Maude provides a variant generation command of
the form:

get variants [ n ] in 〈ModId 〉 : 〈Term 〉 .

where n is an optional argument providing a bound on the number of variants
requested, so that if the cardinality of the set of variants is greater than the
specified bound, the variants beyond that bound are omitted; and, as usual,
if no module is mentioned, the current module is used.

For example, we can check that the EXCLUSIVE-OR module above has the
finite variant property by simply generating the variants for the exclusive-or
symbol ∗.
Maude> get variants in EXCLUSIVE-OR : X * Y .

Variant #1

[NatSet]: #1:[NatSet] * #2:[NatSet]

X --> #1:[NatSet]

Y --> #2:[NatSet]

Variant #2

NatSet: mt

X --> %1:[NatSet]

Y --> %1:[NatSet]

Variant #3

[NatSet]: %1:[NatSet] * %3:[NatSet]

X --> %1:[NatSet] * %2:[NatSet]

Y --> %2:[NatSet] * %3:[NatSet]
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Variant #4

[NatSet]: %1:[NatSet]

X --> %1:[NatSet] * %2:[NatSet]

Y --> %2:[NatSet]

Variant #5

[NatSet]: %2:[NatSet]

X --> %1:[NatSet]

Y --> %1:[NatSet] * %2:[NatSet]

Variant #6

[NatSet]: %1:[NatSet]

X --> mt

Y --> %1:[NatSet]

Variant #7

[NatSet]: %1:[NatSet]

X --> %1:[NatSet]

Y --> mt

No more variants.

The above example illustrates a difference between unifiers returned by
the built-in unification modulo axioms and unifiers returned by variant gen-
eration or variant-based unification: two forms of fresh variables, the former
#n:Sort and the new %n:Sort. The reasons for this distinction are irrelevant
and connected to efficiency of algorithms. Both forms represent fresh variables
and both share the same counter for new fresh variables. The user is required
not to use variables of these two forms in submitted unification problems (ei-
ther modulo axioms or variant-based). And when used at the metalevel, the
counter for new fresh variables must take into account the numbers used for
both forms of fresh variables.

Recall that memberships are discarded completely. For instance, we can
modify the previous example to include a membership definition for a new
sort Empty.

fmod EXCLUSIVE-OR-MB is

sorts Nat NatSet .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

subsort Nat < NatSet .

op mt : -> NatSet [ctor] .

op _*_ : NatSet NatSet -> NatSet [ctor assoc comm] .

sort Empty .

subsort Empty < NatSet .

mb mt : Empty .
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vars X Y Z : [NatSet] .

eq [idem] : X * X = mt [variant] .

eq [idem-Coh] : X * X * Z = Z [variant] .

eq [id] : X * mt = X [variant] .

endfm

We can ask then for the variants of the exclusive-or symbol ∗ when restricted
to the sort Empty, and the results use the variant equations but not the mem-
bership information.

Maude> get variants in EXCLUSIVE-OR-MB : X:Empty * Y:Empty .

Variant #1

NatSet: #1:Empty * #2:Empty

X:Empty --> #1:Empty

Y:Empty --> #2:Empty

Variant #2

Empty: mt

X:Empty --> %1:Empty

Y:Empty --> %1:Empty

No more variants.

Note that the membership is used to compute the least sort of terms involved
in the results (like the constant mt above), but is not used during variant
generation. For example, this process is not able to instantiate any of the two
variables to the constant mt.

Consider now the following version of the vending machine to buy apples
(a) or cakes (c) with dollars ($) and/or quarters (q). The reader can check that
the only difference with the UNIF-VENDING-MACHINE module in Section 15.4
is the change equation, where we have added the attribute variant and a
variable M to make it ACU -coherent (see Section 19.5 for details on ACU -
coherence).

mod VARIANT-VENDING-MACHINE is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ > => < M c > .

rl [buy-a] : < M $ > => < M a q > .
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eq [change] : q q q q M = $ M [variant] .

endm

Note that the change equation satisfies the finite variant property, as proved
by generating the variants of symbol .

Maude> get variants in VARIANT-VENDING-MACHINE : X:Marking Y:Marking .

Variant #1

State: #1:Marking #2:Marking

X:Marking --> #1:Marking

Y:Marking --> #2:Marking

Variant #2

State: %1:Marking %2:Marking

X:Marking --> q q q %1:Marking

Y:Marking --> q %2:Marking

Variant #3

State: %1:Marking %2:Marking

X:Marking --> q q %1:Marking

Y:Marking --> q q %2:Marking

Variant #4

State: %1:Marking %2:Marking

X:Marking --> q %1:Marking

Y:Marking --> q q q %2:Marking

We can also generate the variants of the state < $ q q X:Marking > contain-
ing at least a dollar and two quarters.

Maude> get variants in VARIANT-VENDING-MACHINE : < $ q q X:Marking > .

Variant #1

State: < $ q q #1:Marking >

X:Marking --> #1:Marking

Variant #2

State: < $ $ %1:Marking >

X:Marking --> q q %1:Marking

These two variants form a finite, complete, and most general set of variants
for the given term; for example, the variant

{< $ $ q q Y:Marking >, X:Marking --> q q q q Y:Marking}

is an instance of the first variant above, i.e., the canonical form < $ $ q q

Y:Marking > is an instance of the normal form < $ q q #1:Marking > of the
first variant, and the (normalized version) of the instantiating substitution,
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i.e., #1:Marking --> $ Y:Marking, is an instance of the empty substitution
of the first variant.

We can consider a more complex equational theory such as the one of
Abelian groups specified in the following module.

fmod ABELIAN-GROUP is

sorts Element .

op _+_ : Element Element -> Element [comm assoc prec 30] .

op -_ : Element -> Element [prec 20] .

op 0 : -> Element .

vars X Y Z : Element .

eq X + 0 = X [variant] .

eq X + - X = 0 [variant] .

eq X + - X + Y = Y [variant] .

eq - - X = X [variant] .

eq - 0 = 0 [variant] .

eq - X + - Y = -(X + Y) [variant] .

eq -(X + Y) + Y = - X [variant] .

eq -(- X + Y) = X + - Y [variant] .

eq - X + - Y + Z = -(X + Y) + Z [variant] .

eq -(X + Y) + Y + Z = - X + Z [variant] .

endfm

The generation of the variants for the addition symbol takes more time and
provides 47 variants:

Maude> get variants in ABELIAN-GROUP : X + Y .

Variant #1

Element: #1:Element + #2:Element

X --> #1:Element

Y --> #2:Element

Variant #2

Element: %1:Element

X --> 0

Y --> %1:Element

...

Variant #46

Element: %2:Element + - (%3:Element + %4:Element)

X --> %5:Element + - (%1:Element + %3:Element)

Y --> %1:Element + %2:Element + - (%4:Element + %5:Element)

Variant #47

Element: - (%2:Element + %3:Element)

X --> %4:Element + - (%1:Element + %2:Element)

Y --> %1:Element + - (%3:Element + %4:Element)

And the minus sign symbol has four variants:
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Maude> get variants in ABELIAN-GROUP : - X .

Variant #1

Element: - #1:Element

X --> #1:Element

Variant #2

Element: %1:Element

X --> - %1:Element

Variant #3

Element: 0

X --> 0

Variant #4

Element: %1:Element + - %2:Element

X --> %2:Element + - %1:Element

Another interesting feature is that variant generation is incremental and
in this way we are able to give partial support to theories that do not have
the finite variant property. Let us consider the functional module for addition
NAT-VARIANT in Section 15.9 that does not have the finite variant property.
On the one hand, it is possible to have a term with a finite number of most
general variants although the theory does not have the finite variant property.
For instance, the term s(0) + X is simplified into s(X).

Maude> get variants in NAT-VARIANT : s(0) + X .

Variant #1

Nat: s(#1:Nat)

X --> #1:Nat

On the other hand, we can approximate the number of variants of a term
that we suspect does not have a finite number of most general variants. For
instance, the term X + s(0) has an infinite number of most general variants
and we can approximate that infinite set of variants by including a bound in
the command, as it is also done for unification modulo axioms.

Maude> get variants [10] in NAT-VARIANT : X + s(0) .

Variant #1

Nat: #1:Nat + s(0)

X --> #1:Nat

Variant #2

Nat: s(0)

X --> 0

...
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Variant #10

Nat: s(s(s(s(s(0)))))

X --> s(s(s(s(0))))

Note that if we do not know a priori whether a term has a finite number
of most general variants, we can incrementally increase the bound and if we
obtain a number of variants smaller than the bound, we know for sure that it
had a finite number of most general variants.

When an equational theory satisfies the requirements in Section 15.9.1
except the finite variant property, it is because there are terms with an infinite
set of most general variants. Of course, if the user does not provide a bound,
Maude cannot return this whole set for anyone of those terms, because it will
keep generating one variant after the other; however, when the user provides
such a bound, the process will always terminate with Maude returning a finite
set of variants. As said above, the number of returned variants can be smaller
than the given bound when the term has indeed a finite set of variants, but
it will coincide with the bound otherwise.

15.9.3 Variant generation at the metalevel: getVariants

The procedure for variant generation is also available at the metalevel of
Maude thanks to the metaGetVariant function provided in the META-LEVEL

module.

op metaGetVariant : Module Term TermList Nat Nat ~> Variant?

[special (...)] .

The third argument is not used right now and is left for future use; thus, for
the time being, the constant empty must be used. As in Section 15.5, it is
convenient to reuse variable names from terms; this is allowed via the fourth
argument, which is the largest number n appearing in fresh variables of the
form #n:Sort or %n:Sort. Then the fresh variables in the computed variants
will all be numbered from n + 1 on. And, as usual for descent functions, the
last argument in the function is used to select which result is wanted, starting
from 0. Caching is used so that if variant i has just been returned, requesting
unifier i+ 1 gives rise to an incremental computation.

The result sort is defined by means of the following data:

sorts Variant Variant? .

subsort Variant < Variant? .

op {_,_,_} : Term Substitution Nat -> Variant [ctor] .

op noVariant : -> Variant? [ctor] .

Again, the third argument denotes the largest number n used in the fresh
variables appearing in the solutions.

We can illustrate the use of this metalevel function with the variant gen-
eration of the configuration < $ q q X:Marking > for the first variant.
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Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’X:Marking]], empty, 0, 0) .

result Variant: {’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’#1:Marking]],

’X:Marking <- ’#1:Marking,1}

Then the second possible variant:

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’X:Marking]], empty, 0, 1) .

result Variant: {’<_>[’__[’$.Coin,’$.Coin,’%1:Marking]],

’X:Marking <- ’__[’q.Coin,’q.Coin,’%1:Marking],1}

And there are no more variants.

Maude> reduce in META-LEVEL :

metaGetVariant(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’$.Coin,’q.Coin,’q.Coin,’X:Marking]], empty, 0, 2) .

result Variant?: noVariant

15.10 Variant-based equational order-sorted unification

The intimate connection between E,Ax-variants and E ∪ Ax-unification is
as follows. Suppose that we extend the equational theory (Σ,E ∪ Ax) to

(Σ̂, Ê ∪ Ax) by adding to Σ a new sort Truth, not related to any sort in Σ,
with a constant tt, and, for each top sort of a connected component [s], an
operator eq : [s] [s] -> Truth; and where Ê is the result of adding for
each top sort [s] an extra (oriented) equation eq(x,x) = tt (where x is a
variable of sort [s]) to E. Then, given any two terms t, t′, if θ is an E ∪Ax-
unifier of t and t′, then the E,Ax-canonical forms of θ(t) and θ(t′) must be
Ax-equal and therefore the pair (tt, θ) must be a variant of the term eq(t, t′).
Furthermore, if the term eq(t, t′) has a finite set of most general variants, then
we are guaranteed that the set of most general E ∪ Ax-unifiers of t and t′ is
finite.

At a practical level, variants are generated using narrowing (see Chap-
ter 20 for narrowing capabilities in Maude). Narrowing with oriented equa-
tions E (with or without modulo Ax) enjoys well-known completeness results,
including the generation of complete sets of unifiers and covering all rewrit-
ing sequences from instances of a term using normalized substitutions (i.e.,
variants). For instance, [196] showed that narrowing with E without axioms
enjoyed good completeness results, and [200] showed that narrowing with E
modulo axioms Ax enjoyed also good completeness results. But narrowing can
be quite inefficient, generating a huge search space, and different narrowing
strategies have been devised to reduce the search space while remaining com-
plete, specially for unification purposes (see [11] for a survey on narrowing
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termination). The basic narrowing strategy of [196] provided a restriction of
narrowing that, while being complete, it was terminating for specific classes
of theories. However, very little was known about effective narrowing strate-
gies in the modulo case, and some of the known anomalies ring a cautionary
note, to the effect that the naive extensions of standard narrowing strategies,
for example basic narrowing modulo AC, were incomplete [373, 82]. In [151],
the folding variant narrowing strategy is defined for the modulo case and it
is proved to be complete for variants and with good termination properties,
providing a finitary and complete unification algorithm for equational unifi-
cation for the theories described in Section 15.9.1. Moreover, it is even better
than the basic narrowing strategy in the case without axioms, since it can
terminate for equational theories where basic narrowing cannot (see [151]).

In Maude 2.6, variant generation and variant-based equational unification
were implemented in Maude and made available in Full Maude. Instead, in
Maude 2.7 variant generation and variant-based equational unification have
been implemented in Core Maude’s C++ level for efficiency purposes and
using the Ax-unification algorithm described in Section 15.4. Furthermore,
the variant generation and variant-based equational unification available in
Maude 2.6 were accepting only equational theories where the righthand side
of the equations was a strongly irreducible term (e.g., a variable or a constant),
while the current version implements the folding variant narrowing strategy
in full generality. By “full generality” we mean not just any equational theory
(Σ,E ∪ Ax) having the finite variant property with Ax satisfying the re-
quirements in Section 15.3 (so that unification is finitary), but any confluent,
coherent, and terminating modulo Ax decomposition (Σ,Ax,E), thus obtain-
ing an incremental generation for the (in general infinite) set of E∪Ax-unifiers
in that case.

The key distinction, now supported for the first time in Maude in full
generality, is one between dedicated unification algorithms for a limited set of
axioms Ax and generic unification algorithms which can be applied to a much
wider range of user-definable theories and can even deal with incremental
generation of infinite sets of unifiers.

15.10.1 The variant unify command

Given a module 〈ModId 〉, of the general form mod (Σ,G ∪ E ∪ Ax,R) endm

where (Σ,E∪Ax) satisfies the requirements of Section 15.9.1, Maude provides
a command for E ∪ Ax-equational unification based on variant generation of
the form:

variant unify [ n ] in 〈ModId 〉 :

〈Term-1 〉 =? 〈Term’-1 〉 /\ ... /\ 〈Term-k 〉 =? 〈Term’-k 〉 .

where k ≥ 1; n is an optional argument providing a bound on the number
of unifiers requested, so that if the cardinality of the set of unifiers is greater
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than the specified bound, the unifiers beyond that bound are omitted; and,
as usual, if no module is mentioned, the current module is used.

Consider again the module VARIANT-VENDING-MACHINE introduced in Sec-
tion 15.9.2. We can ask whether there is an E ∪Ax-equational unifier of two
configurations, one containing at least two quarters, and another containing
at least one dollar, by invoking the following command:

Maude> variant unify in VARIANT-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier #1

X:Marking --> $ %1:Marking

Y:Marking --> q q %1:Marking

Unifier #2

X:Marking --> q q #1:Marking

Y:Marking --> #1:Marking

There are no most general unifiers; for instance, the unifier X:Marking -->

q q, Y:Marking --> empty is an instance of the first solution by using the
identity property of the operator for markings.

And we can ask again whether there is an E∪Ax-equational unifier of the
two previous configurations but variable Y:Marking also appears in a second
unification problem with two new configurations, one containing again at least
two quarters, and another with just variable Y:Marking.

Maude> variant unify in VARIANT-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > /\

< q q Z:Marking > =? < Y:Marking > .

Unifier #1

X:Marking --> $ %1:Marking

Z:Marking --> %1:Marking

Y:Marking --> q q %1:Marking

Unifier #2

X:Marking --> $ q q %1:Marking

Z:Marking --> q q %1:Marking

Y:Marking --> $ %1:Marking

Similarly to the incremental generation of variants, one can obtain an
incremental number of unifiers for a given unification problem. Let us consider
again the NAT-VARIANT module in Section 15.9 that does not have the finite
variant property. On the one hand, it is possible to have a finite number of
most general unifiers for a unification problem although the theory does not
have the finite variant property. For instance, the unification problem between
s(0) + X and s(s(s(0))) returns just one unifier.

Maude> variant unify in NAT-VARIANT : s(0) + X =? s(s(s(0))) .
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Unifier #1

X --> s(s(0))

No more unifiers.

On the other hand, we can approximate the number of unifiers of a unifica-
tion problem that we suspect does not have a finite number of most general
unifiers. For instance, the unification problem between terms X + s(0) and
s(s(s(0))) has only one solution X 7→ s(s(0)) and we can obtain that so-
lution by including a bound in the command, as it is also done for variant
generation.

Maude> variant unify [1] in NAT-VARIANT : X + s(0) =? s(s(s(0))) .

Unifier #1

X --> s(s(0))

However, if we tried to obtain two unifiers, Maude would not stop because
it would keep trying to generate a second unifier for a unification problem
that has only one unifier, without knowing that it could stop. This differs
from the incremental generation of variants (Section 15.9.2), where we can
incrementally increase the bound even if the theory does not have the finite
variant property and Maude will always stop with a new variant. The problem
here is due to the fact that Maude needs to compute the set of variants before
computing the set of unifiers; when the equational theory does not have the
finite variant property, such a set of variants can be infinite and Maude is
not able to complete this computation, even when the user provides a bound,
because such a bound refers to the number of requested unifiers, but not to the
number of variants, which in this process is just part of the internal process
for computing unifiers. As in the example above, this can happen even when
there are no further unifiers.

15.10.2 Variant unification at the metalevel: metaVariantUnify and
metaVariantDisjointUnify

The procedure for variant-based equational unification is also available at the
metalevel by means of the following functions provided in the META-LEVEL

module.

op metaVariantUnify :

Module UnificationProblem TermList Nat Nat ~> UnificationPair?

[special (...)] .

op metaVariantDisjointUnify :

Module UnificationProblem TermList Nat Nat ~> UnificationTriple?

[special (...)] .
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The unification problems and the result sort are the same as in Sec-
tion 15.5.

sorts UnificandPair UnificationProblem .

subsort UnificandPair < UnificationProblem .

op _=?_ : Term Term -> UnificandPair [ctor prec 71] .

op _/\_ : UnificationProblem UnificationProblem -> UnificationProblem

[ctor assoc comm prec 73] .

subsort UnificationPair < UnificationPair? .

subsort UnificationTriple < UnificationTriple? .

op {_,_} : Substitution Nat -> UnificationPair [ctor] .

op {_,_,_} : Substitution Substitution Nat -> UnificationTriple [ctor] .

We can illustrate the use of this metalevel function with the variant unifica-
tion of the two terms shown above: < q q X:Marking > and < $ Y:Marking >:

Maude> reduce in META-LEVEL :

metaVariantUnify(upModule(’VARIANT-VENDING-MACHINE, true),

’<_>[’__[’q.Coin,’q.Coin,’X:Marking]] =?

’<_>[’__[’$.Coin,’Y:Marking]],

empty, 0, 0) .

result UnificationPair: {

’X:Marking <- ’__[’$.Coin,’%1:Marking] ;

’Y:Marking <- ’__[’q.Coin,’q.Coin,’%1:Marking],1}
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Metaprogramming Applications

A metaprogram is a program that takes programs as inputs and performs
some useful computation. It may, for example, transform one program into
another. Or it may analyze such a program with respect to some properties,
or perform other useful program-dependent computations. This is of course
very useful and very powerful. In Maude, metaprogramming has a logical,
reflective semantics. It is just a direct consequence of the fact that both mem-
bership equational logic and rewriting logic are reflective logics, and of the
efficient exploitation of that fact in the META-LEVEL module. That is, we can
easily write Maude metaprograms by importing META-LEVEL into a module
that defines such metaprograms as functions that have Module as one of their
arguments. Since this is one of the most powerful uses of Maude as a program-
ming language, we present in this chapter three metaprogramming examples
of moderate size, yet interesting and nontrivial, that can be helpful as an
appetizer and guide to more ambitious metaprogramming tasks. Much more
ambitious examples, also freely available for inspection, are the Full Maude
system itself (see Chapter 19), which is a metaprogram entirely written in
Maude, and the various tools in Maude’s formal environment, which are de-
scribed in Section 23.1.

The first example is a unification algorithm. The unification in question
is order-sorted, that is, it takes account of sorts, subsorts, and operator over-
loading, and can solve equations modulo the commutativity of some operators.
This means that this kind of unification is parametric on the signature and
equational attributes of the module in which we are performing the unifica-
tion. In other words, it is a metaprogram. An interesting point about this
example is the very close way in which the formal inference system defining
the unification rules is represented in the metafunction’s equational definition.
It is therefore a logical framework example, in which a (theory-parametric)
inference system is represented in Maude’s logic, which is used as a framework
logic to mechanize the given inference system.

The other two examples illustrate two useful module transformations. From
a programming point of view, these are examples of programming in the large,
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that is, of composing or transforming programs to obtain other programs. At
the object level, Maude already provides some powerful programming-in-the-
large features, such as the module importation, renaming, parameterization,
and instantiation by views described in Chapter 8. But from a reflective point
of view these are just concrete, special instances of a much more general and
open-ended notion of parameterization: we can view any metaprogram that
takes a module as input and produces a module as a result as a new kind
of user-definable parameterized construction. The Full Maude design uses ex-
actly this viewpoint to make Maude’s module algebra extensible, and supports
several new such constructions, including object-oriented modules (see Chap-
ter 21), and the TUPLE and POWER constructions (see Section 19.3.1). The
two other examples in this chapter illustrate two useful parameterized con-
structions. The first transforms an object-oriented module into a semantically
equivalent version that instruments its own execution by keeping a list of the
rules that have been applied so far to rewrite the configuration. The second
module transformation is quite useful for model-checking purposes: it trans-
forms an arbitrary system module with a chosen kind of states into another
module which is deadlock free and whose Kripke structure is bisimilar to that
of the original module. Therefore, both modules will satisfy the same LTL
formulas with respect to bisimilar initial states.

To illustrate the ease with which new metaprograms can be added to Full
Maude as new language features at the object level, we explain in Section 19.7
how both the order-sorted unification algorithm and the deadlock-freedom
construction described in this chapter have been added to Full Maude as new
features.

16.1 Commutative order-sorted unification

In this section we present the specification of an order-sorted unification al-
gorithm. It yields a complete set of unifiers for a unification problem in which
it is assumed that the order-sorted signature of the specification in question
can have some operators declared commutative,1 but no other equational ax-
ioms are declared as attributes for the operators. Therefore, the order-sorted
unification is performed modulo the commutativity of certain operators.

The basic idea is to turn each of the textbook-style inference rules for
such a unification algorithm into corresponding rewrite rules in Maude. We
introduce below some basic concepts, then review the inference system, and
finally describe its Maude implementation.

Following [207], we unify using the sort information as soon as possible in
order to quickly discard failures. Then, we complete the simplification process
and push the assertions of the sorts on the solutions that have been found.

1 Then, all the subsort-overloaded instances of any such operator must also be
declared as commutative; see Section 4.4.6.
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The order-sorted unification algorithm for solving commutative equations
(pairs of the form t =?

c t
′, where there is no distinction between lefthand

and righthand sides) can be described as the result of a simplification phase
followed by a solving phase. The simplification phase is a sequence of decom-
position, merging, and mutation steps, transforming the initial unification
problem into an equivalent disjunction of systems of fully decomposed equa-
tions of the form x =?

c t, where x is a variable appearing only once in the
system. The solving phase consists then in finding the finite set of solutions
for the simplified system.

Thus, a unification problem is a set of equations, also called a system,
denoted (e1, . . . , en), or a set of systems, also called a disjunction of systems
and written S1∨. . .∨Sn. The set of variables occurring in a unification problem
U is denoted vars(U).

Given a specification S = (Σ,E ∪ A), where A consists of the commuta-
tivity property of some operators in Σ, a substitution σ is an S-solution of
the equation t =?

A t
′ if and only if σ(t) =A σ(t′). The set of S-solutions of an

equation t =?
A t
′ is denoted U(t, t′,S).

The set of variables occurring in a term t is denoted vars(t). Then, given
a substitution σ = {x1 ← t1, . . . , xn ← tn}, we denote by D(σ) the set of
variables {x1, . . . , xn}, and by I(σ) the set

⋃n
i=1 vars(ti).

We say that substitution σ is at least as general (modulo A) as substitution
ρ with respect to a subset X of D(σ) if there exists a substitution τ such that
στ =A ρ when σ and ρ are restricted to X. In this case we write σ lA ρ [X].

A set of substitutions Φ is a complete set of S-solutions of the equation
t =?

A t′ away from the set of variables W such that vars(t) ∪ vars(t′) ⊆ W if
and only if

• ∀σ ∈ Φ,D(σ) ⊆ vars(t) ∪ vars(t′) and I(σ) ∩W = ∅;
• ∀σ ∈ Φ, σ ∈ U(t, t′,S); and
• ∀ρ ∈ U(t, t′,S),∃σ ∈ Φ such that σ lA ρ [vars(t) ∪ vars(t′)].

Our unification algorithm computes a complete set of S-solutions; however,
we do not enforce that this set is a minimal set of unifiers.

We give below the set of inference rules used for the unification algorithm.
They operate on 3-tuples of the form 〈V ; E; σ〉 and on 4-tuples of the form
[V ; C; σ; θ]. A 3-tuple 〈V ; E; σ〉 consists of a set of variables V , a set of
equations E, and a substitution σ. A 4-tuple [V ; C; σ; θ] consists of a set of
variables V , a set of membership constraints C, and substitutions σ and θ. The
rules operating on the first kind of tuples correspond to the first phase of the
process, which is quite similar to syntactic unification. The main differences
are in the rules Check and Eliminate, in which the sort information is used
to try to quickly discard failure. In the second phase the constraints on the
solutions are checked.

We assume a well-founded order � on equations, and we denote by s ∩ s′
the set of maximal lower bounds of sorts s and s′.

Deletion of trivial equations
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〈 V ; {t =?
c t, E}; σ 〉

〈 V ; E; σ 〉
Decomposition

〈 V ; {f(t1, . . . , tn) =?
c f(t′1, . . . , t

′
n), E}; σ 〉

〈 V ; {t1 =?
c t
′
1, . . . , tn =?

c t
′
n, E}; σ 〉

if n 6= 2 or f noncommutative

〈 V ; {f(t1, t2) =?
c f(t′1, t

′
2), E}; σ 〉

〈 V ; {t1 =?
c t
′
1, t2 =?

c t
′
2, E}; σ 〉 ∨ 〈 V ; {t1 =?

c t
′
2, t2 =?

c t
′
1, E}; σ 〉

if f commutative

Clash of symbols

〈 V ; {f(t1, . . . , tn) =?
c g(t′1, . . . , t

′
m), E}; σ 〉

failure

if n 6= m or f 6= g

Merging

〈 {x : s, V }; {x =?
c t, x =?

c t
′, E}; σ 〉

〈 {x : s, V }; {x =?
c t, t =?

c t
′, E}; σ 〉

if x = t � t = t′

Check

〈 {x : s, V }; {x =?
c t, E}; σ 〉

failure

if x 6= t and (x occurs in t or s ∩ LS(t) = ∅)
Eliminate

〈 {x : s, V }; {x =?
c t, E}; σ 〉

〈 {x : s, V }; Eθ; {σθ, θ} 〉
with θ = {x← t}
if x does not occur in t and s ∩ LS(t) 6= ∅

Transition

〈 V ; ∅; σ 〉
[ V ; ∅; σ; σ ]

Solving (x← t)

[ {x : s, V }; C; {x← t, σ}; θ ]

[ V ; {(t : s), C}; σ; θ ]

Solving (x : s)

[ {x : s, V }; {x : s′, C}; ∅; θ ]∨
s′′∈s∩s′

[ {x : s′′, V }; C; ∅; θ ]



16.1 Commutative order-sorted unification 511

Solving (f(t1, . . . , tn) : s)

[ V ; {f(t1, . . . , tn) : s, C}; ∅; θ ]∨
f :s1...sn→s′

s′≤s

s1...snmaximal

[ V ; {t1 : s1, . . . , tn : sn, C}; ∅; θ ]

These inference rules will be mapped into Maude specifications almost
without modification.

One of the components of both kinds of tuples is a set of variables, which is
used in several rules to obtain the sort of a variable and to keep the restrictions
on their sorts. Although we do not use such declarations to get such sorts,
since the metarepresentation of variables already includes their sorts, we get
the variables from the terms at the beginning of the process, so that they can
be used later when considering the restrictions on them in the second stage
of the process.

The module UNIFICATION below uses several auxiliary operations defined
in the following UNIFICATION-AUX-OPS module, in which we define some basic
functions for the manipulation of terms, attributes, etc.

fmod UNIFICATION-AUX-OPS is

pr META-LEVEL .

pr EXT-BOOL .

pr INT .

These are the variables used in the equations in this module:

vars T T’ : Term .

var TL : TermList .

vars Tp Tp’ Tp’’ Tp’’’ : Type .

vars TpL TpL’ : TypeList .

var M : Module .

var At : Attr .

var AtS : AttrSet .

vars L F G : Qid .

var ODS : OpDeclSet .

vars V V’ : Variable .

var C : Constant .

var Subst : Substitution .

We define subsort-overloaded versions of the predefined functions sortLeq,
leastSort, and sameKind to handle lists of types and terms (see Sec-
tion 14.5.8).

op sortLeq : Module TypeList TypeList ~> Bool [ditto] .

eq sortLeq(M, (Tp Tp’ TpL), (Tp’’ Tp’’’ TpL’))

= sortLeq(M, Tp, Tp’’) and-then sortLeq(M, Tp’ TpL, Tp’’’ TpL’) .

eq sortLeq(M, nil, nil) = true .

eq sortLeq(M, TpL, TpL’) = false [owise] .
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op leastSort : Module TermList ~> TypeList [ditto] .

eq leastSort(M, (T, T’, TL))

= leastSort(M, T) leastSort(M, (T’, TL)) .

eq leastSort(M, empty) = nil .

op sameKind : Module TypeList TypeList ~> Bool [ditto] .

eq sameKind(M, (Tp Tp’ TpL), (Tp’’ Tp’’’ TpL’))

= sameKind(M, Tp, Tp’’)

and-then sameKind(M, Tp’ TpL, Tp’’’ TpL’) .

eq sameKind(M, nil, nil) = true .

eq sameKind(M, TpL, TpL’) = false [owise] .

The occurs predicate checks whether a variable name occurs in a term or
not.

op occurs : Variable Term -> Bool .

op occurs : Variable TermList -> Bool .

eq occurs(V, V’) = V == V’ .

eq occurs(V, C) = false .

eq occurs(V, F[TL]) = occurs(V, TL) .

eq occurs(V, (T, TL)) = occurs(V, T) or-else occurs(V, TL) .

The length function returns the length of a term list.

op length : TermList -> Nat .

eq length((T, TL)) = 1 + length(TL) .

eq length(empty) = 0 .

The following functions check whether an attribute belongs to a set of
attributes, and return the value of a label attribute in a set of attributes,
respectively.

op _in_ : Attr AttrSet -> Bool .

eq At in At AtS = true .

eq At in AtS = false [owise] .

op getLabel : AttrSet -> Qid .

eq getLabel(label(L) AtS) = L .

eq getLabel(AtS) = ’no-label [owise] .

The hasAttr function checks whether there is in the given module an
operator with the specified name and arity having the given attribute.

op hasAttr : Module Qid TypeList Attr -> Bool .

op hasAttr : Module OpDeclSet Qid TypeList Attr -> Bool .

eq hasAttr(M, G, TpL, At) = hasAttr(M, getOps(M), G, TpL, At) .

eq hasAttr(M, op F : TpL -> Tp [AtS] . ODS, G, TpL’, At)

= if (F == G) and-then sameKind(M, TpL, TpL’)

then At in AtS

else hasAttr(M, ODS, G, TpL’, At)

fi .

eq hasAttr(M, none, G, TpL, At) = false .
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The function substitute takes a term t and a substitution σ and returns
the term tσ.

op substitute : Term Substitution -> Term .

op substitute : TermList Substitution -> TermList .

eq substitute(T, none) = T .

eq substitute(V, ((V’ <- T) ; Subst))

= if V == V’ then T else substitute(V, Subst) fi .

eq substitute(C, ((V’ <- T); Subst)) = C .

eq substitute(F[TL], Subst) = F[substitute(TL, Subst)] .

eq substitute((T, TL), Subst)

= (substitute(T, Subst), substitute(TL, Subst)) .

endfm

We present now the UNIFICATION module, which reflects quite closely the
inference rules described above. But before presenting such rules, the module
introduces some declarations for variable declarations, sets of substitutions,
unification tuples, and commutative equations, plus some additional auxiliary
functions.

fmod UNIFICATION is

pr UNIFICATION-AUX-OPS .

vars QI F G X Y : Qid .

vars S S’ : Sort .

vars Tp Tp’ : Type .

vars TpL TpL’ : TypeList .

var TpS : TypeSet .

vars TpLS TpLS’ : TypeListSet .

var M : Module .

vars T T’ T’’ T’’’ T1 T1’ : Term .

vars TL TL’ : TermList .

var CEqS : CommEqSet .

var D : Disjunction .

var UT : UnifTuple .

var VDS : VarDeclSet .

vars Subst Subst’ : Substitution .

var SubstS : SubstitutionSet .

var MAS : MembAxSet .

vars N I : Nat .

var AtS : AttrSet .

var IL : ImportList .

var SS : SortSet .

var SSDS : SubsortDeclSet .

var ODS : OpDeclSet .

var EqS : EquationSet .

var RlS : RuleSet .

vars V W : Variable .

vars C C’ : Constant .
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var EqC : EqCondition .

var Cd : Condition .

First, we give declarations for manipulating variables as in the unification
tuples in the inference rules. In particular, we declare a sort VarDecl of vari-
able declarations of the form var V : T ., and a sort VarDeclSet for sets
of such declarations. The variable declaration corresponding to a variable N

of sort Nat, which is metarepresented as ’N:Nat, is var ’N:Nat : ’Nat .

sorts VarDecl VarDeclSet .

subsort VarDecl < VarDeclSet .

op var_:_. : Variable Type -> VarDecl .

op none : -> VarDeclSet .

op __ : VarDeclSet VarDeclSet -> VarDeclSet [assoc comm id: none] .

eq VD:VarDecl VD:VarDecl = VD:VarDecl .

The following overloaded versions of the varDecls function return the set
of variable declarations for the variables in a term, in a term list, and in a set
of commutative equations, respectively. Note that we can get the type of the
metarepresentation of a variable with the getType function. Commutative
equations are built with syntax _=?c_ as terms of sort CommEq; then, the
CommEqSet sort defines sets of commutative equations (see below).

op varDecls : Term -> VarDeclSet .

op varDecls : TermList -> VarDeclSet .

op varDecls : CommEqSet -> VarDeclSet .

eq varDecls(V) = (var V : getType(V) .) .

eq varDecls(C) = none .

eq varDecls(F[TL]) = varDecls(TL) .

eq varDecls(empty) = none .

eq varDecls((T, TL)) = varDecls(T) varDecls(TL) .

eq varDecls((T =?c T’) CEqS)

= varDecls(T) varDecls(T’) varDecls(CEqS) .

eq varDecls((none).CommEqSet) = none .

The solution of a unification problem will be given as a set of substitutions.

sort SubstitutionSet .

subsort Substitution < SubstitutionSet .

op emptySubstitutionSet : -> SubstitutionSet .

op substitutionSet :

SubstitutionSet SubstitutionSet -> SubstitutionSet

[assoc comm id: emptySubstitutionSet] .

Sorts UnifTuple and Disjunction define unification tuples and disjunc-
tions of unification tuples; the syntax of the operators defining terms of these
sorts mirror the syntax used in the inference rules given above.
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Since the module in which the variables and unification problems are de-
fined will be needed for accomplishing some of the operations on variables and
terms, we need to have access to it. We define an operator unifPair of sort
UnifPair to carry such module together with the disjunction of unification
tuples.

sorts UnifPair UnifTuple Disjunction .

subsort UnifTuple < Disjunction .

op <_;_;_> : VarDeclSet CommEqSet Substitution -> UnifTuple .

op [_;_;_;_] :

VarDeclSet MembAxSet Substitution Substitution -> UnifTuple .

op failure : -> Disjunction .

op _\/_ : Disjunction Disjunction -> Disjunction

[assoc comm id: failure] .

op unifPair : Module Disjunction -> UnifPair .

Commutative equations are built with syntax _=?c_ as terms of sort
CommEq.

sorts CommEq CommEqSet .

subsort CommEq < CommEqSet .

op _=?c_ : Term Term -> CommEq [comm] .

op none : -> CommEqSet .

op __ : CommEqSet CommEqSet -> CommEqSet [assoc comm id: none] .

The disjunction of tuples that must be created for the Solving (x : s) rule
is generated by the following unifTuplesVar function.

op unifTuplesVar :

Module Variable Type Type UnifTuple -> Disjunction .

op unifTuplesVarAux : TypeSet Qid UnifTuple -> Disjunction .

eq unifTuplesVar(M, V, Tp, Tp’, UT)

= unifTuplesVarAux(glbSorts(M, Tp, Tp’), V, UT) .

eq unifTuplesVarAux((Tp ; TpS), V, [VDS ; MAS ; Subst ; Subst’])

= ([var V : Tp . VDS ; MAS ; Subst ; Subst’]

\/

unifTuplesVarAux(TpS, V, [VDS ; MAS ; Subst ; Subst’])) .

eq unifTuplesVarAux(none, V, UT) = failure .

Similarly, the following unifTuplesNonVar function generates the disjunc-
tion of tuples that must be created for the Solving (f(t1, . . . , tn) : s) rule.

op unifTuplesNonVar : Module MembAx UnifTuple -> Disjunction .

op unifTuplesNonVarAux :

TypeListSet TermList UnifTuple -> Disjunction .

op unifTuplesNonVarAux2 : TypeList TermList UnifTuple -> UnifTuple .

eq unifTuplesNonVar(M, (mb F[TL] : S [AtS].), UT)
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= unifTuplesNonVarAux(maximalAritySet(M, F, leastSort(M, TL), S),

TL, UT) .

eq unifTuplesNonVarAux(TpL ; TpLS, TL, UT)

= (unifTuplesNonVarAux2(TpL, TL, UT)

\/

unifTuplesNonVarAux(TpLS, TL, UT)) .

eq unifTuplesNonVarAux(none, TL, UT) = failure .

eq unifTuplesNonVarAux2((Tp TpL), (T, TL),

[VDS ; MAS ; Subst ; Subst’])

= unifTuplesNonVarAux2(TpL, TL,

[VDS ; mb T : Tp [none] . MAS ; Subst ; Subst’]) .

eq unifTuplesNonVarAux2(nil, empty, UT) = UT .

The following greaterCommEq predicate defines a well-founded order on
equations, based on the size of terms, defined in turn as the number of operator
symbols in them.

op greaterCommEq : CommEq CommEq -> Bool .

op size : TermList -> Nat .

op size : Term -> Nat .

eq greaterCommEq((T =?c T’), (T1 =?c T1’))

= (max(size(T), size(T’)) > max(size(T1), size(T1’)))

or-else

((max(size(T), size(T’)) == max(size(T1), size(T1’)))

and-then

(sd(max(size(T), size(T’)), min(size(T), size(T’)))

> sd(max(size(T1), size(T1’)), min(size(T1), size(T1’))))) .

eq size(V) = 0 .

eq size(C) = 1 .

eq size(F[TL]) = 1 + size(TL) .

eq size((T, TL)) = size(T) + size(TL) .

We are now ready to give the equations corresponding to the inference
rules given above. The first one corresponds to the rule Deletion of Trivial
Equations.

eq unifPair(M, (< VDS ; (T =?c T) CEqS ; Subst > \/ D))

= unifPair(M, (< VDS ; CEqS ; Subst > \/ D)) .

Since we assume that all subsort-overloaded operators have the same at-
tributes, the Decomposition rule can be written as follows:

eq unifPair(M, (< VDS ; (F[TL] =?c G[TL’]) CEqS ; Subst > \/ D))

= if (F =/= G)

or-else (length(TL) =/= length(TL’))

then unifPair(M, D)

else if (length(TL) == 2)

and-then hasAttr(M, F, leastSort(M, TL), comm)

then unifPair(M,
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commUnifTupleSet(VDS, F, TL, TL’, CEqS, Subst) \/ D)

else unifPair(M,

< VDS ; commEqBreak(TL, TL’) CEqS ; Subst > \/ D)

fi

fi .

op commEqBreak : TermList TermList -> CommEqSet .

eq commEqBreak(T, T’) = (T =?c T’) .

eq commEqBreak((T, TL), (T’, TL’))

= ((T =?c T’) commEqBreak(TL, TL’)) .

where the disjunction of unification tuples corresponding to the commutative
operators is created by the following function:

op commUnifTupleSet : VarDeclSet Qid TermList TermList CommEqSet

Substitution -> Disjunction .

eq commUnifTupleSet(VDS, F, (T, T’), (T’’, T’’’), CEqS, Subst)

= (< VDS ; (T =?c T’’) (T’ =?c T’’’) CEqS ; Subst >

\/

< VDS ; (T =?c T’’’) (T’ =?c T’’) CEqS ; Subst >) .

The Clash of Symbols rule is specified as follows:

ceq unifPair(M, (< VDS ; (C =?c C’) CEqS ; Subst > \/ D))

= unifPair(M, D)

if getName(C) =/= getName(C’)

or not sameKind(M, getType(C), getType(C’)) .

eq unifPair(M, (< VDS ; (C =?c F[TL]) CEqS ; Subst > \/ D))

= unifPair(M, D) .

Given the well-founded order defined by the function greaterCommEq

above, the Merging rule has the following representation:

ceq unifPair(M, (< VDS ; (V =?c T) (V =?c T’) CEqS ; Subst > \/ D))

= unifPair(M, (< VDS ; (V =?c T) (T =?c T’) CEqS ; Subst > \/ D))

if greaterCommEq((V =?c T’), (T =?c T’)) .

Given functions substCommEqs and substSubst that apply a substitution,
respectively, on a set of (commutative) equations and on a substitution, the
Check and Eliminate rules can be specified as follows:

ceq unifPair(M, (< VDS ; (V =?c T) CEqS ; Subst > \/ D))

= if occurs(V, T)

then unifPair(M, D)

else if glbSorts(M, leastSort(M, T), getType(V)) == none

then unifPair(M, D)

else unifPair(M,

< VDS ;

substCommEqs(CEqS, V <- T) ;

(substSubst(Subst, V <- T) ; V <- T) >

\/ D)
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fi

fi

if V =/= T .

op substCommEqs : CommEqSet Substitution -> CommEqSet .

eq substCommEqs(none, Subst) = none .

eq substCommEqs(((T =?c T’) CEqS), Subst)

= ((substitute(T, Subst) =?c substitute(T’, Subst))

substCommEqs(CEqS, Subst)) .

op substSubst : Substitution Substitution -> Substitution .

eq substSubst(none, Subst) = none .

eq substSubst(((V <- T); Subst’), Subst)

= ((V <- substitute(T, Subst));

substSubst(Subst’, Subst)) .

The following rule specifies the transition from a 3-unification tuple to a
4-unification tuple as expressed by the Transition inference rule.

eq unifPair(M, (< VDS ; none ; Subst > \/ D))

= unifPair(M, ([VDS ; none ; Subst ; Subst] \/ D)) .

The solving (V ← T ) rule is easily specified:

eq unifPair(M,

[var V : S . VDS ; MAS ; (V <- T ; Subst) ; Subst’] \/ D)

= unifPair(M,

[VDS ; mb T : S [none] . MAS ; Subst ; Subst’] \/ D) .

Given the functions unifTuplesVar and unifTuplesNonVar presented
above, the solving (X : S) and solving (f(t1, . . . , tn) : S) rules are specified
as follows.

eq unifPair(M,

[var V : S . VDS ; mb V : S’ [none] . MAS ; none ; Subst]

\/ D)

= unifPair(M,

unifTuplesVar(M, V, S, S’, [VDS ; MAS ; none ; Subst])

\/ D) .

eq unifPair(M, [VDS ; mb C : S [none] . MAS ; none ; Subst] \/ D)

= if sortLeq(M, getType(C), S)

then unifPair(M, [VDS ; MAS ; none ; Subst] \/ D)

else unifPair(M, D)

fi .

eq unifPair(M, [VDS ; mb F[TL] : S[AtS]. MAS ; none ; Subst] \/ D)

= unifPair(M,

unifTuplesNonVar(M, (mb F[TL] : S [AtS] .),

[VDS ; MAS ; none ; Subst])

\/ D) .
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The main function of the UNIFICATION module is given by the metaUnify

operator, which builds the unification solution using the getUnifSolution

from the result of the inference process defined by the above rules.

op metaUnify : Module CommEqSet -> SubstitutionSet .

eq metaUnify(M, CEqS)

= getUnifSolution(unifPair(M, < varDecls(CEqS) ; CEqS ; none >)) .

op getUnifSolution : UnifPair -> SubstitutionSet .

eq getUnifSolution(unifPair(M, [VDS ; none ; none ; Subst] \/ D))

= substitutionSet(

(substSubst(Subst, substMembAxSet(M, VDS)) ;

substMembAxSet(M, VDS)),

getUnifSolution(unifPair(M, D))) .

eq getUnifSolution(unifPair(M, failure)) = emptySubstitutionSet .

op substMembAxSet : Module VarDeclSet -> Substitution .

eq substMembAxSet(M, (var V : S . VDS))

= ((V <- qid(string(getName(V)) + "@:" + string(S))) ;

substMembAxSet(M, VDS)) .

eq substMembAxSet(M, none) = none .

endfm

We finish this section illustrating the use of the metaUnify function with
several examples on the PEANO-NAT module from Section 4.10.

Maude> red in UNIFICATION :

metaUnify(upModule(’PEANO-NAT, false),

’_+_[’X:NzNat, ’_*_[’0.Zero, ’Y:NzNat]]

=?c ’_+_[’W:Nat, ’s_[’Z:Nat]]) .

result Substitution:

’W:Nat <- ’_*_[’0.Zero, ’Y@:NzNat] ;

’X:NzNat <- ’s_[’Z@:Nat] ;

’Y:NzNat <- ’Y@:NzNat ;

’Z:Nat <- ’Z@:Nat

Maude> red in UNIFICATION :

metaUnify(upModule(’PEANO-NAT, false),

’_+_[’X:NzNat,’s_[’_*_[’Y:Nat, ’W:Nat]]]

=?c ’_+_[’s_[’V:Nat], ’Z:Nat]) .

result SubstitutionSet:

substitutionSet(

’V:Nat <- ’V@:Nat ;

’W:Nat <- ’W@:Nat ;

’X:NzNat <- ’s_[’V@:Nat] ;

’Y:Nat <- ’Y@:Nat ;

’Z:Nat <- ’s_[’_*_[’Y@:Nat, ’W@:Nat]],

’V:Nat <- ’_*_[’Y@:Nat, ’W@:Nat] ;

’W:Nat <- ’W@:Nat ;

’X:NzNat <- ’Z@:NzNat ;
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’Y:Nat <- ’Y@:Nat ;

’Z:Nat <- ’Z@:NzNat)

Maude> red in UNIFICATION :

metaUnify(upModule(’PEANO-NAT, false),

(’_+_[’s_[’X:Nat], ’_*_[’X:Nat, ’Y:Nat]]

=?c ’_+_[’Z:NzNat, ’s_[’s_[’0.Zero]]])

(’Y:Nat =?c ’s_[’s_[’W:NzNat]])

(’s_[’V:Nat] =?c ’s_[’s_[’s_[’s_[’s_[’0.Zero]]]]])

(’Z:NzNat =?c ’_*_[’V:Nat, ’s_[’0.Zero]])) .

result Substitution:

’V:Nat <- ’s_[’s_[’s_[’s_[’0.Zero]]]] ;

’W:NzNat <- ’s_[’s_[’0.Zero]] ;

’X:Nat <- ’s_[’0.Zero] ;

’Y:Nat <- ’s_[’s_[’s_[’s_[’0.Zero]]]] ;

’Z:NzNat <- ’_*_[’s_[’0.Zero], ’s_[’s_[’s_[’s_[’0.Zero]]]]]

16.2 Rule instrumentation

In the context of software applications, instrumentation is understood as the
addition of mechanisms to some application for the purpose of gathering data
to be utilized by tools such as monitoring agents, profilers, etc. Such changes
should be purely additive, meaning that these tools should not modify the
application’s state or behavior.

The instrumentation that we propose here is very simple, although it may
very well suggest further possibilities. We are interested in collecting a history
of the rules being applied on a configuration of objects and messages. In addi-
tion to adding the appropriate extra definitions, our construction transforms
a given specification—only the specified module, not its submodules—so that
each rule

(c)rl [L] : T => T’ (if cond) .

with T a term of sort Configuration (or some other sort in the same kind)
is transformed into a rule

(c)rl [L] : {T, LL} => {T’, LL L} (if cond) .

Note that this transformation will instrument properly object-oriented
modules whose rules rewrite terms of kind [Configuration]. A more general
transformation could be defined for arbitrary system modules by generalizing
the ideas presented here; but in the general case we would need to deal with
the fact that rewrites could happen at any depth in subterms.

The INSTRUMENTATION-INFRASTRUCTURE module contains the basic defini-
tions needed for our intrumentation. In particular, it defines a sort InstrConfig
of instrumented configurations, whose terms are pairs of the form {T, LL}

with T a configuration—a term of sort Configuration—and LL a list of
labels—a term of sort QidList.
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mod INSTRUMENTATION-INFRASTRUCTURE is

pr CONFIGURATION .

pr QID-LIST .

sorts InstrConfig .

var C : Configuration .

var QL : QidList .

op {_,_} : Configuration QidList -> InstrConfig .

op getConfig : InstrConfig -> Configuration .

op getLabels : InstrConfig -> QidList .

eq getConfig({C, QL}) = C .

eq getLabels({C, QL}) = QL .

endm

The ad-hoc overloaded instrument functions in the INSTRUMENTATION

module below perform the transformation. The main instrument function
takes as argument a quoted identifier, which corresponds to the name of the
module that we want to instrument. This function gets the metarepresenta-
tion of such a module using the upModule function with the second argument
set to false, thus getting the metarepresentation of the top module without
expanding its submodules. This function calls the third instrument function
with the rules in the module, and is in charge of transforming them. Notice
that, in addition to transforming the rules, these functions add an importa-
tion declaration including INSTRUMENTATION-INFRASTRUCTURE into the mod-
ule being instrumented. We use the auxiliary operations getLabels, setRls,
and addImports in order to, respectively, get a label from a set of attributes,
replace the rules in a module by a given set of rules, and add a list of impor-
tations to the imports of a module.

fmod INSTRUMENTATION is

pr META-LEVEL .

op instrument : Qid -> Module .

op instrument : Module -> Module .

op instrument : Module RuleSet -> RuleSet .

var M : Module .

var L : Qid .

var AtS : AttrSet .

vars T T’ : Term .

var Cd : Condition .

var H : Header .

vars IL IL’ : ImportList .

var SS : SortSet .

var SSDS : SubsortDeclSet .

var OPDS : OpDeclSet .
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var MAS : MembAxSet .

var EqS : EquationSet .

vars RlS RlS’ : RuleSet .

op getLabel : AttrSet -> Qid .

eq getLabel(label(L) AtS) = L .

op setRls : Module RuleSet -> Module .

eq setRls(

mod H is IL sorts SS . SSDS OPDS MAS EqS RlS endm, RlS’)

= mod H is IL sorts SS . SSDS OPDS MAS EqS RlS’ endm .

eq setRls(fmod H is IL sorts SS . SSDS OPDS MAS EqS endfm, RlS)

= if RlS == none

then fmod H is IL sorts SS . SSDS OPDS MAS EqS endfm

else mod H is IL sorts SS . SSDS OPDS MAS EqS RlS endm

fi .

op addImports : Module ImportList -> Module .

eq addImports(

mod H is IL sorts SS . SSDS OPDS MAS EqS RlS endm, IL’)

= mod H is IL IL’ sorts SS . SSDS OPDS MAS EqS RlS endm .

eq addImports(fmod H is IL sorts SS . SSDS OPDS MAS EqS endfm,

IL’)

= fmod H is IL IL’ sorts SS . SSDS OPDS MAS EqS endfm .

eq instrument(H) = instrument(upModule(H, false)) .

eq instrument(M)

= setRls(

addImports(M, (including ’INSTRUMENTATION-INFRASTRUCTURE .)),

instrument(M, getRls(M))) .

eq instrument(M, rl T => T’ [AtS] . RlS)

= if sameKind(M, leastSort(M, T), ’Configuration)

then (rl ’‘{_‘,_‘}[’__[T, ’C@:Configuration], ’QL@:QidList]

=> ’‘{_‘,_‘}[’__[T’, ’C@:Configuration],

’__[’QL@:QidList,

qid("’" + string(getLabel(AtS)) + ".Qid")]]

[AtS] .)

else (rl T => T’ [AtS] .)

fi

instrument(M, RlS) .

eq instrument(M, crl T => T’ if Cd [AtS] . RlS)

= if sameKind(M, leastSort(M, T), ’Configuration)

then (crl ’‘{_‘,_‘}[’__[T, ’C@:Configuration],

’QL@:QidList]

=> ’‘{_‘,_‘}[’__[T’, ’C@:Configuration],

’__[’QL@:QidList,
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qid("’" + string(getLabel(AtS)) + ".Qid")]]

if Cd

[AtS] .)

else (crl T => T’ if Cd [AtS] .)

fi

instrument(M, RlS) .

eq instrument(M, none) = none .

endfm

We illustrate the use of these instrumentation functions on the example
specifying bank accounts presented in Section 11.1. We will observe that for
the instrumented module we obtain the same results for the executions using
rewrite and search as those for the original module in such a section. Notice,
however, that object-message rules (see Section 11.2) are also transformed in
our instrumentation, and therefore the results for frewrite will most probably
be different.

To execute our examples, we define a module INSTRUMENTATION-TEST

which includes the modules INSTRUMENTATION, INSTRUMENTATION-INFRASTRUCTURE,
and BANK-ACCOUNT; the last two are included to be able to use the upTerm

and downTerm functions (see Section 14.5.1).

mod INSTRUMENTATION-TEST is

protecting INSTRUMENTATION .

protecting INSTRUMENTATION-INFRASTRUCTURE .

protecting BANK-ACCOUNT .

ops A-001 A-002 A-003 : -> Oid .

var H : Header .

var IL : ImportList .

var SS : SortSet .

var SSDS : SubsortDeclSet .

vars OPDS OPDS’ : OpDeclSet .

var MAS : MembAxSet .

var EqS : EquationSet .

var RlS : RuleSet .

op addOps : Module OpDeclSet -> Module .

eq addOps(mod H is IL sorts SS . SSDS OPDS MAS EqS RlS endm, OPDS’)

= mod H is IL sorts SS . SSDS OPDS OPDS’ MAS EqS RlS endm .

eq addOps(fmod H is IL sorts SS . SSDS OPDS MAS EqS endfm, OPDS’)

= fmod H is IL sorts SS . SSDS OPDS OPDS’ MAS EqS endfm .

endm

We can now perform some of the rewrites in Section 11.1.

Maude> red in INSTRUMENTATION-TEST :

downTerm(

getTerm(
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metaRewrite(

addOps(instrument(’BANK-ACCOUNT),

op ’A-001 : nil -> ’Oid [ctor] .

op ’A-002 : nil -> ’Oid [ctor] .

op ’A-003 : nil -> ’Oid [ctor] .),

’‘{_‘,_‘}[upTerm(< A-001 : Account | bal : 300 >

debit(A-001, 200)

debit(A-001, 150)

< A-002 : Account | bal : 250 >

debit(A-002, 400)

< A-003 : Account | bal : 1250 >

(from A-003 to A-002 transfer 300)),

’nil.QidList],

unbounded)),

{(none).Configuration, (nil).QidList}) .

result InstrConfig:

{ debit(A-001, 200)

< A-001 : Account | bal : 150 >

< A-002 : Account | bal : 150 >

< A-003 : Account | bal : 950 >,

’debit ’transfer ’debit }

Notice that the resulting term consists of the final configuration plus a list
of the labels of the rules used in the rewrite, that is, we know the sequence of
steps taken. We can also use the instrumented module for doing search.

Maude> red in INSTRUMENTATION-TEST :

metaSearch(

addOps(instrument(’BANK-ACCOUNT),

op ’A-001 : nil -> ’Oid [ctor] .

op ’A-002 : nil -> ’Oid [ctor] .

op ’A-003 : nil -> ’Oid [ctor] .),

’‘{_‘,_‘}[

upTerm(< A-001 : Account | bal : 300 >

debit(A-001, 200)

debit(A-001, 150)

< A-002 : Account | bal : 250 >

debit(A-002, 400)

< A-003 : Account | bal : 1250 >

(from A-003 to A-002 transfer 300)),

’nil.QidList],

’‘{_‘,_‘}[

upTerm(C:Configuration debit(A-001, 150)),

’QL:QidList],

nil, ’!, unbounded, 1) .

result ResultTriple:

{’‘{_‘,_‘}[

’__[’debit[’A-001.Oid,’s_^150[’0.Zero]],

’<_:_|_>[’A-001.Oid,’Account.Cid,’bal‘:_[’s_^100[’0.Zero]]],
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’<_:_|_>[’A-002.Oid,’Account.Cid,’bal‘:_[’s_^150[’0.Zero]]],

’<_:_|_>[’A-003.Oid,’Account.Cid,’bal‘:_[’s_^950[’0.Zero]]]],

’__[’’transfer.Qid,’’debit.Qid, ’’debit.Qid]],

’InstrConfig,

’C:Configuration <-

’__[’<_:_|_>[’A-001.Oid,’Account.Cid,’bal‘:_[’s_^100[’0.Zero]]],

’<_:_|_>[’A-002.Oid,’Account.Cid,’bal‘:_[’s_^150[’0.Zero]]],

’<_:_|_>[’A-003.Oid,’Account.Cid,’bal‘:_[’s_^950[’0.Zero]]]] ;

’QL:QidList <- ’__[’’transfer.Qid, ’’debit.Qid, ’’debit.Qid]}

We can use the getLabels function in the INSTRUMENTATION-INFRASTRUCTURE
module to extract the path to the found state.

Maude> red in INSTRUMENTATION-TEST :

getLabels(

downTerm(

getTerm(

metaSearch(

addOps(instrument(’BANK-ACCOUNT),

op ’A-001 : nil -> ’Oid [ctor] .

op ’A-002 : nil -> ’Oid [ctor] .

op ’A-003 : nil -> ’Oid [ctor] .),

’‘{_‘,_‘}[

upTerm(< A-001 : Account | bal : 300 >

debit(A-001, 200)

debit(A-001, 150)

< A-002 : Account | bal : 250 >

debit(A-002, 400)

< A-003 : Account | bal : 1250 >

(from A-003 to A-002 transfer 300)),

’nil.QidList],

’‘{_‘,_‘}[

upTerm(C:Configuration debit(A-001, 150)),

’QL:QidList],

nil, ’!, unbounded, 1)),

{(none).Configuration, (nil).QidList})) .

result NeTypeList: ’transfer ’debit ’debit

This sequence is actually quite similar to the result that we get using the show
path labels command at the object level.

The upModule function allows us to move a module up to the met-
alevel, where it can be manipulated; then, the instrumented metamodule
obtained from the transformation is used as argument of the metaRewrite

and metaSearch descent functions. However, it is worth remarking that the
instrumented module is at the metalevel, and that it cannot be moved down
to the object level to be used there. We will see in Section 19.7.2 how, in the
context of Full Maude, we can add functionality for making modules generated
at the metamodule available at the object level.
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16.3 A deadlock-freedom transformation

One of the technical requirements for using the abstraction techniques pre-
sented in Section 13.4 for LTL model checking a theory is that such a theory
should be deadlock free, at least for the states reachable from an initial state.
As pointed out in such section, we can always transform a rewrite theory R
(with no rules with rewrites in their conditions) into another theory bisimilar
to it that is deadlock free. Specifically, we can always associate to such an
executable rewrite theory R a semantically equivalent (from the LTL point of
view) theory Rdf which is both deadlock free and executable. We present in
this section a Maude specification of the transformation proposed in [256, 294].
In the rest of this section, we assume that the rewrite theories considered do
not have conditional rewrite rules with rewrites in their conditions.

The reason why deadlock freedom is imposed on rewrite theories is because
deadlocks can pose a problem, due to a technical point in the Kripke structure
semantics of LTL. The transition relation of a Kripke structure is total (see
Section 13.2), and this requirement is also imposed on the Kripke structures
arising from rewrite theories.

One simple way to deal with this difficulty is to just add idle transitions for
each of the states in the resulting specification by means of a rule of the form
X => X. The resulting system, in addition to all the rules that the minimal
system should contain, may in fact have some extra “junk” transitions that
are not part of it. Therefore, we would end up with a system that can be
soundly used to infer properties of the original system (it is immediate to see
that for any equational abstraction we have a simulation map) but that in
general would be coarser than the minimal system.

A better way of addressing the problem is to characterize the set of dead-
lock states. For this, given a rewrite theory R, we introduce a new operator
enabled : k −→ [Bool ] for each kind k in R that will be true for a term iff
there is a rule that can be applied to it.

Given a rewrite theory R = (Σ,E,R), we define an extension (Σ′, E′) of
its equational part by adding:

1. for each kind k in Σ, a new operator enabled : k −→ [Bool ] in Σ′;
2. for each rule l → r if C in R, an equation enabled(l) = true if C in E′,

and
3. for each operator f : k1 . . . kn −→ k in Σ and for each i with 1 ≤ i ≤ n

such that i is not a frozen argument position, the equation

enabled(f(x1, . . . , xn)) = true if enabled(xi) = true.

The enabled predicate and its properties are the key ingredients for the
transformation of an executable rewrite theory into a semantically equivalent
one that is both deadlock free and executable. Given an executable rewrite
theory R = (Σ,E ∪ A,R) and a chosen kind of states k, we construct an
executable theory R ⊆ Rkdf = (Σ′, E′ ∪ A,R′) by extending the equational
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theory (Σ,E) in R with an enabled predicate as explained above, and by
adding a new kind k′, a new operator { } : k −→ k′, and the rule

{x} → {x} if enabled(x) 6= true

to R.
Such transformation satisfies the following properties (see [256, 294] for

the corresponding proofs):

• Rkdf is k′-deadlock free and k′-encapsulated for a certain kind k′;
• there is a function h : TΣ′,k′ −→ TΣ,k inducing a bijection

h : TΣ′/E′∪A,k′ −→ TΣ/E∪A,k

such that for each t, t′ ∈ TΣ′,k′ we have

h(t)(→1
R,k)•h(t′) ⇐⇒ t→1

Rk
df ,k

′ t
′.

Furthermore, if Π are state predicates for R and k defined by equations D,
then we can define state predicates Π for Rkdf and k′ by equations D′ such
that the above map h becomes a bijective APΠ -bisimulation

h : K(Rkdf , k′)Π −→ K(R, k)Π .

The deadlock-free function in the DEADLOCK-FREEDOM module below
takes (the metarepresentation of) a module and a sort, and gives a new mod-
ule resulting from applying the transformation described above to the given
module, taking the kind of the given sort as the kind of states.

fmod DEADLOCK-FREEDOM is

pr META-LEVEL .

pr CONVERSION .

pr (SET * (op empty to empty*,

op _‘,_ to _*_,

op insert to insert*,

op delete to delete*,

op _in_ to _in*_,

op |_| to |_|*,

op $card to $card*,

op union to union*,

op intersection to intersection*,

op $intersect to $intersect*,

op _\_ to _\*_,

op $diff to $diff*,

op _subset_ to _subset*_,

op _psubset_ to _psubset*_)){TypeList} .

op deadlock-free : Module Sort -> Module .

var F : Qid .

var H : Header .

var M : Module .
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var N : Nat .

vars T T’ : Term .

var TL : TermList .

vars IL IL’ : ImportList .

var S : Sort .

vars SS SS’ : SortSet .

vars SSDS SSDS’ : SubsortDeclSet .

var OPD : OpDecl .

vars OPDS OPDS’ : OpDeclSet .

var MAS : MembAxSet .

vars EqS EqS’ : EquationSet .

vars RlS RlS’ : RuleSet .

vars Tp Tp’ : Type .

vars TpL TpL’ : TypeList .

var TpLS : Set{TypeList} .

var TpS : TypeSet .

var AtS : AttrSet .

var Cd : Condition .

vars NL NL’ : NatList .

The auxiliary functions addSorts, addImports, addOps, addEqs, and
addEqs allow us to add the corresponding declarations to the module given
as argument.

op addSorts : Module SortSet ~> Module .

eq addSorts(mod H is IL sorts SS . SSDS OPDS MAS EqS RlS endm, SS’)

= mod H is IL sorts SS ; SS’ . SSDS OPDS MAS EqS RlS endm .

eq addSorts(fmod H is IL sorts SS . SSDS OPDS MAS EqS endfm, SS’)

= fmod H is IL sorts SS ; SS’ . SSDS OPDS MAS EqS endfm .

op addImports : Module ImportList ~> Module .

eq addImports(mod H is IL sorts SS . SSDS OPDS MAS EqS RlS endm, IL’)

= mod H is IL IL’ sorts SS . SSDS OPDS MAS EqS RlS endm .

eq addImports(fmod H is IL sorts SS . SSDS OPDS MAS EqS endfm, IL’)

= fmod H is IL IL’ sorts SS . SSDS OPDS MAS EqS endfm .

op addOps : Module OpDeclSet ~> Module .

eq addOps(mod H is IL sorts SS . SSDS OPDS MAS EqS RlS endm, OPDS’)

= mod H is IL sorts SS . SSDS OPDS OPDS’ MAS EqS RlS endm .

eq addOps(fmod H is IL sorts SS . SSDS OPDS MAS EqS endfm, OPDS’)

= fmod H is IL sorts SS . SSDS OPDS OPDS’ MAS EqS endfm .

op addEqs : Module EquationSet ~> Module .

eq addEqs(mod H is IL sorts SS . SSDS OPDS MAS EqS RlS endm, EqS’)

= mod H is IL sorts SS . SSDS OPDS MAS (EqS EqS’) RlS endm .

eq addEqs(fmod H is IL sorts SS . SSDS OPDS MAS EqS endfm, EqS’)

= fmod H is IL sorts SS . SSDS OPDS MAS (EqS EqS’) endfm .

op addRls : Module RuleSet ~> Module .
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---- It makes a functional module to become a system module

eq addRls(mod H is IL sorts SS . SSDS OPDS MAS EqS RlS endm, RlS’)

= mod H is IL sorts SS . SSDS OPDS MAS EqS EqS RlS RlS’ endm .

eq addRls(fmod H is IL sorts SS . SSDS OPDS MAS EqS endfm, RlS)

= mod H is IL sorts SS . SSDS OPDS MAS EqS RlS endm .

The following frozen function checks whether the specified argument po-
sition of the operator given as argument is declared frozen or not. The id

function returns the identity element of the given operator declaration; notice
that this operator is declared at the kind level, so that an operator declaration
with no identity element will produce an error term.

op frozen : OpDecl Nat -> Bool .

eq frozen(op F : TpL -> Tp [frozen(NL N NL’) AtS] ., N)

---- we could assume that all non-ctor operators are frozen

= true .

eq frozen(OPD, N) = false [owise] .

op id : OpDecl ~> Term .

eq id(op F : TpL -> Tp [id(T) AtS] .) = T .

The enabled-eqs function creates an equation enabled(l) = true if C for
each rule l→ r if C in the set of rules given as argument.

op enabled-eqs : RuleSet -> EquationSet .

eq enabled-eqs(rl T => T’ [AtS] . RlS)

= (eq ’enabled[T] = ’true.Bool [none] . enabled-eqs(RlS)) .

eq enabled-eqs(crl T => T’ if Cd [AtS] . RlS)

= (ceq ’enabled[T] = ’true.Bool if Cd [none] .

enabled-eqs(RlS)) .

eq enabled-eqs((none).RuleSet) = none .

Given an operator f : k1 . . . kn −→ k, the following enabled-eqs function
creates an equation enabled(f(x1, . . . , xn)) = true if enabled(xi) = true for
each i with 1 ≤ i ≤ n. Notice that the conditional equation is only introduced
for unfrozen argument positions. To avoid nonterminating equations when an
operator has an identity axiom, the equations generated for such an opera-
tor include conditions checking for arguments different to the corresponding
identity elements.

op enabled-eqs : RuleSet -> EquationSet .

op enabled-eqs : OpDeclSet TypeSet -> EquationSet .

op enabled-eqs1 : OpDecl Set{TypeList} -> EquationSet .

op enabled-eqs2 : OpDecl TypeList TermList Nat -> EquationSet .

op unfoldUniversal : OpDecl TypeSet -> Set{TypeList} .

op unfoldUniversal1 : TypeList TypeSet -> Set{TypeList} .

op unfoldUniversal2 : TypeList Type -> Set{TypeList} .

op enabled-args : TypeList Nat -> TermList .

op make-cond : TermList Term -> EqCondition .
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eq enabled-eqs(rl T => T’ [AtS] . RlS)

= (eq ’enabled[T] = ’true.Bool [none] . enabled-eqs(RlS)) .

eq enabled-eqs(crl T => T’ if Cd [AtS] . RlS)

= (ceq ’enabled[T] = ’true.Bool if Cd [none] .

enabled-eqs(RlS)) .

eq enabled-eqs((none).RuleSet) = none .

eq enabled-eqs(OPD OPDS, TpS)

= enabled-eqs1(OPD, unfoldUniversal(OPD, TpS))

enabled-eqs(OPDS, TpS) .

eq enabled-eqs((none).OpDeclSet, TpS) = none .

eq unfoldUniversal(op F : TpL -> Tp [poly(NL) AtS] ., TpS)

= unfoldUniversal1(TpL, TpS) .

eq unfoldUniversal(op F : TpL -> Tp [AtS] ., TpS) = TpL [owise] .

eq unfoldUniversal1(TpL, Tp ; TpS)

= unfoldUniversal2(TpL, Tp) * unfoldUniversal1(TpL, TpS) .

eq unfoldUniversal1(TpL, none) = empty* .

eq unfoldUniversal2(’Universal TpL, Tp) = Tp unfoldUniversal2(TpL, Tp) .

eq unfoldUniversal2(Tp TpL, Tp’) = Tp unfoldUniversal2(TpL, Tp’) [owise] .

eq unfoldUniversal2(nil, Tp) = nil .

eq enabled-eqs1(op F : TpL -> Tp [AtS] ., TpL’ * TpLS)

= enabled-eqs2(op F : TpL -> Tp [AtS] ., TpL’, enabled-args(TpL’, 0), 0)

enabled-eqs1(op F : TpL -> Tp [AtS] ., TpLS) .

eq enabled-eqs1(op F : TpL -> Tp [AtS] ., empty*) = none .

eq enabled-eqs2(op F : TpL -> Tp [AtS] ., Tp’ TpL’, TL, N)

--- id-left and id-right should also be considered

= (if frozen(op F : TpL -> Tp [AtS] ., N)

then none

else if id(op F : TpL -> Tp [AtS] .) :: Term

then ceq ’enabled[F[TL]] = ’true.Bool

if make-cond(TL, id(op F : TpL -> Tp [AtS] .))

/\ ’enabled[qid("V" + string(N, 10)

+ ":" + string(Tp’))] = ’true.Bool

[none] .

else ceq ’enabled[F[TL]] = ’true.Bool

if ’enabled[qid("V" + string(N, 10)

+ ":" + string(Tp’))] = ’true.Bool

[none] .

fi

fi

enabled-eqs2(op F : TpL -> Tp [AtS] ., TpL’, TL, s N)) .

eq enabled-eqs2(OPD, nil, TL, N) = none .



16.3 A deadlock-freedom transformation 531

eq enabled-args(Tp TpL, N)

= (qid("V" + string(N, 10) + ":" + string(Tp)),

enabled-args(TpL, s N)) .

eq enabled-args(nil, N) = empty .

eq make-cond((T, TL), T’)

= (’_=/=_[T, T’] = ’true.Bool) /\ make-cond(TL, T’) .

eq make-cond(empty, T) = nil .

Finally, the following equation defines the main function deadlock-free,
adding the operator declarations and equations necessary to make the module
given as argument deadlock-free.

eq deadlock-free(M, S)

= addRls(

addSorts(

addOps(

addEqs(M,

(enabled-eqs(getRls(M))

enabled-eqs(getOps(M), getKinds(M)))),

(op ’enabled : ’Universal -> ’Bool [poly(1)] .

op ’‘{_‘} : S -> ’EConfig [none] .)),

’EConfig ; ’Universal),

(crl ’‘{_‘}[qid("V:" + string(S))]

=> ’‘{_‘}[qid("V:" + string(S))]

if ’_=/=_[’enabled[qid("V:" + string(S))], ’true.Bool]

= ’true.Bool

[none] .)) .

endfm

We illustrate the use of the deadlock-free operator on the bakery exam-
ple presented in Section 13.4. We can transform the ABSTRACT-BAKERY module
introduced in such section by using the following command.

Maude> reduce in DEADLOCK-FREEDOM :

deadlock-free(upModule(’ABSTRACT-BAKERY, true), ’BState) .

We will see in Section 19.7.2 how to use the resulting module for model
checking properties, for example.
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Mobile Maude

with Adrián Riesco

and Alberto Verdejo

The popularity of the Internet has brought much attention to the world of
distributed applications development. Now, more than ever, the network is be-
ing viewed as a platform for the development of cost-effective, mission-critical
applications. Mobile code and mobile agents [218, 213] are emerging tech-
nologies that promise to make much easier the design, implementation, and
maintenance of distributed systems. Mobile agents may reduce the network
traffic, provide an effective means of overcoming network latency, and, per-
haps more importantly, help us to construct more robust and fault-tolerant
systems, thanks to their ability to operate asynchronously and autonomously.

Mobile Maude is a mobile agent language extending Maude and support-
ing mobile computation. Mobile Maude uses reflection to obtain a simple and
general declarative mobile language design and makes possible strong assur-
ances about mobile agent behavior. The formal semantics of Mobile Maude
is given by a rewrite theory in rewriting logic. Since this specification is exe-
cutable, it can be used as a prototype of the language, in which mobile agent
systems can be simulated. The two key notions are processes and mobile ob-
jects. Processes are located computational environments where mobile objects
can reside. Mobile objects have their own code, can move between different
processes in different locations, and can communicate asynchronously with
each other by means of messages. An overall Mobile Maude configuration is
a “soup” of processes, possibly with some mobile objects and messages “in
transit” from one process to another. The code of a mobile object is given by
(the metarepresentation of) an object-based module—a rewrite theory—and
its data is given by (the metarepresentation of) a configuration of objects and
messages (internal to the mobile object itself) that represent its state. Such a
configuration is a valid term in the object’s code module. The mobile object
changes its state by executing its own code at the metalevel. Mobile Maude’s
key characteristics include:

• reflection as a way of endowing mobile objects with “higher-order” capa-
bilities;
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• object-orientation and asynchronous message passing; and
• a simple semantics without any loss in the expressive power of application

code.

We first introduced Mobile Maude in [113], where we presented a “simu-
lator” of Mobile Maude, an executable Maude specification on top of Maude
1.0.5, in which the system code was written entirely in Maude, and thus lo-
cations and processes were encoded as Maude terms. In the same paper, we
also sketched a development plan including two further development efforts:
a first step in which a single-host executable would be implemented, and a
second implementation effort focussing on true distributed execution.

The release of Maude 2.0 allowed us to take the first step. This imple-
mentation effort was completed in a very short time, using the built-in object
system for object/message fairness, just by simplifying and extending the pre-
vious specification. This new version was developed by Durán and Verdejo,
and was used in several examples, one of which was reported in [131].

The built-in string handling and internet socket module available since
Maude 2.2 has allowed us to build a truly distributed implementation, thus
advancing the second development effort. The Maude 2.2 socket modules sup-
port non-blocking client and server TCP sockets (see Section 11.4.1). In this
implementation effort, a Mobile Maude server runs on top of a Maude inter-
preter and performs the following tasks:

1. keeps track of the current locations of mobile objects created on a host,
2. handles change of location messages,
3. reroutes messages to mobile objects, and
4. runs the code of mobile objects by invoking the metalevel.

In fact, we have introduced quite a significant number of changes into Mobile
Maude. Processes and locations are no longer part of the Mobile Maude spec-
ification. We now talk about Maude processes—not terms, but OS processes,
which may be running on different machines—and IP addresses. We have also
introduced the notion of root objects as managers of the configurations of
mobile objects in the different processes.

We explain below the design of processes and mobile objects and their
rewriting semantics, based on a formal specification of Mobile Maude written
in Maude. For presentation purposes, some of the declarations and rules given
here have been simplified. The complete code for Mobile Maude and of the
corresponding examples is available from http://maude.cs.uiuc.edu and
also in the companion cd-rom.

17.1 Processes and mobile objects

17.1.1 Processes and root objects

The key entities in Mobile Maude are processes and mobile objects.

http://maude.cs.uiuc.edu


17.1 Processes and mobile objects 535

Mobile objects are modeled as distributed objects in the class MobileObject.
A distributed configuration is made up of located configurations. Each located
configuration is executed in a Maude process. Such processes can therefore
be seen as located computational environments inside which mobile objects
can reside, execute, and send and receive messages to and from other mobile
objects located in different processes. We assume that each located configura-
tion has exactly one root object, of class RootObject, which keeps information
about the location of the process, the mobile objects in such a configuration,
and the whereabouts of the mobile objects created in it, which may have
moved to other processes. The names of root objects range over the sort Loc,
and have the form l(IP, N) with IP the IP address of the machine in which
the process is being executed and N a number. We assume uniqueness of root
object names in a distributed configuration.

The class RootObject of root objects is declared as follows:1

class RootObject |

cnt : Nat, *** counter to generate names

guests : Set{Oid}, *** objects in the location

forward : Map{Nat, Tuple{Loc, Nat}},

*** forwarding information

state : RootObjectState, *** idle, waiting-connection, active

neighbors : Map{Loc, Oid}, *** each location has a socket to be

*** used to sent messages to it

defNeighbor : Maybe{Oid} . *** default socket

The root object of each process keeps information about the mobile objects
currently in it in the guests attribute. Mobile objects are named with iden-
tifiers of the form o(L, N). The root object’s cnt attribute stores a counter
to generate unique names for such new mobile objects.

Finally, a root object may be in state idle, waiting-connection, or
active. The attribute state will take one of these values. Root objects are
only idle when they are created, their first action being their activation either
as a client or as a server socket. They stay in waiting-connection state un-
til they get the confirmation from the server socket, passing then to active

mode, the state in which they will develop their normal activity.

1 We use here the Full Maude notation for defining classes (see Section 21.1.2). The
corresponding declarations in Core Maude for the class RootObject are:

sort RootObject .

subsort RootObject < Cid .

op RootObject : -> RootObject [ctor] .

op cnt : : Nat -> Attribute [ctor gather(&)] .

op guests : : Set{Oid} -> Attribute [ctor gather(&)] .

op forward : : Map{Nat, Tuple{Loc, Nat}} -> Attribute

[ctor gather(&)] .

op state : : RootObjectState -> Attribute [ctor gather(&)] .

op neighbors : : Map{Loc, Oid} -> Attribute [ctor gather(&)] .

op defNeighbor : : Maybe{Oid} -> Attribute [ctor gather(&)] .
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o(l(IP, 0), 0) 

l(IP, 0) 

o(l(IP, 0), 1) 

o(l(IP', 0), 0) 

o(l(IP, 0), 1) 

l(IP', 0) 

   

Fig. 17.1. Object and message mobility

17.1.2 Mobile objects

Mobile objects carry their own internal state and code (an object-based system
module) with them, can move from one process to another, and can communi-
cate with each other by asynchronous message passing. The names of mobile
objects range over the sort Mid and have the form o(L, N), with L the name
of the root object of the process in which it was created and N a number. Fig-
ure 17.1 shows several mobile objects in two processes, with (mobile) object
o(l(IP, 0), 1) moving from the process with root object l(IP, 0) to the
process of root object l(IP’, 0), and with object o(l(IP, 0), 0) sending
a message to o(l(IP’, 0), 0).

Mobile objects are specified as objects of the class MobileObject:2

class MobileObject |

mod : Module, *** rewrite rules of the mobile object

s : Term, *** current state

gas : Nat, *** bound on resources

hops : Nat . *** number of hops

2 We use here again the Full Maude notation for defining classes. The corresponding
declarations in Core Maude for the class MobileObject are:

sort MobileObject .

subsort MobileObject < Cid .

op MobileObject : -> MobileObject [ctor] .

op mod : : Module -> Attribute [ctor gather(&)] .

op s : : Term -> Attribute [ctor gather(&)] .

op gas : : Nat -> Attribute [ctor gather(&)] .

op hops : : Nat -> Attribute [ctor gather(&)] .



17.1 Processes and mobile objects 537

The sorts Module and Term, associated with the attributes mod and s, re-
spectively, are sorts in the module META-LEVEL. The value of a mobile object’s
mod attribute is the metarepresentation of an object-based system module.
The mobile object’s state s must be the metarepresentation of a pair of con-
figurations meaningful for the module in mod and having the form C & C’,
where C is a configuration of objects and messages representing unprocessed
incoming messages and inter-inner-objects messages, and C’ is a multiset of
messages representing the outgoing messages tray. One of the objects in the
configuration of objects and messages is supposed to have the same identifier
as the mobile object it is in. We sometimes refer to this object as the main
one, which in most cases will be the only one. Therefore, we can think of a
mobile object as a wrapper that encapsulates the state and code of its inner
object and mediates its communication with other objects. For this reason,
Figure 17.1 depicts mobile objects by two concentric circles, with the inner
object and its incoming and outgoing messages contained in the inner circle.

A MobileObject includes the attribute hops, which stores the number
of “hops” a mobile object has performed while moving from one process to
another. This information in necessary for the forwarding process, which is
discussed later in this section. To guarantee that all mobile objects eventually
have some activity, and to impose a bound on the resources they can consume,
they have a gas attribute.

17.1.3 Message forwarding

Since mobile objects may move from one process to another, reaching them by
messages is nontrivial. The solution adopted in Mobile Maude is that, when
a message’s addressee is not in the current process, the message is forwarded
to the addressee’s parent process (the process it was created at). Each root
object stores forwarding information about the whereabouts of its children
in its forward attribute, a partial function in Map{Nat, Tuple{Loc, Nat}}

that maps child number n to a pair consisting of the name of the located
process in which the object currently resides, and the number of “hops” to
different processes that the mobile object has taken so far. The number of hops
is important in disambiguating situations when old messages (containing old
location information) arrive after newer ones containing the current location.
The most recent location is that associated with the largest number of hops.
Whenever a mobile object moves to a new process, the object’s parent process
is always notified. Note that this system does not guarantee message delivery
in the case that objects move more rapidly than messages.

In the previous versions of Mobile Maude [113, 131], all the processes were
in the same configuration, and reaching a particular process was represented
by one single rule. However, the current version uses TCP sockets to connect
processes. Therefore, when a mobile object moves to a different location, or
a message is sent to a mobile object in a different location, we need to know
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which socket must be used to send the information. The root object in the pro-
cess is in charge of sending the message or the mobile object through the ap-
propriate socket.3 Assuming that all processes are directly connected to each
other is not realistic, would severely limit the number of processes we could
connect, and would make the task of connecting a new process really expen-
sive. Fortunately, connectivity between two nodes does not necessarily imply
a direct connection between them. An indirect connectivity may be achieved
among a set of cooperating nodes. Nevertheless, just because a set of hosts
are directly or indirectly connected to each other does not mean that we have
succeeded in providing host-to-host connectivity. When a source node wants
the network to deliver a message to a certain destination node, it specifies the
address of the destination node. If the sending and receiving nodes are not
directly connected, then the nodes of the network between them—switchers
and routers—use this address to decide how to forward the message toward
the destination. The process of determining systematically how to forward
messages toward the destination node based on its address—which is usually
called routing—is nontrivial.4 Here, we assume a very simple, although quite
general, approach consisting in having a routing table in each root object.
Such a table specifies the socket through which a message must be sent if one
wants to reach a particular location. If there is a socket between the source
and the target of the message, then it reaches its destination in a single step;
otherwise, the forwarding has to be repeated several times. The neighbors

attribute maintains such a routing table as a map, associating socket object
identifiers to location identifiers. That is, the attribute neighbors holds a par-
tial function Map{Loc, Oid} providing information on the sockets (identified
by an Oid) through which data should be sent to reach a particular location.

In case there is no socket associated with a particular location in the
neighbors map, a default socket may be specified in the defNeighbor at-
tribute. Since the value of the defNeighbor attribute may also be unde-
fined, we import the module MAYBE from Section 8.3.3 instantiated with Oid

and renaming the constant maybe to null; then, we declare the attribute
defNeighbor of sort Maybe{Oid}, so that it can take as value either an object
identifier or the constant null.

If there is no socket associated with a particular location and a default one
has not been specified then the data is not delivered. Note that this model
allows us to represent many different network architectures, since the routing
information may be updated and used in a very flexible way (although we do

3 As we will see in the coming sections, root objects send messages through buffered
sockets. We discuss the use of sockets and buffered sockets in Section 17.4.

4 We only consider the case of a source node wanting to send a message to a single
destination node (unicast). The cases of multicasting—the source node wants to
send a message to some subset of the nodes on the network—and broadcasting—
the source node wants to send a message to all the nodes on the network—could
similarly be specified.
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not care here about this). We explain how to build a very simple architecture
in Section 17.4.

17.2 Mobile Maude additional definitions

Mobile Maude system code is specified by a relatively small number of rules for
root objects, mobile objects, mobility, and message passing. Such rules work
in an application-independent way. Application code, on the other hand, can
be written as Maude object-oriented modules with great freedom, except for
being aware that, as explained in Section 17.1.2, the top level of the internal
state of a mobile object has to be a pair of configurations, with the second
component, called outgoing tray, containing outgoing messages and the first,
called the inner configuration, containing the inner object(s) and incoming
messages. Such a pair is built with the constructor

sort MobObjState .

op _&_ : Configuration Configuration -> MobObjState [ctor] .

The messages sent or received by a mobile object must be of the form

1. go(L),
2. go-find(O, L),
3. newo(Mod, Conf, O),
4. to O : C, or
5. kill,

for L a location (of sort Loc), O a mobile object identifier (of sort Mid), C a
term of sort Contents, Mod a term of sort Module, and Conf a term of sort
Configuration.

Such messages may in fact be understood as commands that the main
object—or one of the other objects—in the internal state of a mobile object
gives to its wrapper object. Thus, an object may

1. request to move from its current location to a given location L with the
go(L) message;

2. request going to the location in which the mobile object O resides, which
is possibly L, with the message go-find(O, L);

3. request creating a new mobile object with module Mod, initial state Conf,
and temporal identifier of the main object in such a configuration O, with
the message newo(Mod, Conf, O);

4. send a message with contents C to the object O with the message to O : C;
and

5. request the destruction of the mobile object it resides into with the mes-
sage kill.
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The commands/messages available in Mobile Maude are defined in the
module MOBILE-OBJECT-INTERFACE, which is assumed to be imported by the
user in all Mobile Maude applications. Among others, such module includes
the declarations of the previous messages.

sort Contents .

op go : Loc -> Msg [ctor message] .

op go-find : Mid Loc -> Msg [ctor message] .

op newo : Module Configuration Oid -> Msg [ctor message] .

op to_:_ : Mid Contents -> Msg

[ctor message format(!m s s s o) gather (& &)] .

op kill : -> Msg [ctor message] .

Note that messages being sent to other mobile objects must be of the form
to_:_, with the addressee of the message as first argument and a term of sort
Contents as second argument. The definition of the Contents sort is left to
each particular application, which in fact gives the user the freedom to define
any kind of message, with the only requirement of having the identifier of the
addressee as first argument.

The newo message takes a module (a term of sort Module metarepresenting
a module), a term of sort Configuration (which will be the initial configura-
tion in the belly of the mobile object to be created, so it should make sense in
the module given as first argument), and the provisional identifier of the main
object in the configuration given as second argument. As we shall see in Sec-
tion 17.3.4, the first action accomplished by a mobile object when it detects
the newo command is creating a new mobile object with the metarepresenta-
tion of the configuration given as second argument to the newo message, and
then sending a start-up message to the main object with its new name, so
that it coincides with the name of the mobile object it is in. Let us recall that
the name of a mobile object depends on the root object in its process, and on
the number of mobile objects already created in it. Therefore, such a name
cannot be known when the creation is requested. Thus, the main object in the
configuration will be created with a provisional identifier—usually tmp-id—
that will be changed by its mobile object once it is created. We can also find
in the module MOBILE-OBJECT-INTERFACE the following declarations.

op tmp-id : -> Mid [ctor] .

op start-up : Mid -> Contents [ctor] .

17.3 Mobile Maude’s rewriting semantics

The semantics of Mobile Maude is specified by an object-oriented rewrite the-
ory containing the definitions of the classes RootObject and MobileObject

and rewrite rules that describe the behavior of the different primitives: object
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mobility, message passing, and object and process creation. This specifica-
tion is the system code of Mobile Maude, which works in an application-
independent way as a prototype on which to execute Mobile Maude appli-
cations. Such applications need of course to satisfy certain requirements, as
being object-oriented, using the _&_ constructor for sending messages out of
the mobile objects, and using the primitive messages for moving to other
processes.

17.3.1 Letting mobile objects do something

The rules discussed in the next subsections specify the way in which the
different Mobile Maude commands are handled. To allow the mobile ob-
jects to evolve, and therefore to allow the application code, which “lives”
inside the mobile objects, to invoke such commands, the state of the mo-
bile objects must be rewritten. In the do-something rule below, the internal
state of a mobile object is rewritten using the rules of the module in its
mod attribute. Instead of using the deterministic functions metaRewrite or
metaFrewrite, the metaSearch function is used in the equations for the op-
eration getPossibleTerms to obtain the set of terms that can be reached in
one rewriting step. From all these possible rewrites one is chosen in the condi-
tion of the do-something rule; this allows us to explore all possible executions
as we discuss in Section 17.6.

As a fairness condition, or, more concretely, to make sure that no mobile
object consumes all the resources—to avoid, for example, that when rewriting
the state of a mobile object we get into an infinite computation—and to
try to balance such consumption, we establish a bound on the number of
rewrites for each of the mobile objects. Such a bound is given in their gas

attribute. Each time the do-something rule is applied, the mobile object’s
gas value is decremented. Note that the gas attribute gives the number of
rewrites a mobile object can perform. If no rewriting step can be taken, the
do-something rule cannot be applied.

vars TL TL’ : TermList .

var RST? : ResultTriple? .

crl [do-something] :

< O : V@MobileObject | mod : MOD, s : T, gas : s(N), AtS >

=> < O : V@MobileObject | mod : MOD, s : T’, gas : N, AtS >

if (TL, T’, TL’) := getPossibleTerms(MOD, T) .

op getPossibleTerms : Module Term -> TermList .

op getPossibleTerms : Module Term Nat -> TermList .

eq getPossibleTerms(MOD, T) = getPossibleTerms(MOD, T, 0) .

ceq getPossibleTerms(MOD, T, N)

= (getTerm(RST?), getPossibleTerms(MOD, T, N + 1))
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if RST? := metaSearch(MOD, T, ’M:MobObjState, nil, ’+, 1, N)

/\ RST? =/= (failure).ResultTriple? .

eq getPossibleTerms(MOD, T, N) = empty [owise] .

Here and in what follows, variables (O, V@MobileObject, MOD, T, N, AtS,
etc.) are written in capitals, but their sort declarations are omitted. MOD,
for example, stands for a term of sort Module, and AtS stands for a set of
attributes (of sort AttributeSet).

17.3.2 Object communication

There are three kinds of communication between objects. Objects inside the
same mobile object can communicate with each other by means of messages
with any format, and such communication may be synchronous or asyn-
chronous. Objects in different mobile objects may communicate when such
mobile objects are in the same process and when they are in different pro-
cesses; in these cases, the actual kind of communication is transparent to the
mobile objects, but such communication must be asynchronous, and messages
must be of the form to_:_, where the first argument is the identifier of the
addressee object, and the second argument is the message contents, a value
of sort Contents built with free user-defined syntax (see, for example, Sec-
tion 17.5). That is, the minimum information needed to dispatch a message
is the receiver’s identity; if the sender wants to communicate its identifier, it
has to include it in the message contents. If the addressee is an object in a
different mobile object, then the message must be put by the sender object in
the second component of its state (the outgoing messages tray). The system
code will then send the message to the addressee object.

An important issue when managing messages is that the rewriting rules
and state of mobile objects are metarepresented, that is, the system code of
Mobile Maude is at the metalevel of the application code. Therefore, before
dealing with such messages, they must be moved up, or, as we say, they
must be pulled out. The internal state of a mobile object will have the form
’_&_[T, T’], with T and T’ the terms metarepresenting, respectively, the
inner configuration and the outgoing messages. In the case of messages of the
form to_:_ we will have a term of the form ’to_:_[T, T’], which may be
alone or with more messages in the outgoing tray. Since we must leave the
tray in a valid state we need to include the following three rules.5

rl [message-out-to] :

< O : V@MobileObject |

mod : MOD, s : ’_&_[T, ’to_:_[T’, T’’]], AtS >

=> < O : V@MobileObject | mod : MOD,

5 Although in general two cases are enough to deal with associative lists (one ele-
ment and more than one element), at the metalevel, since the engine is giving the
list in flattened form and expects it in flattened form, we must make sure that
when we have more than one element the top operator is .
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s : ’_&_[T, ’none.Configuration], AtS >

(to downTerm(T’, o(l("null", 0), 0)) { T’’ }) .

rl [message-out-to] :

< O : V@MobileObject | mod : MOD,

s : ’_&_[T, ’__[’to_:_[T’, T’’], T’’’]], AtS >

=> < O : V@MobileObject | mod : MOD, s : ’_&_[T, T’’’], AtS >

(to downTerm(T’, o(l("null", 0), 0)) { T’’ }) .

crl [message-out-to] :

< O : V@MobileObject | mod : MOD,

s : ’_&_[T, ’__[’to_:_[T’, T’’], T’’’, TL]], AtS >

=> < O : V@MobileObject | mod : MOD, s : ’_&_[T, ’__[T’’’, TL]],

AtS >

(to downTerm(T’, o(l("null", 0), 0)) { T’’ })

if TL =/= empty .

Notice that, although the contents of messages are left at the metalevel,
i.e., as found, the identifier of the addressee object is moved down to the
object level, so that the message can be correctly delivered. The rules pull
out a message to O : C, which is metarepresented as ’to_:_[O, C], into
a message to O { C }. We will find similar pull-out rules for each of the
commands.

Once the message is out of the mobile object, it can be appropriately
delivered. The msg-send rules below are in charge of redirecting messages ad-
dressed to mobile objects in different locations. Notice the use of the message

op Send : Oid Oid Msg -> Msg [ctor msg format (b o)] .

to send messages to the appropriate locations. The first and second arguments
of the Send message are, respectively, the addressee and sender of the message,
and the third argument is the message being sent. We will see in Section 17.4
how the Send messages will be used to send the corresponding data through
the appropriate sockets.

crl [msg-send] :

to o(L, N) { T }

< L : V@RootObject |

state : active, guests : OS, forward : F, AtS >

=> < L : V@RootObject |

state : active, guests : OS, forward : F, AtS >

Send(p1(F[N]), L, to o(L, N) hops p2(F[N]) in p1(F[N]) { T })

if (p1(F[N]) =/= L) /\ (not o(L, N) in OS) .

crl [msg-send] :

to o(L, N) { T }

< O : V@RootObject |

state : active, guests : OS, forward : F, AtS >

=> < O : V@RootObject |

state : active, guests : OS, forward : F, AtS >
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Send(L, O, to o(L, N) hops null in L { T })

if (O =/= L) /\ (not o(L, N) in OS) .

Note that the conditions of the rules make sure not only that the object is
not in the current process (not o(L, N) in OS), but also that the forwarding
info does not point to the location itself (p1(F[N]) =/= L), which would
mean that the mobile object has not arrived to its destination yet. If the
location in which the message is generated is the parent location of the mobile
object the message is addressed to, then the message is forwarded to the
location indicated by the forwarding info with the corresponding number of
hops; otherwise, the message is forwarded to the parent location with the
number of hops set to null. We will see below how the hops information is
used in the msg-arrive-to-proc rules to avoid unnecessary forwarding of
messages when the destination object is in transit.

The arrival of an inter-object message to a location is handled by the fol-
lowing five rules. We explain the case handled by each of the rules separately.

If the object is at the location, then the message is just left at the location
so the object can get it.

rl [msg-arrive-to-loc] :

to o(L, N) hops H in L’ { T’ }

< L’ : V@RootObject | state : active, guests : (o(L, N), OS), AtS >

=> < L’ : V@RootObject |

state : active, guests : (o(L, N), OS), AtS >

to o(L, N) { T’ } .

If the object is not at the location and the number of hops is null, then the
message is being sent to the mobile object’s parent location. If the forwarding
information is pointing to its home location, then the object is in transit,
and the forwarding information has not been updated with its new location,
and therefore the message is not handled; otherwise, the message is sent to
the location indicated by the forwarding information with the corresponding
number of hops.

crl [msg-arrive-to-loc] :

to o(L, N) hops null in L { T }

< L : V@RootObject |

state : active, guests : OS, forward : F, AtS >

=> < L : V@RootObject |

state : active, guests : OS, forward : F, AtS >

Send(p1(F[N]), L, to o(L, N) hops p2(F[N]) in p1(F[N]) { T })

if (not o(L, N) in OS) /\ (p1(F[N]) =/= L) .

If the object is not at the location and the location is not its home location,
then the message is forwarded back to the parent location with the same hops
number. Note that, since it is not its home location, the number of hops is
not null, that is, it is a natural number. Note also that, since the forwarding
information is updated once the object has arrived to a location, it cannot be
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the case that the message has arrived before the object. If the object to which
the message is addressed is not at the location registered in the forwarding
information, it is because the object has already left the location and the
message must be returned to its home location.

crl [msg-arrive-to-loc] :

to o(L, N) hops N’ in L’ { T }

< L’ : V@RootObject | state : active, guests : OS, AtS >

=> < L’ : V@RootObject | state : active, guests : OS, AtS >

Send(L, L’, to o(L, N) hops N’ in L { T } )

if (not o(L, N) in OS) /\ (L =/= L’) .

Finally, if the message is being returned from a location to which the mes-
sage was forwarded from its home location because the object already left
it, then the message will be forwarded again by its home location only if its
forwarding information has been updated since the message was forwarded
the first time, that is, if the number of hops in the message is smaller than the
number of hops in the forwarding information in its home location. Note that
we do not check whether the forwarding information points to the parent loca-
tion itself anymore, since in this case the hops would have been appropriately
incremented.

crl [msg-arrive-to-loc] :

to o(L, N) hops N’ in L { T }

< L : V@RootObject |

state : active, guests : OS, forward : F, AtS >

=> < L : V@RootObject |

state : active, guests : OS, forward : F, AtS >

Send(p1(F[N]), L, to o(L, N) hops p2(F[N]) in p1(F[N]) { T })

if (not o(L, N) in OS) /\ (N’ < p2(F[N])) .

crl [msg-arrive-to-loc] :

to O hops H in L’ { T }

< L : V@RootObject | AtS >

=> < L : V@RootObject | AtS >

Send(L’, L, to O hops H in L’ { T })

if L =/= L’ .

Once the message reaches its addressee object, the message must be in-
serted in—push into—the internal state of such a mobile object. To make
sure that the mobile object will remain in a valid state, we check that the
metarepresentation of the corresponding message is a valid message in the
module of the object. We can assume that, since the previous state was a
valid one, adding a valid message will result in a new valid state.6

6 In a previous version, we checked that the result of introducing the current mes-
sage to the configuration representing the current state of the mobile object was
a valid configuration.



546 17 Mobile Maude

rl [msg-in] :

to O { T }

< O : V@MobileObject | mod : MOD, s : ’_&_[T’, T’’], AtS >

=> if sortLeq(MOD, leastSort(MOD, ’to_:_[upTerm(O), T]), ’Msg)

or

sortLeq(MOD, ’Msg, leastSort(MOD, ’to_:_[upTerm(O), T]))

then < O : V@MobileObject | mod : MOD,

s : ’_&_[’__[’to_:_[upTerm(O), T], T’], T’’], AtS >

else < O : V@MobileObject | mod : MOD, s : ’_&_[T’, T’’], AtS >

fi .

17.3.3 Object mobility

We explain in this section the rules that govern object mobility. Such mobility
is initiated by the mobile object’s inner object, which puts the go or go-find
messages in the second component (i.e., as an outgoing message) of the state.
The rules for both cases are quite similar; the main difference is that a go-find

message tries to reach a particular object that can be itself on the move; that
is, we may reach the tentative location and not find the object there, in which
case we must go on looking for it in a different location.

The go message

When a mobile object wants to move to another process it puts in its out-
going messages tray a go(L) message, where L is the target location. When
a mobile object has an outgoing go message, a new inter-mobile-objects go

message is sent, with the mobile object as one of its arguments, after remov-
ing the outgoing message. Since the go message is declared to be frozen (see
Section 4.4.9), the mobile object is inactive while on the move.

If the message’s sender and addressee are at different locations, then this
message must be sent to the desired location, being sent through the appro-
priate socket by the root object of the location. When the message reaches
the destination location, the root object in its home location is informed, so
it can update its forwarding information; if the object has reached its home
location, such information is directly updated.

If there is a go message in the outgoing message tray, we observe that the
state of the corresponding mobile object has the form ’_&_[T, ’go[T’]],
where the term T’ metarepresents the name of the location where the object
wants to go. Notice that in this case it must be the only message in the
tray, it is assumed that any other message has already been handled. The
rule message-out-go indicates how such a name is decoded by the downTerm

function, and shows in its righthand side the mobile object ready to go—which
is indicated by being enclosed inside a go operator.

rl [message-out-go] :

< O : V@MobileObject | s : ’_&_[T, ’go[T’]], AtS >

=> go(downTerm(T’, l("null", 0)),
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< O : V@MobileObject |

s : ’_&_[T, ’none.Configuration], AtS >) .

Root objects are in charge of handling go messages and sending them
to the appropriate locations. To reduce the number of cases, we first check
whether the mobile object should stay in the current location, or should move
to a different one, removing it from the guests list if it was in it. How they are
actually sent through the appropriate sockets will be explained in Section 17.4.

rl [go-loc] :

< L : V@RootObject | state : active, guests : (O, OS), AtS >

go(L, < O : V@MobileObject | AtS’ >)

=> < L : V@RootObject | state : active, guests : (O, OS), AtS >

< O : V@MobileObject | AtS’ > .

crl [go-loc] :

< L : V@RootObject | state : active, guests : (O, OS), AtS >

go(L’, < O : V@MobileObject | AtS’ >)

=> < L : V@RootObject | state : active, guests : OS, AtS >

Send(L’, L, go(L’, < O : V@MobileObject | AtS’ >))

if L =/= L’ .

crl [go-loc] :

< L : V@RootObject | state : active, guests : OS, AtS >

go(L’, < O : V@MobileObject | AtS’ >)

=> < L : V@RootObject | state : active, guests : OS, AtS >

Send(L’, L, go(L’, < O : V@MobileObject | AtS’ >))

if L =/= L’ /\ not O in OS .

When a go message reaches the location it is addressed to, the mobile
object that it carries as an argument is put into the configuration. Depending
on whether the location is the home location of such a mobile object or not, the
forwarding information is updated or a message to_@_{_} is sent to its home
location so that the root object in it can update its forwarding information.

rl [arrive-loc] :

go(L, < o(L’,N) : V@MobileObject | hops : N’, AtS’ >)

< L : V@RootObject | guests : OS, forward : F, AtS >

=> < o(L’, N) : V@MobileObject | hops : N’ + 1, AtS’ >

if L == L’

then < L : V@RootObject | guests : (o(L’, N), OS),

forward : insert(N, (L, N’ + 1), F), AtS >

else < L : V@RootObject | guests : (o(L’, N), OS),

forward : F, AtS >

Send(L’, L, to L’ @ (L, N’ + 1) { N })

fi .

The following rules specify the update of a mobile object’s forwarding in-
formation in the root object of its home location upon the reception of a
to_@_{_} message. Note that, since the message to update the forwarding
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information is sent when the object arrives to its destination location, the
forwarding information is not valid during the transit of the mobile objects.
However, thanks to the guests lists we still have enough information to guide
messages appropriately. Notice also that the forwarding information on a mo-
bile object may be undefined upon the reception of a to_@_{_} message if the
corresponding mobile object was destroyed and the message communicating
its destruction arrives before a message communicating a previous move.

rl [forwarding-update] :

to L @ (L’, N’) { N }

< L : V@RootObject | forward : F, AtS >

=> if F [ N ] == undefined

then < L : V@RootObject | forward : F, AtS >

else if p2(F [ N ]) < N’

then < L : V@RootObject |

forward : insert(N, (L’, N’), F), AtS >

else < L : V@RootObject | forward : F, AtS >

fi

fi .

crl [forwarding-update] : *** message in transit

to L @ (L’, N’) { N }

< L’’ : V@RootObject | AtS >

=> < L’’ : V@RootObject | AtS >

Send(L, L’’, to L @ (L’, N’) { N })

if L =/= L’’ .

The go-find message

In the go message, the mobile object indicates the location it wants to go
to. However, sometimes, a mobile object wants to reach another object, but
it only knows the identifier of the object it wants to catch up with, not the
location it is at. In this case, the go-find message can be used, which takes as
arguments the identifier of the mobile object to be reached, and the identifier
of a tentative location, where it may be.

The rules for the go-find messages are very similar to those for the go

messages discussed in Section 17.3.3. However, in this case we do not only
want to reach a location, but also to find a mobile object, which may move
from one place to another. Although the message includes a tentative location
for the object, such information may be incorrect, or obsolete.

When a mobile object has a go-find message in its state it is pulled out
with the following rule.

rl [message-out-go-find] :

< O : V@MobileObject | s : ’_&_[T, ’go-find[T’, T’’]], AtS >

=> go-find(downTerm(T’, o(l("null", 0), 0)),

downTerm(T’’, l("null", 0)),

< O : V@MobileObject |

s : ’_&_[T, ’none.Configuration], AtS >) .
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Then, depending on whether the object is at the same location, the location
is the home location of the object to be reached, etc., we have rules dealing
with the different cases.

The simplest case is the one in which the object to be reached is at the
same location.

rl [go-find-loc] :

go-find(O, L’, < O’ : V@MobileObject | AtS’ >)

< L : V@RootObject | state : active, guests : (O, OS), AtS >

=> < L : V@RootObject | state : active, guests : (O, OS), AtS >

< O’ : V@MobileObject | AtS’ > .

The following rule deals with the case in which, although the location is
the home of the object it is trying to reach, such an object is currently not at
it, and therefore the message must be forwarded appropriately, assuming that
the forwarding information in the home location is better than the tentative
one—the forwarding can take place only if there is an updated forwarding
information.

crl [go-find-loc] :

go-find(o(L, N), L’, < O : V@MobileObject | AtS’ >)

< L : V@RootObject |

state : active, guests : (O, OS), forward : F, AtS >

=> < L : V@RootObject |

state : active, guests : OS, forward : F, AtS >

Send(p1(F[N]), L,

go-find(o(L, N), p1(F[N]), p2(F[N]),

< O : V@MobileObject | AtS’ >))

if not o(L, N) in (O, OS) /\ p1(F[N]) =/= L .

In case the tentative location is the location where the go-find message
is generated, if the object to be reached is not at such a location and it is not
the home location for such an object, then the go-find message is sent to its
home location.

crl [go-find-loc] :

go-find(o(L’, N), L, < O : V@MobileObject | AtS’ >)

< L : V@RootObject | state : active, guests : (O, OS), AtS >

=> < L : V@RootObject | state : active, guests : OS, AtS >

Send(L’, L,

go-find(o(L’, N), L’, (null).Maybe{Nat},

< O : V@MobileObject | AtS’ >))

if not o(L’, N) in (O, OS) /\ L =/= L’ .

If the object to be reached is not at the current location and it is not the
home location nor the tentative one, then the go-find message is sent to the
tentative location.

crl [go-find-loc] :

go-find(o(L’, N), L’’, < O : V@MobileObject | AtS’ >)
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< L : V@RootObject | state : active, guests : (O, OS), AtS >

=> < L : V@RootObject | state : active, guests : OS, AtS >

Send(L’’, L,

go-find(o(L’, N), L’’, (null).Maybe{Nat},

< O : V@MobileObject | AtS’ >))

if not o(L’, N) in (O, OS) /\ L =/= L’ /\ L =/= L’’ .

When a go-find message reaches the tentative location it was addressed
to, depending on whether the object the message is trying to find is at such
a location or not, the mobile object will be put into the configuration or for-
warded. As in the arrive-loc rule (see above), the forwarding information is
then updated. In addition, if the message requires to be forwarded, this will be
done towards the location the mobile object is at according to the forwarding
information in its home location, or to such a home location depending on
whether it is at its home location or not.

rl [arrive-find-loc] :

*** the object has been reached in its home location

go-find(o(L, N), L’, H,

< o(L’, N’) : V@MobileObject | hops : N’’, AtS’ >)

< L’ : V@RootObject |

state : active, guests : (o(L, N), OS), forward : F, AtS >

=> < L’ : V@RootObject |

state : active, guests : (o(L, N), o(L’, N’), OS),

forward : insert(N’, (L’, N’’ + 1), F), AtS >

< o(L’, N’) : V@MobileObject | hops : N’’ + 1, AtS’ > .

crl [arrive-find-loc] :

*** the object has been reached in the tentative location,

*** which is not its home location

go-find(o(L, N), L’, H,

< o(L’’, N’) : V@MobileObject | hops : N’’, AtS >)

< L’ : V@RootObject |

state : active, guests : (o(L, N), OS), forward : F, AtS’ >

=> < L’ : V@RootObject |

state : active, guests : (o(L, N), o(L’’, N’), OS),

forward : F, AtS’ >

< o(L’’, N’) : V@MobileObject | hops : N’’ + 1, AtS >

Send(L’’, L’, to L’’ @ (L’, N’’ + 1) { N’ })

if L’ =/= L’’ .

crl [arrive-find-loc] :

go-find(o(L, N), L, (null).Maybe{Nat},

< o(L’’, N’) : V@MobileObject | AtS >)

< L : V@RootObject |

state : active, guests : OS, forward : F, AtS’ >

=> < L : V@RootObject |

state : active, guests : OS, forward : F, AtS’ >

Send(p1(F[N]), L,
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go-find(o(L, N), p1(F[N]), p2(F[N]),

< o(L’’, N’) : V@MobileObject | AtS >))

if not(o(L, N) in OS) .

crl [arrive-find-loc] :

go-find(o(L, N), L, N’’, < o(L’’, N’) : V@MobileObject | AtS’ >)

< L : V@RootObject |

state : active, guests : OS, forward : F, AtS >

=> < L : V@RootObject |

state : active, guests : OS, forward : F, AtS >

Send(p1(F[N]), L,

go-find(o(L, N), p1(F[N]), p2(F[N]),

< o(L’’, N’) : V@MobileObject | AtS’ >))

if not(o(L, N) in OS) /\ p2(F[N]) > N’’ .

crl [arrive-find-proc] :

go-find(o(L, N), L’, H, < o(L’’, N’) : V@MobileObject | AtS >)

< L’ : V@RootObject | state : active, guests : OS, AtS’ >

=> < L’ : V@RootObject | state : active, guests : OS, AtS’ >

Send(L, L’,

go-find(o(L, N), L, (null).Maybe{Nat},

< o(L’’, N’) : V@MobileObject | AtS >))

if not(o(L, N) in OS) /\ L =/= L’ .

crl [arrive-find-proc] :

go-find(O, L, H, < O’ : V@MobileObject | AtS >)

< L’ : V@RootObject | state : active, AtS’ >

=> < L’ : V@RootObject | state : active, AtS’ >

Send(L, L’, go-find(O, L, H, < O’ : V@MobileObject | AtS >))

if L =/= L’ .

17.3.4 The creation of mobile objects

When an object (in the inner configuration of a mobile object, as part of the
application code) wants to create a new mobile object, it sends a newo message
to the system (by putting it in the second component, the outgoing tray, of its
state). The newo message takes as arguments (the metarepresentation of) a
module M , a configuration C (which will be the initial configuration to be put
in the belly of the mobile object to be created, and which should be a valid
term in the module M), and the provisional identifier of the main object in the
configuration C. The first action accomplished by the system when it detects
the newo message is to create a new mobile object with the configuration C as
its state and the module M as its code, and then to send a start-up message
to the main object in C with its new name, so we guarantee that its name
coincides with the name of the mobile object it is in. Let us first recall that
newo is defined in the MOBILE-OBJECT-INTERFACE module as follows:

op newo : Module Configuration Oid -> Msg [ctor msg].
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First, as for the other Mobile Maude commands, we need to provide rules
for pulling out newo commands. As for the to_:_ message in Section 17.3.2,
we need three rules to cover the different cases.

rl [message-out-newo] :

< O : V@MobileObject | s : ’_&_[T, ’newo[T’, T’’, T’’’]], AtS >

=> < O : V@MobileObject | s : ’_&_[T, ’none.Configuration], AtS >

newo(downTerm(T’, errorModule), T’’, T’’’) .

rl [message-out-newo] :

< O : V@MobileObject |

s : ’_&_[T, ’__[’newo[T’, T’’, T’’’], T’’’’]], AtS >

=> < O : V@MobileObject | s : ’_&_[T, T’’’’], AtS >

newo(downTerm(T’, errorModule), T’’, T’’’) .

crl [message-out-newo] :

< O : V@MobileObject |

s : ’_&_[T, ’__[’newo[T’, T’’, T’’’], T’’’’, TL]], AtS >

=> < O : V@MobileObject | s : ’_&_[T, ’__[T’’’’, TL]], AtS >

newo(downTerm(T’, errorModule), T’’, T’’’)

if TL =/= empty .

Before creating the mobile object, we check that the initial state given to
the newo command as second argument together with the start-up message
is a valid configuration.

When a mobile object is created, its number of hops is set to zero, and the
forwarding information in the root object at its parent location is initialized
as expected—with its home location as the location it is at and zero as its
number of hops. Note that the value initially given to the gas attribute of the
new mobile object is 100, and that its identifier is included in the set of guests
of its root object.

rl [create-object] :

newo(MOD, T, T’)

< L : V@RootObject |

cnt : N, guests : OS, forward : F, state : active, AtS >

=> if sortLeq(MOD,

leastSort(MOD,

’__[T, ’to_:_[T’, ’start-up[upTerm(o(L, N))]]]),

’Configuration)

or

sortLeq(MOD,

’Configuration,

leastSort(MOD,

’__[T, ’to_:_[T’, ’start-up[upTerm(o(L, N))]]]))

then < L : V@RootObject | cnt : N + 1,

guests : (o(L, N), OS),

forward : insert(N, (L, 0), F),

state : active, AtS >
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< o(L, N) : MobileObject | mod : MOD,

s : ’_&_[’__[T,

’to_:_[T’, ’start-up[upTerm(o(L, N))]]],

’none.Configuration],

gas : 100,

hops : 0 >

else < L : V@RootObject | cnt : N, guests : OS, forward : F,

state : active, AtS >

fi .

17.3.5 Mobile object destruction

After it has completed its task, a mobile object’s inner object may request
the death of its container mobile object. The rule message-out-kill directly
destroys the mobile object with the kill message in its outgoing messages tray
(it must be the only one, so that all other messages have been previously han-
dled). However, its home location must be informed, so that the forwarding in-
formation is appropriately updated. The first two mobile-object-dead rules
involve the root object of the process the killed mobile object was at. If the ob-
ject is destroyed at its home location, the information can be directly updated;
if the process is not its home location, the second mobile-object-dead rule
just removes the object’s identifier from its guests list and sends a to_dead{_}

message to inform its home location. The third mobile-object-dead rule
handles the message in intermediate locations, just forwarding it, and the last
one updates the forward attribute of its home location.

rl [message-out-kill] :

< o(L, N) : V@MobileObject | s : ’_&_[T, ’kill.Msg], AtS >

=> to L dead { N } .

rl [mobile-object-dead] :

to L dead { N }

< L : V@RootObject |

guests : (o(L, N), OS), forward : ((N |-> (L, N’)), F), AtS >

=> < L : V@RootObject | guests : OS, forward : F, AtS > .

crl [mobile-object-dead] :

to L dead { N }

< L’ : V@RootObject | guests : OS, AtS >

=> < L’ : V@RootObject | guests : OS, AtS >

Send(L, L’, to L dead { N })

if L’ =/= L /\ not o(L, N) in OS .

crl [mobile-object-dead] :

to L’ dead { N }

< L : V@RootObject | guests : (o(L’, N), OS), AtS >

=> < L : V@RootObject | guests : OS, AtS >

Send(L’, L, to L’ dead { N })

if L =/= L’ .



554 17 Mobile Maude

crl [mobile-object-dead] :

to L dead { N }

< L : V@RootObject |

guests : OS, forward : ((N |-> (L’, N’)), F), AtS >

=> < L : V@RootObject | guests : OS, forward : F, AtS >

if not o(L, N) in OS .

17.4 Mobile Maude Architecture

Once the semantics of Mobile Maude has been presented, in this section we
show how locations are connected by means of buffered sockets, the external
objects explained in Section 11.4.2.

The specification of Mobile Maude presented in the previous sections al-
lows different configurations of processes. As an example, we present here
a very simple client/server architecture. We distinguish clients and servers
by declaring two subclasses of RootObject, namely, ServerRootObject and
ClientRootObject, with no additional attributes, although with different be-
havior.7

classes ClientRootObject ServerRootObject .

subclasses ClientRootObject ServerRootObject < RootObject .

The architecture we present here consists in a process with a server root
object, and several processes with client root objects. The server is connected
to all clients, and each client is connected only to the server. If a mobile object
residing in a client process—a process with a client root object in it—wants to
move to (or send a message to a mobile object in) another client process, then
it will be sent to the server process, and from there to its final destination.
That is, we have a very simple star network, with a server root object in the
middle redirecting all messages.

The server root object plays the server role, and offers its services on a
port port. It creates a server socket with the following connect rule.

rl [connect] :

< O : V@ServerRootObject | state : idle, AtS >

=> < O : V@ServerRootObject | state : waiting-connection, AtS >

CreateServerTcpSocket(socketManager, O, port, 5) .

Note that it goes from state idle to waiting-connection, so this rule
is applied only once. The response is handled by the rule connected below.

7 We use here the Full Maude notation for defining subclasses (see Section 21.1.3);
the corresponding declarations in Core Maude are:

sorts ClientRootObject ServerRootObject .

subsorts ClientRootObject ServerRootObject < RootObject .

op ClientRootObject : -> ClientRootObject [ctor] .

op ServerRootObject : -> ServerRootObject [ctor] .
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Once it receives the CreatedSocket message, it becomes active and is ready
to accept clients. It could also result in a socketError message.

rl [connected] :

CreatedSocket(O, SOCKET-MANAGER, SOCKET)

< O : V@ServerRootObject | state : waiting-connection, AtS >

=> < O : V@ServerRootObject | state : active, AtS >

AcceptClient(SOCKET, O) .

There are two things one can do with a server socket: accepting a client
or closing it.

rl [acceptedClient] :

AcceptedClient(l(IP, N), SOCKET, IP’, NEW-SOCKET)

< l(IP, N) : V@ServerRootObject | state : active, AtS >

=> < l(IP, N) : V@ServerRootObject | state : active, AtS >

AcceptClient(SOCKET, l(IP, N))

Receive(NEW-SOCKET, l(IP, N))

Send(NEW-SOCKET, l(IP, N), msg2string(new-socket(l(IP, N)))) .

In the rule acceptedClient, in addition to sending AcceptClient and
Receive messages indicating, respectively, that it is ready to accept new
clients through the server socket and messages through the new socket, the
server root object that gets the AcceptedClient message sends a start-up
message new-socket communicating its identifier. Notice that, as we will see
below, the client knows the address and port of the server root object, but
not its identity. In this first message the server sends its name to its client,
allowing the client to establish the association between the socket and the
identity of the object in it.

At any time, a server root object can receive a message communicating
the closing of a socket.

crl [closedSocket] :

ClosedSocket(SOCKET, SOCKET, DATA)

< O : V@ServerRootObject |

neighbors : LSPF, defNeighbor : O’, AtS >

=> < O : V@ServerRootObject |

neighbors : remove(SOCKET, LSPF), defNeighbor : O’, AtS >

if SOCKET =/= O’ .

crl [closedSocket] :

ClosedSocket(SOCKET, SOCKET, DATA)

< O : V@ServerRootObject |

neighbors : LSPF, defNeighbor : SOCKET, AtS >

=> < O : V@ServerRootObject | neighbors : remove(SOCKET, LSPF),

defNeighbor : null, AtS > .

where remove is a function that removes all entries indexed by the socket
identifier given as first argument from the map given as second argument.
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Given the address of a server root object—a constant server-address—
and a port port, the first thing a client root object does is to request a socket
connection.

rl [connect] :

< O : V@ClientRootObject | state : idle, AtS >

=> < O : V@ClientRootObject | state : waiting-connection, AtS >

CreateClientTcpSocket(socketManager, O, server-address, port) .

As done by server root objects, clients go to the waiting-connection state
as a result of the application of this rule. The response to a client root object’s
socket connection request is handled by the following rule connected, where
a client also sends a new-socket message right after the socket is created.

rl [connected] :

CreatedSocket(O, SOCKET-MANAGER, SOCKET)

< l(IP, N) : V@ClientRootObject |

state : waiting-connection, AtS >

=> < l(IP, N) : V@ClientRootObject | state : active, AtS >

Receive(SOCKET, l(IP, N))

Send(SOCKET, l(IP, N), msg2string(new-socket(l(IP, N)))) .

The attributes neighbors and defNeighbor are key for sending messages
through the appropriate sockets. To initialize these attributes, as explained
above, the first message sent through a socket after its creation is the message
new-socket. When it is received, depending on whether the receiver is a client
or a server, and whether there is already a default neighbor or not, one action
or another is taken.

To avoid unintended loops in the delivering of messages, we assume that
server root objects do not have default neighbors. For clients, the first con-
nection is made the default one.

crl [received] :

---- the first connection is made the default one

Received(O, SOCKET, DATA)

< O : V@RootObject |

state : active, neighbors : empty, defNeighbor : null, AtS >

=> < O : V@RootObject | state : active,

neighbors : insert(L, SOCKET, empty),

defNeighbor : if V@RootObject :: ServerRootObject

then null

else SOCKET

fi,

AtS >

Receive(SOCKET, O)

if new-socket(L) := string2msg(DATA) .

crl [received] :

Received(O, SOCKET, DATA)
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< O : V@RootObject | state : active, neighbors : LSPF, AtS >

=> < O : V@RootObject | state : active,

neighbors : insert(L, SOCKET, LSPF), AtS >

Receive(SOCKET, O)

if LSPF =/= empty /\ new-socket(L) := string2msg(DATA) .

If it is not a new-socket message, then the message is just left in the
configuration.

crl [received] :

Received(O, SOCKET, DATA)

< O : V@RootObject | state : active, AtS >

=> < O : V@RootObject | state : active, AtS >

string2msg(DATA)

Receive(SOCKET, O)

if not new-socket(DATA) .

op new-socket : String -> Bool .

ceq new-socket(DATA) = true if new-socket(L) := string2msg(DATA) .

eq new-socket(DATA) = false [owise] .

Note the way we define the new-socket operator to check that the message
is not a new-socket message.

Sending of messages through the appropriate sockets is responsibility of the
root objects, which use the information in their neighbors and defNeighbor

attributes to do it. Since the Send message takes a String as argument, mes-
sages need to be converted into strings. The auxiliary functions msg2string

and string2msg, whose specification is not shown here, do the conversions in
both ways.

crl [changeSend] :

Send(L, O’’, MSG)

< O : V@RootObject |

state : active, neighbors : LSPF, defNeighbor : O’, AtS >

=> < O : V@RootObject |

state : active, neighbors : LSPF, defNeighbor : O’, AtS >

Send(O’, O’’, msg2string(MSG))

if LSPF[L] == undefined /\ O’ =/= null .

crl [changeSend] :

Send(L, O’, MSG)

< O : V@RootObject | state : active, neighbors : LSPF, AtS >

=> < O : V@RootObject | state : active, neighbors : LSPF, AtS >

Send(LSPF[L], O’, msg2string(MSG))

if LSPF[L] =/= undefined .

rl [messageSent] :

Sent(O, O’)

< O : V@RootObject | AtS >

=> < O : V@RootObject | AtS > .



558 17 Mobile Maude

17.5 A buying printers example

In this section we present a simple application to illustrate how mobile appli-
cation code can be written in Maude and can be wrapped in mobile objects.
In this example we have printers, buyers, and sellers; a buyer agent visits sev-
eral printer sellers, who provide him information on their printers. The buyer
looks for the cheapest printer, and once he has visited all the sellers, he goes
back to the location of the seller offering the best price.

From the previous description, we can identify different actors, which may
move freely from one process to another, and therefore could be represented as
mobile objects. In the Mobile Maude approach the specification of the system
consists of objects embedded inside mobile objects, which communicate with
each other via messages. In addition to the term representing its state, each
mobile object carries the code managing the behavior of the configuration of
objects and messages representing such a state. The main difference with the
usual specification of systems in Maude is that these objects must be aware of
the fact that they are inside mobile objects, and that in order to communicate
with (objects in) other mobile objects or to use some of the system messages
available, they must follow the appropriate protocol.

In our sample application we have two different classes of mobile objects:
sellers and buyers. Although in the simple example modeled here sellers do
not move, they should be mobile objects, because they communicate with
other mobile objects, and therefore have to be recognized as mobile objects
by the Mobile Maude system. A buyer visits several sellers. The buyer asks
each seller he visits for the description of the seller’s printer, represented here
only by its price. The seller sends back this information, which the buyer keeps
if it corresponds to a better (cheaper) printer. Otherwise he discards it. Once
the buyer has visited all the sellers he knows, he goes back to the location of
the best offer.

We represent sellers and buyers as objects of respective classes Seller and
Buyer. Such objects in the application code will then be embedded as inner
objects of their corresponding mobile objects.

The class Seller has an attribute description with the printer price.
We use here the Full Maude notation for defining classes. The corresponding
declarations in Core Maude are given in the SELLER module below.

class Seller | description : Nat .

Sellers receive messages of the form get-printer-price(B), with B the
identifier of the buyer mobile object sending the message. A seller can send
messages of the form printer-price(N), with N a natural number represent-
ing the printer’s price. Both are defined with sort Contents, declared in the
module MOBILE-OBJECT-INTERFACE (see Section 17.2). A seller’s behavior is
represented by the get-des rewrite rule: When a seller receives a description
(price) request, it sends the description back to the seller. The whole module
defining the sellers in Maude is as follows:
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mod SELLER is

including MOBILE-OBJECT-INTERFACE .

sort Seller .

subsort Seller < Cid .

op Seller : -> Seller .

var V@Seller : Seller .

op description :_ : Nat -> Attribute [ctor] .

op get-printer-price : Mid -> Contents [ctor] .

op printer-price : Nat -> Contents [ctor] .

vars S B : Oid .

var N : Nat .

var AtS : AttributeSet .

var Conf : Configuration .

rl [get-des] :

Conf (to S : get-printer-price(B))

< S : V@Seller | description : N, AtS > & none

=> Conf < S : V@Seller | description : N, AtS >

& (to B : printer-price(N)) .

endm

Note the use of the _&_ constructor. Since the printer description is sent to
an object outside the mobile object in which the Seller object is located, the
message is placed in the righthand outgoing tray. The rule get-des is applied
only if the outgoing messages tray is empty, making sure in this way that
any previous outgoing message has been handled. The _&_ operator is the top
operator of the term representing the state of the mobile object. Therefore,
since there may be other objects and messages in the configuration in its
lefthand side component, we include a variable Conf of sort Configuration

to match the rest. Note also how an object may communicate with objects
in other mobile objects, which may be in different processes, in a completely
transparent way.

A buyer has an attribute sellers with a list of the identifiers of the known
seller mobile objects. It also has an attribute status with its current state:
onArrival, asking, done, or buying. Finally, the buyer keeps information
about the printer with the best price in the attributes price and bestSeller

of sorts, respectively, Maybe{Nat} and Maybe{Oid}. Initially, these two last
attributes are null.

class Buyer | sellers : List{Mid},

status : Status,

price : Maybe{Nat},

bestSeller : Maybe{Oid} .

The BUYER module that follows describes the buyers class.
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mod BUYER is

inc MOBILE-OBJECT-INTERFACE .

pr LIST{Mid} * (op __ to _._, op nil to no-id) .

pr MAYBE{Nat} * (op maybe to null) .

pr MAYBE{Oid} * (op maybe to null) .

sort Status .

ops onArrival asking done buying : -> Status [ctor] .

sort Buyer .

subsort Buyer < Cid .

op Buyer : -> Buyer .

var V@Buyer : Buyer .

op sellers :_ : List{Mid} -> Attribute [ctor gather(&)] .

op status :_ : Status -> Attribute [ctor] .

op price :_ : Maybe{Nat} -> Attribute [ctor] .

op bestSeller :_ : Maybe{Oid} -> Attribute [ctor] .

op get-printer-price : Mid -> Contents [ctor] .

op printer-price : Nat -> Contents [ctor] .

var S S’ B : Oid .

var OS : List{Mid} .

var AtS : AttributeSet .

vars N N’ : Nat .

var L : Loc .

The first rewrite rule, move, handles the travels of the buyer to request
information on printers: if it is not in the middle of a request (its status is
done) and there is at least one seller name in the sellers attribute, it asks
the system to take it to the host where the next seller is located.

rl [move] :

< B : V@Buyer | sellers : o(L,N) . OS, status : done, AtS > Conf

& none

=> < B : V@Buyer |

sellers : o(L, N) . OS, status : onArrival, AtS > Conf

& go-find(o(L, N), L) .

Since Mobile Maude guarantees that mobile objects moving from one pro-
cess to another are frozen (see Section 17.3.3), we know that, once the go-find
command is given in the move rule, the buyer object will not be able to do
anything until the mobile object in which it is embedded has reached the
seller’s process. Therefore, since there is no rule taking a Buyer object in
onArrival state and a non-empty outgoing messages tray, this object will
not do anything until it reaches its destination.

On arrival, the buyer asks the seller for the printer description.
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rl [onArrival] :

< B : V@Buyer | sellers : S . OS, status : onArrival, AtS > Conf

& none

=> < B : V@Buyer | sellers : S . OS, status : asking, AtS > Conf

& (to S : get-printer-price(B)) .

When the printer price arrives, if it corresponds to the first time the buyer
is asking for a price (the attribute price is null) the buyer keeps it as the
best known price; otherwise, it compares it with the best known printer and
updates its information if needed. Notice that the first identifier in the list
of known sellers gives us the identifier of the seller it is currently interacting
with.

rl [new-des] :

(to B : printer-price(N))

< B : V@Buyer | sellers : S . OS,

price : null, status : asking, bestSeller : null, AtS >

=> < B : V@Buyer | sellers : OS,

price : N, status : done, bestSeller : S, AtS > .

rl [new-des] :

(to B : printer-price(N))

< B : V@Buyer | sellers : S . OS,

price : N’, status : asking, bestSeller : S’, AtS >

=> if (N < N’) then

< B : V@Buyer | sellers : OS,

price : N, status : done, bestSeller : S, AtS >

else < B : V@Buyer | sellers : OS,

price : N’, status : done, bestSeller : S’, AtS >

fi .

Notice that since these last rules do not imply the sending of any message
out of the mobile object, we do not need to use the _&_ operator and the
variable Conf to encompass the whole state.

Finally, when the list of remaining sellers is empty, the buyer travels to
find the best buyer and reaches the buying status.

rl [buy-it] :

< B : V@Buyer | sellers : no-id,

status : done, bestSeller : o(L, N), AtS >

Conf & none

=> < B : V@Buyer | sellers : no-id,

status : buying, bestSeller : o(L, N), AtS >

Conf & go-find(o(L,N), L) .

endm

Let us see an example of a distributed configuration, and how we can
rewrite it by using the erewrite command. Our sample buyers/sellers config-
uration, shown in Figure 17.2, is constituted by three located configurations,
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l(IP,2):ClientRootObject 

o(l(IP,2),0):Seller 

15 

l(IP,0):ServerRootObject 

o(l(IP,0),0):Seller 

o(l(IP,1),0):Buyer 

30 

 7. get-price 

8. printer-price(30) 

o(l(IP,1),0):Buyer 

  4. get-price 

5. printer-price(15) 

l(IP,1):ClientRootObject 

o(l(IP,1),1):Seller 

o(l(IP,1),0):Buyer 

1. get-price 

2. printer-price(20) 

20 

3 

6 

9 

 

Fig. 17.2. Buyers and sellers configuration

each one to be executed in a Maude process—in this case the three processes
run on the same machine, with IP address IP. The first located configuration
(shown in the middle of the figure) contains a ServerRootObject, with iden-
tifier l(IP, 0), and a mobile object with identifier o(l(IP, 0), 0) with a
Seller in its belly. The Maude command to introduce the initial state of this
configuration is as follows:

erew <>

< l(IP, 0) : ServerRootObject |

cnt : 1,

guests : o(l(IP, 0), 0),

forward : 0 |-> (l(IP, 0), 0),

neighbors : empty,

state : idle,

defNeighbor : null >

< o(l(IP, 0), 0) : MobileObject |

mod : upModule(’SELLER, false),

s : upTerm(< o(l(IP, 0), 0) : Seller | description : 30 >

& none),

gas : 200,

hops : 0 > .

Note how the function upModule is used to obtain the metarepresentation
of the module SELLER, and how the function upTerm is used to metarepresent
the initial state of the inner object.
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This configuration must be executed before the other two ones, because it
contains the object ServerRootObject, which is in the central process of the
star network.

The second located configuration (on the left in the figure) contains a
ClientRootObject, a Buyer and a Seller with cheaper printers. The Maude
command, introduced in a different Maude process, is the following one:

erew <>

< l(IP, 1) : ClientRootObject |

cnt : 2,

guests : o(l(IP, 1), 0) . o(l(IP, 1), 1),

forward : 0 |-> (l(IP, 1), 0),

1 |-> (l(IP, 1), 0),

neighbors : empty,

state : idle,

defNeighbor : null >

< o(l(IP, 1), 0) : MobileObject |

mod : upModule(’BUYER, false),

s : upTerm(< o(l(IP, 1), 0) : Buyer |

price : null,

status : done,

bestSeller : null,

sellers : o(l(IP, 1), 1) .

o(l(IP, 0), 0) .

o(l(IP, 2), 0) >

& none),

gas : 200,

hops : 0 >

< o(l(IP, 1), 1) : MobileObject |

mod : upModule(’SELLER, false),

s : upTerm(< o(l(IP, 1), 1) : Seller | description : 20 >

& none),

gas : 200,

hops : 0 > .

Finally, the third located configuration (on the right) contains another
ClientRootObject and a Seller with the cheapest printers.

erew <>

< l(IP, 2) : ClientRootObject |

cnt : 1,

guests : o(l(IP, 2), 0),

forward : 0 |-> (l(IP, 2), 0),

neighbors : empty,

state : idle,

defNeighbor : null >

< o(l(IP, 2), 0) : MobileObject |

mod : upModule(’SELLER,false),

s : upTerm(< o(l(IP, 2), 0) : Seller |
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description : 15 >

& none),

l : l(IP, 2),

gas : 200,

hops : 0 > .

Figure 17.2 shows the order in which the different actions occur. First, the
buyer asks the seller at his same location (price 20). Then, the buyer travels to
the location on the right (through the location with the ServerRootObject)
and asks the seller who sells printers costing 15. After that, the buyer travels
to the middle location and asks the seller there (price 30). Finally, the buyer
travels to the right location to find the seller with the best offer.

The execution of these three commands in three different Maude processes
does not terminate. This is due to the blocking behavior of socket messages
like receive. An execution of a Mobile Maude application is not intended to
terminate, since the located configurations are always waiting for messages
or mobile objects to come in from other configurations. Due to this fact, it
is recommended to execute these applications with the trace on. In this way,
we can see what is happening in each Maude process. When the execution of
a concrete example seems to be finished, because we do not see evolution in
any of the involved processes, we can finish them by typing ^C.

In the first Maude process we obtain the following configuration:

result Configuration:

<>

receive(socket(4), b(socket(4)))

Receive(b(socket(5)), l(IP, 0))

Receive(b(socket(6)), l(IP, 0))

< b(socket(4)) : BufferedSocket |

read : "",

bState : active >

< b(socket(5)) : BufferedSocket |

read : "",

bState : active >

< b(socket(6)) : BufferedSocket |

read : "",

bState : active >

< l(IP, 0) : ServerRootObject |

cnt : 1,

guests : o(l(IP, 0), 0),

forward : 0 |-> (l(IP, 0),0),

state : active,

neighbors : (l(IP, 1) |-> b(socket(5)),

l(IP, 2) |-> b(socket(6))),

defNeighbor : null >

< o(l(IP, 0), 0) : MobileObject |

mod : mod_is_sorts_._____endm(...),

s : (’_&_[’<_:_|_>[’o[’l[’IP.String, ’0.Zero], ’0.Zero],
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’Seller.Seller,

’description‘:_[’s_^30[’0.Zero]]],

’none.Configuration]),

gas : 199,

hops : 0 >

In the second Maude process we obtain:

result Configuration:

<>

Receive(b(socket(4)), l(IP, 1))

< b(socket(4)) : BufferedSocket |

read : "",

bState : active >

< l(IP, 1) : ClientRootObject |

cnt : 2,

guests : o(l(IP, 1), 1),

forward : (0 |-> (l(IP, 2),2), 1 |-> (l(IP, 1),0)),

state : active,

neighbors : l(IP, 0) |-> b(socket(4)),

defNeighbor : b(socket(4)) >

< o(l(IP, 1), 1) : MobileObject |

mod : mod_is_sorts_._____endm(...),

s : (’_&_[’<_:_|_>[

’o[’l[’IP.String, ’s_[’0.Zero]], ’s_[’0.Zero]],

’Seller.Seller,

’description‘:_[’s_^20[’0.Zero]]],

’none.Configuration]),

gas : 199,

hops : 0 >

And in the third Maude process we obtain:

result Configuration:

<>

Receive(b(socket(4)), l(IP, 2))

< b(socket(4)) : BufferedSocket |

read : "",

bState : active >

< l(IP, 2) : ClientRootObject |

cnt : 1,

guests : (o(l(IP, 1), 0), o(l(IP, 2), 0)),

forward : 0 |-> (l(IP, 2),0),

state : active,

neighbors : l(IP, 0) |-> b(socket(4)),

defNeighbor : b(socket(4)) >

< o(l(IP, 1), 0) : MobileObject |

mod : mod_is_sorts_._____endm(...),

s : (’_&_[’<_:_|_>[’o[’l[’IP.String, ’s_[’0.Zero]], ’0.Zero],

’Buyer.Buyer,’_‘,_[
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’bestSeller‘:_[

’o[’l[’IP.String, ’s_^2[’0.Zero]], ’0.Zero]],

’price‘:_[’s_^15[’0.Zero]],

’sellers‘:_[’no-id.List‘{Mid‘}],

’status‘:_[’buying.Status]]],

’none.Configuration]),

gas : 193,

hops : 2 >

< o(l(IP, 2), 0) : MobileObject |

mod : mod_is_sorts_._____endm(...),

s : (’_&_[’<_:_|_>[

’o[’l[’IP.String, ’s_^2[’0.Zero]], ’0.Zero],

’Seller.Seller,

’description‘:_[’s_^15[’0.Zero]]],

’none.Configuration]),

gas : 199,

hops : 0 >

Note that the buyer has finished his travel at the same location as that
of the best seller. We can observe in this last state how the buyer has visited
(the processes of) all the sellers, and has the identifier and price of the seller
offering the best price.

17.6 Model checking Mobile Maude applications

Maude’s model checker (see Chapter 13) allows us to prove properties on
Maude specifications when the set of states reachable from an initial state
in such a Maude system module is finite. This is supported in Maude by its
MODEL-CHECKER module and other related modules, which can be found in the
file model-checker.maude distributed with Maude.

The properties to be checked are described by using a specific property
specification logic, namely linear temporal logic (LTL) (see [226, 64] and
Chapter 13), which allows specification of properties such as safety properties
(ensuring that something bad never happens) and liveness properties (ensur-
ing that something good eventually happens). Then, the model checker can
be used to check whether a given initial state, represented by a Maude term,
fulfills a given property.

Using the model checker on Mobile Maude is not easy, however. Mobile
Maude configurations are distributed among several hosts, and therefore the
model checker cannot be used directly to prove properties about these global
configurations. Moreover, we would like to check properties on the application
code, which is metarepresented in the belly of mobile objects. We show in the
following sections how we have addressed both issues. The former problem has
been solved by considering an algebraic specification of the sockets provided
by Maude. The later one has been solved by considering two-level properties,
stating different properties on each of the reflection levels.
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17.6.1 Redefinition of the SOCKET module

To avoid having a distributed configuration made up of processes communicat-
ing via sockets, we provide an algebraic specification of sockets. This allows us
to simulate the distributed configurations in one single Maude process. Note
that the specification of Mobile Maude does not change, we just provide an
algebraic specification of sockets to be used instead of the built-in one. As we
will see in the next section this implies that the initial configurations will have
to have this into account, but neither the Mobile Maude specification nor the
application code have to be changed.

We have redefined the SOCKET module (see Section 11.4.1), simulating
the behavior of sockets on local configurations. This specification expresses
processes—each Maude process represents a local configuration—as terms of
a class Process with a single attribute conf which stores the corresponding
local configuration. We just make Maude processes and sockets be part of the
specification. Thus, terms of sort Process in this new specification work as
hosts in the distributed original version, and message passing is then defined
between processes instead of between hosts.

Thus, we have specified sockets, socket managers, and server sockets to
deal with processes:

• The socket manager is now an instance of a class Manager, with a counter

attribute to name the new sockets.
• Sockets are instances of class Socket with attributes source (the source
Process), target (the target Process), and socketState (the socket
state). Notice that although we talk about source and target, sockets are
bidirectional.
• Server sockets are instances of class ServerSocket with the attributes
address (the server address), port (the server port), and backlog (the
number of queue requests for connection that the server will allow). When
one object wants to create a server, we create one server socket at process
level and the object receives a createdSocket message with the server
socket identifier.

Note that there is no need for a client sockets class, they are only processes, so
to create a client socket we create a socket with target the server and source
the process.

The class Process allows to represent in a single term a whole distributed
configuration. The rest of the above mentioned classes and the rewrite rules de-
fined in the new module SOCKET allow to use the specification of Mobile Maude
with no more changes. So in order to prove a property about a distributed
configuration we have to prove it on the corresponding “local” configuration
by using Processes.
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17.6.2 Two-level atomic propositions for the buying printers
example

To use the model checker we just need to make explicit two things: the in-
tended sort of states, Configuration, and the relevant state predicates, that
is, the relevant LTL atomic propositions (see Section 13.1).

To be able to model check Mobile Maude application code, we propose
defining these predicates at two different levels: the processes level and the
inner objects level. At the processes level we look for inner objects which have
some properties; at the inner objects level we check such properties.

Let us see an example about the buying printers case study. Suppose we
want to prove that the buyer always finds the best price, and that, when he
has visited all sellers, he finishes in the process of the seller who has the best
price. If bestPrice&Seller represents the state predicate asserting that the
buyer is in the process of the seller with the best offer, then the LTL formula
we want to check is <> [] bestPrice&Seller, that is, it is always possible
to reach an state where the property bestPrice&Seller is fulfilled and from
that state the property remains invariant.

The following PRINTERS-PREDS module includes the definition of the
exSeller and exBuyer predicates at the level of the application code.

mod PRINTERS-PREDS is

pr PRINTERS .

including SATISFACTION .

subsort Configuration < State .

var C : Configuration .

vars N N’ : Nat .

vars S B : Oid .

var AtS : AttributeSet .

op exSeller : Nat -> Prop .

op exBuyer : Nat -> Prop .

eq (< S : Seller | description : N, AtS > C) |= exSeller(N)

= true .

eq C |= exSeller(N) = false [owise] .

eq (< B : Buyer | price : N, status : buying, AtS > C)

|= exBuyer(N)

= true .

eq C |= exBuyer(N) = false [owise] .

The minPrice auxiliary operator, declared as frozen, returns the minimum
price offered by the sellers in the given configuration. The function is not
defined on configurations with no seller object.
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op minPrice : Configuration ~> Nat [frozen] .

op minPrice : Configuration Nat -> Nat [frozen] .

eq minPrice(< S : Seller | description : N, AtS > C)

= minPrice(C, N) .

eq minPrice(< S : Seller | description : N, AtS > C, N’)

= minPrice(C, min(N, N’)) .

eq minPrice(C, N) = N [owise] .

endm

The bestPrice&Seller predicate is defined in the MOBILE-PRINTERS-PREDS
module.

mod MOBILE-PRINTERS-PREDS is

pr MOBILE-MAUDE .

pr SATISFACTION .

pr MAYBE{Nat} * (op maybe to null) .

vars C C’ : Configuration .

var N : Nat .

vars O PID : Oid .

vars T T’ : Term .

var AtS : AttributeSet .

subsort Configuration < State .

The bestPrice&Seller predicate is defined using an auxiliary predicate
with the same name but with an argument, (the metarepresentation of) the
best price, obtained by means of the auxiliary function minPrice, which is
introduced below.

op bestPrice&Seller : -> Prop .

op bestPrice&Seller : Nat -> Prop .

eq C |= bestPrice&Seller = C |= bestPrice&Seller(minPrice(C)) .

The definition of bestPrice&Seller(N) recursively traverses all the pro-
cesses, going inside each configuration and looking for a seller with the given
price and a buyer who has it as the best price.

eq ((C < PID : Process | conf : C’ >) |= bestPrice&Seller(N))

= (C |= bestPrice&Seller(N)) or

((C’ |= existsSeller(N)) and (C’ |= existsBuyer(N))) .

eq C |= bestPrice&Seller(N) = false [owise] .

The definitions of the existsSeller(N) and existsBuyer(N) proposi-
tions use the exSeller and exBuyer predicates defined in the PRINTERS-PREDS
module. Notice that the MOBILE-PRINTERS-PREDS module is at the metalevel
of PRINTERS-PREDS.
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op existsSeller : Nat -> Prop .

op existsBuyer : Nat -> Prop .

eq ((< O : MobileObject | s : (’_&_[T, T’]), AtS > C)

|= existsSeller(N))

= (getTerm(metaReduce(upModule(’PRINTERS-PREDS, false),

’_|=_[T, ’exSeller[upTerm(N)]])) == ’true.Bool)

or (C |= existsSeller(N)) .

eq C |= existsSeller(N) = false [owise] .

eq (< O : MobileObject | s : (’_&_[T, T’]), AtS > C)

|= existsBuyer(N)

= (getTerm(metaReduce(upModule(’PRINTERS-PREDS, false),

’_|=_[T, ’exBuyer[upTerm(N)]])) == ’true.Bool)

or (C |= existsBuyer(N)) .

eq (C |= existsBuyer(N)) = false [owise] .

The minPrice auxiliary operator, also declared as frozen, returns the min-
imum price offered by the sellers in the configurations in the mobile objects of
the given configuration. The function returns null if there is no mobile object
with a seller.

op min : Maybe{Nat} Maybe{Nat} -> Maybe{Nat} [ditto] .

eq min(null, N) = N .

eq min(N, null) = N .

eq min(null, null) = null .

op minPrice : Configuration -> Maybe{Nat} [frozen] .

eq minPrice(C < PID : Process | conf : C’ >)

= min(minPrice(C), minPrice(C’)) .

eq minPrice(C < O : MobileObject | s : (’_&_[T, T’]), AtS >)

= min(minPrice(C),

downTerm(

getTerm(metaReduce(upModule(’PRINTERS-PREDS, false),

’minPrice[T])),

null)) .

eq minPrice(C) = null [owise] .

endm

Once entered these modules, the Maude command to use the model checker
for examining whether an initial configuration initial fulfills the formula <>

[] bestPrice&Seller is as follows:

Maude> red modelCheck(initial, <> [] bestPrice&Seller) .

result Bool: true
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User Interfaces and Metalanguage Applications

This chapter explains how to use the facilities provided by the predefined mod-
ules META-LEVEL and LOOP-MODE for constructing user interfaces and metalan-
guage applications, in which Maude is used not only to define a domain-specific
language or tool, but also to build an environment for the given language or
tool. In such applications, the LOOP-MODE module can be used to handle the in-
put/output and to maintain the persistent state of the language environment
or tool. This chapter also describes an approach based on actors to endow
Maude with interactive capabilities.

18.1 The LOOP-MODE module

Using object-oriented concepts, we specify in Maude a general input/output
facility provided by the LOOP-MODE module shown below, which extends the
module QID-LIST (see Section 9.10), into a generic read-eval-print loop.

mod LOOP-MODE is

protecting QID-LIST .

sorts State System .

op [_,_,_] : QidList State QidList -> System

[ctor special (...)] .

endm

The operator [_,_,_] can be seen as an object—that we call the loop
object—with an input stream (the first argument), an output stream (the
third argument), and a state (given by its second argument). This read-eval-
print loop provided by LOOP-MODE is a simple mechanism that may not be
maintained in future versions, because the support for communication with
external objects (see Section 11.4) makes it possible to develop more general
and flexible solutions for dealing with input/output in future releases.

Since in the current release only one input stream is supported (the current
terminal), the way to distinguish the input passed to the loop object from
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the input passed to the Maude system—either modules or commands—is by
enclosing them in parentheses. When something enclosed in parentheses is
written after the Maude prompt, it is converted into a list of quoted identifiers.
This is done by the system by first breaking the input stream into a sequence of
Maude identifiers (see Section 3.1) and then converting each of these identifiers
into a quoted identifier by putting a quote in front of it, and appending the
results into a list of quoted identifiers, which is then placed in the first slot
of the loop object. The output is handled in the reverse way, that is, the list
of quoted identifiers placed in the third slot of the loop object is displayed
on the terminal after applying the inverse process of “unquoting” each of
the identifiers in the list. However, the output stream is not cleared at the
time when the output is printed; it is instead cleared when the next input
is entered. We can think of the input and output events as implicit rewrites
that transfer—in a slightly modified, quoted or unquoted form—the input and
output data between two objects, namely the loop object and the “user” or
“terminal” object.

Besides having input and output streams, terms of sort System give us
the possibility of maintaining a state in their second component. This state
has been declared in a completely generic way. In fact, the sort State in
LOOP-MODE does not have any constructors. This gives complete flexibility for
defining the terms we want to have for representing the state of the loop in
each particular application. In this way, we can use this input/output facility
not only for building user interfaces for applications written in Maude, but
also for uses of Maude as a metalanguage, where the object language being
implemented may be completely different from Maude. For each such tool or
language the nature of the state of the system may be completely different.
We can tailor the State sort to any such application by importing LOOP-MODE

in a module in which we define the state structure and the rewrite rules for
changing the state and interacting with the loop.

18.2 User interfaces

In order to generate in Maude an interface for an application P, the first thing
we need to do is to define the language for interaction. This can be done by
defining a data type SignP for commands and other constructs.

As a running example for this chapter, we will specify a basic inter-
face for the vending machine introduced in Section 6.1. First, we define
in the module VENDING-MACHINE-GRAMMAR a language for interacting with
the vending machine. The signature of this module extends the signature of
VENDING-MACHINE-SIGNATURE with operators to represent the valid actions,
namely: $ and q for inserting a dollar or a quarter in the machine; showBasket
and showCredit for showing the items already bought or the remaining credit;
buy1Apple and buy1Cake for buying an apple or a cake; and buy : for buying
a number of pieces of the same item.
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fmod VENDING-MACHINE-GRAMMAR is

protecting VENDING-MACHINE-SIGNATURE .

protecting NAT .

sort Action .

op $ : -> Action .

op q : -> Action .

op showBasket : -> Action .

op showCredit : -> Action .

op buy1Cake : -> Action .

op buy1Apple : -> Action .

op buy_:_ : Item Nat -> Action .

endfm

Next, we define in an extension of the LOOP-MODE module the terms of sort
State representing the state of the loop for this application. In the module
VENDING-MACHINE-INTERFACE below, we define this state as a triple: its first
component is the next action requested by the client (inserting a coin, showing
information about the remaining credit or the items already bought, or buying
one or more items); its second component is the current state of the machine
(the marking of the vending machine, that is, the remaining credit plus the
items already bought); and its third component represents the response of
the machine to the last action requested by the client. The response of the
vending machine will have the form of a message, which can be represented as
a list of quoted identifiers. The constant init denotes the initial state of the
whole system, including the empty input and output streams and the “empty”
initial state of the vending machine.

mod VENDING-MACHINE-INTERFACE is

including LOOP-MODE .

including VENDING-MACHINE-GRAMMAR .

protecting BUYING-STRATS .

protecting CONVERSION .

op <_;_;_> : Action Marking QidList -> State .

op init : -> System .

op idle : -> Action .

eq init = [nil, < idle ; null ; nil >, nil] .

var A : Action .

var I : Item .

var C : Coin .

var M : Marking .

vars QIL QIL’ QIL’’ : QidList .

var N : Nat .

Now we define in this module, using rewrite rules, the interaction of the
state of the vending machine with the loop—and, consequently, with the
client—and the changes produced in the state of the vending machine by the
actions requested by the client. As explained before, the client will request an
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action by enclosing the text in parentheses, which will then be converted into
a list of quoted identifiers and placed in the first slot of the loop object. The
rule in detects when a valid request has been introduced by the user and, if
the vending machine is idle, passes it as the next action to be attempted. To
define the interaction of the state of the vending machine with the client, we
can use the strategies introduced in the BUYING-STRATS module described in
Section 14.6. Recall that BUYING-STRATS includes the META-LEVEL module.

In the rule in below, the operation metaParse checks whether the input
stream corresponds to a term of sort Action. If this is the case, metaParse
returns the metarepresentation of that term, which is then “moved down”
using the META-LEVEL function downTerm (see Section 14.5.1), and is placed
in the action slot of the State triple; otherwise, an error message is placed in
its output.

crl [in] :

[QIL, < idle ; M ; nil >, QIL’]

=> if T:ResultPair? :: ResultPair

then [nil,

< downTerm(getTerm(T:ResultPair?), idle) ; M ; nil >,

QIL’]

else [nil, < idle ; M ; nil >, ’ERROR QIL]

fi

if QIL =/= nil

/\ T:ResultPair?

:= metaParse(upModule(’VENDING-MACHINE-GRAMMAR, false),

QIL, ’Action) .

For the other direction of the interaction, the rule out detects when the
vending machine has a response to be output and, in that case, it places it in
the output slot of the loop object.

crl [out] :

[QIL, < A ; M ; QIL’ >, QIL’’]

=> [QIL, < A ; M ; nil >, QIL’’ QIL’]

if QIL’ =/= nil .

Next, we define the effects of the different actions on the state of the
vending machine. The rules showBasket and showCredit extract the infor-
mation about the remaining credit or the items already bought, and place it
in the output slot of the state; the rule out will then take care of moving it
to the output slot of the loop object. In the definitions of the auxiliary func-
tions showBasket and showCredit, the operation metaPrettyPrint takes the
metarepresentation of a coin or an item, and returns the list of quoted iden-
tifiers that encode the list of tokens produced by pretty-printing the coin or
the item in the module VENDING-MACHINE-SIGNATURE. Coins and items, and,
more generally, markings of a vending machine are metarepresented using the
META-LEVEL function upTerm (see Section 14.5.1).
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op showBasket : Marking -> QidList .

eq showBasket(I M)

= metaPrettyPrint(upModule(’VENDING-MACHINE-SIGNATURE, false),

upTerm(I))

showBasket(M) .

eq showBasket(C M) = showBasket(M) .

eq showBasket(null) = nil .

op showCredit : Marking -> QidList .

eq showCredit(C M)

= metaPrettyPrint(upModule(’VENDING-MACHINE-SIGNATURE, false),

upTerm(C))

showCredit(M) .

eq showCredit(I M) = showCredit(M) .

eq showCredit(null) = nil .

rl [showBasket] :

< showBasket ; M ; nil >

=> < idle ; M ; (’\u ’basket: ’\o showBasket(M) ’\n) > .

rl [showCredit] :

< showCredit ; M ; nil >

=> < idle ; M ; (’\u ’credit: ’\o showCredit(M) ’\n) > .

The rules labeled insertCoin implement the actions of inserting a dollar
or a quarter in the vending machine. The strategy insertCoin defined in the
module BUYING-STRATS (see Section 14.6) is used to produce the correspond-
ing change in the current marking of the vending machine. Since strategies are
applied at the metalevel, both the marking of the vending machine and the
coin to be inserted must be first metarepresented using again the META-LEVEL

function upTerm.

rl [insertCoin] :

< q ; M ; nil >

=> < idle ;

downTerm(insertCoin(’add-q, upTerm(M)), null) ;

nil > .

rl [insertCoin] :

< $ ; M ; nil >

=> < idle ;

downTerm(insertCoin(’add-$, upTerm(M)), null) ;

nil > .

The rules buy1Cake, buy1Apple, and buyNitems implement the actions of
buying one or more items. The strategy onlyNitems defined in the module
BUYING-STRATS (see Section 14.6) is used to produce the corresponding change
in the current marking of the vending machine. Again, since strategies are
applied at the metalevel, the marking of the vending machine must be first
metarepresented.
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rl [buy1Cake]:

< buy1Cake ; M ; nil >

=> < buy c : 1 ; M ; nil > .

rl [buy1Apple]:

< buy1Apple ; M ; nil >

=> < buy a : 1 ; M ; nil > .

rl [buyNitems]:

< buy c : N ; M ; nil >

=> < idle ;

downTerm(onlyNitems(upTerm(M), ’buy-c, N), null) ;

nil > .

rl [buyNitems]:

< buy a : N ; M ; nil >

=> < idle ;

downTerm(onlyNitems(upTerm(M), ’buy-a, N), null) ;

nil > .

endm

18.3 Using the loop

We illustrate the basic ideas of using the loop with a sample session with the
interface for the vending machine. Once the VENDING-MACHINE-INTERFACE

module has been entered, we must first initialize the loop by setting its initial
state by means of the loop command.

Maude> loop init .

We can inspect the state of the loop with the continue command, abbre-
viated cont, as follows:

Maude> cont .

result System: [nil, < idle ; null ; nil >, nil]

Once the loop has been initialized, we can input any data by writing it
after the prompt enclosed in parentheses. For example,

Maude> ($)

Maude> (showCredit)

credit: $

Maude> ($)

Maude> cont .

result System: [nil, < idle ; $ $ ; nil >, nil]

Maude> (q)
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Maude> (buy1Apple)

Maude> (showBasket)

basket: a

Maude> (showCredit)

credit: $ q q

Maude> ($)

Maude> (buy a : 3)

Maude> (showBasket)

basket: a a a a

Maude> (showCredit)

credit: q

Maude> cont .

result System:

[nil,

< idle ; q a a a a ; nil >,

’\u ’credit: ’\o ’\r ’\! ’q ’\o ’\n]

Note that, as already mentioned, the data in the output stream remains
there after being printed; it is removed at the time of the next input event.

18.4 Metalanguage applications: tokens, bubbles, and
metaparsing

The example presented in the previous sections is a toy example to illustrate
the basic features of the LOOP-MODE module. However, the most interesting
applications of this module are metalanguage applications, in which Maude
is used to define the syntax, parse, execute, and pretty print the execution
results of a given object language or tool. In such applications, most of the
hard work is done by the META-LEVEL module, but handling the input/output
and maintaining the persistent state of the object language interpreter or tool
is done by LOOP-MODE. Full Maude (see Chapter 19) is entirely implemented
in Maude using the methodology explained in this section.

In order to generate in Maude an environment for a language L, including
the case of a language with user-definable syntax, the first thing we need to do
is to define the syntax for L-modules. This can be done by defining a data type
SignL for L-modules, and with auxiliary declarations for commands and other
constructs. Maude provides great flexibility to do this, thanks to its mixfix
front-end and to the use of bubbles (any non-empty list of Maude identifiers).
The intuition behind bubbles is that they correspond to pieces of a module
in a language that can only be parsed once the grammar introduced by the
signature of the module is available.
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The idea is that, for a language that allows modules with user-definable
syntax—as it is the case for Maude itself—it is natural to see its syntax as a
combined syntax at two different levels: what we may call the top-level syntax
of the language, and the user-definable syntax introduced in each module.
The bubble data type allows us to reflect this duality of levels in the syntax
definition by encapsulating portions of (as yet unparsed) text in the user-
definable syntax. Similar ideas have been exploited using ASF+SDF [103,
104].

To illustrate this concept, suppose that we want to define the syntax of
Maude in Maude. Consider the following Maude module:

fmod NAT3 is

sort Nat3 .

op s : Nat3 -> Nat3 .

op 0 : -> Nat3 .

eq s s s 0 = 0 .

endfm

Notice that the lists of characters inside the boxes are not part of the top
level syntax of Maude and therefore should be treated as bubbles until they
are parsed. In fact, they can only be parsed with the grammar associated with
the signature of the module NAT3. In this sense, we say that the syntax for
Maude modules is a combination of two levels of syntax. The term s s s 0,
for example, has to be parsed in the grammar associated with the signature
of NAT3. The definition of the syntax of Maude in Maude must reflect this
duality of syntax levels.

So far, we have talked about bubbles in a generic way. In fact, there can
be many different kinds of bubbles. In Maude we can define different types
of bubbles as built-in data types by parameterizing their definition. Thus, for
example, a bubble of length one, which we call a token, can be defined as
follows:

sort Token .

op token : Qid -> Token

[special (id-hook Bubble (1 1)

op-hook qidSymbol (<Qids> : ~> Qid))] .

Any name can be used to define a bubble sort. It is the special attribute

id-hook Bubble (1 1)

in its constructor declaration that makes the sort Token a bubble sort. The
second argument of the id-hook special attribute indicates the minimum and
maximum length of such bubbles as lists of identifiers. Therefore, Token has
only bubbles of size 1. To specify a bubble of any length we would use the
pair of values 1 and -1. The operator used in the declaration of the bubble, in
this case the operator token, is a bubble constructor that represents tokens
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in terms of their quoted form. For example, the token abc123 is represented
as token(’abc123).

We can define bubbles of any length, that is, non-empty sequences of
Maude identifiers, with the following declarations.

op bubble : QidList -> Bubble

[special

(id-hook Bubble (1 -1)

op-hook qidListSymbol (__ : QidList QidList ~> QidList)

op-hook qidSymbol (<Qids> : ~> Qid))] .

In this case, the system will represent the bubble as a list of quoted iden-
tifiers under the constructor bubble. For example, the bubble ab cd ef is
represented as bubble(’ab ’cd ’ef).

Different types of bubbles can be defined using the id-hook special at-
tribute Exclude, which takes as parameter a list of identifiers to be excluded
from the given bubble, that is, the bubble being defined cannot contain such
identifiers. We can, for example, declare the sort NeTokenList with construc-
tor neTokenList as a list of identifiers, of any length greater than one, ex-
cluding the identifier ‘.’ with the following declarations.

op neTokenList : QidList -> NeTokenList

[special

(id-hook Bubble (1 -1)

op-hook qidListSymbol (__ : QidList QidList ~> QidList)

op-hook qidSymbol (<Qids> : ~> Qid)

id-hook Exclude ( . ))] .

In general, the syntax Exclude (I1 I2 . . . Ik) is used to exclude identifiers
I1, I2, . . . , Ik inside tokens.

We are now ready to give the signature to parse modules such as NAT3

above. The following module MINI-MAUDE-SYNTAX uses the above definitions
of sorts Token, Bubble and NeTokenList to define the syntax of a sublanguage
of Maude, namely, many-sorted, unconditional, functional modules, in which
the declarations of sorts and operators have to be done one at a time, no
attributes are supported for operators, and variables must be declared on-
the-fly.

fmod MINI-MAUDE-SYNTAX is

protecting QID-LIST .

sorts Token Bubble NeTokenList .

op token : Qid -> Token

[special

(id-hook Bubble (1 1)

op-hook qidSymbol (<Qids> : ~> Qid))] .

op bubble : QidList -> Bubble

[special

(id-hook Bubble (1 -1)
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op-hook qidListSymbol (__ : QidList QidList ~> QidList)

op-hook qidSymbol (<Qids> : ~> Qid))] .

op neTokenList : QidList -> NeTokenList

[special

(id-hook Bubble (1 -1)

op-hook qidListSymbol (__ : QidList QidList ~> QidList)

op-hook qidSymbol (<Qids> : ~> Qid)

id-hook Exclude ( . ))] .

sorts Decl DeclList PreModule .

subsort Decl < DeclList .

--- sort declaration

op sort_. : Token -> Decl .

--- operator declaration

op op_: ->_. : Token Token -> Decl .

op op_:_->_. : Token NeTokenList Token -> Decl .

--- equation declaration

op eq_=_. : Bubble Bubble -> Decl .

--- functional module

op fmod_is_endfm : Token DeclList -> PreModule .

op __ : DeclList DeclList -> DeclList [assoc gather(e E)] .

endfm

Notice how we explicitly declare operators that correspond to the top-level
syntax of Maude, and how we represent as terms of sort Bubble those pieces of
the module—namely, terms in equations—that can only be parsed afterwards
with the user-defined syntax. The name of the sort PreModule reflects the
fact that not all terms of this sort do actually represent Maude modules. In
particular, for a term of sort PreModule to represent a Maude module all
the bubbles must be correctly parsed as terms in the module’s user-defined
syntax.

As an example, we can call the operation metaParse, from module
META-LEVEL, with the metarepresentation of the module MINI-MAUDE-SYNTAX

and the previous module NAT3 transformed into a list of quoted identifiers.

Maude> red in META-LEVEL :

metaParse(upModule(’MINI-MAUDE-SYNTAX, false),

’fmod ’NAT3 ’is

’sort ’Nat3 ’.

’op ’s_ ’: ’Nat3 ’-> ’Nat3 ’.

’op ’0 ’: ’-> ’Nat3 ’.

’eq ’s ’s ’s ’0 ’= ’0 ’.

’endfm,

’PreModule) .
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We get the following term of sort ResultPair as a result:

result ResultPair:

{’fmod is endfm[ ’NAT3 ,

’ [’sort .[ ’Nat3 ],

’ [’op : -> .[ ’s , ’Nat3 , ’Nat3 ],

’ [’op :‘-> .[ ’0 , ’Nat3 ],

’eq = .[ ’s ’s ’s ’0 , ’0 ]]], ’PreModule}

Of course, Maude does not return these boxes. Instead, the system returns
the bubbles using their constructor form as specified in their corresponding
declarations. For example, the bubbles ’Nat3 and ’s ’s ’s ’0 are rep-
resented, respectively, as token(’Nat3) and bubble(’s ’s ’s ’0). Maude
returns them metarepresented. The result given by Maude is therefore the
following.

result ResultPair: {

’fmod_is_endfm[’token[’’NAT3.Qid],

’__[’sort_.[’token[’’Nat3.Qid]],

’__[’op_:_->_.[’token[’’s_.Qid],

’neTokenList[’’Nat3.Qid],

’token[’’Nat3.Qid]],

’__[’op_:‘->_.[’token[’’0.Qid], ’token[’’Nat3.Qid]],

’eq_=_.[’bubble[’__[’’s.Qid, ’’s.Qid, ’’s.Qid,’’0.Qid]],

’bubble[’’0.Qid]]]]]],

’PreModule}

The first component of the result pair is a metaterm of sort Term. To con-
vert this term into a term of sort FModule is now straightforward. As already
mentioned, we first have to extract from the term the module’s signature. For
this, we can use an equationally defined function

op extractSignature : Term ~> FModule .

that goes along the term metarepresenting the premodule looking for sort
and operator declarations; these are obtained by means of auxiliary op-
erations extractSorts and extractOpDecls, respectively. Notice that the
operation extractSignature is partial, because it is not well defined for
metaterms of sort Term that do not metarepresent terms of sort PreModule

in MINI-MAUDE-SYNTAX.
Once we have extracted the signature of the module—expressed as a

functional module with no equations and no membership axioms—we can
then build terms of sort EquationSet with an equationally defined operation
solveBubbles (also partial) that recursively replaces each bubble in an equa-
tion with the result of calling metaParse with the already extracted signature
and with the quoted identifier form of the bubble.

op solveBubbles : Term FModule ~> FModule .
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Finally, the partial operation processPreModule takes a term and, if it
metarepresents a term of sort PreModule in MINI-MAUDE-SYNTAX, and, further-
more, the solveBubbles function succeeds in parsing the bubbles in equations
as terms, then it returns a term of sort FModule.

The complete specification of these operations is as follows:

fmod MINI-MAUDE is

protecting META-LEVEL .

vars T T1 T2 T3 : Term .

vars TL TL’ : TermList .

var QI : Qid .

var QIL : QidList .

var F : Qid .

var M : Module .

op processPreModule : Term ~> FModule .

eq processPreModule(T) = solveBubbles(T, extractSignature(T)) .

---- extractSignature

op extractSignature : Term ~> FModule .

op extractSorts : Term ~> SortSet .

op extractOpDecls : Term ~> OpDeclSet .

eq extractSignature(’fmod_is_endfm[’token[QI], T])

= (fmod downTerm(QI, ’error) is

nil

sorts extractSorts(T) .

none

extractOpDecls(T)

none

none

endfm) .

eq extractSorts(’sort_.[’token[T]]) = downTerm(T, ’error) .

eq extractSorts(’__[’sort_.[’token[T1]], T2])

= downTerm(T1, ’error) ; extractSorts(T2) .

ceq extractSorts(F[TL]) = none if F =/= ’__ /\ F =/= ’sort_. .

ceq extractSorts(’__[F[TL], T])

= extractSorts(T)

if F =/= ’sort_. .

eq extractOpDecls(

’op_:_->_.[’token[T1], ’neTokenList[TL], ’token[T2]])

= (op downTerm(T1, ’error) : downTerm(TL, nil)

-> downTerm(T2, ’error) [none] .) .

eq extractOpDecls(’op_:‘->_.[’token[T1],’token[T2]])

= (op downTerm(T1, ’error) : nil -> downTerm(T2, ’error)

[none] .) .
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ceq extractOpDecls(F[TL])

= none

if F =/= ’__ /\ F =/= ’op_:_->_. /\ F =/= ’op_:‘->_. .

eq extractOpDecls(

’__[’op_:_->_.[’token[T1],’neTokenList[TL],’token[T2]], T3])

= (op downTerm(T1, ’error) : downTerm(TL, nil)

-> downTerm(T2, ’error) [none] .

extractOpDecls(T3)) .

eq extractOpDecls(’__[’op_:‘->_.[’token[T1],’token[T2]], T3])

= (op downTerm(T1, ’error) : nil -> downTerm(T2, ’error)

[none] .

extractOpDecls(T3)) .

ceq extractOpDecls(’__[F[TL], T2]) = extractOpDecls(T2)

if F =/= ’op_:_->_. /\ F =/= ’op_:‘->_. .

---- solveBubbles

op solveBubbles : Term FModule ~> FModule .

op solveBubblesAux : Term FModule ~> EquationSet .

op addEqs : FModule EquationSet -> FModule .

eq solveBubbles(’fmod_is_endfm[’token[QI], T], M)

= addEqs(M, solveBubblesAux(T, M)) .

eq solveBubblesAux(’eq_=_.[’bubble[T1], ’bubble[T2]], M)

= (eq getTerm(metaParse(M, downTerm(T1, nil), anyType))

= getTerm(metaParse(M, downTerm(T2, nil), anyType))

[none] .) .

eq solveBubblesAux(’__[’eq_=_.[’bubble[T1], ’bubble[T2]], T3], M)

= (eq getTerm(metaParse(M, downTerm(T1, nil), anyType))

= getTerm(metaParse(M, downTerm(T2, nil), anyType))

[none] .

solveBubblesAux(T3, M)) .

ceq solveBubblesAux(’__[F[TL], T2], M)

= solveBubblesAux(T2, M)

if F =/= ’eq_=_. .

ceq solveBubblesAux(F[TL], M)

= none

if F =/= ’__ /\ F =/= ’eq_=_. .

eq addEqs(fmod QI is

IL:ImportList

sorts SS:SortSet .

SubSorts:SubsortDeclSet

OpDecls:OpDeclSet

MembAxs:MembAxSet

Eqs:EquationSet

endfm,

Eqs’:EquationSet)
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= fmod QI is

IL:ImportList

sorts SS:SortSet .

SubSorts:SubsortDeclSet

OpDecls:OpDeclSet

MembAxs:MembAxSet

(Eqs:EquationSet Eqs’:EquationSet)

endfm .

endfm

We have then the following reductions:

Maude> red in MINI-MAUDE :

extractSignature(

getTerm(metaParse(upModule(’MINI-MAUDE-SYNTAX, false),

’fmod ’NAT3 ’is

’op ’s_ ’: ’Nat3 ’-> ’Nat3 ’.

’sort ’Nat3 ’.

’op ’0 ’: ’-> ’Nat3 ’.

’eq ’s ’s ’s ’0 ’= ’0 ’.

’endfm,

’PreModule))) .

result FModule: fmod ’NAT3 is

nil

sorts ’Nat3 .

none

op ’0 : nil -> ’Nat3 [none] .

op ’s_ : ’Nat3 -> ’Nat3 [none] .

none

none

endfm

Maude> red in MINI-MAUDE :

processPreModule(

getTerm(metaParse(upModule(’MINI-MAUDE-SYNTAX, false),

’fmod ’NAT3 ’is

’sort ’Nat3 ’.

’op ’s_ ’: ’Nat3 ’-> ’Nat3 ’.

’op ’0 ’: ’-> ’Nat3 ’.

’eq ’s ’s ’s ’0 ’= ’0 ’.

’endfm,

’PreModule))) .

result FModule: fmod ’NAT3 is

nil

sorts ’Nat3 .

none

op ’0 : nil -> ’Nat3 [none] .

op ’s_ : ’Nat3 -> ’Nat3 [none] .

none

eq ’s_[’s_[’s_[’0.Nat3]]] = ’0.Nat3 [none] .
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endfm

Maude> red in MINI-MAUDE :

processPreModule(

getTerm(metaParse(upModule(’MINI-MAUDE-SYNTAX, false),

’fmod ’NAT3 ’is

’sort ’Nat3 ’.

’op ’s_ ’: ’Nat3 ’-> ’Nat3 ’.

’op ’0 ’: ’-> ’Nat3 ’.

’eq ’s ’s ’s ’N:Nat3 ’= ’N:Nat3 ’.

’endfm,

’PreModule))) .

result FModule: fmod ’NAT3 is

nil

sorts ’Nat3 .

none

op ’0 : nil -> ’Nat3 [none] .

op ’s_ : ’Nat3 -> ’Nat3 [none] .

none

eq ’s_[’s_[’s_[’N:Nat3]]] = ’N:Nat3 [none] .

endfm

18.5 Interactive Maude

In order for formal tools to be more generally useful it is important that they
can interact with one another via simple, well defined, semantically meaningful
communication interfaces. In addition, it is important for a formal tool to
provide an interactive, graphical means of exploring and analyzing formal
models.

This section describes the IOP+IMaude approach to developing an interac-
tive extension of Maude. It is based on the notion of actors [15, 1] communicat-
ing via asynchronous message passing. In this case the idea is to make Maude
an actor, rather than using Maude to specify a system of actors as illustrated
in Chapters 11, 17, and 21. There are two aspects to making Maude an actor.
One aspect is the communication infrastructure that enables exchanging mes-
sages with other actors. This is provided by IOP (InterOperability Platform).
The other aspect is specifying the actor’s behavior, that is, how messages are
handled. IMaude is a set of Maude modules that provide a general framework
for defining Maude actors.

We begin with a description of the design and implementation of IMaude
in some detail, and provide a simple interactive application, the rewrite actor,
built on top of IMaude. This IMaude actor can run as a standalone actor,
interacting with the user through the LOOP-MODE interface. We then give a
brief description of IOP, and show how to extend the rewrite actor to include
interactions with the filemanager actor, provided in the IOP distribution, to
read and write files, and to save and restore portions of the IMaude state.
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We conclude by showing how the IOP+IMaude combination can be used to
develop an interactive graphical representation of a Maude specification.

IMaude is available from http://www.csl.sri.com/~clt/IMaudeWeb/. It
comes with several library modules, developed to facilitate interaction with
other actors provided with the IOP distribution. It also includes documen-
tation of the code and use scenarios, including the examples discussed be-
low. IOP binaries and documentation are available from the IOP website
http://mcs.une.edu.au/~iop.

Several substantial applications have been based on IOP+IMaude, in-
cluding: a formal model of goal-based autonomous systems, instantiated to
a simple rover (http://www.csl.sri.com/users/denker/remoteAgents/);
an executable model for Strand Space protocol specifications (http://www.
csl.sri.com/users/clt/StrandWeb/); and the Pathway Logic Assistant
(http://pl.csl.sri.com/). The latter is the most substantial application
and has been a key driving force in the development of both IOP and IMaude.
It is briefly described in Section 23.2.8.

18.5.1 IMaude

IMaude is a collection of Maude modules that support writing interactive
Maude applications. Although IMaude can be used in Maude alone for simple
command line interaction, the intended use is as the basis for specifying the
behavior of Maude actors within the IOP framework. In this setting, a Maude
actor can interact not only with the user, but also with other actors, including
actors providing file and socket management services, other Maude actors,
actors providing graphical display services, and other formal tools such as
model checkers, theorem provers, and so on. Applications are developed by
extending the core IMaude system with data structures and rules describing
Maude actor behavior specific to the application.

Here we discuss requirements for specifying actors and give an overview of
the IMaude design. Then we describe the key data structures used to represent
the Maude actor state. IMaude extends the data structure modules with two
modules for processing input: IMAUDE-STATE and SCHEDULER. The module
IMAUDE-STATE defines the rules for managing, initializing, examining, and
resetting the state. The rules for scheduling interactions are defined in the
SCHEDULER module. Finally, we describe the REWRITE module, treating this as
an example of developing a simple Maude actor for interactive rewriting.

Requirements and overview

Implementing an actor behavior requires:

1. an interactive loop that maintains state between interactions; and
2. managing asynchronous interactions with other actors.

Requirement 1 is the most problematic, as the Maude interpreter is stateless
by design. IMaude uses the LOOP-MODE module (see Section 18.1) provided by

http://www.csl.sri.com/~clt/IMaudeWeb/
http://mcs.une.edu.au/~iop
http://www.csl.sri.com/users/denker/remoteAgents/
http://www.csl.sri.com/users/clt/StrandWeb/
http://www.csl.sri.com/users/clt/StrandWeb/
http://pl.csl.sri.com/
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Maude specifically to support writing user interfaces. An alternative would
be the use of socket external objects (see Section 11.4). Although sockets are
somewhat cleaner and more elegant than LOOP-MODE, there are two reasons
why they are not used in the current version of IMaude: sockets were not
available when IMaude was first developed, and, crucially, LOOP-MODE provides
support for parsing and printing Maude terms that is not yet available using
sockets. The need to support asynchronous interaction with multiple actors
suggests a need for task management. Therefore, a Maude actor’s state should
include a representation of the processing state (current and pending tasks).

The objective of supporting very general behavior entails additional re-
quirements, including:

3. extensible data structures for representing state along with functions for
managing state (initialization, update, retrieval, reset), and

4. support for multiple ongoing asynchronous interactions.

IMaude provides two key data types (sorts) to support representation of
an actor’s state: an extensible sort Val to represent data values, and a sort
Request to represent tasks. An IMaude state has the following components:
control, requests, wait4s, environment, and log. The control component con-
tains a description of the request currently being processed or the constant
ready, indicating that no task is currently being processed. Pending tasks
are partitioned into two classes: queued requests, stored in the requests com-
ponent; and tasks waiting to handle incoming messages, stored in the wait4s
component. Wait4 tasks are a kind of continuation; they play the role of either
call-backs or service listeners. The environment component contains a set of
entries mapping descriptors to annotated elements of Val. The log component
is a list of log items; it supports debugging by allowing events and status to
be recorded as requests are processed, without interrupting the processing.
Additional support for debugging is provided by commands for browsing and
resetting state components.

There are two forms of interaction with IMaude: commands and requests.
Commands are typically submitted directly by the user, handled upon receipt,
and generally result in a reply to the user (printed on the terminal or IOP’s
output window). Requests may be submitted by the user, sent in messages by
other actors, or generated by IMaude in the process of handling some other
request. Requests are queued and processed when enabled, possibly resulting
in messages being sent to other actors or additional requests being queued.

IMaude provides rules for interpreting commands, rules for dispatching
incoming messages, as well as rules for selecting requests from the request
queue to process. By queuing requests as they arrive, either directly or as the
result of matching a wait4, and processing them when cycles are available,
incoming messages are not lost and deadlocks resulting from messages that
are not immediately processable are avoided. Thus IMaude provides support
for responsive asynchronous interaction with other actors.
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IMaude data types

As mentioned above, the key sorts used to represent IMaude’s state are Val

and Request. Val is essentially a tagged union of sorts, thus making it easy
to extend. Injection operators (constructors) are used to form a tagged union
rather than simply making sorts such as QidList subsorts of Val to avoid
confusion in, and possible collapse of, the sort hierarchy. In addition, there is
a Boolean function, compat, on Val, that can be used to check whether two
values belong to the same subsort. IMaude defines three Val subsorts: QVal,
SVal, and TVal. Elements of QVal are of the form ql(toks), where toks is a
qid list (i.e., a list of quoted identifiers) and ql is the injection operation, so
that QVal is the image of the sort QidList under ql. Elements of SVal are of
the form sv(s), where s is a string and sv is the injection operation. Elements
of TVal are of the form tm(modname, term), where modname is a qid naming
a module, term is the metarepresentation of a term in that module, and tm is
the injection operation.

In addition to specifying the injection operation, to specify a subsort of
Val it is necessary to give axioms extending the compat function. It is also
convenient to define selectors that extract the injected elements from their
tagged form. For example, the subsort QVal is defined in the functional module
QVAL as follows.

fmod QVAL is

protecting QID-LIST .

extending VAL .

sort QVal .

subsort QVal < Val .

op ql : QidList -> QVal .

eq compat(x:QVal,y:QVal) = true .

var qidl : QidList .

op qvalQidList : QVal -> QidList .

eq qvalQidList(ql(qidl)) = qidl .

endfm

An element of the sort Request has either the form

req(reqid, val, reqQ)

or

creq(reqid, qids, val, reqQ)

where reqid is a qid identifying the request, val is the parameter, an element
of Val, qids is a qid list, and reqQ is a list of requests, possibly empty, to be
used in determining how to continue when the request is processed. We say
that a request is serving as a continuation if it appears in a wait4 or in the
request list of another request. The creq form is used when it is necessary to
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separate parameters supplied to a request serving as a continuation at con-
tinuation time (its qids parameter), from the parameter supplied at request
creation time (its val parameter).

The function supplyPars(reqid, toks) adds the qid list toks to the
second parameter of the request reqid; in the case of a request of the form
req(reqid, val, reqQ), this is only defined if val has the form ql(qids).

An IMaude state has the form

st(control, wait4s, requests, environment, log)

In the following we describe each of the five components.
The control component (sort Control) of an IMaude state reflects what

IMaude is currently doing. An element of sort Control is either the constant
ready or a term of the form

processing(req)

indicating that a request req is currently being processed.
The wait4s component is a set (sort Wait4Set) of elements of sort Wait4.

An element of sort Wait4 has the form

wait4(aname, toks, reqQ)

where aname is the name of an actor from whom IMaude is listening for a
message, and reqQ is a list of requests that specifies what IMaude should do
when such an expected message arrives. The qid list toks indicates the reason
for waiting and is currently just used for debugging purposes. When a mes-
sage arrives from the named actor, the message tokens are added to the qid
list parameter of each request in reqQ, using the function supplyPars, and
the instantiated requests are queued for processing. As mentioned above, an
element of the wait4s component can play the role of a call-back, a standard
technique used in many programming languages for asynchronous communi-
cation, or the role of a server listening for requests.

The requests component is a list of requests (sort RequestQ) waiting to be
scheduled.

The environment component is a set (sort ESet) of entries (sort Entry)
used to store values for later use. An entry has the form

e(etype, ids, notes, val)

where etype, a quoted identifier, is the entry type (typically corresponding to
the value subsort), and ids, a qid list, uniquely identifies the entry amongst
those in the entry set with the same type. The parameter notes of sort Notes
is an annotation of the stored value val. The sort Notes consists of finite maps
from String to Val. It can be used to associate many kinds of information
to a stored value, including: the source, user-defined annotations, and links
between entries. The default value for notes is the empty note set, mt. This
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is formalized by defining an operator e(etype, ids, val) that rewrites to
e(etype, ids, mt, val).

There are several functions for manipulating entry sets, including:

• getEntry(es, etype, ids) yields either the entry identified by the pair
(etype, ids) in the entry set es, or the empty entry set if there is no
such entry;

• removeEntry(es, etype, ids) yields the entry set obtained by remov-
ing the entry in es identified by the pair (etype, ids), if any;

• addEntry(es, etype, ids,notes,val) yields the entry set obtained by
first removing any entry identified by (etype, ids) from es, and then
adding the entry e(etype, ids, notes, val);

• getVal(es,etype,ids,val) returns the value identified by (etype, ids)

if one exists that is compatible with val, and otherwise returns val as
the default.

In the above, es has sort ESet, etype has sort Qid, ids has sort QidList,
notes has sort Notes, and val has sort Val.

Finally, the log component is a list (sort Log) of log items (sort LogItem).
Each log item has the form

log(id, toks, val)

One use of the log component is to record status of interactions with other
actors; another use is to record a trace of interactions.

We note that the collection sorts RequestQ and Log are specified by in-
stantiating the parameterized list module provided in the Maude’s prelude
(see Section 9.12.1). The instantiations use views mapping the element sort of
the parameterized module to Request and LogItem, respectively. Similarly,
the sorts Wait4Set and ESet are instantiations of a multiset module defined
as part of the IMaude utility library. We axiomatize these sorts as multisets,
but maintain the invariant that elements occur at most once, rather than in-
cur the overhead of always trying to remove duplicates. The sort Notes is an
instantiation of the parameterized array module provided in Maude’s prelude
(see Section 9.13.2). The use of parameterized modules greatly simplifies the
specifications.

The IMAUDE-STATE module provides rules defining commands to initialize,
examine, and reset components of the state. The rule ini initializes the control
to ready and leaves the remaining components empty.

op init : -> System .

*** inQ ctl wait4s reqQ es log outQ

rl [ini] : init => [nil, st(ready, mt, nil, mt, nil), nil] .

There are commands to display, via a message to the user, the current
value of a state component, as well as commands to reset to their initial value
each of the different state components. For example,
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• (show control) prints the control component,
• (reset control) resets it to ready,
• (show eset) prints the environment,
• (reset eset) resets it to mt.

There are also commands to show or remove specific entries.

IMaude behavior

The SCHEDULER module provides rules to control the processing of input other
than commands. The first qid of the input queue is used to classify the input
type as a command, a request, or a message expected from a known actor. The
Boolean function isReq is used to determine if a qid is a request identifier.
When a new request is defined, an axiom for isReq must be added so that
it will be properly handled. The rule read.input handles the case in which
the first token is a request identifier. In this case, a request is constructed and
added to the end of the requests component of the state. The token is used as
the first argument to the request constructor and the remaining qids in the
input queue are used as the second argument, tagged as a QVal.

crl [read.input] :

[token InQ, st(ready, wait4s, reqQ, es, log), OutQ]

=> [nil,

st(ready, wait4s, (reqQ req(token, ql(InQ), nil)), es, log),

OutQ]

if isReq(token) .

If the first qid of the input is the name of an actor with a wait4 entry, then
the wait4 entry is removed, and its requests parameter is appended to the
request queue after supplying the input qids to each request. This is handled
by the rule schedule.wait4.

rl [schedule.wait4] :

[aname InQ,

st(ready, (wait4(aname, toks, reqQ’) ! wait4s), reqQ, es, log),

OutQ]

=> [nil,

st(ready, wait4s,

(reqQ, supplyPars(reqQ’, aname InQ)), es, log),

OutQ] .

If there is no pending input, and there is an enabled request in the request
queue, the first such request can be scheduled. This is specified by the rule
schedule.request. The Boolean function enabled is used to determine if
a request is enabled in the context of a wait4 set. For example, interactions
with each known actor can be sequentialized by disabling a request that might
result in sending a message to an actor for whom there is already a wait4 entry.
The next request to schedule is determined by evaluating

findEnabled(wait4s, reqQ, nil)
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which returns a pair ?req @ reqQ’ consisting of the first enabled request ?req
in reqQ, and the rest of the requests, reqQ’. If there is no enabled request the
pair nil @ reqQ is returned. Because ?req is declared to be of sort Request,
the rule condition will be false in the latter case.

crl [schedule.request] :

[nil, st(ready, wait4s, reqQ, es, log), OutQ]

=> [nil, st(processing(?req), wait4s, reqQ’, es, log), OutQ]

if (?req @ reqQ’) := findEnabled(wait4s, reqQ, nil) .

Interactive rewriting

The REWRITE module is an IMaude application that defines requests for query-
ing modules loaded into Maude. Terms can be reduced and rewritten using
the default interpreter or by specifying a list of rules to apply. The results are
saved in the environment for further processing. In addition, functions from
the object module can be applied to arguments stored in the environment.
In all cases the request continuation, with no additional arguments provided,
is queued once the environment is updated. These requests can be entered
directly by the user, in which case the continuation will be nil. They can also
be invoked as part of the processing of another request. The REWRITE module
makes essential use of the Maude META-LEVEL (see Chapter 14).

Naming things in the environment

The setqc, letc, and applyc requests provide a means for storing qid lists
and terms in the environment.

• (setqc vname qids) adds an entry e(’qval, vname, ql(qids)) to the
environment. (Recall that the default notes argument for an entry is mt.)
• (letc vname modname sort <exp>) attempts to parse the qid list that

results from reading and tokenizing <exp> in the module named by
modname as an element of sort sort.1 If successful, the resulting term
is reduced to canonical form, res, and an entry

e(’tval, vname, tm(modname, res))

of type tval with identifier vname and value tm(modname, res) is added
to the environment.
• (applyc modname vname fname arg-1 ... arg-n) applies the function

named fname to arguments stored (as tvals) in arg-1 . . . arg-n in the
module named by modname, reducing the application to canonical form,
res. The result is saved in vname, i.e., an entry of type tval with identifier
vname and value tm(modname, res) is added to the environment.

1 From the user’s point of view, <exp> appears as the term would if typed as part of
a Maude command in the context of the named module, while from the IMaude
point of view, it appears in the input component of a LOOP-MODE system as a qid
list.
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As an example, we show the code for the letc request. It begins with
equations specifying that letc is a request identifier, and that letc requests
with sufficiently many arguments—they must have at least a value name, a
module name, and a sort—are always enabled. Requests that are ill-formed
because they have too few tokens just remain in the request queue.

eq isReq(’letc) = true .

eq enabled(wait4s, req(’letc, ql(vname modname sort toks), reqQ’))

= true .

The rule letc specifies how to process a letc request.

crl [letc] :

[nil,

st(processing(req(’letc, ql(vname modname sort toks), reqQ’)),

wait4s, reqQ, es, log),

OutQ]

=> [nil,

st(ready, wait4s, (reqQ reqQ’), es’, log’),

OutQ]

if res?? := metaParse([modname], toks, sort)

/\ es’ :=

(if (res?? :: ResultPair)

then addEntry(es, ’tval, vname,

tm(modname,

getTerm(metaReduce([modname],

getTerm(res??)))))

else es fi )

/\ log’ :=

(if (res?? :: ResultPair)

then log

else (log log(’noParse,

’letc vname modname sort toks,

dummy))

fi) .

First, the qid list toks is parsed using the descent function metaParse (see
Section 14.5.7), and bound to the variable res?? of kind [ResultPair?].
The term [modname] refers to the module loaded into Maude with the name
modname. The sort ResultPair? includes terms that indicate parsing errors as
well as type-term pairs resulting from successful parsing. Its associated kind
[ResultPair?] contains additional terms that cannot be reduced, for exam-
ple if the qid modname does not name a known module. The term (res?? ::

ResultPair) is true if res?? has sort ResultPair, indicating a successful
parse. In this case the term component of the pair, getTerm(res??), is re-
duced using the descent function metaReduce (see Section 14.5.2), the reduced
term is extracted again using the getTerm selector, and the result is added
to the environment using the addEntry function. If parsing fails, then the
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environment is left unchanged, and a log item is added to the log reporting
the parse failure.

Rewriting terms in the environment

The rewritec and applyrulesc requests provide a means for rewriting a
term stored in the environment and saving the result.

• (rewritec nat vname rname) rewrites the term stored with entry type
tval and identifier vname, using at most nat rewrites (rule applications).
If rname is present, the result of rewriting is stored as an entry of type
tval and identifier rname, otherwise it is stored back in vname.

• (applyrulesc vname rname q) tries to apply each rule named in the qid
list stored under identifier q to the term stored in vname. The result is
stored in rname. Rules that don’t apply are simply skipped.

• (listrulesc vname rname) lists the names of rules that apply to the
term stored in vname, each followed by the number of application in-
stances. The result is stored in rname.

The rewritec request uses Maude’s default rewrite strategy, also used by
the rewrite command. There is also a frewritec request that uses the same
position-fair rewrite strategy used by the frewrite command. (See Section 6.4
for explanations and examples.)

Using the rewrite IMaude application

We conclude the discussion of the REWRITE module with a small scenario
illustrating its use. For this purpose we recall the VENDING-MACHINE module
defined in Section 6.1.

mod VENDING-MACHINE is

including VENDING-MACHINE-SIGNATURE .

var M : Marking .

rl [add-q] : M => M q .

rl [add-$] : M => M $ .

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

rl [change]: q q q q => $ .

endm

We extend the VENDING-MACHINE module with definitions of operators that
return either the coins or the items in a marking.

mod VENDING-MACHINE-QUERY is

including VENDING-MACHINE .

var M : Marking .

var I : Item .

var C : Coin .

ops getItems getCoins : Marking -> Marking .
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eq getItems(I M) = I getItems(M) .

eq getItems(M) = null [owise] .

eq getCoins(C M) = C getCoins(M) .

eq getCoins(M) = null [owise] .

endm

After loading the above module, IMaude, and the REWRITE module into
Maude, and initializing the loop state (using the command loop init .,
as described in Section 18.3), we can use the rewrite requests to query the
VENDING-MACHINE module.

To begin we use the letc request to define an initial marking and store it
in vm0.

(letc vm0 VENDING-MACHINE-QUERY Marking $ $ $)

This results in an entry

e(’letc, ’vm0, tm(’VENDING-MACHINE-QUERY, vm0T))

being added to the entry set component of the state, where vm0T is the
metarepresentation of the marking $ $ $ (for the curious reader, it is the
term ’__[’$.Coin,’$.Coin,’$.Coin]).

Now we can rewrite this marking, say for five steps, and save the result as
vm1.

(rewritec 5 vm0 vm1)

(show entry tval vm1)

Using the show entry command we see that the result is $ $ $ $ $ q q q,
as the rule-fair rewrite strategy first applies the rule add-q, then add-$, then
add-q, and so on (see Section 6.4 for discussion).

In contrast, if the position-fair rewriting command frewrite is used,

(frewritec 10 1 vm0 vm2)

the result is $ $ q q q a c. Having saved the results of rewriting, we can
extract different parts of the state by applying appropriate functions. For
example, the coins and items resulting from the frewrite command can be
obtained by

(applyc VENDING-MACHINE-QUERY coins getCoins vm2)

(applyc VENDING-MACHINE-QUERY items getItems vm2)

Now the coins entry contains (the metarepresentation of) $ $ q q q and the
items entry contains a c. The applyc request is especially useful if the term
you are rewriting is large and you want to rewrite for a few steps, examine a
small part of the result, and then continue rewriting.

The applyrulesc request corresponds to a simple internal strategy (see
Section 14.6) for rewriting, namely applying a specified sequence of rules. For
example, defining rls to be the list of rule names buy-c buy-a buy-c we can
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rewrite the initial marking according to the associated strategy. The result,
q a c c, is stored in vm3.

(setqc rls buy-c buy-a buy-c)

(applyrulesc vm0 vm3 rls)

Finally, using the request listrulesc we can find out how many ways each
rule can apply to a given state. For example, the following request stores, in
vm2rules, information about the number of ways each rule can apply to the
frewrite result (stored in vm2).

(listrulesc vm2 vm2rules)

Showing this entry we get the qid list

add-$ 47 add-q 47 buy-a 1 buy-c 1 change 0

The interpretation is that there are forty seven ways to apply each of the
add-$ and add-q rules, and one way to apply each of the buy-a and buy-c

rules. The change rule does not apply to the marking in vm2.

Comparing interface approaches

The IMaude REWRITE extension provides a simple, general user interface
that can be used to interact with any Maude module. In contrast, the
VENDING-MACHINE user interface (UI) described in Section 18.2 is specific
to the VENDING-MACHINE, although the approach is quite general. The UI
approach, being specific, can be more “user friendly,” while the IMaude ex-
tension can be used with any newly developed module without additional
effort (beyond defining functions to analyze rewriting results). A technical
distinction between the two approaches is the way in which reflection and the
metalevel are used. In the IMaude approach, terms are metarepresented in the
state, descent functions are used to implement commands/requests, and the
metalevel parsing and printing functions are used for user interaction. In the
special purpose UI approach, the module being interfaced is combined with
the metalevel, reflection (up, down) is used to move between representations,
and special purpose parsing and printing functions are developed.

18.5.2 IOP

The IOP system provides infrastructure for allowing tools to interact and
interoperate. It was motivated by the specific aim of making it possible for
Maude to communicate with other tools, including other instances of itself,
web resources, visualization tools, and theorem provers.

An executing IOP system consists of a pool of actors. There is always a sys-
tem actor. Other actors are created by requests to the system actor, either at
startup or during execution, according to application needs. IOP comes with
a basic set of actors including: a system actor, wrappers that encapsulate
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Maude and other formal tools as actors, a graphics2d actor, communication
actors that support sockets, file system access, and a GUI interface to the sys-
tem that allows the user to communicate as an IOP actor. Additional actors
can be added quite easily. The graphics2d actor supports specification of in-
teractive graphical representation of models via the JLambda language [306].
JLambda is a Scheme-like language that provides full access to standard Java
classes and defines classes with dynamically extensible fields and methods
that simplify developing interactive graphical representations. The combina-
tion IOP+IMaude provides the Maude programmer with a much richer mod-
eling environment, with support for developing visualization and animation
of Maude specifications in interesting ways, for exporting Maude modules to
other tools (based on other formalisms) to perform alternative analyses and
visualizations, and for developing notions of session state that can be saved
and resumed. Using the communication actors as a go-between, the Maude
actor or any other tool adapted to become an IOP actor, can talk to any
tool that is capable of interacting via an internet socket connection or the file
system.

An actor in IOP is typically a UNIX-style process that has been regis-
tered with the system according to a simple procedure. Part of this registra-
tion process involves allocating three FIFOs, or UNIX-style named pipes, and
redirecting the actor’s stdin, stdout, and stderr file descriptors to these
special files [358]. There is no restriction on the language used to write an
actor’s script or executable. Some are written in C, some are written in Java,
some are written in Perl. One simply chooses the appropriate language for
the desired task or function that the actor is supposed to perform. Actors can
be single-threaded or multi-threaded, each according to its needs. They can
even consist of several processes written in different languages. The process
by which new actors can be incorporated into the system is described in the
IOP manual [241].

For example, the Maude actor consists of two processes, one running the
Maude executable, while the other, called the wrapper, acts as an intermediary
between Maude and the registry. Any error messages Maude emits are, like
all other actor’s error messages, redirected to the error and output text area
of the GUI front end. Maude’s output is interpreted by the wrapper, and is
then translated to a format acceptable to the underlying inter-actor commu-
nication system. The process of interpretation consists of replacing symbolic
control characters such as \n, \r, \t, \", and \\ by the appropriate control
sequences themselves.

Apart from the dynamic pool of actors in the system, IOP consists of
three independent processes that interact: the main process that creates and
configures the system; the registry; and a GUI front end. Invoking IOP from
the command line results in the following startup procedure taking place. The
first process, being the main of IOP, parses the command line arguments, and
creates the registry or system actor, the GUI actor, and any other actors
that have been requested. A typical IOP process configuration is shown in



598 18 User Interfaces and Metalanguage Applications

An Actor

An Actor

An Actor

The Registry
An Actor

A Two Process Actor

Fig. 18.1. An IOP process configuration

Figure 18.1. After startup, the main process acts mainly as a signal handler,
ensuring clean and graceful shutdown. The registry keeps track of the current
actors and maintains the lines of communication between these actors, making
sure that messages sent by an actor are delivered to the specified target. The
GUI front end, pictured in Figure 18.1 on the left, provides the user with an
easy means of becoming an actor and sending messages to other actors in the
system. The upper part can be used to compose messages to be sent to any
of the IOP actors. The lower part displays any output from the actors that is
not inter-actor communication (errors or messages to the user).

Inter-actor communication is purely ASCII text. A message consists of the
name of the target actor, the name of the sending actor, followed by the body
of the message, each on a new line. For example, a message from the Maude
actor to the graphics2d actor consisting of an expression to interpret might
look like:

graphics2d

maude

(invoke graph "redisplay")

Interacting with the IOP filemanager actor

The IMaude FILEMANAGER module specifies rules for requests to read and write
files and to save and restore components of the IMaude state by communicat-
ing with IOP’s filemanager actor. To support saving and restoring state, the
IMaude utilities library provides show<sort> and parse<sort> functions for
the Val and Notes sorts. IMaude extends the list of sorts to cover all IMaude
state data types. Like the Maude functions metaPrettyPrint and metaParse,



18.5 Interactive Maude 599

the functions show<sort> and parse<sort> generate and consume qid lists.
These qid lists are tokenizations of a textual representation inspired by the
S-expression notation. Symbols are grouped by enclosing them in balanced
pairs of parentheses, (tag ...), where the first symbol of a group is a tag
that specifies the sort of entity represented. These functions are also used by
the show commands of the IMAUDE-STATE module described in Section 18.5.1.
For example, in the vending machine example above, after executing

(letc vm0 VENDING-MACHINE-QUERY Marking $ $ $)

showing the entry produces the external representation

(entry tval (qidlist vm0) (notes) (tval VENDING-MACHINE-QUERY $ $ $))

Here, the first tval is the type argument to the entry constructor, while the
second tval is a type tag.

The main file management requests are summarized in the following.

• (filewrite <fname> <mode> <toks>) is a request to write to a file. It
is enabled whenever IMaude is not waiting for the filemanager. When
the request is processed, a write message is sent to the filemanager ac-
tor, specifying the mode <mode>, the file name <fname>, and the qid list
<toks> (the file contents). The write mode will be append if <mode> is
’A, and otherwise a new file will be created, overwriting any existing file
of the same name. A wait4 task is added to the wait4s state component,
with a continuation that logs the filemanager’s reply, followed by the con-
tinuation requests from the filewrite request. The filemanager’s reply
indicates whether or not the file write succeeded.

• (fileread <fname> <vname>) is a request to read from a file. It is en-
abled whenever IMaude is not waiting for the filemanager. When the re-
quest is processed, a read message is sent to the filemanager actor, spec-
ifying the file name <fname>, and a wait4 is added to the wait4s state
component to handle the filemanager’s reply. The wait4 continuation re-
quest queue contains a request to store the result in a qval with identifier
<vname> followed by the continuation requests from the fileread request.

• (save <fname> <mode> <stype> <toks>) is a request to save state. It is
always enabled. When a save request is processed, a filewrite request
with parameters <fname>, <mode>, and a qid list obtained by “showing”
the specified part of the IMaude state. The qid <stype> specifies the
state component to be saved: control, requests, wait4s, eset, entry,
or log. Except for the entry case, the full named state component is
shown, by applying the appropriate show<sort> function to that state
component, and <toks> is ignored. In the entry case, the showEntry

function is applied to the entry identified by <toks>.
• (restore <fname> <vname> <stype>) is a request to restore some state

component from a file. It is always enabled. When processed, a fileread

request is queued with parameters <fname>, <vname>, and a continuation
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that will parse the qid list stored in <vname> as a component saved using
component type <stype>, and restore the corresponding state component.

As an example we show the axioms and rule specifying a fileread request.

eq isReq(’fileread) = true .

eq enabled(wait4s, req(’fileread, ql(fname vname toks), reqQ0))

= not(waiting4(wait4s, ’filemanager)) .

rl [fileread] :

[nil,

st(processing(req(’fileread, ql(fname vname toks), reqQ0)),

wait4s, reqQ, es, log),

OutQ]

=>

[nil,

st(ready,

wait4s !

wait4(’filemanager, ’read fname,

creq(’setqval, nil, ql(vname), reqQ0)),

reqQ, es, log),

OutQ ’filemanager ’\n ’maude ’\n ’read ’\n fname] .

Note that we use the creq request constructor in the wait4 continuation, to
separate the request time parameter vname from the qid list supplied when
the filemanager’s reply is received. As indicated above, the setqval request
stores the supplied qid list as a qval with identifier vname and then queues
its continuation reqQ0. In the case of a restore request reqQ0 will begin with
a request to parse the contents of vname and update the IMaude state.

Using the filemanager

To illustrate interaction with the filemanager, imagine that we start IOP,
telling IOP to create Maude and filemanager actors, and telling Maude to load
the vending machine specification (from Section 18.5.1) and IMaude extended
with the REWRITE and FILEMANAGER modules. Now we can send commands to
IMaude via the IOP GUI. Suppose we have sent

(letc vm0 VENDING-MACHINE-QUERY Marking $ $ $)

Then we can save this entry in the file named vm0.txt using the following
request:

(save vm0.txt C entry tval vm0 )

Now the file vm0.txt contains the external representation of the entry

(entry tval (qidlist vm0) (notes) (tval VENDING-MACHINE-QUERY $ $ $))

Next we remove the vm0 entry and confirm it is gone by asking IMaude to
show the entry.
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(remove entry tval vm0)

(show entry tval vm0)

Finally, we restore the entry from the file vm0.txt and show it to confirm the
entry has indeed been restored.

(restore vm0.txt tmp entry)

(show entry tval vm0)

An interactive graphical vending machine

The main goal of the IOP+IMaude work is to enable interactive visual rep-
resentations of executable Maude specifications. The main steps to develop
such a representation are:

• specifying the Maude representation of the system;
• defining the set of interactions—what operations can be performed on the

system; and
• designing a visual representation of the system state and defining the

interactive elements.

The graphics2d actor provided by IOP is used for visualization. JLambda
code is written to define visual objects. Action listeners associated to interac-
tive elements respond to user gestures by sending requests for the correspond-
ing operation to the Maude actor. IMaude is extended with an application-
specific module defining rules to initialize system state and handle the re-
quests for operations. In addition to carrying out the operations locally, the
rules must provide for sending updates to the graphics2d actor. These mes-
sages should contain JLambda expressions whose evaluation will update the
visual object and redisplay it.

To illustrate the main ideas, we describe a very simple visual interface to
our vending machine example. On the Maude side, the representation of the
vending machine state is a marking. Its metarepresentation is stored as a tval

whose identifier is the vending machine name. The possible interactions are
to insert a coin, make change, or buy an item.

Figure 18.2 shows screen shots of the vending machine. The text areas
display the machine state. The line labeled “Deficit:” keeps track of the total
money inserted, as an added feature. The interactive elements are menus: one
(labeled “Insert Money”) with menu items for inserting a dollar, inserting a
quarter, and making change ; and one (labeled “Buy Item”) with menu items
for buying an apple or buying a cake. When a menu item is selected, the
associated action listener sends a message to the Maude actor requesting the
corresponding operation. For example, if the user selects the insert quarter
menu item, the following JLambda expression is executed.

(sinvoke "g2d.util.ActorMsg" "send" "maude" "vm" "vend add-q")
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Initial state After some interaction

Fig. 18.2. A simple vending machine interface

Here "vm" is the name used by Maude and the graphics2d actor to refer to
the vending machine object. The keyword sinvoke invokes a static method,
in this case the send method in the g2d.util.ActorMsg class. This causes
the third argument to be sent to the actor named by the first argument, in
this case the Maude actor, giving the second argument as the sender. The
result is that the Maude actor receives the message

(vm vend add-q)

This is received by a listener for messages from vm, in the wait4 set. Recall from
Section 18.5.1 that each wait4 has the form wait4(aname,ql(toks),reqQ).
When a message of the form (aname requestid args) arrives, the full mes-
sage is supplied to each of the requests in reqQ and the resulting requests are
queued for processing. In the case of the vending machine listener, reqQ is a
single request. Processing this request restarts the vending machine listener,
and queues the request (vend vm <cmd>), where in the above example <cmd>

is add-q. The Maude rule for handling a vend request uses the applyrulesc

request to apply the corresponding vending machine rule. This request is
queued with a continuation that sends a state update to the vending machine
object.

The vending machine application is started by starting IOP telling it to cre-
ate a graphics2d actor and a Maude actor, telling Maude to load the vending
machine assistant loader file. This file loads the vending machine specification,
IMaude, and the VEND-ASSISTANT module that defines the interaction rules. It
also contains the following sequence of requests to initialize the Maude actor
state and the vending machine object.

(letc vm VENDING-MACHINE-QUERY Marking null)

(setqc add-$ add-$)

(setqc add-q add-q)

(setqc buy-c buy-c)

(setqc buy-a buy-a)

(setqc change change)

(loadg2dlib graphics2d vend.lsp)
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(startListener vm vendreq graphics2d)

The vending machine marking is initialized to null (first line). The next
five lines define rule lists to be used with the applyrulesc request. The
loadg2dlib request sends a request to the graphics2d actor to load the file
vend.lsp which contains the JLambda code to define and display a vending
machine object. Finally a vending machine listener is started. The lefthand
side of Figure 18.2 shows the initial vending machine state. The righthand
side shows the state after inserting two dollars and a quarter, and buying an
apple and a cake.
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Full Maude: Extending Core Maude

During the development of the Maude system we have put special emphasis on
the creation of metaprogramming facilities to allow the generation of execution
environments for a wide variety of languages and logics. The first most obvious
area where Maude can be used as a metalanguage is in building language
extensions for Maude itself. Our experience in this regard—first reported in
[121], and further documented in [122, 111, 112, 123]—is very encouraging.

We have been able to define in Core Maude a language, that we call
Full Maude, with all the features of Maude plus notation for object-oriented
programming, parameterized views, module expressions specifying tuples of
any size, etc. Although the Maude distribution has included the specifica-
tion/implementation of Full Maude since it was first distributed in 1999, Core
Maude and Full Maude are now closer than ever before. Many of the features
now available in Core Maude, like parameterized modules, views, and mod-
ule expressions like summation, renaming and instantiation, were available in
Full Maude long before they were available in Core Maude [121]. In fact, Full
Maude has not only been a complement to Core Maude, but also a vehicle to
experiment with new language features. Once these features have been mature
enough to be implemented in the core language, we have made the effort to
do so. Similarly, it is very likely that those features in Full Maude which are
not yet available in Core Maude will become part of it sooner or later, and
that new features will be added to Full Maude for purposes of language design
and experimentation. This applies not only to Full Maude, but also to fur-
ther language extensions based on Full Maude such as the strategy language
proposed in [234], whose Core Maude implementation is currently underway.

Full Maude implements a complete user interface for the extended lan-
guage. Using the META-LEVEL and LOOP-MODE modules, we have been able
to define in Core Maude all the additional functionality required for parsing,
evaluating, and pretty-printing modules in the extended language, and also for
input/output interaction, as already discussed in Chapter 18. Thanks to the
efficient implementation of the rewrite engine, the parser, and the META-LEVEL
module, such a language extension executes with reasonable efficiency.
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Full Maude contains Core Maude as a sublanguage, so that Core Maude
modules can also be entered at the Full Maude level. However, currently there
are a few syntactic restrictions that have to be satisfied by modules and com-
mands in order to be acceptable inputs at the Full Maude level, including
the fact that Full Maude inputs, for both modules and commands, must be
enclosed in parentheses. These syntactic restrictions are explained in Sec-
tion 19.6.

The structure of this chapter is as follows. Section 19.1 gives instructions
on how to load and use Full Maude, how to enter modules, reduce terms, trace
executions, etc. Section 19.2 explains how modules in Core Maude’s database
may be used in Full Maude. Section 19.3 introduces the additional module
operations that are available in Full Maude. Section 19.4 explains how to move
terms and modules up and down reflection levels. Section 19.6 enumerates the
main differences between Full Maude and Core Maude. Finally, Section 19.7
illustrates how to add new commands to Full Maude.

19.1 Running Full Maude

Since the execution environment for Full Maude has been implemented in Core
Maude, to initialize the system so that we can start using it the first thing
we have to do is to load the FULL-MAUDE module in the system. Assuming
that the file full-maude.maude, which contains the executable specification
of Full Maude, is located in the current directory (or in a place where Maude
can locate it, see Section 2.2), we just need to type the corresponding in or
load command in the Maude prompt:

Maude> load full-maude.maude

Full Maude 2.7 March 10th 2015

The Full Maude system is then loaded, and we can use it as any other module.
Since Maude can take file names as arguments when started, assuming one

is working on a Linux platform, one may also run Maude as follows:

~/maude-linux/bin$ ./maude.linux full-maude.maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.7 built: Mar 3 2014 18:07:27

Copyright 1997-2014 SRI International

Tue Jul 15 22:57:15 2014

Full Maude 2.7 March 10th 2015

At the end of this file full-maude.maude there is the command

loop init .
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which initializes the system just after loading the specification. This command
starts the read-eval-print loop (see Section 18.1) to allow the interaction with
the user by entering modules, theories, views, and commands, and to main-
tain a database in which to store all the modules, theories and views being
introduced. The term init is a constant of sort System, in the specification
of Full Maude, standing for the initial state of the Full Maude database.

Typing control-C may result in the loop being broken, and with it the
current execution of Full Maude. Maude may try to recover the loop by itself,
but if it is not successful we must reinitialize it with the loop command. That
is, we need to type

Maude> loop init .

This command will be successful only if the full-maude.maude file is
loaded and the FULL-MAUDE module is the default one. If it is not the default
one, we may select it with the select command (see Section 25.13):

Maude> select FULL-MAUDE .

Maude> loop init .

The loop init command may be omitted here: Maude will try to restart
the loop, using the last loop command, if something is written in parentheses
henceforth.

Let us recall from Section 18.1 that to get something into the LOOP-MODE

system the text has to be enclosed in parentheses. This means that any module,
theory, view, or command intended for Full Maude has to be enclosed in
parentheses. Since Core Maude is running underneath Full Maude—indeed,
it now provides what might be called the system programming level—it will
handle any input not enclosed in parentheses. This allows the possibility of
using both systems at the same time. Thanks to this, we may use many
Core Maude commands when interacting with Full Maude. For example, we
may use Core Maude trace or profile facilities on Full Maude specifications,
may load files, etc. However, this may lead to some confusion, and we should
take care of putting parentheses around those pieces of text intended for Full
Maude.

A Core Maude module, such as those presented in previous sections, can be
entered in Full Maude by enclosing it in parentheses. For example, a module
PATH1 can be entered to Full Maude as follows:

Maude> (fmod PATH is

sorts Node Edge .

ops source target : Edge -> Node .

sort Path .

subsort Edge < Path .

op _;_ : [Path] [Path] -> [Path] .

1 Some fragments of this module have been discussed in Sections 3.5 and 4.3.
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var E : Edge .

vars P Q R S : Path .

cmb E ; P : Path if target(E) = source(P) .

ceq (P ; Q) ; R

= P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

ops source target : Path -> Node .

ceq source(P) = source(E) if E ; S := P .

ceq target(P) = target(S) if E ; S := P .

protecting NAT .

ops n1 n2 n3 n4 n5 : -> Node .

ops a b c d e f : -> Edge .

op length : Path -> Nat .

eq length(E) = 1 .

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

eq source(a) = n1 .

eq target(a) = n2 .

eq source(b) = n1 .

eq target(b) = n3 .

eq source(c) = n3 .

eq target(c) = n4 .

eq source(d) = n4 .

eq target(d) = n2 .

eq source(e) = n2 .

eq target(e) = n5 .

eq source(f) = n2 .

eq target(f) = n1 .

endfm)

rewrites: 5438 in 10ms cpu (157ms real) (543800 rews/sec)

Introduced module PATH

As in Core Maude, we can enter any module or command by writing it
directly after the prompt, or by having it in a file and then using the in or
load commands. Also as in Core Maude, we can write several Full Maude
modules or commands in a file and then enter all of them with a single in or
load command (without parentheses), but each of the modules or commands
has to be enclosed in parentheses.

When entering a module, as above, Maude gives us information about the
rewrites executed to handle such a module. This is the number of rewrites
done by Full Maude to evaluate the module being entered. In the same way,
every time we enter a command, although in most cases it finally makes a
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call to Core Maude, Full Maude needs to perform some additional rewrites.
Thus, as we will see below, the number of rewrites given by the system for
Full Maude commands includes the reductions due to the evaluation of the
command and those due to the execution of the command itself.

We can perform reduction or rewriting using a syntax for commands such
as that of Core Maude.

Maude> (red in PATH : b ; (c ; d) .)

rewrites: 893 in 30ms cpu (21ms real) (29766 rewrites/second)

reduce in PATH :

b ;(c ; d)

result Path :

b ;(c ; d)

Maude> (red length(b ; (c ; d)) .)

rewrites: 474 in 10ms cpu (2ms real) (47400 rewrites/second)

reduce in PATH :

length(b ;(c ; d))

result NzNat :

3

Maude> (red a ; (b ; c) .)

rewrites: 587 in 0ms cpu (2ms real) (~ rewrites/second)

reduce in PATH :

a ;(b ; c)

result [Path] :

a ;(b ; c)

Maude> (red source(a ; (b ; c)) .)

rewrites: 616 in 0ms cpu (2ms real) (~ rewrites/second)

reduce in PATH :

source(a ;(b ; c))

result [Node] :

source(a ;(b ; c))

rewrites: 622 in 0ms cpu (2ms real) (~ rewrites/second)

reduce in PATH :

target((a ; b); c)

result [Node] :

target((a ; b); c)

Maude> (red length(a ; (b ; c)) .)

rewrites: 579 in 0ms cpu (2ms real) (~ rewrites/second)

reduce in PATH :

length(a ;(b ; c))

result [Nat] :

length(a ;(b ; c))

Note the number of rewrites. These figures include, as said above, the
rewrites accomplished by Full Maude in the processing of the inputs and
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outputs, plus the number of rewrites of the reduction itself. For example, the
first two reductions above in Core Maude would produce the following output:

Maude> red in PATH : b ; (c ; d) .

reduce in PATH : b ; (c ; d) .

rewrites: 7 in 0ms cpu (23ms real) (~ rews/sec)

result Path: b ; (c ; d)

Maude> red length(b ; (c ; d)) .

reduce in PATH : length(b ; (c ; d)) .

rewrites: 12 in 0ms cpu (0ms real) (~ rews/sec)

result NzNat: 3

Tracing, debugging, profiling, and the other facilities available in Core
Maude (see Section 24.1) are also available in Full Maude. Since these facilities
are provided by Core Maude, the corresponding commands for managing them
must be written without parentheses. For example, we can do the following:

Maude> set trace on .

Maude> set trace mb off .

Maude> set trace condition off .

Maude> set trace substitution off .

Maude> (red length(b ; c) .)

*********** trial #1

ceq length(E:Edge ; P:Path) = length(P:Path) + 1

if E:Edge ; P:Path : Path .

*********** solving condition fragment

E:Edge ; P:Path : Path

*********** success for condition fragment

E:Edge ; P:Path : Path

*********** success #1

*********** equation

ceq length(E:Edge ; P:Path) = length(P:Path) + 1

if E:Edge ; P:Path : Path .

length(b ; c)

--->

length(c) + 1

*********** equation

eq length(E:Edge) = 1 .

length(c)

--->

1

*********** equation

(built-in equation for symbol _+_)

1 + 1

--->

2

rewrites: 444 in 0ms cpu (7ms real) (~ rewrites/second)

reduce in PATH :
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length(b ; c)

result NzNat :

2

One should always bear in mind that Full Maude is part of the specifi-
cation being run. The specification of Full Maude is loaded in the system,
and as said above, some of the rewrites taking place are the result of apply-
ing equations or rules in these modules. In the case of tracing, the rewrites
done by Full Maude are not shown thanks to one of the trace commands avail-
able, namely trace exclude (see Sections 24.1.1 and 25.6). With such a com-
mand we may exclude particular modules from being traced. In particular, the
full-maude.maude file includes the command trace exclude FULL-MAUDE,
where FULL-MAUDE is the top module of the specification of Full Maude.

19.2 Using Core Maude modules in Full Maude

Full Maude maintains a module database independent from the one used by
Core Maude to store the modules entered into it. In fact, this module database
is a Maude term stored as part of the state in the LOOP-MODE input/output ob-
ject. Therefore, a module entered into Core Maude can only import modules
previously entered into Core Maude. However, Full Maude modules can im-
port modules previously entered either into Full Maude or into Core Maude.
Basically, if Full Maude cannot find a module in its own database, it looks
into Core Maude’s module database to find it.

When metaprogramming, the system behaves differently. In Core Maude,
a metamodule (that is, the metarepresentation of a module) can include a
module at the object level. In Full Maude, however, metamodules cannot
import modules entered into Full Maude and can only import modules entered
into Core Maude. Note that Full Maude is implemented using reflection, and
that in the end all modules are handled by Core Maude, which is not aware
of Full Maude’s database.

Notice also that loading a Core Maude module once Full Maude is run-
ning will break the read-eval-print loop (see Section 18.1). Therefore, one
should enter such modules before starting Full Maude. Assuming there is a
file path.maude containing the Core Maude module PATH, we will have the
following behavior if we enter it into Full Maude.

Maude> load path.maude

Maude> (red in PATH : b ; (c ; d) .)

Warning: no loop state.

Advisory: attempting to reinitialize loop.

Warning: "full-maude.maude", line 13692: bad token init

Warning: "full-maude.maude", line 13692: no parse for term.

Advisory: unable to reinitialize loop.
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As said above, when the loop gets broken, as in this case, we must select
the FULL-MAUDE module and restart the loop. We may now do the following:

Maude> select FULL-MAUDE .

Maude> loop init .

Full Maude 2.7 March 10th 2015

Maude> (red in PATH : b ; (c ; d) .)

reduce in PATH :

b ;(c ; d)

result Path :

b ;(c ; d)

Notice that with a loop init command Full Maude is restarted with an
empty database. That is, any Full Maude module entered before the reinitial-
ization will have to be reentered again. In this case, PATH is a Core Maude
module, which is being executed in Full Maude. Since it is not in Full Maude’s
database, Full Maude looks into Core Maude’s database and then executes
the command in it. This functionality is useful for using any of the prede-
fined modules, but also other modules which are not part of Maude’s prelude.
For example, for using inside Full Maude the model checker, which although
predefined is not part of the prelude.maude file, we just need to load the
model-checker.maude file before starting the loop. For example, we can do
the following:

~/maude-linux/bin$ ./maude.linux model-checker.maude full-maude.maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.7 built: Mar 3 2014 18:07:27

Copyright 1997-2014 SRI International

Tue Jul 15 22:57:15 2014

Full Maude 2.7 March 10th 2015

Maude> (mod CHECK-RESP is

protecting MODEL-CHECKER .

...

endm)

Maude> (red p(0) |= (<> Qstate) .)

See Section 21.8 for a concrete example of the use of Maude’s model checker
with Full Maude modules.
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19.3 Additional module operations in Full Maude

As for Core Maude, in Full Maude we can use the keywords protecting,
extending, and including (or pr, ex, and inc in abbreviated form) to de-
fine structured specifications, as well as summation, renaming, and instantia-
tion operations on parameterized modules (see Chapter 8). All the predefined
modules introduced in Chapter 9, plus the module META-LEVEL and its sub-
modules, described in Chapter 14, are also available in Full Maude.2

In addition to the module operations available in Core Maude, Full Maude
supports the following extensions:

• Tuple and power expressions which, given any nonzero natural number,
generate parameterized modules specifying tuples and powers of the cor-
responding size.

TUPLE[〈NonzeroNaturalNumber 〉]{〈ViewExpression 〉}
POWER[〈NonzeroNaturalNumber 〉]{〈ViewExpression 〉}

See Section 19.3.1.
• Parameterized views, and the instantiation of parameterized modules with

instantiations of views. See Section 19.3.2.
• Object-oriented modules, extending all the module operations available in

Core Maude to this new type of modules. Thus, in Full Maude we may
rename object-oriented modules, with renamings of classes, attributes,
and messages, or use object-oriented modules in the summation of mod-
ules. Full Maude also supports object-oriented theories, views from object-
oriented theories to object-oriented modules, and object-oriented parame-
terized modules, as well as the instantiation of such object-oriented param-
eterized modules. We devote Chapter 21 to the study of object-oriented
modules.

As in Core Maude, a module or theory importing some combination of
modules or theories, given by module expressions, can be seen as a struc-
tured module with more or less complex relationships among its component
submodules. For execution purposes, however, we typically want to convert
this structured module into an equivalent unstructured module, that is, into
a “flattened” module without submodules; this flattened module will then be
compiled into the Maude rewrite engine. By systematically using the metapro-
gramming capabilities of Maude, we can both evaluate module expressions into
structured module hierarchies and flatten such hierarchies into unstructured
modules for execution. All such module operations are defined by equations
that operate on the metalevel term representations of modules. This is essen-
tially the idea behind the implementation of Full Maude in Maude.

In Full Maude, the use of module expressions is somewhat more general
than in Core Maude. A Full Maude module expression can be used in any

2 The predefined module LOOP-MODE described in Section 18.1 is not supported in
Full Maude.
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place where a module name is expected. Thus, as in Core Maude, in Full
Maude, module expressions can be used as:

• arguments of a protecting, extending, or including importation,
• the source or target of a view, or
• the parameter of a module, provided the top level is a theory.

Furthermore, in Full Maude, they can also be used, e.g., to express the module
in which a red or rew command will be executed,

Maude> (red in BOOL * (op true to T, op false to F) : T or F .)

result Bool :

T

or as argument of any other command requiring a module name,

Maude> (show ops LIST{Nat} .)

op $reverse : List{Nat}List{Nat}-> List{Nat}.

op $size : List{Nat}Nat -> Nat .

op append : List{Nat}List{Nat}-> List{Nat}.

op append : List{Nat}NeList{Nat}-> NeList{Nat}.

op append : NeList{Nat}List{Nat}-> NeList{Nat}.

...

Of course, this works with any module, and not only with predefined mod-
ules. For example, let us do the same with the instantiation of the SET-MAX

module presented in Section 8.3.4 (which we assume is in file set-max.maude)
with the view IntAsToset described in Section 8.3.2. Although we can use
Core Maude modules in Full Maude, we do not have access to user-defined
Core Maude views from Full Maude. Any such view must be entered into Full
Maude before it is used in a module instantiation. Note that although Core
Maude modules are implicitly entered into Full Maude’s database, they are
recompiled, and therefore, any view required for recompiling the correspond-
ing module must also be entered. The evaluation of the module expression
SET-MAX{IntAsToset} requires views TOSET and IntAsToset.

Maude> load set-max.maude

Maude> select FULL-MAUDE .

Maude> loop init .

Full Maude 2.7 March 10th 2015

Maude> (view TOSET from TRIV to TOSET is

sort Elt to Elt .

endv)

Introduced view TOSET

Maude> (view IntAsToset from TOSET to INT is

sort Elt to Int .

endv)
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Introduced view IntAsToset

Maude> (red in SET-MAX{IntAsToset} : max((5, 4, 8, 4, 6, 5)) .)

result NzNat :

8

Similarly, after entering the Full Maude version of the RingToRat view, we
can reduce the same expression we reduced in Section 8.3.4 as follows:

Maude> (red in RAT-POLY{Qid} :

(((2 / 3) ((’X ^ 2) (’Y ^ 3)))

++ ((7 / 5) ((’Y ^ 2) (’Z ^ 5))))

(((1 / 7) (’U ^ 2)) ++ (1 / 2)) .)

result Poly{RingToRat,Qid} :

(1/3(’X ^ 2)’Y ^ 3)

++ (1/5(’U ^ 2)(’Y ^ 2)’Z ^ 5)

++ (2/21(’U ^ 2)(’X ^ 2)’Y ^ 3)

++ (7/10(’Y ^ 2)’Z ^ 5)

As we will see below, a module expression can also be used as the parameter
of a view, provided the top level is a theory.

19.3.1 The tuple and power module expressions

The evaluation of an n-tuple module expression consists in the generation of a
parameterized functional module with the number of TRIV parameters speci-
fied by the argument n. A sort for tuples of such size, and the corresponding
constructor ( ,..., ) and selector operators p1 , ..., pn , are also defined.
For example, the module expression TUPLE[2] automatically generates as re-
sult the following module (notice the backquotes in the declaration of the
tuple constructor).

(fmod TUPLE[2]{C1 :: TRIV, C2 :: TRIV} is

sorts Tuple{C1, C2} .

op ‘(_‘,_‘) : C1$Elt C2$Elt -> Tuple{C1, C2} [ctor].

op p1_ : Tuple{C1, C2} -> C1$Elt .

op p2_ : Tuple{C1, C2} -> C2$Elt .

var E1 : C1$Elt .

var E2 : C2$Elt .

eq p1(E1, E2) = E1 .

eq p2(E1, E2) = E2 .

endfm)

In the Clear [42] and OBJ [174] family of languages, module operations
take theories, modules, and views, and return new theories and modules (see
Chapter 8); on the other hand, the TUPLE[_] operation takes a nonzero natural
number n and returns a parameterized TUPLE[n] module; this is impossible
to achieve with the Clear/OBJ repertoire of module operations. Even though
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an n-tuple module expression is in principle of a completely different nature
from the usual Clear/OBJ module operations, the way Full Maude handles it
is the same as the way it handles any other module expression. Its evaluation
produces a new unit, a parameterized functional module in this case, with the
module expression as its name.

Suppose that we want to specify a library in which we have the information
on the books in a record structure with the title, author, year of publication,
publisher, and number of copies available. We may use a specification begin-
ning as follows:

(fmod LIBRARY is

pr TUPLE[5]{String, String, Nat, String, Nat}

* (op p1_ to title,

op p2_ to author,

op p3_ to year,

op p4_ to publisher,

op p5_ to copies) .

---- ...

endfm)

The particular case of a tuple in which all component sorts are equal is pro-
vided by the n-power module expression. For example, the module expression
POWER[5] automatically generates as result the following module:

(fmod POWER[5]{X :: TRIV} is

protecting TUPLE[5]{X, X, X, X, X}

* (sort Tuple{X, X, X, X, X} to Power{X}) .

endfm)

We can use the power module expression in any place where a module
name is expected, like in a reduction

Maude> (red in POWER[10]{Nat} : p5 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) .)

result NzNat :

4

or in an importation to build other modules:

(fmod PERSON-RECORD is

pr POWER[3]{String}

* (sort Tuple{String, String, String} to PersonRecord,

op p1_ to firstname,

op p2_ to lastname,

op p3_ to address) .

op fullName : PersonRecord -> String .

vars F L A : String .

eq fullName((F, L, A)) = F + " " + L .

endfm)

Maude> (red fullName(("John", "Smith", "Maude Ave")) .)

result String :

"John Smith"
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19.3.2 Parameterized views

Suppose we have defined modules LIST{X :: TRIV} and SET{X :: TRIV},
specifying, respectively, lists and sets, and suppose that we need, e.g., the data
type of lists of sets of natural numbers. Typically, we would first instantiate the
module SET with a view, say Nat, from TRIV to the module NAT mapping the
sort Elt to the sort Nat, thus getting the module SET{Nat} of sets of natural
numbers. Then, we would instantiate the module specifying lists with a view,
say NatSet, from TRIV to SET{Nat}, obtaining the module LIST{NatSet}.
But, what if we need now the data type of lists of sets of Booleans? Should we
repeat the whole process again? One possibility is to define a combined module
SET-LIST{X :: TRIV}. But what if we later want stacks of sets instead of lists
of sets?

We can greatly improve the reusability of specifications by using parame-
terized views. Let us consider the following parameterized view Set from TRIV

to SET, which maps the sort Elt to the sort Set{X}.

(view Set{X :: TRIV} from TRIV to SET{X} is

sort Elt to Set{X} .

endv)

With this kind of views we can keep the parameter part of the target
module still as a parameter. We can now have lists of sets, stacks of sets, and
so on, for any instance of TRIV, by instantiating the appropriate parameterized
module with the appropriate view. For example, given the view Nat above, we
can have the module LIST{Set{Nat}} of lists of sets of natural numbers, or
lists of sets of Booleans with LIST{Set{Bool}}, given a view Bool from TRIV

to the predefined module BOOL. Similarly, we can have STACK{Set{Nat}} or
STACK{Set{Bool}}.

We can also link the parameter of a module like LIST{Set{X}} to the
parameter of the module in which it is being included. That is, we can, for
example, declare a module of the form

(fmod GENERIC-SET-LIST{X :: TRIV} is

protecting LIST{Set{X}} .

endfm)

Then, instantiating the parameterized module GENERIC-SET-LIST with a view
V from TRIV to another module or theory results in a module with name
GENERIC-SET-LIST{V}, which includes the module LIST{Set{V}}. Note that
even with parameterized views we still follow conventions for module interfaces
and for sort names (see Section 8.3). The only difference is that now, instead
of having simple view names, we must consider names of views which are
parameterized.

The use of parameterized views in the instantiation of parameterized mod-
ules allows very reusable specifications. For example, a very simple way of
specifying (finite) partial functions is to see a partial function as a set of
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input-result pairs. Of course, for such a set to represent a function there can-
not be two pairs associating different results with the same input value. We
show later in this section (in the module PFUN below) how this property can
be specified by means of appropriate membership axioms. Note, however, that
since membership axioms cannot be given on associative operators over sorts
(see Section 24.2.8), we cannot use either the specification of sets described
in Section 8.3.3 or the predefined module in Section 9.12.2. Let us consider
instead the following module:3

(fmod SET-KIND{X :: TRIV} is

sorts NeKSet{X} KSet{X} .

subsort X$Elt < NeKSet{X} < KSet{X} .

op empty : -> KSet{X} [ctor] .

op _‘,_ : KSet{X} KSet{X} ~> KSet{X} [ctor assoc comm id: empty] .

mb NS:NeKSet‘{X‘}, NS’:NeKSet‘{X‘} : NeKSet{X} .

var E : X$Elt .

*** idempotency

eq E, E = E .

endfm)

Here the operator _,_ is declared at the kind level (notice the different form
of the arrow in its declaration) together with a membership axiom, that is
logically equivalent to the declaration

op _‘,_ : NeKSet{X} NeKSet{X} -> NeKSet{X} .

at the sort level.
We can then specify sets of pairs by instantiating this SET-KIND mod-

ule with a parameterized view from TRIV to the parameterized module
TUPLE[2]{X, Y} defining pairs of elements. The appropriate parameterized
view can be defined as follows:

(view Tuple{X :: TRIV, Y :: TRIV} from TRIV to TUPLE[2]{X, Y} is

sort Elt to Tuple{X, Y} .

endv)

A partial function can be lifted to a total function by adding a special
value to its codomain, to be used as the result for the input elements for which
the function is not defined. For this we make good use of the parameterized
module MAYBE, introduced in Section 8.3.3, which adds a supersort and a new
element maybe to this supersort; in this application, the constant maybe is
renamed to undefined.

3 Note the use of the equivalent single-identifier-form for on-the-fly declarations of
variables; as we will see in Section 19.6, this is one of the syntactic restrictions of
Full Maude.
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We are now ready to give the specification of partial functions. The sets
representing the domain and codomain of the function are given by TRIV

parameters, and then the set of tuples is provided by the imported mod-
ule expression SET-KIND{Tuple{X, Y}} with sorts KSet{Tuple{X, Y}} and
NeKSet{Tuple{X, Y}}. We define operations dom and im returning, respec-
tively, the domain and image of a set of pairs. The dom operation will be used
for checking whether there is already a pair in a set of pairs with a given input
value. With these declarations we can define the sort PFun{X, Y} as a subsort
of KSet{Tuple{X, Y}}, by adding the appropriate membership axioms speci-
fying those sets that satisfy the required property. Finally, we define operators
_[_] and _[_->_] to evaluate a function at a particular element, and to add
or redefine an input-result pair, respectively. We use the Core Maude prede-
fined module SET (see Section 9.12.2) for representing the sets of elements in
the domain and image of a partial function.

(fmod PFUN{X :: TRIV, Y :: TRIV} is

pr SET-KIND{Tuple{X, Y}} .

pr SET{X} + SET{Y} .

pr MAYBE{Y} * (op maybe to undefined) .

sort PFun{X, Y} .

subsorts Tuple{X, Y} < PFun{X, Y} < KSet{Tuple{X, Y}} .

vars A D : X$Elt .

vars B C : Y$Elt .

var F : PFun{X, Y} .

var S : KSet{Tuple{X, Y}} .

op dom : KSet{Tuple{X, Y}} -> Set{X} . *** domain

eq dom(empty) = empty .

eq dom((A, B), S) = A, dom(S) .

op im : KSet{Tuple{X, Y}} -> Set{Y} . *** image

eq im(empty) = empty .

eq im((A, B), S) = B, im(S) .

op empty : -> PFun{X, Y} [ctor] .

cmb (A, B), (D, C), F : PFun{X, Y}

if (D, C), F : PFun{X, Y} /\ not(A in dom((D, C), F)) .

op _‘[_‘] : PFun{X, Y} X$Elt -> Maybe{Y} .

op _‘[_->_‘] : PFun{X, Y} X$Elt Y$Elt -> PFun{X, Y} .

ceq ((A, B), F)[ A ] = B if ((A, B), F) : PFun{X, Y} .

eq F [ A ] = undefined [owise] .

ceq ((A, B), F)[ A -> C ] = (A, C), F

if ((A, B), F) : PFun{X, Y} .

eq F [ A -> C ] = (A, C), F [owise] .

endfm)
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Now, we can instantiate the PFUN module with, for example, the view Nat,
in order to get the finite partial functions from natural numbers to natural
numbers by means of the module expression PFUN{Nat, Nat}.

19.3.3 Example: leftist trees

Among the many different data structures implementing priority queues (Sec-
tion 10.3) the most efficient are heaps, which can be defined as binary trees
(Section 10.7) satisfying the additional constraints that the value in each node
is (in the case of min heaps) smaller than (or equal to) the values in its children
and, moreover, that the tree is complete. If we forget the latter requirement
and instead assign to each node a rank (also known as minimum depth) de-
fined as the length of the rightmost path to a leaf, and require that the root of
each left child has a rank bigger than or equal to the rank of the correspond-
ing right child (that can be empty), we get the trees known as leftist trees.
These trees implement priority queues with the same efficiency as standard
heaps, and have the additional property that two leftist trees can be merged
to obtain a leftist tree containing all their elements in logarithmic time with
respect to the total number of nodes.

Remember that priority queues, and thus also leftist trees, are parame-
terized with respect to the theory TOSET for totally ordered sets, specifying
together both the strict _<_ and the non-strict _<=_ order relations (see Sec-
tions 8.3.1 and 10.3).

As we did for search trees in Section 10.9, the sort of leftist trees can also
be defined as a subsort of binary trees by means of appropriate membership
assertions. Moreover, in order to compare quickly the ranks of two nodes, we
need to save in each node its rank in the same way that we saved the depth
in each node of the AVL trees defined in Section 10.10.

Since we are importing binary trees, which are parameterized with respect
to the theory TRIV, we first define in the module TREE-NODE the construction
of pairs formed by a natural number (representing the rank) and an element
(identified with its priority).

(fmod TREE-NODE{T :: TOSET} is

protecting NAT .

sort Node{T} .

op n : Nat T$Elt -> Node{T} [ctor] .

endfm)

Now we instantiate the module BIN-TREE of binary trees with the param-
eterized view Node{T}. The view is parameterized because it still keeps as
a parameter, as expected, the sort of the elements on top of which we are
building the leftist trees.

(view Node{T :: TOSET} from TRIV to TREE-NODE{T} is

sort Elt to Node{T} .

endv)
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(fmod LEFTIST-TREES{T :: TOSET} is

protecting BIN-TREE{Node{T}} .

sorts NeLTree{T} LTree{T} .

subsorts NeLTree{T} < LTree{T} < BinTree{Node{T}} .

subsorts NeLTree{T} < NeBinTree{Node{T}} .

op rank : BinTree{Node{T}} -> Nat .

op rankL : LTree{T} -> Nat .

op findMin : NeLTree{T} -> T$Elt .

vars NeTL NeTR : NeLTree{T} .

vars M N N1 N2 : Nat .

vars T TL TR TL1 TR1 TL2 TR2 : LTree{T} .

vars X X1 X2 : T$Elt .

The following memberships, defining sorts LTree{T} for leftist trees and
NeLTree{T} for non-empty leftist trees, faithfully represent in Maude the in-
formal definition given above of this data structure. The operations rank and
findMin calculate, respectively, the rank and the minimum element in the
root of the tree.

mb empty : LTree{T} .

mb empty [n(1, X)] empty : NeLTree{T} .

cmb NeTL [n(1, X)] empty : NeLTree{T} if X < findMin(NeTL) .

cmb NeTL [n(N, X)] NeTR : NeLTree{T}

if rank(NeTL) >= rank(NeTR) /\ X < findMin(NeTL) /\

X < findMin(NeTR) /\ N = 1 + rank(NeTR) .

eq rank(empty) = 0 .

eq rank(TL [n(N, X)] TR) = 1 + rank(TR) .

eq rankL(empty) = 0 .

eq rankL(TL [n(N,X)] TR) = N .

eq findMin(TL [n(N,X)] TR) = X .

The most important operation on leftist trees is merge, because both
insert and deleteMin are easily defined from it. The operation merge is
specified by structural induction on its arguments with the help, in the re-
cursive case (when both arguments are non-empty), of an auxiliary operation
make that takes care of putting the tree with bigger rank at its root to the
left of the tree being built.

op merge : LTree{T} LTree{T} -> LTree{T} .

op insert : T$Elt LTree{T} -> NeLTree{T} .

op deleteMin : NeLTree{T} -> LTree{T} .

op make : T$Elt LTree{T} LTree{T} -> LTree{T} .

eq merge(empty, T) = T .

eq merge(T, empty) = T .

eq merge(TL1 [n(N1, X1)] TR1, TL2 [n(N2, X2)] TR2) =
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if X1 < X2 then make(X1, TL1, merge(TR1, TL2 [n(N2,X2)] TR2))

else make(X2, TL2, merge(TL1 [n(N1,X1)] TR1,TR2))

fi .

eq make(X, TL, TR) = if rankL(TL) >= rankL(TR)

then TL [n(rankL(TR) + 1,X)] TR

else TR [n(rankL(TL) + 1,X)] TL fi .

eq insert(X,T) = merge(empty [n(1,X)] empty, T) .

eq deleteMin(TL [n(N,X)] TR) = merge(TL,TR) .

endfm)

We show the result of some reductions after instantiating the parameter-
ized module LEFTIST-TREES with the following view:

(view IntAsToset from TOSET to INT is

sort Elt to Int .

endv)

(fmod LEFTIST-TREES-TEST is

protecting LEFTIST-TREES{IntAsToset} .

endfm)

Maude> (red in LEFTIST-TREES-TEST :

insert(5, insert(4, empty)) .)

result NeLTree{IntAsToset} : (empty [n(1, 5)] empty) [n(1, 4)] empty

Maude> (red in LEFTIST-TREES-TEST :

findMin(

insert(5, deleteMin(insert(3, insert(-10, empty))))) .)

result NzNat : 3

Maude> (reduce in LEFTIST-TREES-TEST :

deleteMin(insert(900, insert(-901, insert(902, insert(-903,

insert(904, insert(-905, insert(906, insert(-907,

insert(908, insert(-909, insert(910, insert(-910,

insert(911, insert(-912, insert(913, insert(-914,

empty))))))))))))))))) .)

result NeLTree{IntAsToset} :

(((empty [n(1, 908)] empty)

[n(2, -907)]

(empty [n(1, 906)] empty))

[n(3, -909)]

(((empty [n(1, 911)] empty)

[n(2, -901)]

((empty [n(1, 904)] empty)

[n(1, 900)]

empty))

[n(2, -905)]

((empty [n(1, 913)] empty)
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3, -912

3, -909

2, -907

1, 908 1, 906

2, -905

2, -901

1, 911 1, 900

1, 904

1, 910

1, 913

2, -910

1, -903 1, 902

Fig. 19.1. An example of a leftist tree

[n(1, 910)]

empty)))

[n(3, -912)]

((empty [n(1, -903)] empty)

[n(2, -910)]

(empty [n(1, 902)] empty))

The leftist tree obtained as result in the last reduction is displayed in
Figure 19.1.

We can also instantiate the parameterized module LEFTIST-TREES with
elements that are pairs, as we did at the end of Section 10.3.

(view IntStringAsToset from TOSET to

PRIORITY-PAIR{IntAsToset, String} is

sort Elt to Priority-Pair{IntAsToset, String} .

endv)

(fmod LEFTIST-TREES-TEST-PAIR is

protecting LEFTIST-TREES{IntStringAsToset} .

endfm)

Maude> (red in LEFTIST-TREES-TEST-PAIR :

findMin(insert(< 4, "d" >, insert(< 8, "h" >,

insert(< 1, "a" >, empty)))) .)

result Priority-Pair{IntAsToset, String} :

< 1, "a" >

Maude> (red in LEFTIST-TREES-TEST-PAIR :

findMin(insert(< 5, "e" >, deleteMin(insert(< 3, "c" >,

insert(< -10, "zzz" >, empty))))) .)

result Priority-Pair{IntAsToset, String} :

< 3, "c" >
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19.4 Moving up and down between reflection levels

The functions provided by Core Maude for moving up and down reflection
levels (see Section 14.5.1) are not very useful in Full Maude. Although they
are available as part of the module META-LEVEL, they take as one of their
arguments the name of a module entered into Core Maude. Since the databases
of modules are different, these functions work in Full Maude only for Core
Maude predefined modules. Full Maude provides its own functions upTerm

and upModule for moving, respectively, terms and modules up reflection levels,
and an additional down command which allows moving terms down reflection
levels.

Let us consider the following module for the examples in the coming sec-
tions.

(fmod NAT-PLUS is

sort Nat .

op 0 : -> Nat .

op s_ : Nat -> Nat .

op _+_ : Nat Nat -> Nat [assoc comm id: 0] .

vars N M : Nat .

eq s N + s M = s s (N + M) .

endfm)

In what follows we will use the notation t and M to refer to the metarep-
resentations of a term t and a module M , respectively. For example, we will
write the metarepresentation of 0 + s 0 as 0 + s 0 instead of

’_+_[’0.Nat, ’s_[’0.Nat]]

19.4.1 Up

As in Core Maude, in Full Maude we can use the upModule and upTerm

functions to avoid the cumbersome task of explicitly writing, respectively,
the metarepresentation of a module or the metarepresentation of a term in a
given module. The Full Maude upModule function takes as a single argument
the name of a module and returns its metarepresentation;4 upTerm takes two
arguments, the name of a module and a term in such a module, and returns
the corresponding metarepresentation of the term.

Therefore, by evaluating in any module importing the module META-LEVEL
the upModule function with the name of any module in the system—either
in Core Maude or in Full Maude—as argument, we obtain the metarepre-
sentation of such a module. For example, assuming that the previous module
NAT-PLUS has been entered into Full Maude, and therefore it is in its database,
we can get its metarepresentation, which we denoted by NAT-PLUS, as follows:

4 The Core Maude upModule function takes as second argument a Boolean value
(see Section 14.5.1).
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Maude> (red in META-LEVEL : upModule(NAT-PLUS) .)

result FModule :

fmod ’NAT-PLUS is

nil

sorts ’Bool ; ’Nat .

none

op ’0 : nil -> ’Nat [none] .

op ’_+_ : ’Nat ’Nat -> ’Nat [assoc comm id(’0.Nat)] .

...

We can use the metarepresentation obtained in this way in any place where
a term of sort Module is expected. For example, we can apply the function
getOps in META-LEVEL (see Section 14.3) to upModule(NAT-PLUS) as follows:

Maude> (red in META-LEVEL : getOps(upModule(NAT-PLUS)) .)

result OpDeclSet :

op ’0 : nil -> ’Nat [none] .

op ’_+_ : ’Nat ’Nat -> ’Nat [assoc comm id(’0.Nat)] .

op ’_=/=_ : ’Universal ’Universal -> ’Bool

[poly(1 2)

prec(51)

special(

id-hook(’EqualitySymbol,nil)

term-hook(’equalTerm,’false.Bool)

term-hook(’notEqualTerm,’true.Bool))] .

...

Similarly, we can use it with descent functions as discussed in Section 14.5.

Maude> (red in META-LEVEL :

metaReduce(upModule(NAT-PLUS), ’_+_[’0.Nat, ’s_[’0.Nat]]) .)

result ResultPair :

{’s_[’0.Nat],’Nat}

But, instead of explicitly writing the metarepresentation 0 + s 0 in the
above reduction we can also make good use of the upTerm function, that allows
us to get the metarepresentation of a term in a given module.

Maude> (red in META-LEVEL :

metaReduce(upModule(NAT-PLUS), upTerm(NAT-PLUS, 0 + s 0)) .)

result ResultPair :

{’s_[’0.Nat], ’Nat}

As another example, to obtain the metarepresentation of the term s 0 in
the module NAT-PLUS above, which we denoted by s 0, we can write

Maude> (red in META-LEVEL : upTerm(NAT-PLUS, s 0) .)

result GroundTerm :

’s_[’0.Nat]
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The module name is the first argument of the upTerm function, with the
term of that module to be metarepresented as the second argument. Since the
same term can be parsed in different ways in different modules, and therefore
can have different metarepresentations depending on the module in which it
is considered, the module to which the term belongs has to be used to obtain
the correct metarepresentation. Note also that the above reduction only makes
sense at the metalevel, that is, either in the META-LEVEL module itself or in a
module importing it.

19.4.2 Down

The result of a metalevel computation, that may use several levels of reflection,
can be a term or a module metarepresented one or more times, which may be
hard to read. Therefore, to display the output in a more readable form we can
use the down command, which is in a sense inverse to upTerm, since it gives us
back the original term from its metarepresentation. Notice that down is not
a function, but a command instead, because it is more general, taking other
commands as arguments, as we are going to explain.

The down command takes two arguments. The first argument is the name
of the module to which the term to be returned belongs. The metarepresen-
tation of the desired output term should be the result of the command given
as second argument. The syntax of the down command is as follows:

down 〈ModuleExpression 〉 : 〈Command 〉

Thus, we can give the following command.

Maude> (down NAT-PLUS :

red in META-LEVEL :

getTerm(

metaReduce(upModule(NAT-PLUS),

upTerm(NAT-PLUS, 0 + s 0))) .)

result Nat :

s 0

Notice that this is equivalent to what we may write using the overline
notation as:

Maude> red getTerm(metaReduce(NAT-PLUS, 0 + s 0)) .

result Term: s 0

The use of upTerm and down can be iterated with as many levels of reflec-
tion as we wish. For example, we can give the command

Maude> (red in META-LEVEL :

getTerm(

metaReduce(upModule(META-LEVEL),

upTerm(META-LEVEL,
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getTerm(

metaReduce(upModule(NAT-PLUS),

upTerm(NAT-PLUS, 0 + s 0)))))) .)

result GroundTerm :

’_‘[_‘][’’s_.Sort, ’’0.Nat.Constant]

This is equivalent to what we would have written using the overline nota-
tion as

Maude> red getTerm(metaReduce(META-LEVEL,

metaReduce(NAT-PLUS, 0 + s 0))) .

result Term: s 0

We can write expressions involving simultaneously down, upModule, and
upTerm:

Maude> (down NAT-PLUS :

down META-LEVEL :

red in META-LEVEL :

getTerm(

metaReduce(upModule(META-LEVEL),

upTerm(META-LEVEL,

getTerm(

metaReduce(upModule(NAT-PLUS),

upTerm(NAT-PLUS, 0 + s 0)))))) .)

result Nat :

s 0

The metalevel function downTerm can also be used, but it is a Core Maude
function, and therefore can only be used on Core Maude modules.

Maude> (down NAT-PLUS :

red in META-LEVEL :

downTerm(

getTerm(

metaReduce(upModule(META-LEVEL),

upTerm(META-LEVEL,

getTerm(

metaReduce(upModule(NAT-PLUS),

upTerm(NAT-PLUS, 0 + s 0)))))),

’T:Term) .)

result Nat :

s 0

19.5 Ax-coherence completion

As pointed out in Section 15.9.1, the equations used for variant gener-
ation in an admissible equational theory must be confluent, terminating,
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sort-decreasing, and explicitly Ax-coherent. The confluence, termination, and
sort-decreasingness of equational Maude specifications are the typical exe-
cutability requirements for equational specifications, and can be checked using
Maude’s Church-Rosser Checker (CRC) [126, 128] and Termination Checker
(MTT) [118].

Regarding the Ax-coherence requirement, the situation is different for
different purposes. Ax-coherence is not currently required for rewrite the-
ories written in Maude because specifications are implicitly completed for
Ax-coherence within Maude (see Section 4.8). It is not required either for
tools like the CRC or the Coherence Checker (ChC), or for narrowing (see
Chapter 20) which also automatically complete the specifications provided.
However, rewrite theories are assumed to be explicitly Ax-coherent for vari-
ant generation and variant-based unification (Section 15.10), the reason being
that there is a different treatment of extension variables in rewriting and nar-
rowing (see [373] for more details). Indeed, we require coherence rather than
ground coherence, since the latter is weaker and sufficient for rewriting but
insufficient for narrowing or critical pair analysis.

For theories Ax that are combinations of associativity, commutativity, and
identity axioms, we can make any specification explicitly Ax-coherent by us-
ing a procedure which adds Ax-extensions and always terminates (see [297],
and Section 4.8 for a more informal explanation). The procedure followed to
automatically complete for Ax-coherence for rewriting and for narrowing, or
in the CRC or ChC tools is carried on differently. Whilst for rewriting the
completion is performed by (Core) Maude, in the other cases the completion
is performed by Maude code provided by Full Maude.

Full Maude provides the following axCohComplete operation in its module
AX-COHERENCE-COMPLETION.

op axCohComplete : Module -> Module .

This operation takes (the metarepresentation of) a module which defines an
order-sorted specification (i.e., no memberships are allowed) and returns (the
metarepresentation of) another module whose equations and rules are modi-
fied to complete them modulo associativity and commutativity (AC ), associa-
tivity, commutativity, and identity (ACU ), associativity and identity (AU ),
associativity, commutativity, and left identity (ACUl), associativity, commu-
tativity, and right identity (ACUr), and associativity (A).

More specifically, for each operator f : S S → S and equation/rule
f(t1, . . . , tn)→ r if C in the module,
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if f is AC add f(t1, . . . , tn, x : [S])→ f(r, x : [S]) if C
if f is ACU replace by f(t1, . . . , tn, x : [S])→ f(r, x : [S]) if C
if f is AU replace by f(x : [S], t1, . . . , tn, y : [S])→ f(x : [S], r, y : [S]) if C
if f is ACUl replace by f(x : [S], t1, . . . , tn, y : [S])→ f(x : [S], r, y : [S]) if C

add f(x : [S], t1, . . . , tn)→ f(x : [S], r) if C
if f is ACUr replace by f(x : [S], t1, . . . , tn, y : [S])→ f(x : [S], r, y : [S]) if C

add f(t1, . . . , tn, y : [S])→ f(r, y : [S]) if C
if f is A add f(x : [S], t1, . . . , tn, y : [S]])→ f(x : [S], r, y : [S]) if C

add f(x : [S], t1, . . . , tn)→ f(x : [S], r) if C
add f(t1, . . . , tn, y : [S])→ f(r, y : [S]) if C

Ax-completion is available in Full Maude through the following command:

(ax coherence completion [ 〈ModuleExpression 〉 ] .)

where 〈ModuleExpression〉 is any module expression. As usual, if no module
expression is given the default current module is completed.

For example, let us consider the following non-coherent version of the
equational theory for exclusive or (see Section 15.9).

mod EXCLUSIVE-OR-NOT-COHERENT is

sorts Nat NatSet .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

subsort Nat < NatSet .

op mt : -> NatSet .

op _*_ : NatSet NatSet -> NatSet [ctor assoc comm] .

vars X Y Z : [NatSet] .

eq [idem] : X * X = mt [variant] .

eq [id] : X * mt = X [variant] .

endm

The module EXCLUSIVE-OR-NOT-COHERENT is not AC -coherent. The command

Maude> (ax coherence completion EXCLUSIVE-OR-NOT-COHERENT .)

shows the completed version of the EXCLUSIVE-OR-NOT-COHERENT module.
Specifically, the following equation is added :

eq [idem] : X:[NatSet] * X:[NatSet] * X@@@:[NatSet]

= mt * X@@@:[NatSet] [variant] .

Notice the new variable X@@@:[NatSet]. The resulting module is equivalent
to the module EXCLUSIVE-OR in Section 15.9.

As another example, the Ax-completion of the VENDING-MACHINE module
in Section 6.1 results in a module with the same definitions but with the
change rule replaced by the rule
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rl [change] : q q q q X@@@:[Marking] => $ X@@@:[Marking] .

In general, of course, a module can have operators with any combination of
associativity, commutativity, and identity, with associated equations and rules.
In that case the ax coherence completion command will add or replace the
corresponding completion equations and rules.

The narrowing command (see Section 20.3) and the CRC and ChC tools
(see Sections 23.1.3 and 23.1.4)use the metalevel operation axCohComplete

to complete the modules before using them. As any other function in Full
Maude, it is available for its direct use in other tools or commands. We can
illustrate the use of this metalevel function with the coherence completion of
the EXCLUSIVE-OR-NOT-COHERENT module:

Maude> reduce in FULL-MAUDE :

axCohComplete(upModule(’EXCLUSIVE-OR-NOT-COHERENT, false)) .

result SModule :

mod ’EXCLUSIVE-OR-NOT-COHERENT is

including ’BOOL .

sorts ’Nat ; ’NatSet .

subsort ’Nat < ’NatSet .

op ’0 : nil -> ’Nat [ctor] .

op ’mt : nil -> ’NatSet [ctor] .

op ’_*_ : ’NatSet ’NatSet -> ’NatSet [assoc comm ctor] .

op ’s : ’Nat -> ’Nat [ctor] .

none

eq ’_*_[’X:‘[NatSet‘],’mt.NatSet]

= ’X:‘[NatSet‘] [label(’id) variant] .

eq ’_*_[’X:‘[NatSet‘],’X:‘[NatSet‘]]

= ’mt.NatSet [label(’idem) variant] .

eq ’_*_[’X:‘[NatSet‘],’X:‘[NatSet‘],’X@@@:‘[NatSet‘]]

= ’_*_[’mt.NatSet,’X@@@:‘[NatSet‘]] [label(’idem) variant] .

none

endm

19.6 Differences between Full Maude and Core Maude

Apart from those features available in Full Maude that are not supported in
Core Maude (discussed above in Sections 19.3-19.5 and later in Chapters 20
and 21), we find a number of differences between Full Maude and Core Maude.
There are some obvious ones, like the fact that any input enclosed in parenthe-
ses is handled by Full Maude. Thus, Full Maude modules, theories, views, and
commands can refer to modules, theories, and views in both Core Maude and
Full Maude’s databases. There are also differences in pretty-printing, tracing,
debugging, etc. Moreover, there are also other differences that impose certain
limitations on the specifications themselves:
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1. Operator and message names have to be given in their equivalent single-
identifier form when they are declared (see below), but they can later be
written in the usual way in statements and in terms for evaluation.

2. Sort names used in term qualifications, membership assertions, and on-
the-fly declarations of variables have to be in their equivalent single-
identifier form.

3. The continue, show component, show path, and show search graph

commands are not supported in Full Maude.
4. Full Maude does not support external objects.

In the rest of the section we explain the first two restrictions in some detail
and give some hints on how to avoid them.

An operator name has to be given as a single identifier; multi-identifier
operators have to be declared in their single-identifier form, that is, each
identifier in a multi-identifier name has to be preceded by a backquote. For
example, to define an operator with name _less than or equal_, we have
to declare it in its single identifier form _less‘than‘or‘equal_. Except for
having to use the single-identifier form in the operator name, the declaration
of operators is exactly as in Core Maude. For example, the declaration of this
operator on sort, say, Int is as follows.

op _less‘than‘or‘equal_ : Int Int -> Bool .

Remember that not only blank spaces, but also the special characters ‘{’, ‘}’,
‘(’, ‘)’, ‘[’, ‘]’ and ‘,’ break the identifiers. Therefore, to declare in Full Maude
an operator such as {_} taking an element of sort, say, Int and with value
sort Set, we should add appropriate backquotes, as follows:

op ‘{_‘} : Int -> Set .

As in Core Maude, several operators with the same arity and coarity can
be defined in the same declaration using the keyword ops, but, again, each
operator name has to be given in its single-identifier form. We could have for
example the following declaration.

ops _‘{_‘} _‘,_ : Foo Bar -> Baz .

Since each operator name is a single identifier, parentheses are not needed to
indicate the boundaries between the syntactic forms of the different operators.

As for operator names, message names can be mixfix, but they have to
be declared in single-identifier form. Thus, to define a message credit in an
object-oriented module (see Chapter 21) with syntax, say, (_)credit_ the
declaration has to be given as follows.

msg ‘(_‘)credit_ : Oid Nat -> Msg .

And the same applies to declarations of multiple message names:

msgs ‘(_‘)credit_ ‘(_‘)debit_ : Oid Nat -> Msg .
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The second problem mentioned at the beginning of this section affects the
qualification of terms by sort names, on-the-fly declarations of variables, and
membership assertions. In these three situations, the user must use the names
of parameterized sorts, not as he or she has defined them, but in their equiva-
lent single-identifier form. Thus, if we have, for example, a sort List{Nat} and
a constant nil in it, if necessary, it should be qualified as (nil).List‘{Nat‘}.
A variable L of sort List{Nat} being declared on the fly should be written
L:List‘{Nat‘}. Similarly, to check whether a term T has sort List{Nat} we
have to write T : List‘{Nat‘} or T :: List‘{Nat‘}, depending on the kind
of sort check we wish to perform.

19.7 Adding new features to Full Maude

Full Maude and its execution environment are implemented using the reflective
capabilities of Maude, which yield very good flexibility, maintainability, and
extensibility. Several interesting extensions have already been done, either by
adding new commands, like in the works by Durán, Escobar, and Lucas [116,
114, 115], or by adding new types of statements or declarations, like in Real-
Time Maude [288, 291] or MSOS [55].

We illustrate in the following sections the addition of new commands and
new module expressions to Full Maude. In particular, in Section 19.7.1 we
illustrate such a process by adding a new command to provide unification
modulo the commutativity of certain operators, making it available inside the
Full Maude programming environment like any other of its commands. In
Section 19.7.2, we extend Full Maude with a new module expression which
makes available the transformation presented in Section 16.3 making a system
specification deadlock free. As we will see, the addition of the new command
and module expression that we present here mirror the Full Maude declara-
tions for the currently available commands and module expressions, and in
fact some of the infrastructure available in Full Maude is used, thus greatly
simplifying the implementation task.

19.7.1 A unifyc unification command

The unification algorithm presented in Section 16.1 was implemented as a met-
alevel function metaUnify, which takes a module and a set of commutative
equations to be unified. To simplify the example, we assume that we always
unify on the selected module—an alternative command taking a module ex-
pression, as for other commands in Full Maude, could also be given; anyway,
we can always use the select command (see Section 25.13) to change mod-
ules. Then, the syntax for our new command is the following:

unifyc 〈pattern 〉 = 〈pattern 〉 ( /\ 〈pattern 〉 = 〈pattern 〉 )* .
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That is, we try to unify a set of equations. The result of this command is a
complete set of unifiers for the given unification problem.

The specification/implementation of the behavior of commands like reduce
and rewrite performs some parsing of the arguments and pretty printing of
the outputs; but the key functionality is provided by the corresponding descent
function, in these cases by metaReduce and metaRewrite, respectively. Given
that we already have a function metaUnify, which was defined in Section 16.1,
we follow a pattern very similar to that for these previous commands.

As we saw in Section 18.1, in the current version of Maude, input/output is
accomplished by the predefined LOOP-MODE module, which provides a generic
read-eval-print loop. In the case of Full Maude, the persistent state of the
loop is given by a single object of class DatabaseClass which maintains the
database of the system. Objects of this class have an attribute db, of sort
Database, to keep the actual database in which all the modules being entered
are stored (as a set of records), an attribute default, to keep the identifier of
the current module by default, and attributes input and output, to simplify
the communication of the read-eval-print loop given by the LOOP-MODE module
with the database object. Using the notation for classes5 we can declare such
a class as follows:

class DatabaseClass | db : Database, default : ModName,

input : TermList, output : QidList .

The state of the read-eval-print loop is then given by an object of class
DatabaseClass. In the case of Full Maude, the rules handling the read-eval-
print loop are given in the modules DATABASE-HANDLING and FULL-MAUDE. In
particular, the module FULL-MAUDE includes the rules to initialize the loop
(init rule), and to specify the communication between the loop—the in-
put/output of the system—and the database object (in and out rules). De-
pending on the kind of input that the database receives, its state will be
changed, or some output will be generated, or both.

To parse some input using the built-in function metaParse, Full Maude
needs the metarepresentation of the signature in which the input is going to be
parsed. In Full Maude, such a grammar is provided by the FULL-MAUDE-SIGN

module, in which we can find the appropriate declarations, so that any valid
input, namely modules, theories, views, and commands, can be parsed. In
particular we find in such a module sorts @Bubble@ and @Command@, of bubbles
(see Section 18.4) and commands, respectively. Thus, we declare the module
UNIFICATION-SIGN extending the module FULL-MAUDE-SIGN with syntax for
the unifyc command as follows.

fmod UNIFICATION-SIGN is

extending FULL-MAUDE-SIGN .

5 Although we will introduce the notation for class declarations in the next chapter,
it is quite intuitive and may help us to visualize the structure of the objects in
the DatabaseClass class at this point.
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op unifyc_. : @Bubble@ -> @Command@ .

endfm

This module must be entered after deactivating the default inclusion of
the BOOL module by using the set include BOOL off command (see Sec-
tion 25.13). Note that, since a bubble can be anything, trying to define here
syntax for the conjunction of equations would lead to unavoidable ambiguous
parses. Instead, we will see below how we make a second parse of the bubble
considering the module in which the unification takes place, that is, in which
the terms being unified are defined, extended with declarations for equations
and sets of equations.

As we will see below, this module is used as a grammar for parsing the in-
puts using metaParse, and therefore it must be used at the metalevel. Since we
need additional declarations for parsing tokens and bubbles (see Section 18.4),
we cannot use the upModule operator. Instead, since these additional declara-
tions are available in a metamodule GRAMMAR, we get the intended metamodule
as follows:

fmod UNIFICATION-META-SIGN is

pr META-LEVEL .

pr META-FULL-MAUDE-SIGN .

pr UNIT .

op UNIF-GRAMMAR : -> FModule .

eq UNIF-GRAMMAR

= addImports((including ’UNIFICATION-SIGN .), GRAMMAR) .

endfm

Given this module, we will use the constant UNIF-GRAMMAR for parsing the
inputs.

Another important module in Full Maude is COMMAND-PROCESSING, which
includes definitions of functions in charge of processing the different com-
mands. In particular, there is a function procCommand, which takes a term—
as given by the function metaParse—corresponding to a command, the name
of the current module, and the current database. Since Maude delays the
compilation of the entered modules until the moment when they are go-
ing to be used, before being able to use a module, we must make sure
that it is compiled; if it is not, it is compiled at this time by using the
evalModExp function. Among others, the COMMAND-PROCESSING module and
its submodules provide functions that are used here, namely, compiledModule,
evalModExp, and getFlatModule. The compiledModule predicate checks the
database to see whether the given module expression has already been com-
piled or not; the evalModExp function evaluates a given module expression
in the context of the given database and returns as result a term of sort
Tuple{Database, ModuleExpression}, for which there exist projection func-
tions database and modExp; finally, the getFlatModule function returns the
flat version of the specified module in the given database term.
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The UNIFICATION-COMMAND-PROCESSING module below extends the Full
Maude module COMMAND-PROCESSING by providing an equation dealing with
the new command. In such an equation we call an auxiliary function procUnify

which is in charge of calling metaUnify with the appropriate arguments. In
particular, before calling metaUnify, the bubble must be transformed into the
corresponding conjunction of equations, if possible. To do that we use an aux-
iliary function solveBubblesCommEqSet; to avoid the previously mentioned
potential ambiguity, we do the parsing in the module in which the unification
takes place extended with the declarations in the following module:6

fmod EQ-CONDITION-SYNTAX is

sort @CommEqSet@ .

op _/\_ : @CommEqSet@ @CommEqSet@ -> @CommEqSet@

[ctor assoc prec 73] .

op _=_ : Universal Universal -> @CommEqSet@

[ctor poly(1 2) prec 71] .

endfm

Note the use of the poly attribute to declare a polymorphic operator _=_.
To extend a module with these declarations we use the Full Maude func-
tion addDecls, which returns the module resulting from adding all the dec-
larations in the module passed as second argument to the module passed
as first argument. The function metaParse is then called with the module
resulting from the addition of these declarations to the module passed to
solveBubblesCommEqSet. The term resulting from the parsing is transformed
into a term of sort CommEqSet by the getCommEqSet function. Notice that these
functions are declared as partial, returning a term at the kind level in case
an error occurs, which allows us to give the corresponding message (see the
procUnify function below). Note also that both procCommand and procUnify

return a list of quoted identifiers, that will be given as output to the loop.

fmod UNIFICATION-COMMAND-PROCESSING is

pr COMMAND-PROCESSING .

pr UNIFICATION .

vars T T’ : Term .

var ME : ModuleExpression .

var DB : Database .

var M : Module .

var Sb : Substitution .

var SbS : SubstitutionSet .

var N : Nat .

eq procCommand(’unifyc_.[T], ME, DB)

= if compiledModule(ME, DB)

6 As for other modules defining syntax, we must make sure that the BOOL module
is not imported.
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then << DB ; procUnify(getFlatModule(ME, DB), T) >>

else << DB ; procUnify(

getFlatModule(modExp(evalModExp(ME, DB)),

database(evalModExp(ME, DB))),

T) >>

fi .

op getCommEqSet : Term ~> CommEqSet .

eq getCommEqSet(’_/\_[T, T’]) = getCommEqSet(T) getCommEqSet(T’) .

eq getCommEqSet(’_=_[T, T’]) = T =?c T’ .

op solveBubblesCommEqSet : Term Module -> CommEqSet .

eq solveBubblesCommEqSet(’bubble[T], M)

= getCommEqSet(

getTerm(

metaParse(

addDecls(M, upModule(’EQ-CONDITION-SYNTAX, true)),

downQidList(T),

’@Condition@))) .

op procUnify : Module Term -> QidList .

op procUnify : Module SubstitutionSet Nat -> QidList .

eq procUnify(M, T)

= if metaUnify(M, solveBubblesCommEqSet(T, M)) :: SubstitutionSet

then procUnify(M, metaUnify(M, solveBubblesCommEqSet(T, M)), 1)

else (’\r ’Error: ’\o ’Incorrect ’unifyc ’command. ’\n)

fi .

eq procUnify(M, emptySubstitutionSet, N)

= (’\n ’\n ’No ’more ’solutions.) .

eq procUnify(M, substitutionSet(Sb, SbS), N)

= (’\n ’Solution qid(string(N, 10)) ’\s

’\n eMetaPrettyPrint(M, Sb)

procUnify(M, SbS, s N)) .

endfm

The module DATABASE-HANDLING defines the behavior of the database
upon new entries. The behavior associated with commands is managed by
rules describing transitions which call the function procCommand. The follow-
ing module UNIFICATION-DATABASE-HANDLING extends DATABASE-HANDLING

by adding a rule handling the new unifyc command.

mod UNIFICATION-DATABASE-HANDLING is

inc DATABASE-HANDLING .

pr UNIFICATION-COMMAND-PROCESSING .

sort Unifier .

subsort Unifier < DatabaseClass .

op Unifier : -> Unifier .
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var Atts : AttributeSet .

var X@Unifier : Unifier .

var O : Oid .

var ME : ModuleExpression .

var DB : Database .

vars T T’ : Term .

var QIL : QidList .

rl [Unifier] :

< O : X@Unifier | db : DB, input : (’unifyc_.[T]),

output : QIL, default : ME, Atts >

=> < O : X@Unifier | db : DB, input : nilTermList,

output : procCommand(’unifyc_.[T], ME, DB),

default : ME, Atts > .

endm

Note that, given the syntax defined above, when a unifyc command is
entered, the function metaParse returns a term of the form ’unifyc_.[T],
where T is variable of sort Term representing a bubble. As we will see in the
redefinition of the module FULL-MAUDE below, the result of parsing the input is
placed in the input attribute of the database object of class DatabaseClass.

Before presenting the redefinition of the FULL-MAUDE module, we need a
last module defining a constant that will be used to show a banner at start-up
time.

fmod UNIFICATION-BANNER is

pr STRING .

op unification-banner : -> String .

eq unification-banner

= "Unification command available October 29th 2008" .

endfm

Finally, to make the new command available in Full Maude, we need to
redefine the FULL-MAUDE module. Notice that now the init rule creates an
instance of the class Unifier, the in and out rules take Unifier objects, and
parsing for them is done using UNIF-GRAMMAR instead of GRAMMAR inputs.

mod FULL-MAUDE is

pr UNIFICATION-META-SIGN .

inc UNIFICATION-DATABASE-HANDLING .

inc LOOP-MODE .

pr BANNER .

pr UNIFICATION-BANNER .

subsort Object < State .

op o : -> Oid .

op init : -> System .
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var Atts : AttributeSet .

var X@Unifier : DatabaseClass .

var O : Oid .

var DB : Database .

var ME : Header .

var QI : Qid .

vars QIL QIL’ QIL’’ : QidList .

var TL : TermList .

var N : Nat .

vars RP RP’ : ResultPair .

rl [init] :

init

=> [nil,

< o : Unifier |

db : initialDatabase,

input : nilTermList, output : nil,

default : ’CONVERSION >,

(’\t string2qidList(unification-banner) ’\n)] .

rl [in] :

[QI QIL,

< O : X@Unifier | db : DB, input : nilTermList,

output : nil, default : ME, Atts >,

QIL’]

=> if metaParse(UNIF-GRAMMAR, QI QIL, ’@Input@) :: ResultPair

then [nil,

< O : X@Unifier | db : DB,

input : getTerm(

metaParse(UNIF-GRAMMAR, QI QIL, ’@Input@)),

output : nil, default : ME, Atts >,

QIL’]

else [nil,

< O : X@Unifier | db : DB, input : nilTermList,

output :

(’\r ’Warning:

printSyntaxError(

metaParse(UNIF-GRAMMAR, QI QIL, ’@Input@),

QI QIL)

’\n ’\r ’Error: ’\o ’No ’parse ’for ’input. ’\n),

default : ME, Atts >,

QIL’]

fi .

rl [out] :

[QIL,

< O : X@Unifier | db : DB, input : TL,

output : (QI QIL’), default : ME, Atts >,

QIL’’]
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=> [QIL,

< O : X@Unifier | db : DB, input : TL,

output : nil, default : ME, Atts >,

(QI QIL’ QIL’’)] .

endm

Loading Full Maude with the file unification-command.maude, contain-
ing the modules presented in this section together with a previous command
to load the file unification.maude, which in turn contains the modules pre-
sented in Section 16.1, we get the following:

$ maude.linux full-maude.maude unification-command.maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.7 built: Mar 3 2014 18:07:27

Copyright 1997-2014 SRI International

Tue Jul 15 22:57:15 2014

Full Maude 2.7 March 10th 2015

Unification command available October 29th 2008

Maude>

We can now solve the unification problems presented in Section 16.1 at
the object level by means of the unifyc command, after making sure that we
have loaded first the PEANO-NAT module (from Section 4.10 and assuming it
is in the file peano-nat.fm) on which the unification will take place.

Maude> load peano-nat.fm

Introduced module PEANO-NAT

Maude> (unifyc X:NzNat + (0 * Y:NzNat) = W:Nat + s Z:Nat .)

Solution 1

W:Nat --> 0 * Y@:NzNat ;

X:NzNat --> s Z@:Nat ;

Y:NzNat --> Y@:NzNat ;

Z:Nat --> Z@:Nat

No more solutions.

Maude> (unifyc X:NzNat + s (Y:Nat * W:Nat) = s V:Nat + Z:Nat .)

Solution 1

V:Nat --> V@:Nat ;

W:Nat --> W@:Nat ;

X:NzNat --> s V@:Nat ;
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Y:Nat --> Y@:Nat ;

Z:Nat --> s(Y@:Nat * W@:Nat)

Solution 2

V:Nat --> Y@:Nat * W@:Nat ;

W:Nat --> W@:Nat ;

X:NzNat --> Z@:NzNat ;

Y:Nat --> Y@:Nat ;

Z:Nat --> Z@:NzNat

No more solutions.

Maude> (unifyc s X:Nat + (X:Nat * Y:Nat) = Z:NzNat + s s 0

/\ Y:Nat = s s W:NzNat

/\ s V:Nat = s s s s s 0

/\ Z:NzNat = V:Nat * s 0 .)

Solution 1

V:Nat --> s s s s 0 ;

W:NzNat --> s s 0 ;

X:Nat --> s 0 ;

Y:Nat --> s s s s 0 ;

Z:NzNat --> s 0 * s s s s 0

No more solutions.

19.7.2 A new module expression: DEADLOCK-FREE

In this section we describe some guidelines for making available in Full Maude
new module expressions. We have seen in Section 19.3.1 that very power-
ful module expressions, like TUPLE[_] and POWER[_], are available in Full
Maude. A module expression like TUPLE[_] is very useful in practice, but
it also helps as an example to envision many other uses of module expres-
sions. The TUPLE[_] operation takes a nonzero natural number n and returns
a parameterized TUPLE[n] module, which is impossible to achieve with the
Clear/OBJ repertoire of module operations [42, 174]. Even though an n-tuple
module expression is in principle of a completely different nature from the
usual Clear/OBJ module operations, the way Full Maude handles it is the
same as the way it handles any other module expression. Its evaluation pro-
duces a new unit, a parameterized functional module in this case, with the
module expression as its name. The semantics of the module expression is
then defined by the way such module is generated.

In Section 16.3 we defined a function deadlock-free that takes the
metarepresentations of a module and a sort, and returns the metarepresenta-
tion of the module resulting from transforming it so that the rewrite theory is
deadlock free. However, since the deadlock-free function works at the met-
alevel and returns the metarepresentation of a module, it is not easy to use its
result at the object level. Here we present a module expression that will use
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such deadlock-free function to generate a new module containing the result
of the transformation that can later be used to perform other computations
such as, for example, model-checking analysis for equational abstractions (see
Section 13.4).

As for the unification command, we first extend the grammar of Full Maude
with the corresponding declarations. We declare a constant DEADLOCK-GRAMMAR
in a module DEADLOCK-FREE-META-SIGN as we did for the unification com-
mand in Section 19.7.1.

fmod DEADLOCK-FREE-SIGN is

ex FULL-MAUDE-SIGN .

op DEADLOCK-FREE‘[_‘,_‘] : @ModExp@ @Sort@ -> @ModExp@ .

endfm

fmod DEADLOCK-FREE-META-SIGN is

pr META-LEVEL .

pr META-FULL-MAUDE-SIGN .

pr UNIT .

op DEADLOCK-GRAMMAR : -> FModule .

eq DEADLOCK-GRAMMAR

= addImports((including ’DEADLOCK-FREE-SIGN .), GRAMMAR) .

endfm

The DEADLOCK-FREE-EXPR module below declares a DEADLOCK-FREE[_,_]

operator, of sort ModuleExpression, and equations completing the definition
of functions on it in Full Maude. The main of these functions is evalModExp,
which evaluates a given module expression in the context of a given database
and returns as result a term of sort Tuple{Database, ModuleExpression}.
The evalModExp function generates and introduces in the database the mod-
ules required for giving semantics to the given module expression. The modi-
fied database is returned as first component of the resulting tuple; in this case,
the new module is generated using the deadlock-free function presented in
Section 16.3. Since some module expressions are modified during their evalu-
ation, the new module expression is also returned as second component of the
resulting tuple. Furthermore, other functions must be completed:

• given a term, resulting from a call to the metaParse function with a
module expression, the parseModExp function returns the corresponding
term of sort ModuleExpression;
• before calling the parseModExp function, all occurrences of the up function

are removed by a solveUps function, which needs to be defined on this
new type of module expression;
• related to the handling of linking parameters, the labelInModExp function

checks whether a given label occurs in the module expression given as
second parameter;
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• the header2Qid function returns the module expression given as param-
eter represented as a single quoted identifier;

• the prepModExp is needed for the instantiation of module expressions; it is
in charge of appropriately handling the repeated use of view expressions;

• setUpModExpDeps establishes the dependencies between the modules in
the database, so that if a module is redefined all modules depending on it
are recompiled before being used.

fmod DEADLOCK-FREE-EXPR is

inc MOD-EXPR .

pr INST-EXPR-EVALUATION .

pr EVALUATION .

pr DEADLOCK-FREEDOM .

pr MOD-EXP-PARSING .

vars N N’ : NzNat .

var PDL : ParameterDeclList .

vars DB DB’ : Database .

vars T T’ T’’ : Term .

var IL : ImportList .

var VEPS : Set<Tuple<ViewExp|ViewExp>> .

var X : Qid .

var S : Sort .

vars ME ME’ : ModuleExpression .

var DT : Default{Term} .

vars U U’ M DM : Module .

vars MNS MNS’ MNS’’ MNS3 MNS4 : Set{ModuleName} .

vars VES VES’ : Set{ViewExp} .

var MIS : Set{ModuleInfo} .

var VIS : Set{ViewInfo} .

var QIL : QidList .

var VDS : OpDeclSet .

op DEADLOCK-FREE[_,_] : ModuleExpression Sort -> ModuleExpression .

ceq evalModExp(DEADLOCK-FREE[ME, S], PDL, DB)

= if unitInDb(DEADLOCK-FREE[ME’, S], DB’)

then < DB’ ; DEADLOCK-FREE[ME’, S] >

else < evalModule(

setName(

deadlock-free(getFlatModule(ME’, DB’), S),

DEADLOCK-FREE[ME’, S]),

none, DB’) ;

DEADLOCK-FREE[ME’, S] >

fi

if ME’ := modExp(evalModExp(ME, PDL, DB))

/\ DB’ := database(evalModExp(ME, PDL, DB)) .

eq parseModExp(’DEADLOCK-FREE‘[_‘,_‘][T, T’])
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= DEADLOCK-FREE[parseModExp(T), parseType(T’)] .

eq solveUps(’upModule[’DEADLOCK-FREE‘[_‘,_‘][T, T’]], DB)

= solveUpsModExp(’upModule[’DEADLOCK-FREE‘[_‘,_‘][T, T’]], DB) .

eq solveUps(

’upTerm[’DEADLOCK-FREE‘[_‘,_‘][T, T’], ’bubble[T’’]], DB)

= solveUpsModExp(

’upTerm[’DEADLOCK-FREE‘[_‘,_‘][T, T’], ’bubble[T’’]], DB) .

eq labelInModExp(X, DEADLOCK-FREE[ME, S]) = false .

eq header2Qid(DEADLOCK-FREE[ME, S])

= qid("DEADLOCK-FREE[" + string(header2Qid(ME))

+ ", " + string(S) + "]") .

eq header2QidList(DEADLOCK-FREE[ME, S])

= (’DEADLOCK-FREE ’‘[ header2QidList(ME) ’‘, S ’‘]) .

eq prepModExp(DEADLOCK-FREE[ME, S], VEPS)

= DEADLOCK-FREE[prepModExp(ME, VEPS), S] .

eq setUpModExpDeps(DEADLOCK-FREE[ME, S],

db(< ME ; DT ; U ; U’ ; M ; VDS ; MNS ; VES > MIS,

MNS’, VIS, VES’, MNS’’, MNS3, MNS4, QIL))

= db(< ME ; DT ; U ; U’ ; M ; VDS ;

MNS . DEADLOCK-FREE[ME, S] ; VES >

MIS, MNS’, VIS, VES’, MNS’’, MNS3, MNS4, QIL) .

eq setUpModExpDeps(DEADLOCK-FREE[ME, S],

db(< ME ; DM ; U ; U’ ; M ; VDS ; MNS ; VES > MIS,

MNS’, VIS, VES’, MNS’’, MNS3, MNS4, QIL))

= db(< ME ; DM ; U ; U’ ; M ; VDS ;

MNS . DEADLOCK-FREE[ME, S] ; VES > MIS,

MNS’, VIS, VES’, MNS’’, MNS3, MNS4, QIL) .

eq setUpModExpDeps(DEADLOCK-FREE[ME, S], DB)

= warning(DB, ’\r ’Error: ’\o ’Module header2QidList(ME)

’not ’in ’database. ’\n)

[owise] .

endfm

As we did in Section 19.7.1 for the extension adding the unification com-
mand, the FULL-MAUDE module must be redefined. In this case, the grammar
defined by the DEADLOCK-GRAMMAR module is used for parsing in the in rules.
The DEADLOCK-FREE-BANNER module is used to show a banner at start-up.

fmod DEADLOCK-FREE-BANNER is

pr STRING .

op deadlock-free-banner : -> String .

eq deadlock-free-banner

= "DEADLOCK-FREE mod. expr. available Oct. 28th 2008" .

endfm
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mod FULL-MAUDE is

pr DATABASE-HANDLING .

inc LOOP-MODE .

pr BANNER .

pr DEADLOCK-FREE-META-SIGN .

pr DEADLOCK-FREE-BANNER .

pr DEADLOCK-FREE-EXPR .

subsort Object < State .

sort DeadlockFree .

subsort DeadlockFree < DatabaseClass .

op DeadlockFree : -> DeadlockFree .

op o : -> Oid .

op init : -> System .

var Atts : AttributeSet .

var X@DeadlockFree : DatabaseClass .

var O : Oid .

var DB : Database .

var ME : Header .

var QI : Qid .

vars QIL QIL’ QIL’’ : QidList .

var TL : TermList .

var N : Nat .

vars RP RP’ : ResultPair .

rl [init] :

init

=> [nil,

< o : DeadlockFree |

db : initialDatabase,

input : nilTermList, output : nil,

default : ’CONVERSION >,

(’\t string2qidList(deadlock-free-banner) ’\n)] .

rl [in] :

[QI QIL,

< O : X@DeadlockFree | db : DB, input : nilTermList,

output : nil, default : ME, Atts >,

QIL’]

=> if metaParse(DEADLOCK-GRAMMAR, QI QIL, ’@Input@) :: ResultPair

then [nil,

< O : X@DeadlockFree | db : DB,

input :

getTerm(

metaParse(DEADLOCK-GRAMMAR, QI QIL, ’@Input@)),

output : nil, default : ME, Atts >,

QIL’]

else [nil,
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< O : X@DeadlockFree | db : DB, input : nilTermList,

output :

(’\r ’Warning:

printSyntaxError(

metaParse(DEADLOCK-GRAMMAR, QI QIL, ’@Input@),

QI QIL)

’\n ’\r ’Error: ’\o ’No ’parse ’for ’input. ’\n),

default : ME, Atts >,

QIL’]

fi .

rl [out] :

[QIL,

< O : X@DeadlockFree |

db : DB, input : TL, output : (QI QIL’), default : ME, Atts >,

QIL’’]

=> [QIL,

< O : X@DeadlockFree |

db : DB, input : TL, output : nil, default : ME, Atts >,

(QI QIL’ QIL’’)] .

endm

Now, after loading the above modules (which we assume are in the file
deadlock-free-mod-expr.maude, together with a command to load the mod-
ules from Section 16.3), we may use the DEADLOCK-FREE module expression to
transform a system module before model checking some properties on it. For
example, if the file bakery.maude contains the BAKERY module introduced in
Section 13.4, we may proceed as follows:

$ maude.linux model-checker.maude bakery.maude full-maude.maude

deadlock-free-mod-expr.maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.7 built: Mar 3 2014 18:07:27

Copyright 1997-2014 SRI International

Tue Jul 15 22:57:15 2014

Full Maude 2.7 March 10th 2015

DEADLOCK-FREE mod. expr. available Oct. 28th 2008

Maude> (mod DF-BAKERY is

protecting DEADLOCK-FREE[BAKERY, BState] .

endm)

Introduced module DF-BAKERY

The DF-BAKERY module is now ready for proceeding as shown in Sec-
tion 13.4 to model check the mutual exclusion and liveness properties. One
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can also use it for other purposes, as any other module; for example, we can
request its set of rules as follows:

Maude> (show rls DF-BAKERY .)

crl {V:BState}

=> {V:BState}

if enabled(V:BState) =/= true = true .

rl < P:Mode, 0, wait, Y:Nat >

=> < P:Mode, 0, crit, Y:Nat > [label p2_wait] .

rl < P:Mode, X:Nat, crit, Y:Nat >

=> < P:Mode, X:Nat, sleep, 0 > [label p2_crit] .

rl < P:Mode, X:Nat, sleep, Y:Nat >

=> < P:Mode, X:Nat, wait, s X:Nat > [label p2_sleep] .

rl < crit, X:Nat, Q:Mode, Y:Nat >

=> < sleep, 0, Q:Mode, Y:Nat > [label p1_crit] .

rl < sleep, X:Nat, Q:Mode, Y:Nat >

=> < wait, s Y:Nat, Q:Mode, Y:Nat > [label p1_sleep] .

rl < wait, X:Nat, Q:Mode, 0 >

=> < crit, X:Nat, Q:Mode, 0 > [label p1_wait] .

crl < P:Mode, X:Nat, wait, Y:Nat >

=> < P:Mode, X:Nat, crit, Y:Nat >

if Y:Nat < X:Nat = true [label p2_wait] .

crl < wait, X:Nat, Q:Mode, Y:Nat >

=> < crit, X:Nat, Q:Mode, Y:Nat >

if not Y:Nat < X:Nat = true [label p1_wait] .
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Narrowing

20.1 Introduction

Narrowing is a generalization of term rewriting that allows free variables in
terms (as in logic programming) and replaces pattern matching by unifica-
tion in order to (non-deterministically) reduce these terms. Narrowing was
originally introduced as a mechanism for solving equational unification prob-
lems [157]. It was later generalized to solve the more general problem of sym-
bolic reachability [266]. The narrowing mechanism has a number of impor-
tant applications, including automated proofs of termination [12], execution
of functional-logic programming languages [172, 101, 179, 312, 244], partial
evaluation [10], verification of cryptographic protocols [266], and equational
unification [196], to mention just a few.

At each rewriting step one must choose which subterm of the subject term
and which rule of the specification are going to be considered. Similarly, at
each narrowing step one must choose which subterm of the subject term,
which rule of the specification, and which instantiation on the variables of
the subject term and the rule’s lefthand side are going to be considered. The
narrowing relation is formally defined as follows. Let R = (Σ,E ∪ Ax,R)
be an order-sorted rewrite theory where R is a set of unconditional rewrite
rules specified with the rl keyword, E is a set of unconditional equations
specified with the eq keyword, and Ax is a set of commonly occurring axioms
declared in Maude as equational attributes (see Section 4.4.1) such that an
E ∪ Ax-unification procedure is available in Maude.1 Let CSUE∪Ax(u = u′)
provide2 a finitary and complete set of unifiers for any pair of terms u, u′ with
the same top sort. The R,E ∪Ax-narrowing relation on TΣ(X) is defined as

1 E ∪ Ax-unification is available in Maude 2.7 via the variant-based equational
unification of Section 15.10. Ax-unification for order-sorted signatures with free,
C, AC, or ACU function symbols is also available, see Section 15.4. Note that
E∪Ax-unification reduces to Ax-unification if the theory has no variant equation.

2 In the current implementation we are not interested in a minimal set of unifiers,
but only in a finite and complete set. Minimality is easily achieved in syntactic
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t;σ,p,R,E∪Ax t
′ (or ;σ when p,R,E ∪ Ax are understood) if there is a non-

variable position p of t, a (possibly renamed) rule l → r in R, and a unifier
σ ∈ CSUE∪Ax(t|p = l) such that t′ = σ(t[r]p). We denote by t ;+

σ,R,E∪Ax t
′

(resp. t ;∗σ,R,E∪Ax t
′) the transitive (resp. reflexive-transitive) closure of the

narrowing relation, where σ is obtained as the composition of the substitutions
for each narrowing step in the sequence.

The difference between a rewriting step and a narrowing step is that in
both cases we use a rewrite rule l → r to rewrite t at a position p in t,
but narrowing unifies the lefthand side l and the chosen subject term t|p
before actually performing the rewriting step. Also, narrowing is usually3

restricted to non-variable positions of t, whereas rewriting does not require
such a restriction.

Consider the following system module defining the addition function _+_

on natural numbers built from 0 and s:

mod NAT-NARROWING is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars X Y : Nat .

rl [base] : 0 + Y => Y .

rl [ind] : s(X) + Y => s(X + Y) .

endm

Consider the term X + s(0) and the two rules base and ind. Narrowing
will instantiate variable X with 0 and s(X’) respectively in order to be able to
apply each of these rules, i.e., the following two narrowing steps are generated:

X + s(0) ;{X7→0},base s(0)

X + s(0) ;{X7→s(#1:Nat)},ind s(#1:Nat + s(0))

Note that, for simplicity, we show only the bindings of the unifier that affect
the input term. There are infinitely many narrowing derivations starting at the
input expression X + s(0) (at each step the reduced subterm is underlined):

1. X + s(0) ;{X7→0},base s(0)

2. X + s(0) ;{X7→s(#1:Nat)},ind s(#1:Nat + s(0))

;{#1:Nat7→0},base s(s(0))

unification [227], but it is very costly in Ax-unification or E ∪ Ax-unification,
e.g., the ACU -unification considered in Section 15.4 does not always provide a
minimal set of unifiers (but see Section 15.4.3 for a method to compute a minimal
set of ACU -unifiers).

3 The paramodulation inference rule used in paramodulation-based theorem proving
[277] is similar to narrowing and does not require non-variable positions; see
Section 20.3.3.
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3. X + s(0) ;{X7→s(#1:Nat)},ind s(#1:Nat + s(0))

;{#1:Nat7→s(#2:Nat)},ind s(s(#2:Nat + s(0)))

;{#2:Nat7→0},base s(s(s(0)))

and so on.
The following infinite narrowing derivation resulting from applying rule

ind infinitely many times can also be shown:

X + s(0) ;{X7→s(#1:Nat)},ind s(#1:Nat + s(0))

;{#1:Nat7→s(#2:Nat)},ind s(s(#2:Nat + s(0)))

;{#2:Nat7→s(#3:Nat)},ind s(s(s(#3:Nat + s(0))))

. . .

20.1.1 Applications

The classical application of narrowing modulo an equational theory is to per-
form E ∪ Ax-unification by E, Ax-narrowing when the equations E are ori-
ented into sort-decreasing, confluent, terminating, and coherent modulo Ax
rules E. Indeed the variant-based equational order-sorted unification algo-
rithm of Section 15.10 is based on an E,Ax-narrowing strategy, called folding
variant narrowing [151], that terminates when E ∪ Ax has the finite variant
property [82], even though full E,Ax-narrowing typically does not terminate
when Ax contains AC axioms [82, 151].

Instead, when the rules R are understood as transition rules, a completely
different application of R,E ∪ Ax-narrowing is that of symbolic reachability
analysis [266] (see Section 15.6.2). Specifically, we will consider the case of
transition systems specified by order-sorted rewrite theories of the form R =
(Σ,E∪Ax,R) where: (i) E∪Ax has a finite and complete E∪Ax-unification
algorithm (see the requirements of Section 15.9), and (ii) the transition rules
R are E ∪ Ax-coherent and topmost (so that rewriting is always done at the
top of the term). Then, narrowing is a complete deductive method [266] for
symbolic reachability analysis, that is, for solving existential queries of the
form ∃x t(x) →∗ t′(x) in the sense that the formula holds for R iff there is a
narrowing sequence t;∗R,E∪Ax u such that u and t′ have an E ∪Ax-unifier.

Furthermore, in symbolic reachability analysis we may be interested in
verifying properties more general than existential questions of the form
∃X t −→∗ t′. One can also generalize the above reachability question to
questions of the form R, t |= ϕ, with ϕ a temporal logic formula. The papers
[147, 14] show how narrowing can be used (again, both at the level of transi-
tions with rules R and at the level of equations E) to perform logical model
checking to verify such temporal logic formulas; this is a a kind of symbolic
model checking not in the binary decision diagram sense of “symbolic,” which
still remains finite-state, but in a much more general sense in which possibly
infinite sets of states are finitely described by patterns with logical variables.
Two distinctive features are: (i) the term t does not describe a single initial
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state, but a possibly infinite set of instances of t (i.e., a possibly infinite set of
initial states); and (ii) the set of reachable states does not have to be finite.
Therefore, standard model-checking techniques may not be usable, because of
a possible double infinity: in the number of initial states, and in the number
of states reachable for each of those initial states.

20.1.2 Completeness of narrowing

Due to nontermination, narrowing behaves as a semi-decision procedure for
equational unification and for reachability analysis in a wide variety of the-
ories. However, for some particular subject terms narrowing may terminate,
providing a complete set of solutions. For instance, in the Maude module
NAT-NARROWING above, narrowing computes the solution {X 7→ s(Y)} for the
reachability problem ∃X, Y 0 + X →∗ s(Y) and it terminates with no more
solutions. Instead, for the reachability problem ∃X, Z X + s(0) →∗ s(s(Z)),
narrowing computes the solution {X 7→ s(0), Z 7→ 0} but it cannot terminate
because of the above infinite narrowing sequence using ind. Moreover, nar-
rowing cannot prove that the reachability problem ∃X X + s(0) →∗ 0 does
not have a solution, again because of the above infinite narrowing sequence
using ind.

Note that for any narrowing sequence t ;∗σ,R,E∪Ax s, we have a cor-
responding rewrite sequence σ(t) →∗R,E∪Ax s. However, only under appro-
priate conditions is narrowing complete as an equational unification algo-
rithm [196, 200], or as a procedure to solve reachability problems [266]. That
is, given a reachability problem4 ∃X1, . . . , Xk s→∗ t completeness means that
for each possible substitution ρ that binds some variables ofX1, . . . , Xk in such
a way that ρ(s) →∗R,E∪Ax ρ(t), and for all the substitutions σ1, . . . , σn, . . .
provided by narrowing from s, there is an index i and two substitutions θ, τ
such that ρ(s) →∗R,E∪Ax θ(s), ρ(t) →∗R,E∪Ax θ(t), θ(s) →∗R,E∪Ax θ(t), and
θ =E∪Ax σi; τ , where σi; τ denotes substitution composition in diagrammatic
order, i.e., (σi; τ)(X) = τ(σi(X)). Essentially, completeness holds either

1. for (R,E ∪Ax)-normalized substitutions ρ above [266] (a stronger condi-
tion is (R ∪ E,Ax)-normalized substitutions);

2. for topmost rewrite theories5;

4 Equational unification can be represented in terms of a reachability problem [200]
(see Section 15.6.1) and, therefore, we do not consider completeness results for
equational unification here; see [11] for a recent survey on termination of narrow-
ing and completeness results for equational unification and reachability problems
in the free case.

5 That is, theories where every rewrite step is performed only at the top position
of the term. In such theories completeness can be simplified as follows: given
∃X1, . . . , Xk s →∗ t, for each ρ such that ρ(s) →∗R,Ax ρ(t), and for all the sub-
stitutions σ1, . . . , σn, . . . provided by narrowing from s, there is an index i and a
substitution τ such that ρ =Ax σi; τ .
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3. for right-linear theories and linear reachability goals6; and
4. in particular for theories that are confluent, terminating, and coherent

modulo axioms Ax, as the equational theories in Maude functional mod-
ules with such properties restricted to unconditional equations.

20.1.3 Narrowing with simplification

We have implemented a version of narrowing with simplification, which is
slightly different from the one formally defined above. Let R = (Σ,G ∪
E ∪ Ax,R) be an order-sorted rewrite theory where R, E, and Ax are de-
fined as above and G are the remaining equations. Note that when an equa-
tional theory (Σ,G ∪ E ∪ Ax,R) is provided to Full Maude, each equation
in E (used for variant computation) must include the variant attribute.
Note that equations in G do not contain the variant attribute and do
not have any restriction, i.e., they can be conditional equations, with the
owise attribute, etc. Each narrowing step of the form t;σ,p,R,E∪Ax t

′ is
followed by simplification using the relation →!

G∪E,Ax, i.e., the combined

relation (;σ,p,R,E∪Ax;→!
G∪E,Ax) is defined as t;σ,p,R,E∪Ax;→!

G∪E,Ax t′′

iff t;σ,p,R,E∪Ax t
′, t′ →∗G∪E,Ax t′′, and t′′ is G ∪ E,Ax-irreducible. Note

that this combined relation (;σ,p,R,E∪Ax;→!
G∪E,Ax) may be incomplete, i.e.,

given a reachability problem of the form t →∗ t′ and a solution σ (i.e.,
σ(t) →∗R,G∪E∪Ax σ(t′)), the relation ;σ,p,R,E∪Ax;→!

G∪E,Ax may not be able
to find a more general solution. The reason is that the equations G should also
be executed by narrowing instead of rewriting to ensure completeness under
appropriate conditions (see [266] and Section 20.1.2). However, the combina-
tion of narrowing using rules, equations, and axioms with simplification using
additional equations can be quite helpful to allow built-in Maude functions
such as addition or multiplication, which cannot be executed by narrowing in
their predefined form. It can also be useful in other applications where specific
combinations of narrowing and simplification are needed.

20.2 Theories supported for narrowing reachability

The narrowing relation is defined on top of the order-sorted variant-based
unification procedure described in Section 15.10.

Let mod (Σ,G∪E ∪Ax,R) endm be an order-sorted system module where
R is a set of rewrite rules specified with the rl or crl keywords, Ax is a set of
commonly occurring axioms (declared in Maude as equational attributes, see
Section 4.4.1), E is a set of equations specified with the eq keyword and the
attribute variant such that (Σ,E ∪ Ax) satisfies the restrictions mentioned

6 A reachability goal of the form ∃X1, . . . , Xk s →∗ t is linear if s is linear and s
and t do not have variables in common.
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in Section 15.10, and G are the remaining equations specified with the eq

or ceq keywords. Furthermore, the rules R must satisfy the following extra
conditions:

• Conditional rules specified with the crl keyword are not taken into ac-
count, i.e., there may be conditional rewrite rules in the system module
but they will not be used for narrowing.
• A rule’s lefthand side cannot be a variable. If a variable is needed, one

should instead specify a new kind with an extra unary symbol grabbing
the whole system’s state (which would before have been matched by a
single variable lefthand side). In this way, the problem of having a variable
lefthand side can often be solved.
• The rules must be explicitly Ax-coherent (see Section 6.3). Moreover, Ax-

coherence of equations and rules is enforced automatically by calling the
coherence completion algorithm of Section 19.5. If the rules are already
Ax-coherent, no extra rules will be added.

We recall again that the equations G in the system module are disregarded
for narrowing purposes. However, they are applied for simplification after each
narrowing step (see Section 20.1.3), as it is performed in Maude for rewriting.
Recall, again, that this combination of one narrowing step followed by equa-
tional simplification is not complete. A full treatment of rules, equations, and
axioms for narrowing is outside the scope of the present implementation and
is left for future work.

Furthermore, frozen arguments (see Section 4.4.9) are allowed for narrow-
ing, as for rewriting. They are given the standard meaning of not allowing any
narrowing step below such frozen arguments, just as in the context-sensitive
narrowing of [222].

Finally, we do not consider any narrowing strategy at all for solving reach-
ability problems, i.e., all positions in a term with an admissible R,E ∪ Ax-
narrowing step are explored.

20.3 The narrowing search command

Given a system module 〈ModId 〉, the user can give to Full Maude a search
command of the form:

(search [ n, m ] in 〈ModId 〉 : 〈Term-1 〉 〈SearchArrow 〉 〈Term-2 〉 .)

where:

• n is an optional argument providing a bound on the number of desired
solutions;
• m is another optional argument stating the maximum depth of the search;
• the system module 〈ModId 〉 where the search takes place can be omitted

if it is the current one;
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• 〈Term-1 〉 is the starting non-variable term, which may contain variables;
• 〈Term-2 〉 is the term specifying the pattern that has to be reached, with

variables possibly shared with 〈Term-1 〉;
• 〈SearchArrow 〉 is an arrow indicating the form of the narrowing proof

from 〈Term-1 〉 until 〈Term-2 〉:
– ~>1 means a narrowing proof consisting of exactly one step,
– ~>+ means a narrowing proof consisting of one or more steps,
– ~>* means a narrowing proof consisting of none, one, or more steps,

and
– ~>! indicates that only strongly irreducible final states are allowed,

i.e., states that cannot be further narrowed; note that this is stronger
than requiring states that cannot be rewritten.

The one step arrow ~>1 is an abbreviation for the one-or-more steps arrow
~>+ with the depth bound m set to 1.

Consider, for example, the following new version of the vending machine to
buy apples (a) or cakes (c) with dollars ($) and/or quarters (q). The reader can
check that the only difference with the VARIANT-VENDING-MACHINE module in
Section 15.9.2 is the change equation, which is ACU -coherent in the former
version but it is not in this new version, because it is made ACU -coherent
internally.

mod NARROWING-VENDING-MACHINE is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ > => < M c > .

rl [buy-a] : < M $ > => < M a q > .

eq [change] : q q q q = $ [variant] .

endm

We can use the narrowing search command to answer the question:

Is there any combination of one or more coins that returns exactly an
apple and a cake?

This can be done by searching for states that are reachable from a term
< M:Money > and match the desired pattern at the end.

Maude> (search [1] in NARROWING-VENDING-MACHINE :

< M:Money > ~>* < a c > .)
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Solution 1

M:Money --> $ q q q

No more solutions.

Note that _ _ is an ACU symbol and that such an ACU symbol appears in
the equation change, disallowing the basic narrowing strategy [196] to be used
for equational unification and requiring the folding variant narrowing [151] to
be used for equational unification.

Note that we have restricted the previous reachability problem to just
one solution. Narrowing does not terminate for this reachability problem even
though the above solution is indeed the only solution. The problem is that
narrowing follows a breadth-first exploration and does not stop until the whole
narrowing tree demanded by the search command is created, even though this
infinite search may not yield any further solutions. The very same problem
happens for the standard search command (see Section 6.4.3). If we increase
the depth of the narrowing tree, we can experimentally observe that no more
solutions are found.

Maude> (search [,5] in NARROWING-VENDING-MACHINE :

< M:Money > ~>* < a c > .)

Solution 1

M:Money --> $ q q q

No more solutions.

As with the search command of Full Maude (see Section 19.6), the narrowing
version does not provide paths to solutions but there is a metalevel command
that does provide paths, described in Section 20.3.2.

In the previous reachability problem, we can change the arrow ~>* for
reachability in zero or more steps by the arrow ~>! for reachability in zero or
more steps including only states that cannot be narrowed any more.

Maude> (search [,5] in NARROWING-VENDING-MACHINE :

< M:Money > ~>! < a c > .)

No more solutions.

And surprisingly we do not find the previous solution. The reason is that the
transition rules of the vending machine are not terminating for narrowing and
for rewriting, so it is impossible to find a state that cannot be narrowed any
more. However, if we replace the variable M:Money by variables of sort Coin,
we are able to find appropriate solutions. That is, we formulate the following
interesting question:

Is there any combination of four coins that returns an apple and a
cake and is such that some extra money is left but that extra money
cannot be used to buy anything else?
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The fact that some money is left is characterized by including a variable of
sort Money in the final state, and the fact that nothing else can be bought is
characterized by using the ~>! arrow instead of ~>*.

Maude> (search [,5] in NARROWING-VENDING-MACHINE :

< C1:Coin C2:Coin C3:Coin C4:Coin > ~>! < M:Money a c > .)

Solution 1

C1:Coin --> $ ; C2:Coin --> q ; C3:Coin --> q ; C4:Coin --> q ; M:Money --> empty

Solution 2

C1:Coin --> q ; C2:Coin --> $ ; C3:Coin --> q ; C4:Coin --> q ; M:Money --> empty

Solution 3

C1:Coin --> q ; C2:Coin --> q ; C3:Coin --> $ ; C4:Coin --> q ; M:Money --> empty

Solution 4

C1:Coin --> q ; C2:Coin --> q ; C3:Coin --> q ; C4:Coin --> $ ; M:Money --> empty

No more solutions.

Another point of interest is the occurrence of variables of the form #n:Sort

or %n:Sort, which are called fresh and are described in Chapter 15. Unification
modulo axioms usually introduces fresh variables; furthermore, narrowing in-
troduces many fresh variables because the rule applied at each narrowing step
is appropriately renamed so that no variable is shared by it and the current
term. Indeed, the standard solution used in logic and functional-logic pro-
gramming language implementations is to use a counter along each narrowing
derivation to ensure that fresh variables have never been used previously in
that narrowing derivation. This method is called standardized apart.

20.3.1 Narrowing with extra variables in righthand sides of rules

Although rewriting does not allow extra variables in the righthand side of
rules7, extra variables in righthand sides pose no problem for narrowing. Since
rules having extra variables in the righthand side are not allowed in Maude for
rewriting purposes, the attribute nonexec (see Section 4.5.3) must be added
to such rules if one wants to use them for narrowing. The nonexec attribute
is not taken into account by narrowing: all unconditional rules, regardless of
whether or not they include the nonexec attribute, are used by narrowing.
Extra variables in the righthand side are a common feature of programs using
narrowing as the operational evaluation mechanism, as in logic programming

7 Except for the case of conditional rules, where such extra variables may be intro-
duced in matching or rewrite conditions (see Chapter 4). But conditional rules
have been excluded from the present narrowing implementation, as explained in
Section 20.2.
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or functional-logic programming [179]. For further details on how to write
funcional-logic programs in Maude using symbolic reachability, see [141]. Let
us motivate this feature with an example. Consider the following program
defining the concatenation of two lists and the function last:

(mod LAST-APPEND is

sort Success .

op success : -> Success .

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

sort NatList .

op nil : -> NatList .

op _:_ : Nat NatList -> NatList .

vars XS YS : NatList .

vars N M X Y : Nat .

op append : NatList NatList -> [NatList] .

rl append(nil, YS) => YS .

rl append(N : XS, YS) => N : append(XS, YS) .

op last : NatList -> [Nat] .

rl last(XS) => append(YS, N : nil) =:= XS >> N [nonexec] .

op _>>_ : [Success] [Nat] -> [Nat] [frozen (2) strat (1 0)] .

eq success >> X:[Nat] = X:[Nat] .

op _=:=_ : Nat Nat -> [Success] [comm] .

rl N =:= N => success .

op _=:=_ : NatList NatList -> [Success] [comm] .

rl XS =:= XS => success .

endm)

In the rule

rl last(XS) => append(YS, N : nil) =:= XS >> N [nonexec] .

we have used an extra variable N to denote the last element of the list and
used a constraint

append(YS, N : nil) =:= XS

that narrowing will solve by instantiating N in the proper way. Furthermore,
note the use of kinds and the sort Success in order to describe what a suc-
cessful solution is; this follows a logic programming approach (as in Prolog)
to success and failure, see [141]. The following reachability problem is solved
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by narrowing but cannot be solved by rewriting due to the extra variable in
the last rule.8

Maude> (search [1] in LAST-APPEND : last(0 : s(0) : nil) ~>! Z:Nat .)

Solution 1

Z:Nat --> s(0)

No more solutions.

Another interesting example of narrowing with extra variables is the func-
tion member:

(mod MEMBERSHIP is

protecting LAST-APPEND .

vars XS YS ZS : NatList .

vars N M X Y : Nat .

op member : Nat NatList -> [Success] .

rl member(N, XS) => append(YS, N : ZS) =:= XS [nonexec] .

endm)

The following reachability problem is solved by narrowing but cannot be
solved by rewriting due to the extra variable in the rule defining the member

function.

Maude> (search [1] in MEMBERSHIP :

member(s(0), 0 : s(0) : nil) ~>! success .)

Solution 1

empty substitution

No more solutions.

But the interesting application is to enumerate all the elements of a list
by computing different substitutions, as in logic programming.

Maude> (search [,5] in MEMBERSHIP :

member(N:Nat, 0 : s(0) : nil) ~>! success .)

Solution 1

N:Nat --> 0

Solution 2

8 Of course, one could specify the last function in a way not requiring the nonexec

rule, for example by the equations last(nil) = error, last(N : nil) = N, and
last(N : (M : XS)) = last (M : XS). The point here is to illustrate with a
simple example the use of narrowing with rules having extra variables in their
righthand sides, which is typical of logic programming and functional-logic pro-
gramming.
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N:Nat --> s(0)

No more solutions.

Note that we have to restrict the depth of the narrowing tree to five be-
cause there exists an infinite number of narrowing sequences from the term
member(N:Nat,0 : s(0): nil) even if only two solutions exist.

20.3.2 Reachability at the metalevel: metaNarrowSearch and
metaNarrowSearchPath

Narrowing-based reachability analysis is also available at the metalevel by us-
ing the function metaNarrowSearch, provided in the META-NARROWING-SEARCH
module with the following declaration:

op metaNarrowSearch :

Module Term Term Substitution Qid Bound Bound Bound -> ResultTripleSet .

Recall that the sort ResultTriple contains triples formed by a term, its
type, and a substitution:

op {_,_,_} : Term Type Substitution -> ResultTriple .

The sort ResultTripleSet contains sets of such result triples and is de-
fined as follows:

sort ResultTripleSet .

subsort ResultTriple < ResultTripleSet .

op empty : -> ResultTripleSet [ctor] .

op _|_ : ResultTripleSet ResultTripleSet -> ResultTripleSet

[ctor assoc comm id: empty prec 65 format (d d n d)] .

eq X:ResultTriple | X:ResultTriple = X:ResultTriple .

If a non-identity substitution is provided in the fourth argument of
metaNarrowSearch, then any computed substitution must be an instance
of the provided one, i.e., we can restrict the computed narrowing sequences
to some concrete shape. The Qid argument metarepresents the appropriate
search arrow, similar to the metaSearch command (see Section 14.5.6). For
the bounds, the first one is the maximum length of the narrowing sequences,
the second one is the number of computed solutions, i.e., the depth of the
narrowing tree, and the third one is the chosen solution (in order to provide
all solutions in a sequential way, as many metalevel commands in Maude do).

For the NARROWING-VENDING-MACHINE system module introduced at the
beginning of Section 20.3, the following search command considered above

Maude> (search [1] in NARROWING-VENDING-MACHINE :

< M:Money > ~>* < a c > .)
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can be specified at the metalevel as follows, where ’<_>[’M:Money] is the
metarepresentation of the state < M:Money >, ’<_>[’__[’a.Item,’c.Item]]
is the metarepresentation of the state < a c >, and we use the coherence
completion of the NARROWING-VENDING-MACHINE module given above.

Maude> reduce in FULL-MAUDE :

metaNarrowSearch(

axCohComplete(

upModule(’NARROWING-VENDING-MACHINE, false)),

’<_>[’M:Money],

’<_>[’__[’a.Item, ’c.Item]],

none, ’*, unbounded, 1, unbounded) .

result ResultTriple:

{ ’<_>[’__[’a.Item,’c.Item,’empty.Money]],

’State,

’#1:Marking <- ’__[’q.Coin,’q.Coin,’q.Coin,’empty.Money] ;

’#4:Marking <- ’__[’a.Item,’empty.Money] ;

’#6:Money <- ’empty.Money ;

’%3:Money <- ’__[’q.Coin,’q.Coin,’q.Coin,’empty.Money] ;

’M:Money <- ’__[’$.Coin,’__[’q.Coin,’q.Coin,’q.Coin,’empty.Money]] }

Note that we obtain the very same solution, where the output contains one
term of type ResultTriple, which contains the actual output term, its type,
and the computed substitution, and

’M:Money <- ’__[’$.Coin, ’__[’q.Coin, ’q.Coin, ’q.Coin]]

is the metarepresentation of the substitution M:Money --> $ q q q. More-
over, the substitutions computed in this way also contain all the temporary
bindings that narrowing has computed.

Moreover, we can also obtain the narrowing sequence associated to a
narrowing-based reachability command with the function metaNarrowSearchPath

provided in the same module META-NARROWING-SEARCH with the following dec-
laration:

op metaNarrowSearchPath :

Module Term Term Substitution Qid Bound Bound

Bound -> TraceNarrowSet .

It works in exactly the same way as metaNarrowSearch but providing as a re-
sult a more detailed data structure. If we redo the previous metaNarrowSearch
computation but using this time the metaNarrowSearchPath function, we ob-
tain:

Maude> reduce in FULL-MAUDE :

metaNarrowSearchPath(

axCohComplete(upModule(’NARROWING-VENDING-MACHINE, false)),

’<_>[’M:Money],

’<_>[’__[’a.Item, ’c.Item]],

none, ’*, unbounded, 1, unbounded) .
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result TraceNarrow:

{ ’<_>[’__[’%3:Money,’__[’q.Coin,’a.Item]]],

’#1:Marking <- ’%3:Money ;

’M:Money <- ’__[’$.Coin,’%3:Money],

’State,

rl ’<_>[’__[’$.Coin,’#1:Marking]]

=> ’<_>[’__[’#1:Marking,’__[’q.Coin,’a.Item]]]

[label(’buy-a)] . }

{ ’<_>[’__[’c.Item,’__[’a.Item,’#6:Money]]],

’#4:Marking <- ’__[’a.Item,’#6:Money] ;

’%3:Money <- ’__[’q.Coin,’q.Coin,’q.Coin,’#6:Money],

’State,

rl ’<_>[’__[’$.Coin,’#4:Marking]]

=> ’<_>[’__[’c.Item,’#4:Marking]]

[label(’buy-c)] .}

The data structure TraceNarrow, which is the basic element of TraceNarrowSet,
is very similar to the data structure ResultTriple but it contains a sequence
of narrowing results instead of only the final result, each one together with
the rule that has been used in that narrowing step.

20.3.3 Paramodulation

The difference between a rewriting step and a narrowing step is that in both
cases we use a rewrite rule l→ r to rewrite t at a position p in t, but narrowing
unifies the lefthand side l and the chosen subject term t|p before actually
performing the rewriting step. Rewriting does not impose any restriction on
the chosen subterm t|p nor the lefthand side l but narrowing imposes that
both cannot be a variable, i.e.:

• the chosen subterm t|p of a narrowing step cannot be a variable, and
• the lefthand side l cannot be a variable.

However, there are interesting cases where these two restrictions are not de-
sirable, for example the paramodulation inference rule used in paramodulation-
based theorem proving [277] does not require them (see [363] for an example
of use of this paramodulation feature for theorem proving).

The function metaParamodulationSearch provides an extension at the
metalevel of the narrowing-based search command without these two restric-
tions. It is declared again in the same module META-NARROWING-SEARCH and
has the same parameters as metaNarrowSearch:

op metaParamodulationSearch :

Module Term Term Substitution Qid Bound Bound Bound -> ResultTripleSet .

Let us consider yet another version of the NARROWING-VENDING-MACHINE

system module where we do not use the symbol <_> for restricting rewriting:
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mod NARROWING-VM-NOTOP is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

subsort Marking < State .

ops $ q : -> Coin . ops a c : -> Item .

var M : Marking .

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

eq [change]: q q q q M = $ M [variant] .

endm

Then we can perform the following search command that provides a variable
as the starting term, without using the <_> symbol anymore:

Maude> red in FULL-MAUDE :

metaParamodulationSearch(

axCohComplete(upModule(’NARROWING-VM-NOTOP, false)),

’M:Money,

’__[’a.Item, ’c.Item],

none, ’*, 1, unbounded, unbounded) .

Note that we obtain the same solution that we computed by means of
metaNarrowSearch.
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Object-Oriented Modules

In Full Maude, concurrent object-oriented systems can be defined by means
of object-oriented modules—introduced by the keyword omod...endom—using
a syntax more convenient than that of system modules, because it assumes
acquaintance with the basic entities, such as objects, messages and configura-
tions, and supports linguistic distinctions appropriate for the object-oriented
case.

As in Core Maude, we may have specifications of object-oriented systems
in system modules; for example, we could enter into Full Maude the system
modules describing object-based systems discussed in Chapter 11 by enclosing
them in parentheses. However, although Maude’s system modules are suffi-
cient for specifying object-oriented systems, there are important conceptual
advantages provided by Full Maude’s syntax for object-oriented modules. Such
syntax allows the user to think and express his/her thoughts in object-oriented
terms whenever such a viewpoint seems best suited for the problem at hand.
Those conceptual advantages would be partially lost if only system modules
at the Core Maude level were provided.

Object-oriented modules are however just syntactic sugar: they are inter-
nally transformed into system modules for execution purposes (Section 21.9).
All object-oriented modules implicitly include the CONFIGURATION module
(see Section 11.1), and thus assume the latter’s syntax. Recall that the mod-
ule CONFIGURATION defines the basic concepts of concurrent object systems;
among others, and besides the Configuration sort, it includes the declara-
tions of sorts

• Oid of object identifiers,
• Cid of class identifiers,
• Object for objects, and
• Msg for messages.
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21.1 Object-oriented systems

Some object-oriented concepts were introduced in Chapter 11. Here we recall
some of them and then focus on the notions of class and inheritance, and on
the additional syntactic facilities provided by Full Maude to support object-
oriented programming.

21.1.1 Objects and messages

As in Core Maude, an object in a given state is represented as a term of the
form

< O : C | 〈att-1 〉, ... , 〈att-n 〉 >

but Full Maude supports and enforces a specific choice for the syntax of at-
tributes. Each attribute of sort Attribute consists of a name (attribute identi-
fier), followed by a colon ‘:’ (with white space both before and after), followed
by its value, which must have a given sort. Therefore, the Full Maude syntax
for objects is

< O : C | a1 : v1, ... , an : vn >

where O is the object’s name or identifier, C is its class identifier, the ai’s
are the names of the object’s attribute identifiers, and the vi’s are the cor-
responding values, for i = 1 . . . n. In particular, an object with no attributes
can be represented as

< O : C | >

Messages do not have a fixed syntactic form; their syntax is instead defined
by the user for each application. The only assumption made by the system is
that the first argument of a message is the identifier of its destination object.
Messages satisfying this requirement should be declared using the msg key-
word. It is still possible to declare messages not following this requirement as
operators of sort Msg; but, if declared as operators, no message attribute will
be provided for them (see Sections 11.1 and 11.2). For example, the following
declarations of messages are possible.

msg credit : Oid Nat -> Msg .

op left : -> Msg .

The concurrent state of an object-oriented system is then a multiset of
objects and messages, of sort Configuration, with multiset union described
with empty syntax __, and with assoc, comm, and id: none as operator
attributes.
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21.1.2 Classes

Classes are defined with the keyword class, followed by the name of the class,
followed by a bar ‘|’, followed by a list of attribute declarations separated by
commas. Each attribute declaration has the form a : S, where a is an attribute
identifier and S is the sort in which the values of the attribute identifier range.
That is, class declarations have the form

class C | a1 : 〈Sort-1 〉, ... , an : 〈Sort-n 〉 .

In particular, we can declare classes without attributes using syntax

class C .

Class names have the same form as sort names. In particular, class names
may be parameterized in a way completely similar to parameterized sort
names (see Sections 8.3.3, 21.4, and 21.5).

As an example of class declaration, the class Account of bank account
objects with a balance attribute, introduced in Section 11.1, is now declared
as follows:

class Account | bal : Int .

As another example, a class Person, with a name, an age, and a bank
account as attributes can then be declared as follows:

class Person | name : String, age : Nat, account : Oid .

In this case, a person has a reference to his/her account in an account at-
tribute of sort Oid.

All Full Maude object-oriented modules have an operation class that
takes an object as argument and returns its actual class. Thus, for example,

class(< A-002 : Account | bal : 1000 >)

returns the class identifier Account. This operation will be particularly use-
ful when combined with the inheritance relation (see the use of the class

operation in the example in Section 21.6).
The syntax for message declarations is similar to the syntax for the dec-

laration of operators, but using msg and msgs instead of op and ops, and
having as result sort Msg or a subsort of it. Thus, msg is used to declare a
single message, and msgs may be used for declaring multiple messages. The
user can introduce subsorts of the predefined sort Msg, so that it is possible
to declare messages of different types. This may be useful for restricting the
kind of messages that could be received by a particular type of object. As in
the case of operators, messages can be overloaded and can be declared with
operator attributes.

In the account example, the three kinds of messages involving accounts
are credit, debit, and from_to_transfer_, whose user-definable syntax is
introduced in the following declarations:
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msgs credit debit : Oid Nat -> Msg .

msg from_to_transfer_ : Oid Oid Nat -> Msg .

Notice the use of the Oid sort for specifying the addressee of a message,
as in credit and debit, and for specifying the objects involved in a mes-
sage, e.g., the source and the target accounts of an account transfer in the
from_to_transfer_ message. Note that, as explained in Chapter 11 for Core
Maude, Full Maude also assumes that the message’s destination object is
the first argument mentioned in the message declaration. This convention is
needed by the object-message fair rewriting strategy (see Section 11.2). The
behavior associated with the messages is then specified by rewrite rules in a
declarative way (see Section 21.1.4).

Given object identifiers Smith and A-002, the following term may represent
a configuration with a person, his account, and a credit message sent to it.

< Smith : Person | name : "John", age : 34, account : A-002 >

< A-002 : Account | bal : 1000 >

credit(A-002, 100)

21.1.3 Inheritance

Class inheritance is directly supported by Maude’s order-sorted type struc-
ture. Since class names are a particular case of sort names, a subclass declara-
tion C < C’ in an object-oriented module is just a particular case of a subsort
declaration C < C’. The effect of a subclass declaration is that the attributes,
messages, and rules of all the superclasses, together with the newly defined
attributes, messages, and rules of the subclass, characterize the structure and
behavior of the objects in the subclass.

For example, we can define an object-oriented module SAVING-ACCOUNT

of saving accounts introducing a subclass SavingAccount of Account with a
new attribute rate recording the interest rate of the account.

class SavingAccount | rate : Float .

subclass SavingAccount < Account .

In this example there is only one class immediately above SavingAccount,
namely, Account. In general, however, a class C may be defined as a subclass
of several classes D1, . . . , Dk, i.e., multiple inheritance is supported. If an
attribute and its sort have already been declared in a superclass, they should
not be declared again in the subclass. Indeed, all such attributes are inherited.
In the case of multiple inheritance, the only requirement that is made is that if
an attribute occurs in two different superclasses, then the sort associated with
it in each of those superclasses must be the same.1 In summary, a class inherits

1 If a class inherits from two different superclasses that share an attribute but with
different associated sorts, then both attributes are inherited in the subclass, thus
muddling them up.
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all the attributes, messages, and rules from all its superclasses. An object in
the subclass behaves exactly as any object in any of the superclasses, but it
may exhibit additional behavior due to the introduction of new attributes,
messages, and rules in the subclass.

Objects in the class SavingAccount will have an attribute bal and can
receive messages debiting, crediting and transferring funds exactly as any
other object in the class Account. For example, the following object is a valid
instance of class SavingAccount.

< A-002 : SavingAccount | bal : 5000, rate : 3.0 >

As for subsort relationships, we can declare multiple subclass relationships
in the same declaration. Thus, given classes A, . . . , H, we can have a declaration
of subclasses such as

subclasses A B C < D E < F G H .

21.1.4 Object-oriented rules

The behavior associated with messages is specified by rewrite rules in a
declarative way. For example, the semantics of the credit, debit, and
from_to_transfer_ messages declared in Section 21.1.2 may be given as fol-
lows:

vars A B : Oid .

var M : Nat .

vars N N’ : Int .

rl [credit] :

credit(A, M)

< A : Account | bal : N >

=> < A : Account | bal : N + M > .

crl [debit] :

debit(A, M)

< A : Account | bal : N >

=> < A : Account | bal : N - M >

if N >= M .

crl [transfer] :

(from A to B transfer M)

< A : Account | bal : N >

< B : Account | bal : N’ >

=> < A : Account | bal : N - M >

< B : Account | bal : N’ + M >

if N >= M .

Note that the multiset structure of the configuration provides the top-level
distributed structure of the system and allows concurrent application of the
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rules. The reader is referred to [245] for a detailed explanation of the logical
semantics of the object-oriented model of computation supported by Maude.

In object-oriented modules it is possible not to mention in a given rule
those attributes of an object that are not relevant for that rule. The attributes
mentioned only on the lefthand side of a rule are preserved unchanged, the
original values of attributes mentioned only on the righthand side do not
matter, and all attributes not explicitly mentioned are left unchanged (see
Section 21.9 for more details). For instance, a message for changing the age
of a person defined by the class Person (introduced in Section 21.1.2) may be
defined as follows:

msg to_:‘new‘age_ : Oid Nat -> Msg .

var A : Nat .

var O : Oid .

rl [change-age] :

< O : Person | >

to O : new age A

=> < O : Person | age : A > .

The attributes name and account, which are not mentioned in this rule,
are not changed when applying the rule. The value of the age attribute is
replaced by the given new age, independently of its previous value.

The following module ACCOUNT contains all the declarations above defining
the class Account. Note that Qid is declared as a subsort of Oid, making any
quoted identifier a valid object identifier.

(omod ACCOUNT is

protecting QID .

protecting INT .

subsort Qid < Oid .

class Account | bal : Int .

msgs credit debit : Oid Int -> Msg .

msg from_to_transfer_ : Oid Oid Int -> Msg .

vars A B : Oid .

var M : Nat .

vars N N’ : Int .

rl [credit] :

credit(A, M)

< A : Account | bal : N >

=> < A : Account | bal : N + M > .

crl [debit] :

debit(A, M)

< A : Account | bal : N >
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=> < A : Account | bal : N - M >

if N >= M .

crl [transfer] :

(from A to B transfer M)

< A : Account | bal : N >

< B : Account | bal : N’ >

=> < A : Account | bal : N - M >

< B : Account | bal : N’ + M >

if N >= M .

endom)

We can now rewrite a simple configuration consisting of an account and a
message as follows:

Maude> (rew < ’A-06238 : Account | bal : 2000 >

debit(’A-06238, 1000) .)

result Object :

< ’A-06238 : Account | bal : 1000 >

The following module contains the declarations for the class SavingAccount.

(omod SAVING-ACCOUNT is

including ACCOUNT .

protecting FLOAT .

class SavingAccount | rate : Float .

subclass SavingAccount < Account .

endom)

We leave unspecified the rules for computing and crediting the interest of
an account according to its rate, whose proper expression should introduce a
real-time2 attribute in account objects.

We can now rewrite a configuration, obtaining the following result.

Maude> (rew < ’A-73728 : SavingAccount | bal : 5000, rate : 3.0 >

< ’A-06238 : Account | bal : 2000 >

< ’A-28381 : SavingAccount | bal : 9000, rate : 3.0 >

debit(’A-06238, 1000)

credit(’A-73728, 1300)

credit(’A-28381, 200) .)

result Configuration :

< ’A-06238 : Account | bal : 1000 >

< ’A-73728 : SavingAccount | bal : 6300, rate : 3.0 >

< ’A-28381 : SavingAccount | bal : 9200, rate : 3.0 >

2 See [288, 291] for a general methodology to specify real-time systems, including
object-oriented ones, in rewriting logic.
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We can also search over configurations. In this case the search pattern
takes into account object-oriented information, finding also states where a
subclass matches the pattern. For example, we can look for final states having
accounts with balance less than 8000 with the following command:

Maude> (search in SAVING-ACCOUNT :

< ’A-73728 : SavingAccount | bal : 5000, rate : 3.0 >

< ’A-06238 : Account | bal : 2000 >

< ’A-28381 : SavingAccount | bal : 9000, rate : 3.0 >

debit(’A-06238, 1000)

credit(’A-73728, 1300)

credit(’A-28381, 200)

=>! C:Configuration

< O:Oid : Account | bal : N:Nat >

such that N:Nat < 8000 .)

search in SAVING-ACCOUNT :

< ’A-73728 : SavingAccount | bal : 5000, rate : 3.0 >

< ’A-06238 : Account | bal : 2000 >

< ’A-28381 : SavingAccount | bal : 9000, rate : 3.0 >

debit(’A-06238, 1000)

credit(’A-73728, 1300)

credit(’A-28381, 200)

=>! C:Configuration

< O:Oid : V#0:Account | bal : N:Nat, V#1:AttributeSet > .

Solution 1

C:Configuration -->

< ’A-28381 : SavingAccount | bal : 9200,rate : 3.0 >

< ’A-73728 : SavingAccount | bal : 6300,rate : 3.0 > ;

N:Nat --> 1000 ;

O:Oid --> ’A-06238 ;

V#0:Account --> Account ;

V#1:AttributeSet --> (none).AttributeSet

Solution 2

C:Configuration -->

< ’A-06238 : Account | bal : 1000 >

< ’A-28381 : SavingAccount | bal : 9200, rate : 3.0 > ;

N:Nat --> 6300 ;

O:Oid --> ’A-73728 ;

V#0:Account --> SavingAccount ;

V#1:AttributeSet --> rate : 3.0

No more solutions.

Notice that the search pattern has been transformed so that objects in sub-
classes match. In this example, we obtain as solutions both an object of class
Account and an object in the subclass SavingAccount.
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Fig. 21.1. Possible initial and final states for the 8-puzzle

21.2 More examples of object-oriented modules

We introduce several additional examples to illustrate the use of object-
oriented modules in Full Maude.

21.2.1 A puzzle

We show in this section an object-oriented approach to a typical artificial intel-
ligence planning problem, the 8-puzzle problem as presented in [170, page 283].
There is a set of eight numbered tiles and a blank tile, arranged in a 3×3-grid.
By moving the blank tile up, down, left, or right, the goal is to reach the state
pictured on the righthand side of Figure 21.1, starting in an arbitrary state,
like for example the one pictured on the lefthand side.

This puzzle can be solved using the ideas described in Chapter 7, and
more concretely in the specification of the Khun Phan puzzle (Section 7.7),
which also involves moving tiles; here we present instead an object-oriented
approach.

Each tile is represented as an object < (R,C) : Tile | value : N >,
where R and C denote the row (from top to bottom) and column (from left to
right), respectively, and N denotes either a natural number between 1 and 8,
or the marker blank. We want useful coordinates to range between 1 and 3,
and number values to range between 1 and 8, thus there are some ad-hoc over-
loaded constants. For the values there is no operation, while we need to check
adjacent tiles using an auxiliary successor function s_ on the Coordinate sort.

(omod 8-PUZZLE is

sorts NumValue Value Coordinate .

subsort NumValue < Value .

ops 1 2 3 4 : -> Coordinate [ctor] .

ops 1 2 3 4 5 6 7 8 : -> NumValue [ctor] .

op blank : -> Value [ctor] .

op s_ : Coordinate -> Coordinate .

eq s 1 = 2 .

eq s 2 = 3 .

eq s 3 = 4 .

eq s 4 = 4 .

op ‘(_‘,_‘) : Coordinate Coordinate -> Oid .

class Tile | value : Value .
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msgs left right up down : -> Msg .

vars N M R : Coordinate .

var P : NumValue .

Moves are represented as messages sent to the configuration of tiles. Note
that these messages are declared as operators of sort Msg. We have one rule
for each message, so that each rule involves the blank tile and the neighbor
tile, according to the direction of the move.

crl [r] :

right

< (N, R) : Tile | value : blank >

< (N, M) : Tile | value : P >

=> < (N, R) : Tile | value : P >

< (N, M) : Tile | value : blank >

if R = s M .

crl [l] :

left

< (N, R) : Tile | value : blank >

< (N, M) : Tile | value : P >

=> < (N, R) : Tile | value : P >

< (N, M) : Tile | value : blank >

if s R = M .

crl [u] :

up

< (R, M) : Tile | value : blank >

< (N, M) : Tile | value : P >

=> < (R, M) : Tile | value : P >

< (N, M) : Tile | value : blank >

if s R = N .

crl [d] :

down

< (R, M) : Tile | value : blank >

< (N, M) : Tile | value : P >

=> < (R, M) : Tile | value : P >

< (N, M) : Tile | value : blank >

if R = s N .

The initial and final states in Figure 21.1 are represented by the following
tile configurations:

ops initial final : -> Configuration .

eq initial

= < (1, 1) : Tile | value : 7 >

< (1, 2) : Tile | value : 1 >

< (1, 3) : Tile | value : 2 >

< (2, 1) : Tile | value : 6 >
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< (2, 2) : Tile | value : blank >

< (2, 3) : Tile | value : 8 >

< (3, 1) : Tile | value : 5 >

< (3, 2) : Tile | value : 4 >

< (3, 3) : Tile | value : 3 > .

eq final

= < (1, 1) : Tile | value : 7 >

< (1, 2) : Tile | value : 8 >

< (1, 3) : Tile | value : 1 >

< (2, 1) : Tile | value : 6 >

< (2, 2) : Tile | value : blank >

< (2, 3) : Tile | value : 2 >

< (3, 1) : Tile | value : 5 >

< (3, 2) : Tile | value : 4 >

< (3, 3) : Tile | value : 3 > .

endom)

A plan that solves the planning problem in Figure 21.1 is (in a self-
explanatory intuitive notation) up; left; down; right. However, one must
be aware that this is a sequential plan, while messages in the tile configuration
do not have any order upon them because of the structural axioms of associa-
tivity and commutativity. Therefore, this is another example where strategies
are useful for controlling the application of rewrite rules in the order wanted
by the user (see Sections 14.6 and 21.7).

Instead of applying a particular strategy, one can simply check that this
plan works by using the search command:

Maude > (search up left down right initial =>* C:Configuration

such that C:Configuration == final .)

rewrites: 974 in 50ms cpu (68ms real) (19480 rewrites/second)

Solution 1

C:Configuration --> < (1, 1) : Tile | value : 7 >

< (1, 2) : Tile | value : 8 >

< (1, 3) : Tile | value : 1 >

< (2, 1) : Tile | value : 6 >

< (2, 2) : Tile | value : blank >

< (2, 3) : Tile | value : 2 >

< (3, 1) : Tile | value : 5 >

< (3, 2) : Tile | value : 4 >

< (3, 3) : Tile | value : 3 >

No more solutions.

21.2.2 A simple spreadsheet

The following object-oriented module specifies the concurrent behavior of ob-
jects in a simple class Cell of cells in a spreadsheet, whose unique attribute
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is the value stored in the cell. Cells are organized in a grid and are therefore
identified by means of pairs (N,M) giving the row and column numbers. For
each row N there is a cell (N,total) that keeps track of the corresponding
total, and similarly for each column M there is a cell (total,M). There is
also a cell (total,total) providing the sum of all the values in all the cells
in the spreadsheet. The spreadsheet may receive messages add(N,M,V) and
sub(N,M,V) for adding or subtracting (if possible) the amount V to the value
stored in cell (N,M).

(omod SPREADSHEET is

protecting NAT .

sort Name .

subsort Nat < Name .

op total : -> Name [ctor] .

op ‘(_‘,_‘) : Name Name -> Oid .

class Cell | val : Nat .

msgs add sub : Nat Nat Nat -> Msg .

vars M N V W X Y Z : Nat .

rl [add] :

add(N, M, V)

< (N, M) : Cell | val : W >

< (total, total) : Cell | val : X >

< (N, total) : Cell | val : Y >

< (total, M) : Cell | val : Z >

=> < (N, M) : Cell | val : W + V >

< (total, total) : Cell | val : X + V >

< (N, total) : Cell | val : Y + V >

< (total, M) : Cell | val : Z + V > .

crl [sub] :

sub(N, M, V)

< (N, M) : Cell | val : W >

< (total, total) : Cell | val : X >

< (N, total) : Cell | val : Y >

< (total, M) : Cell | val : Z >

=> < (N, M) : Cell | val : sd(W, V) >

< (total, total) : Cell | val : sd(X, V) >

< (N, total) : Cell | val : sd(Y, V) >

< (total, M) : Cell | val : sd(Z, V) >

if V <= W .

endom)

We show here how to transform synchronous object-oriented rules, like
the ones in the module above, into asynchronous rules where there is only
one object in the rule’s lefthand side. The essential idea is to introduce new
messages in the righthand side of the rules, creating new states in which
the original computation is unfinished and is going to continue by further
interaction of the new messages with the objects.
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(omod SPREADSHEET-ASYNCH is

protecting NAT .

sort Name .

subsort Nat < Name .

op total : -> Name [ctor] .

op ‘(_‘,_‘) : Name Name -> Oid .

class Cell | val : Nat .

msgs add sub : Nat Nat Nat -> Msg .

msgs add-row add-col : Nat Nat -> Msg .

msgs sub-row sub-col : Nat Nat -> Msg .

msgs add-total sub-total : Nat -> Msg .

vars M N V W : Nat .

rl [add] :

add(N, M, V)

< (N, M) : Cell | val : W >

=> < (N, M) : Cell | val : W + V >

add-row(N, V)

add-col(M, V)

add-total(V) .

rl [add-row] :

add-row(N, V)

< (N, total) : Cell | val : W >

=> < (N, total) : Cell | val : W + V > .

rl [add-col] :

add-col(M,V)

< (total, M) : Cell | val : W >

=> < (total, M) : Cell | val : W + V > .

rl [add-total] :

add-total(V)

< (total, total) : Cell | val : W >

=> < (total, total) : Cell | val : W + V > .

crl [sub] :

sub(N, M, V)

< (N, M) : Cell | val : W >

=> < (N, M) : Cell | val : sd(W, V) >

sub-row(N, V)

sub-col(M, V)

sub-total(V)

if V <= W .

rl [sub-row] :

sub-row(N, V)

< (N, total) : Cell | val : W >

=> < (N, total) : Cell | val : sd(W, V) > .

rl [sub-col] :

sub-col(M, V)

< (total, M) : Cell | val : W >

=> < (total, M) : Cell | val : sd(W, V) > .
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rl [sub-total] :

sub-total(V)

< (total, total) : Cell | val : W >

=> < (total, total) : Cell | val : sd(W, V) > .

endom)

Because of the presence of new messages, there are configurations in the
module SPREADSHEET-ASYNCH that do not correspond to any configuration in
the original module SPREADSHEET. However, in any computation using the new
rules that starts in a configuration from SPREADSHEET the new messages will
eventually disappear by application of the new rules involving those messages
on the lefthand side, reaching in this way a configuration in SPREADSHEET.
Moreover, this configuration is exactly the same achieved by the original syn-
chronous rules.

21.2.3 Blocks world

This is an object-oriented approach to a simpler version of the blocks world
described in Section 6.5.2. Here, we have removed the robot arm to move
blocks. A block is represented as an object with two attributes, under, saying
whether it is under another block or it is clear, and on, saying whether the
block is on top of another block or is on the table. Actions are represented as
messages.

(omod OO-BLOCKS-WORLD is

protecting QID .

sorts BlockId Up Down .

subsorts Qid < BlockId < Oid .

subsorts BlockId < Up Down .

op clear : -> Up [ctor] .

op table : -> Down [ctor] .

class Block | under : Up, on : Down .

msg move : Oid Oid Oid -> Msg .

msgs unstack stack : Oid Oid -> Msg .

vars X Y Z : BlockId .

rl [move] :

move(X, Z, Y)

< X : Block | under : clear, on : Z >

< Z : Block | under : X >

< Y : Block | under : clear >

=> < X : Block | on : Y >

< Z : Block | under : clear >

< Y : Block | under : X > .

rl [unstack] :

unstack(X,Z)

< X : Block | under : clear, on : Z >

< Z : Block | under : X >
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=> < X : Block | on : table >

< Z : Block | under : clear > .

rl [stack] :

stack(X, Z)

< X : Block | under : clear, on : table >

< Z : Block | under : clear >

=> < X : Block | on : Z >

< Z : Block | under : X > .

The states I and F in Figure 6.5 (without the robot arm) are respectively
described now by the following two configurations:

ops initial final : -> Configuration .

eq initial

= < ’a : Block | under : ’c, on : table >

< ’c : Block | under : clear, on : ’a >

< ’b : Block | under : clear, on : table > .

eq final

= < ’a : Block | under : clear, on : ’b >

< ’b : Block | under : ’a, on : ’c >

< ’c : Block | under : ’b, on : table > .

endom)

To check that the “sequential plan” (again in an intuitive notation)

unstack(c, a); stack(b, c); stack(a, b)

moves objects from the initial to the final configuration, we can use a
search command as follows:

Maude> (search unstack(’c, ’a) stack(’b, ’c) stack(’a, ’b) initial

=>* C:Configuration

such that C:Configuration == final .)

rewrites: 1318 in 20ms cpu (107ms real) (65900 rews/sec)

Solution 1

C:Configuration --> < ’a : Block | on : ’b, under : clear >

< ’b : Block | on : ’c, under : ’a >

< ’c : Block | on : table, under : ’b >

No more solutions.

Suppose that the blocks world is further refined, so that now blocks can
have colors, say red, blue, and yellow. Of course, we want the rules for manip-
ulating blocks to remain “exactly as before.” This is trivially achieved by class
inheritance as illustrated by the following module, where the rules given for
the class Block of blocks also apply without changes to blocks in the subclass
ColoredBlock of colored blocks.



680 21 Object-Oriented Modules

(omod OO-BLOCKS-WORLD-COLOR is

including OO-BLOCKS-WORLD .

sort Color .

ops red blue yellow : -> Color [ctor] .

class ColoredBlock | color : Color .

subclass ColoredBlock < Block .

endom)

Maude> (rewrite

unstack(’c, ’a)

< ’a : Block | color : red, under : ’c, on : table >

< ’c : Block | color : blue, under : clear, on : ’a >

< ’b : Block | color : yellow, under : clear, on : table > .)

result Configuration :

< ’a : Block | color : red, on : table, under : clear >

< ’b : Block | color : yellow, on : table, under : clear >

< ’c : Block | color : blue, on : table, under : clear >

21.3 A bigger example: a rent-a-car store

In order to further illustrate Full Maude’s object-oriented features, we spec-
ify a simple rent-a-car store example. Several rules in this specification have
variables in their righthand sides or conditions not present in their lefthand
sides; therefore, these rules are not directly executable by the rewrite engine
and are declared as nonexecutable. In order to run the object-oriented system,
we will have to use strategies; a possible such strategy will be presented in
Section 21.7.

The regulations of the system, especially those that govern the rental pro-
cesses, are the following:

1. Cars are rented for a specific number of days, after which they should be
returned.

2. A car can be rented only if it is available.
3. No credit is allowed; customers must pay cash.
4. Customers must make a deposit at pick-up time of the estimated rental

charges.
5. Rental charges depend on the car class. There are three categories: econ-

omy, mid-size, and full-size cars.
6. When a rented car is returned, the deposit is used to pay the rental

charges.
7. If a car is returned before the due date, the customer is charged only

for the number of days the car has been used. The rest of the deposit is
reimbursed to the customer.

8. Customers who return a rented car after its due date are charged for all
the days the car has been used, with an additional 20% charge for each
day after the due date.
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9. Failure to return the car on time or to pay a debt may result in the
suspension of renting privileges.

Let us begin with the static aspects of this system, i.e., with its struc-
ture. We can identify three main classes, namely the store, customer, and car
classes. There are three kinds of cars: economy, mid-size, and full-size cars.

Customers may rent cars. This relationship may be represented by a
Rental class which, in addition to references to the objects involved in the
relationship, has some extra attributes. The system also requires some control
over time, which we get with a class representing calendars that provides the
current date and simulates the passage of time.

The Customer class has three attributes, namely, suspended, cash, and
debt to keep track of, respectively, whether he is suspended or not, the amount
of cash that the customer currently has, and his debt with the store. Such a
class is defined by the following Maude declaration:

class Customer | cash : Nat, debt : Nat, suspended : Bool .

The attribute available of the Car class indicates whether the car is cur-
rently available or not, and rate records the daily rental rate. We model
the different types of cars for rent by three different subclasses, namely,
EconomyCar, MidSizeCar and FullSizeCar.

class Car | available : Bool, rate : Nat .

class EconomyCar .

class MidSizeCar .

class FullSizeCar .

subclasses EconomyCar MidSizeCar FullSizeCar < Car .

Each object of class Rental will establish a relationship between a cus-
tomer and a car, whose identifiers are kept in attributes customer and car,
respectively. In addition to these, the class Rental is also declared with at-
tributes deposit, pickUpDate, and dueDate to store, respectively, the amount
of money left as a deposit by the customer, the date in which the car is picked
up by the customer, and the date in which the car should be returned to the
store.

class Rental | deposit : Nat, dueDate : Nat, pickUpDate : Nat,

customer : Oid, car : Oid .

Given the simple use that we are going to make of dates, we can represent
them, for example, as natural numbers. Then, we may have a calendar object
that keeps the current date and gets increased by a rewrite rule as follows:

class Calendar | date : Nat .

rl [new-day] :

< O : Calendar | date : F >

=> < O : Calendar | date : F + 1 > .
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We do not worry here about the frequency with which the date gets in-
creased, the possible synchronization problems in a distributed setting, or with
any other issues related to the specification of time. See the papers [288, 291]
on the specification of real-time systems in rewriting logic and Maude for a
discussion on these issues.

Four actions can be identified in our example:

• a customer rents a car,
• a customer returns a rented car,
• a customer is suspended for being late in paying her debt or for being late

in returning a rented car, and
• a customer pays (part of) her debt.

The rental of a car by a customer is specified by the car-rental rule
below, which involves the customer renting the car, the car itself (which must
be available, i.e., not currently rented), and a calendar object supplying the
current date. The rental can take place if the customer is not suspended, that
is, if her identifier is not in the set of identifiers of suspended customers of the
store, and if the customer has enough cash to make the corresponding deposit.
Notice that a customer could rent a car for less time she really is going to
use it on purpose, because either she does not have enough money for the
deposit, or prefers making a smaller deposit. According to the description of
the system, the payment takes place when returning the car, although there
is an extra charge for the days the car was not reserved.

crl [car-rental] :

< U : Customer | cash : M, suspended : false >

< I : Car | available : true, rate : Rt >

< C : Calendar | date : Today >

=> < U : Customer | cash : M - Amnt >

< I : Car | available : false >

< C : Calendar | >

< A : Rental | pickUpDate : Today, dueDate : Today + NumDays,

car : I, deposit : Amnt, customer : U, rate : Rt >

if Amnt := Rt * NumDays /\ M >= Amnt

[nonexec] .

Note that, as already mentioned, those attributes of an object that are not
relevant for a rule do not need to be mentioned. Attributes not appearing in
the righthand side of a rule will maintain their previous values unmodified.
Furthermore, since the variables A and NumDays appear in the righthand side
or condition of the rule but not in its lefthand side, this rule has to be declared
as nonexec. Note as well the use of the attributes customer and car in objects
of class Rental, which makes explicit that a rental relationship is between the
customer and the car specified by these attributes.

A customer returning a car late cannot be forced to pay the total amount
of money due at return time. Perhaps she does not have such an amount of
money in hand. The return of a rented car is specified by the rules below. The
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first rule handles the case in which the car is returned on time, that is, the
current date is smaller or equal to the due date, and therefore the deposit is
greater or equal to the amount due.

crl [on-date-car-return] :

< U : Customer | cash : M >

< I : Car | rate : Rt >

< A : Rental | customer : U, car : I, pickUpDate : PDt,

dueDate : DDt, deposit : Dpst >

< C : Calendar | date : Today >

=> < U : Customer | cash : (M + Dpst) - Amnt >

< I : Car | available : true >

< C : Calendar | >

if (Today <= DDt) /\ Amnt := Rt * (Today - PDt)

[nonexec] .

In this case, part of the deposit needs to be reimbursed. We can see that
the Rental object disappears in the righthand side of the rule, that is, it is
removed from the set of rentals and the availability of the car is restored.

The second rule deals with the case in which the car is returned late.

crl [late-car-return] :

< U : Customer | debt : M >

< I : Car | rate : Rt >

< A : Rental | customer : U, car : I, pickUpDate : PDt,

dueDate : DDt, deposit : Dpst >

< C : Calendar | date : Today >

=> < U : Customer | debt : (M + Amnt) - Dpst >

< I : Car | available : true >

< C : Calendar | >

if DDt < Today *** it is returned late

/\ Amnt := Rt * (DDt - PDt)

+ ((Rt * (Today - DDt)) * (100 + 20)) quo 100

[nonexec] .

In this case, the customer’s debt is increased by the portion of the amount
due not covered by the deposit.

Debts may be paid at any time, the only condition being that the amount
paid is between zero and the amount of money owed by the customer at that
time.

crl [pay-debt] :

< U : Customer | debt : M, cash : N >

=> < U : Customer | debt : M - Amnt, cash : N - Amnt >

if 0 < Amnt /\ Amnt <= N /\ Amnt <= M

[nonexec] .

Customers who are late in returning a rented car or in paying their debts
“may” be suspended. The first rule deals with the case in which a customer
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has a pending debt, and the second one handles the case in which a customer
is late in returning a rented car.

crl [suspend-late-payers] :

< U : Customer | debt : M, suspended : false >

=> < U : Customer | suspended : true >

if M > 0 .

crl [suspend-late-returns] :

< U : Customer | suspended : false >

< I : Car | >

< A : Rental | customer : U, car : I, dueDate : DDt >

< C : Calendar | date : Today >

=> < U : Customer | suspended : true >

< I : Car | >

< A : Rental | >

< C : Calendar | >

if DDt < Today .

Since the system is not terminating, and there are several rules with vari-
ables in their righthand sides or conditions not present in their lefthand sides
and not satisfying the admissibility conditions discussed in Section 6.3, strate-
gies are necessary for controlling its execution. We can define many different
strategies and use them in many different ways (see Section 14.6); a concrete
possibility will be described later in Section 21.7.

21.4 Object-oriented parameterized programming

The notions of theory, view, and parameterized module (see Section 8.3)
have been extended to the object-oriented case. In this section, we explain
how to write object-oriented theories, views with object-oriented theories as
sources and object-oriented modules or object-oriented theories as targets,
and object-oriented parameterized modules with possibly object-oriented the-
ories as parameters. In Section 21.5 we explain how the module operations
available in Full Maude have been extended, so that they are also available
on object-oriented modules. In particular, we will see how it is possible to
rename an object-oriented module and to instantiate an object-oriented mod-
ule parameterized by an object-oriented theory with a view having another
object-oriented module as its target.

21.4.1 Theories

In addition to functional and system theories, Full Maude also supports object-
oriented theories. Their structure is the same as that of object-oriented mod-
ules. Object-oriented theories can have classes, subclass relationships, and
messages. These object-oriented notions may be useful for the definition of
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theories; for example, the following theory CELL specifies the theory of classes
with at least one attribute of any sort.

(oth CELL is

sort Elt .

class Cell | contents : Elt .

endoth)

21.4.2 Views

For a view having an object-oriented theory as its source, the mapping of a
class C in the source theory to a class C’ in the target is expressed with syntax

class C to C’ .

Attribute maps have the form

attr C . A to A’ .

where A is the name of an attribute of class C in the source theory and A’ is
an attribute of the image class of C under the view.

The mapping of messages is expressed with syntax

msg M to M’ .

where M is a message identifier or a message identifier together with its ar-
ity and value sort. As for operators, a message map in which explicit arity
and coarity are given affects the entire family of subsort-overloaded message
declarations associated with the declaration of the given message.

21.4.3 Parameterized object-oriented modules

Like any other type of module, object-oriented modules can be parameterized,
and, like sort names, class names may also be parameterized. The naming of
parameterized classes follows the same conventions discussed in Section 8.3.3
for parameterized sorts.

As an example of an object-oriented parameterized module, we define a
stack of elements. We define a class Stack{X} as a linked sequence of node
objects. Objects of class Stack{X} have a single attribute first, containing
the identifier of the first node in the stack. If the stack is empty, the value
of the first attribute is null. Each object of class Node{X} has an attribute
next holding the identifier of the next node—which should be null if there
is no next node—and an attribute contents to store a value of sort X$Elt.
Notice that node identifiers are of the form o(S,N), where S is the identifier
of the stack object to which the node belongs, and N is a natural number. The
messages push, pop and top have as their first argument the identifier of the
object to which they are addressed, and will cause, respectively, the insertion
at the top of the stack of a new element, the removal of the top element, and
the sending of a response message elt containing the element at the top of
the stack to the object making the request.
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(omod OO-STACK{X :: TRIV} is

protecting INT .

protecting QID .

subsort Qid < Oid .

class Node{X} | next : Oid, contents : X$Elt .

class Stack{X} | first : Oid .

msg _push_ : Oid X$Elt -> Msg .

msg _pop : Oid -> Msg .

msg _top_ : Oid Oid -> Msg .

msg _elt_ : Oid X$Elt -> Msg .

op null : -> Oid .

op o : Oid Int -> Oid .

vars O O’ O’’ : Oid .

var E : X$Elt .

var N : Int .

rl [top] : *** top on a non-empty stack

< O : Stack{X} | first : O’ >

< O’ : Node{X} | contents : E >

(O top O’’)

=> < O : Stack{X} | >

< O’ : Node{X} | >

(O’’ elt E) .

rl [push1] : *** push on a non-empty stack

< O : Stack{X} | first : o(O, N) >

(O push E)

=> < O : Stack{X} | first : o(O, N + 1) >

< o(O, N + 1) : Node{X} |

contents : E, next : o(O, N) > .

rl [push2] : *** push on an empty stack

< O : Stack{X} | first : null >

(O push E)

=> < O : Stack{X} | first : o(O, 0) >

< o(O, 0) : Node{X} | contents : E, next : null > .

rl [pop] : *** pop on a non-empty stack

< O : Stack{X} | first : O’ >

< O’ : Node{X} | next : O’’ >

(O pop)

=> < O : Stack{X} | first : O’’ > .

endom)

Notice that top and pop messages are not received if the stack is empty.
We may want to define stacks storing not just data elements of a partic-

ular sort, but actually objects in a particular class. We can define an object-
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oriented module with the intended behavior as the parameterized module
OO-STACK2 below, which is parameterized by the object-oriented theory CELL

introduced in Section 21.4.1. Notice that the main difference with respect to
the previous STACK version is in the attribute node, that keeps the identifier of
the object where the contents can be found instead of the attribute contents

that provided direct access to those contents.

(omod OO-STACK2{X :: CELL} is

protecting INT .

protecting QID .

subsort Qid < Oid .

class Node{X} | next : Oid, node : Oid .

class Stack{X} | first : Oid .

msg _push_ : Oid Oid -> Msg .

msg _pop : Oid -> Msg .

msg _top_ : Oid Oid -> Msg .

msg _elt_ : Oid X$Elt -> Msg .

op null : -> Oid .

op o : Oid Int -> Oid .

vars O O’ O’’ O’’’ : Oid .

var E : X$Elt .

var N : Int .

rl [top] : *** top on a non-empty stack

< O : Stack{X} | first : O’ >

< O’ : Node{X} | node : O’’ >

< O’’ : X$Cell | contents : E >

(O top O’’’)

=> < O : Stack{X} | >

< O’ : Node{X} | >

< O’’ : X$Cell | >

(O’’’ elt E) .

rl [push1] : *** push on a non-empty stack

< O : Stack{X} | first : o(O, N) >

(O push O’)

=> < O : Stack{X} | first : o(O, N + 1) >

< o(O, N + 1) : Node{X} |

next : o(O, N), node : O’ > .

rl [push2] : *** push on an empty stack

< O : Stack{X} | first : null >

(O push O’)

=> < O : Stack{X} | first : o(O, 0) >

< o(O, 0) : Node{X} | next : null, node : O’ > .

rl [pop] : *** pop on a non-empty stack
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< O : Stack{X} | first : O’ >

< O’ : Node{X} | next : O’’ >

(O pop)

=> < O : Stack{X} | first : O’’ > .

endom)

21.5 Module operations on object-oriented modules

The module operations of summation, renaming, and instantiation have been
extended so that they are also available on object-oriented modules.

21.5.1 Module summation and renaming

The summation and renaming of object-oriented modules is similar to their
non-object-oriented counterparts. Renaming maps, however, are in this case
available for mapping classes, attributes, and messages. Therefore, in addition
to the renamings available in Core Maude, Full Maude also supports renaming
maps of the form:

class 〈identifier 〉 to 〈identifier 〉
attr 〈class-identifier 〉 . 〈attr-identifier 〉 to 〈class-identifier 〉
msg 〈identifier 〉 to 〈identifier 〉
msg 〈identifier 〉 : 〈type-list 〉 -> 〈type 〉 to 〈identifier 〉

We illustrate the renaming of object-oriented modules with the following
example:3

Maude> (show module OO-STACK2 * (class Stack{X} to Stack{X},

class Node{X} to Node{X},

attr Stack{X} . first to head,

msg _elt_ to element,

sort Int to Integer) .)

omod OO-STACK2 * (sort Int to Integer,

msg _elt_ to element,

class Node‘{X‘} to Node‘{X‘},

class Stack‘{X‘} to Stack‘{X‘},

attr Stack‘{X‘} . first to head) {X :: CELL} is

protecting QID .

protecting INT * (sort Int to Integer) .

including CONFIGURATION+ .

including CONFIGURATION .

protecting BOOL .

subsort Qid < Oid .

3 The including CONFIGURATION+ . declaration in the shown module will be ex-
plained in Section 21.9.
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class Node‘{X‘} | next : Oid, node : Oid .

class Stack‘{X‘} | head : Oid .

op null : -> Oid .

op o : Oid Integer -> Oid .

msg _pop : Oid -> Msg .

msg _push_ : Oid Oid -> Msg .

msg _top_ : Oid Oid -> Msg .

msg element : Oid X$Elt -> Msg .

rl < O:Oid : Stack{X}| head : O’:Oid >

< O’:Oid : Node{X}| next : O’’:Oid >

O:Oid pop

=> < O:Oid : Stack{X}| head : O’’:Oid >

[label pop] .

rl < O:Oid : Stack{X}| head : O’:Oid >

< O’:Oid : Node{X}| node : O’’:Oid >

< O’’:Oid : X$Cell | contents : E:X$Elt >

O:Oid top O’’’:Oid

=> < O:Oid : Stack{X}| none >

< O’:Oid : Node{X}| none >

< O’’:Oid : X$Cell | none >

element(O’’:Oid,E:X$Elt)

[label top] .

rl < O:Oid : Stack{X}| head : null >

O:Oid push O’:Oid

=> < O:Oid : Stack{X}| head : o(O:Oid,0)>

< o(O:Oid,0): Node{X}| next : null,node : O’:Oid >

[label push2] .

rl < O:Oid : Stack{X}| head : o(O:Oid,N:Integer)>

O:Oid push O’:Oid

=> < O:Oid : Stack{X}| head : o(O:Oid,N:Integer + 1)>

< o(O:Oid,N:Integer + 1): Node{X}|

next : o(O:Oid,N:Integer),node : O’:Oid >

[label push1] .

endom

21.5.2 Module instantiation

We show in this section how, by instantiating the object-oriented module
OO-STACK2 given in Section 21.4.3, we can obtain a specification of a stack of
banking accounts. We first specify a view Account from the object-oriented
theory CELL (in Section 21.4.1) to the object-oriented module ACCOUNT (in
Section 21.1.4).

(view Account from CELL to ACCOUNT is

sort Elt to Int .

class Cell to Account .

attr Cell . contents to bal .

endv)
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Now we can do the following rewriting on the module resulting from the
instantiation.

Maude> (rew in OO-STACK2{Account}

* (class Account to Account,

class Stack{Account} to Stack{Account},

class Node{Account} to Node{Account},

attr Stack{Account} . first to head,

attr Account . bal to balance,

msg _elt_ to element,

sort Int to Integer) :

< ’stack : Stack{Account} | head : null >

< ’A-73728 : Account | balance : 5000 >

< ’A-06238 : Account | balance : 2000 >

< ’A-28381 : Account | balance : 15000 >

(’stack push ’A-73728)

(’stack push ’A-06238)

(’stack push ’A-28381)

(’stack top ’A-06238)

(’stack pop) .)

result Configuration :

element(’A-28381,15000)

< ’A-06238 : Account | balance : 2000 >

< ’A-28381 : Account | balance : 15000 >

< ’A-73728 : Account | balance : 5000 >

< ’stack : Stack{Account}| head : o(’stack, 1)>

< o(’stack, 0) : Node{Account} | next : null, node : ’A-06238 >

< o(’stack, 1) : Node{Account} |

next : o(’stack, 0), node : ’A-73728 >

21.6 Example: extended rent-a-car store

This section describes a variant of the rent-a-car store example in Section 21.3
in which several interesting data structures are used to store relevant infor-
mation.

Let us refine the specification of a rent-a-car store presented in Section 21.3
by adding the following regulations:

10. When a rented car is returned, the deposit is used to pay the rental
charges, which are calculated in accordance with the conditions at pick-up
time.

11. There are three different kinds of customers: staff, occasional, and pre-
ferred.

12. Staff members and preferred customers benefit from special discounts in
all rentals.
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13. A customer qualifies as “preferred” when the accumulated amount of
money spent in the store by the customer is above a certain threshold.

The main differences introduced by these regulations are that we need to
keep the conditions at pick-up time, so that the calculations at drop-off time
are correct. We also need to distinguish the three different types of customers,
with the possibility of an occasional customer being promoted to preferred if
he spends a given amount of money.

As an alternative approach to the one followed previously in Section 21.3,
we introduce a class Store of rental car stores, whose attributes represent
the information concerning the general parameters of such stores: the rates
applicable to each type of car, the discounts for each type of customer rent-
ing each type of car, the identifiers of the customers who are suspended, the
amount of money above which occasional customers are qualified as preferred,
the record with the amount of money spent in the store by each of the cus-
tomers, and the daily penalty for late return (20%). In addition, attributes
customers, cars, rentals, and calendar store the identifiers of the objects
participating in the relationships with the Store composite object; those are
directed binary relationships and therefore we need only store the identifiers
of the subordinate objects as attributes of the object that references them.

class Store |

discounts : PFun{Tuple{Cid, Cid}, Nat},

payments : PFun{Oid, Nat},

penalty : Nat,

threshold : Nat,

suspended : Set{Oid},

rates : PFun{Cid, Nat},

customers : Set{Oid},

cars : Set{Oid},

rentals : Set{Oid},

calendar : Oid .

The information on rates, discounts, and money spent is modeled by at-
tributes of sort PFun of partial functions4 (see Section 19.3.2), associating the
appropriate values to each of the different agents involved. The rates for the
different cars are stored in the attribute rates, of sort PFun{Cid, Nat}, that
associates the per-day rate to be charged to a customer for renting a given
type of car. Thus, assuming that Rts is a variable of sort PFun{Cid, Nat},
with value the partial function assigning the appropriate rates to each type of
car, we have that Rts[FullSizeCar] is the per-day rate for renting a full size
car. If we want to increase this rate by, say 20%, we can use the expression

Rts[FullSizeCar -> Rts[FullSizeCar] * (100 + penalty) / 100]

4 An alternative possibility is to use the maps specified in the predefined MAP module
in Section 9.13.
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with penalty a constant equal to 20. The discounts applied to each cus-
tomer on each type of car and the amount of the purchases of each customer
are stored, respectively, in attributes payments and discounts. The set of
the identifiers of the customers who are suspended is stored in an attribute
suspended of sort Set{Oid}. The predefined sorts Oid and Cid are used for
object identifiers and class identifiers, respectively.

This specification will allow us, for instance, to easily “compose” systems
with different particular details (e.g., discounts may change from one store to
another), allowing them to easily co-exist.

The rest of the classes can be specified as follows:

class Customer | cash : Nat, debt : Nat .

class Staff .

class OccasionalCust .

class PreferredCust .

subclasses OccasionalCust PreferredCust Staff < Customer .

class Car | available : Bool .

class EconomyCar .

class MidSizeCar .

class FullSizeCar .

subclasses EconomyCar MidSizeCar FullSizeCar < Car .

class Rental |

deposit : Nat, discount : Nat,

dueDate : Nat, pickUpDate : Nat,

rate : Nat, customer : Oid,

car : Oid .

The different actions may then be defined as follows:

crl [car-rental] :

< U : Customer | cash : M >

< I : Car | available : true > *** the car is available

< V : Store | suspended : US,

rates : Rts, discounts : Dscnts, calendar : C,

cars : (I, IS), customers : (U, SS), rentals : RS >

< C : Calendar | date : Today >

=> < U : Customer | cash : sd(M, Amnt) >

< I : Car | available : false >

< V : Store | rentals : (A, RS) >

< C : Calendar | >

< A : Rental | pickUpDate : Today, dueDate : Today + NumDays,

car : I, deposit : Amnt, customer : U,

rate : Rt, discount : Dscnt >

if not U in US *** the customer is not suspended

/\ Rt := Rts[class(< I : Car | >)]

/\ Dscnt := Dscnts[(class(< U : Customer | >),

class(< I : Car | >))]
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/\ Amnt := sd(Rt, Dscnt) * NumDays

/\ M >= Amnt *** enough cash to make a deposit

[nonexec] .

Notice the use of customer and car attributes in objects of class Rental,
which makes explicit that a rental relationship is between the customer and
the car specified by these attributes. Likewise for attributes customers, cars,
and calendar of object V of class Store, which indicate that the customer,
car and calendar appearing on the rule should be known to the store. After
the car-rental action, the rental is added to the set of rentals kept by the
store.

Rules may be applied to objects of the classes specified in the rules or of any
of their subclasses. Remember that the function class takes an object as argu-
ment and returns its actual class (see Section 21.1.2); for example, the class

function applied to an object of the form < ’c123 : MidSizeCar | ... >

returns MidSizeCar, and not Car. Finally, notice the use of matching equations
of the form t := t’ in the condition (see Section 4.3).

The return of a rented car is specified by the rules below. The first rule
handles the case in which the car is returned on time, that is, the current date
is smaller than or equal to the due date, and therefore the deposit is greater
than or equal to the amount due. Notice that the rate and discount to be
used in the calculation of the amount due are those at pick-up time, which
are stored as attributes of the Rental object.

crl [on-date-car-return] :

< U : Customer | cash : M >

< I : Car | >

< A : Rental | customer : U, car : I, rate : Rt, discount : Dscnt,

pickUpDate : Ppdt, dueDate : Ddt, deposit : Dpst >

< V : Store | payments : Pmnts, cars : (I, IS),

customers : (U, SS), calendar : C, rentals : (A, RS) >

< C : Calendar | date : Today >

=> < U : Customer | cash : M + sd(Dpst, Amnt) >

< I : Car | available : true >

< V : Store | rentals : RS,

payments : (if Pmnts[U] == undefined *** no record for customer

then Pmnts[U -> Amnt]

else Pmnts[U -> ((Pmnts[U]) + Amnt)]

fi) >

< C : Calendar | >

if (Today <= Ddt) /\ Amnt := sd(Rt, Dscnt) * sd(Today, Ppdt) .

In this case, the deposit is greater than the amount due and therefore part of
the deposit needs to be reimbursed. Note also that the Store object keeps a
record of the amount of money spent by each customer in the store, and thus
it must be updated accordingly. We can see how the Rental object disappears
in the righthand side of the rules: it is removed from the set of rentals known
to the store and the availability of the car is restored.
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The second rule deals with the case in which the car is returned late. The
amount to be paid is calculated at drop-off time, but the rate and discount
to be used, those at pick-up time, may have changed when returning the car.

crl [late-car-return] :

< U : Customer | debt : M >

< I : Car | >

< A : Rental | customer : U, car : I, rate : Rt, discount : Dscnt,

pickUpDate : Ppdt, dueDate : Ddt, deposit : Dpst >

< V : Store | payments : Pmnts, penalty : Pnlt, rentals : (A, RS),

cars : (I, IS), customers : (U, SS), calendar : C >

< C : Calendar | date : Today >

=> < U : Customer | debt : M + sd(Amnt, Dpst) >

< I : Car | available : true >

< V : Store | rentals : RS,

payments : (if Pmnts[U] == undefined

then Pmnts[U -> Dpst]

else Pmnts[U -> ((Pmnts[U]) + Dpst)]

fi) >

< C : Calendar | >

if Ddt < Today *** it is returned late

/\ Amnt := (sd(Rt, Dscnt) * sd(Ddt, Ppdt))

+ (((sd(Rt, Dscnt) * sd(Today, Ddt))

* (100 + Pnlt)) quo 100) .

In this case the customer’s debt is increased by the portion of the amount due
not covered by the deposit.

Debts may be paid at any time, the only condition being that the amount
paid is between zero and the amount of money of the customer at that time.

crl [pay-debt] :

< V : Store |

payments : Pmnts, customers : (U, SS), calendar : C >

< U : Customer | debt : M, cash : N >

< C : Calendar | date : Today >

=> < V : Store | payments : Pmnts[U -> ((Pmnts[U]) + Amnt)] >

< U : Customer | debt : sd(M, Amnt), cash : sd(N, Amnt) >

< C : Calendar | >

if 0 < Amnt /\ Amnt <= N /\ Amnt <= M

[nonexec] .

We are assuming that, if there is a debt, then there has been a previous
payment, and therefore there is already a record for that customer.

The text says that customers who are late in returning a rented car or in
paying their debts “may” be suspended. However, nothing is said about the
reasons for taking such a decision or when they should be suspended, that is,
a customer could be suspended right after the car is returned without having
paid all the charges, after some grace days, or never. In practice there will be
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fixed criteria, as, for example, suspending customers that are two days late,
or two months.

The first rule deals with the case in which a customer has a pending debt,
and the second one handles the case in which a customer is late in returning
a rented car.

crl [suspend-late-payers] :

< V : Store | suspended : US, customers : (U, SS) >

< U : Customer | debt : M >

=> < V : Store | suspended : (U, US) >

< U : Customer | >

if (not U in US) and M > 0 .

crl [suspend-late-returns] :

< V : Store | suspended : US, cars : (I, IS),

customers : (U, SS), calendar : C >

< U : Customer | >

< I : Car | >

< A : Rental | customer : U, car : I, dueDate : F >

< C : Calendar | date : Today >

=> < V : Store | suspended : (U, US) >

< U : Customer | >

< I : Car | >

< A : Rental | >

< C : Calendar | >

if (not U in US) and F < Today .

The upgrade in the status of a customer can then be modeled with the
following rule:

crl [upgrade-to-preferred] :

< U : OccasionalCust | cash : M, debt : N >

< V : Store | threshold : Thrshld, payments : Pmnts,

customers : (U, SS), calendar : C >

< C : Calendar | date : Today >

=> < U : PreferredCust | cash : M, debt : N >

< V : Store | >

< C : Calendar | >

if (Pmnts[U]) >= Thrshld .

In this rule, a customer object U of subclass OccasionalCust becomes of
subclass PreferredCust when the accumulated amount of purchases exceeds
the store’s threshold. The partial function stored in the attribute payments

gives us the amount of money spent by each customer. In Maude, objects
changing their classes must show all their attributes in the righthand sides of
the rules.

As in the simpler rent-a-car system, the presence of nonterminating rules
and of rules with new variables in the righthand side requires some kind of
strategy for the execution of the system; we give an example of such a strategy
in the next section.
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21.7 A strategy for sequential rule execution

Strategies are necessary for controlling the execution of rules that are not
terminating, or that do not satisfy the admissibility conditions discussed in
Section 6.3. A simple but interesting strategy may be one that allows us
to execute a given sequence of rules, that is, to accomplish sequentially a
series of actions from a particular initial state. We introduce in this section
such a generic strategy and illustrate its use by applying it for executing
the systems specified in Sections 21.3 and 21.6. Dealing with strategies may
become cumbersome, since we need to handle terms and modules at different
levels of reflection, and expressions may become quite hard to read and handle.
We show in this section how the upModule and upTerm functions and the down
command introduced in Section 19.4 can help in alleviating this difficulty.

A strategy is represented as a sequence of rule applications. We instantiate
the predefined module LIST with pairs formed by a rule label representing the
rule to be applied, and a substitution to partially instantiate the variables in
such a rule before its application. The pairs are obtained using the generic
tuple construction described in Section 19.3.1. Thus, to get the module expres-
sion LIST{Tuple{Qid, Substitution}}, given the predefined view Qid and
the parameterized view Tuple, that we have already used in the partial func-
tions example of Section 19.3.2, we only need to define a view Substitution

from TRIV to META-LEVEL.

(view Substitution from TRIV to META-LEVEL is

sort Elt to Substitution .

endv)

This construction is put to work in the module REW-SEQ below. The op-
erator rewSeq in this module takes the metarepresentation of a module, the
metarepresentation of a term, and a list of pairs (each formed by a rule label
and a substitution); the term obtained in this way is rewritten by applying
the given rules sequentially, using in their applications their corresponding
partial substitutions.

(mod REW-SEQ is

including META-LEVEL .

protecting LIST{Tuple{Qid, Substitution}} .

var M : Module .

var T : Term .

var L : Qid .

var S : Substitution .

var LLS : List{Tuple{Qid, Substitution}} .

op rewSeq :

Module Term List{Tuple{Qid, Substitution}} -> [Term] .
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rl [seq] : rewSeq(M, T, (L, S) LLS)

=> rewSeq(M,

getTerm(metaXapply(M, T, L, S, 0, unbounded, 0)), LLS) .

rl [seq] : rewSeq(M, T, nil) => T .

endm)

The rules to be applied here are part of the module given as first argument.
The strategy starts with the term given as initial state, which is replaced
in each recursive call by the term representing the state obtained after the
application of the next rule in the sequence (see Section 14.5.4). When all the
rules have been applied, thus reaching the empty list as third argument, the
current state is returned as the resulting final state.

We illustrate the use of the rewSeq strategy by applying a sequence of
rules on a configuration of the rent-a-car system specified in Section 21.3. Let
RENT-A-CAR-STORE be the name of the module containing the specification of
such a system, and let StoreConf be a configuration of objects defined in the
following module.

(fmod RENT-A-CAR-STORE-TEST is

pr RENT-A-CAR-STORE .

op StoreConf : -> Configuration [memo] .

eq StoreConf

= < ’C1 : Customer | cash : 5000, debt : 0, suspended : false >

< ’C2 : Customer | cash : 5000, debt : 0, suspended : false >

< ’A1 : EconomyCar | available : true, rate : 100 >

< ’A3 : MidSizeCar | available : true, rate : 150 >

< ’A5 : FullSizeCar | available : true, rate : 200 >

< ’C : Calendar | date : 0 > .

endfm)

The StoreConf configuration consists of two clients C1 and C2, three cars
A1, A3 and A5, and a calendar object C. Now, let StoreStrat be a sequence
of pairs (rule label - substitution) that defines the strategy declared in the
following module as a sequence of actions:

(fmod REW-SEQ-TEST is

pr REW-SEQ .

op StoreStrat : -> List{Tuple{Qid, Substitution}} [memo] .

eq StoreStrat

= (’car-rental,

’U:Oid <- ’’C1.Qid ; *** size car A3 for 2 days

’I:Oid <- ’’A3.Qid ;

’NumDays:Int <- ’s_^2[’0.Zero] ;

’A:Oid <- ’’a0.Qid)

(’new-day, none) *** two days pass

(’new-day, none)
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(’on-date-car-return, none) *** car A3 is returned

(’new-day, none)

(’car-rental, *** client C1 rents the full

’U:Oid <- ’’C1.Qid ; *** size car A5 for 1 day

’I:Oid <- ’’A5.Qid ;

’NumDays:Int <- ’s_^1[’0.Zero] ;

’A:Oid <- ’’a1.Qid)

(’new-day, none) *** two days pass

(’new-day, none)

(’late-car-return, none) *** car A5 is returned

(’new-day, none)

(’suspend-late-payers, none) *** client C1 is suspended

(’new-day, none)

(’new-day, none)

(’pay-debt, *** client C1 pays 100$

’Amnt:Int <- ’s_^100[’0.Zero]) .

endfm)

Comments on the righthand side of the code above explain the sequence of
rules defining the strategy. Basically, the execution trace specified consists of
client C1 renting two cars, one of which is returned on time and the other one
is returned late. After the second car is returned, the client is suspended for
being late in his payments. The client then pays part of his debt. Note how
the passage of time is modeled by the application of the rule new-day.

Now, in order to execute the system specifications using this strategy, we
just need to use rewSeq to apply the given rules sequentially, using their
corresponding partial substitutions in their applications. Note how the first
two arguments are metarepresented with the upModule and upTerm functions,
since they need to be the metarepresentations of the actual module and term,
respectively.

Maude> (down RENT-A-CAR-STORE :

rew rewSeq(upModule(RENT-A-CAR-STORE-TEST),

upTerm(RENT-A-CAR-STORE-TEST, StoreConf),

StoreStrat) .)

result Configuration :

< ’C : Calendar | date : 8 >

< ’C1 : Customer | suspended : true, debt : 140, cash : 4400 >

< ’C2 : Customer | suspended : false, debt : 0, cash : 5000 >

< ’A1 : EconomyCar | rate : 100, available : true >

< ’A3 : MidSizeCar | rate : 150, available : true >

< ’A5 : FullSizeCar | rate : 200, available : true >

We can see in this configuration that eight days have passed, after which
the client C1 is suspended. The client C1 has paid a total of $600 (= 2 × 150
+ 200 + 100), and has still a debt of $140 (= 200 + 20 % 200 − 100).
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The same strategy can be used to execute the extended specification in
Section 21.6, contained in a module named EXTENDED-RENT-A-CAR-STORE.
First, we define a module with an initial configuration ExtStoreConf.

(fmod EXTENDED-RENT-A-CAR-STORE-TEST is

pr EXTENDED-RENT-A-CAR-STORE .

op ExtStoreConf : -> Configuration [memo] .

eq ExtStoreConf

= < ’S : Store |

discounts :

(((Staff, EconomyCar), 20),

((Staff, MidSizeCar), 30),

((Staff, FullSizeCar), 40),

((OccasionalCust, EconomyCar), 0),

((OccasionalCust, MidSizeCar), 0),

((OccasionalCust, FullSizeCar), 0),

((PreferredCust, EconomyCar), 10),

((PreferredCust, MidSizeCar), 15),

((PreferredCust, FullSizeCar), 20)),

payments : empty, penalty : 0,

threshold : 1000, suspended : empty,

rates : ((EconomyCar, 100),

(MidSizeCar, 150),

(FullSizeCar, 200)),

customers : (’C1, ’C2),

cars : (’A1, ’A3, ’A5),

rentals : empty, calendar : ’C >

< ’C1 : Staff | cash : 5000, debt : 0 >

< ’C2 : OccasionalCust | cash : 5000, debt : 0 >

< ’A1 : EconomyCar | available : true >

< ’A3 : MidSizeCar | available : true >

< ’A5 : FullSizeCar | available : true >

< ’C : Calendar | date : 0 > .

endfm)

Now we execute a command completely analogous to the previous one,
obtaining a resulting state that shows how, after eight days, client C1 has
paid $500, and has a debt of $60.

Maude> (down EXTENDED-RENT-A-CAR-STORE :

rew rewSeq(upModule(EXTENDED-RENT-A-CAR-STORE),

upTerm(EXTENDED-RENT-A-CAR-STORE, ExtStoreConf),

StoreStrat) .)

result Configuration :

< ’A1 : EconomyCar | available : true >

< ’A3 : MidSizeCar | available : true >

< ’A5 : FullSizeCar | available : true >

< ’C : Calendar | date : 8 >
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< ’C1 : Staff | cash : 4500, debt : 60 >

< ’C2 : OccasionalCust | cash : 5000, debt : 0 >

< ’S : Store | calendar : ’C,

cars : (’A1, ’A3, ’A5),

customers : (’C1, ’C2),

discounts : (((OccasionalCust, EconomyCar), 0),

((OccasionalCust, FullSizeCar), 0),

((OccasionalCust, MidSizeCar), 0),

((PreferredCust, EconomyCar), 10),

((PreferredCust, FullSizeCar), 20),

((PreferredCust, MidSizeCar), 15),

((Staff, EconomyCar), 20),

((Staff, FullSizeCar), 40),

((Staff, MidSizeCar), 30)),

payments : (’C1, 500),

penalty : 0,

rates : ((EconomyCar, 100),

(FullSizeCar, 200),

(MidSizeCar, 150)),

rentals : empty,

suspended : ’C1,

threshold : 1000 >

21.8 Model checking a round-robin scheduling algorithm

In this section we present a specification of a round-robin scheduling algo-
rithm, and the mutual exclusion and guaranteed reentrance properties are
proven about it. Both the algorithm and the property guaranteing that
all processes reenter their critical sections are parameterized by the num-
ber of processes. We use Maude’s model checker to prove the mutual ex-
clusion and guaranteed reentrance properties. As we said in Section 19.2,
to use the MODEL-CHECKER module, or any other Core Maude module, we
just need to make sure that it has been loaded; we suggest loading the
model-checker.maude file before starting Full Maude.

We first give a specification of natural numbers modulo. Since we want to
be able to have any number of processes, we define the NAT/ module param-
eterized by the functional theory NZNAT#, which requires a constant of sort
Nat. Thus, having a view, say 5 from TRIV to NZNAT# mapping # to the nat-
ural number 5, the module expression NAT/{5} specifies the natural numbers
modulo 5.

(fth NZNAT# is

protecting NAT .

op # : -> NzNat .

endfth)
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(fmod NAT/{N :: NZNAT#} is

sort Nat/{N} .

op ‘[_‘] : Nat -> Nat/{N} [ctor] .

op _+_ : Nat/{N} Nat/{N} -> Nat/{N} .

op _*_ : Nat/{N} Nat/{N} -> Nat/{N} .

vars N M : Nat .

ceq [N] = [N rem #] if N >= # .

eq [N] + [M] = [N + M] .

eq [N] * [M] = [N * M] .

endfm)

The round-robin scheduling algorithm is specified in the module RROBIN

below. Processes are represented as objects of class Proc, which may be in
wait or critical mode, meaning that a process may be either in its critical
section or waiting to enter into it. The process getting the token, which is
represented as the message go, can enter its critical section. Once a process
gets out of its critical section it forwards the token to the next process. The
init operator sets up the initial configuration for a given number of processes.
Note that Nat/{N} is made a subsort of Oid, making in this way natural
numbers modulo N valid object identifiers.

(omod RROBIN{N :: NZNAT#} is

protecting NAT/{N} .

sort Mode .

ops wait critical : -> Mode [ctor] .

subsort Nat/{N} < Oid .

class Proc | mode : Mode .

msg go : Nat/{N} -> Msg .

var N : Nat .

rl [enter] :

go([N])

< [N] : Proc | mode : wait >

=> < [N] : Proc | mode : critical > .

rl [exit] :

< [N] : Proc | mode : critical >

=> < [N] : Proc | mode : wait >

go([s(N)]) .

op init : -> Configuration .

op make-init : Nat/{N} -> Configuration .

ceq init = go([0]) make-init([N]) if s(N) := # .

ceq make-init([s(N)])
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= < [s(N)] : Proc | mode : wait > make-init([N])

if N < # .

eq make-init([0]) = < [0] : Proc | mode : wait > .

endom)

For proving mutual exclusion and guaranteed reentrance, we declare the
propositions inCrit and twoInCrit in the module CHECK-RROBIN below (see
Chapter 13 for a discussion on the use of Maude’s model checker). The prop-
erty inCrit takes a Nat/{N} as argument, thus making this property param-
eterized by the number of processes, and is true when such a process is in its
critical section. The property twoInCrit is true if any two processes are in
their critical sections simultaneously. Mutual exclusion will be proved directly
below, while for proving guaranteed reentrance we use the auxiliary formula
guaranteedReentrance, which allows us to specify the property of all pro-
cesses reentering their critical sections in exactly 2N steps, for N the number
of processes. For a formula F, nextIter F returns O...O F (where O denotes
the modal next operator), which specifies that the property is true in the next
iteration, that is, 2N steps later. Note that the expression 2 * # will become
two times N once the module is instantiated.

(omod CHECK-RROBIN{N :: NZNAT#} is

pr RROBIN{N} .

inc MODEL-CHECKER .

inc SATISFACTION .

ex LTL-SIMPLIFIER .

inc LTL .

subsort Configuration < State .

op inCrit : Nat/{N} -> Prop .

op twoInCrit : -> Prop .

var N : Nat .

vars X Y : Nat/{N} .

var C : Configuration .

var F : Formula .

eq < X : Proc | mode : critical > C |= inCrit(X) = true .

eq < Y : Proc | mode : critical > < Y : Proc | mode : critical > C

|= twoInCrit = true .

op guaranteedReentrance : -> Formula .

op allProcessesReenter : Nat -> Formula .

op nextIter_ : Formula -> Formula .

op nextIterAux : Nat Formula -> Formula .

eq guaranteedReentrance = allProcessesReenter(#) .
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eq allProcessesReenter(s N)

= (inCrit([s N]) -> nextIter inCrit([s N])) /\

allProcessesReenter(N) .

eq allProcessesReenter(0) = inCrit([0]) -> nextIter inCrit([0]) .

eq nextIter F = nextIterAux(2 * #, F) .

eq nextIterAux(s N, F) = O nextIterAux(N, F) .

eq nextIterAux(0, F) = F .

endom)

Note that the LTL formula describing the guaranteedReentrance prop-
erty is not a single LTL formula, but an infinite parametric family of formulas

guaranteedReentrance = {allProcessesReenter(n) | n ∈ N}.
The use of equations in the above CHECK-RROBIN parameterized module al-
lows us to define this infinite family of formulas by means of a few recursive
equations. When this module is instantiated for a concrete value of n, we then
obtain the concrete LTL formula allProcessesReenter(n) for that n.

We now prove mutual exclusion and guaranteed reentrance for the case of
five processes using the model checker.

(view 5 from NZNAT# to NAT is

op # to term 5 .

endv)

Maude> (reduce in CHECK-RROBIN{5} :

modelCheck(init, [] ~ twoInCrit) .)

result Bool :

true

Maude> (reduce in CHECK-RROBIN{5} :

modelCheck(init, [] guaranteedReentrance) .)

result Bool :

true

Of course the answer depends on the property checked and is not always
true. The following example shows how the model checker gives a counterex-
ample as result when trying to prove that, for a configuration of five processes,
process [1] is in its critical section three steps after it was in it.

Maude> (red in CHECK-RROBIN{5} :

modelCheck(init, [] (inCrit([1]) -> O O O inCrit([1]))) .)

result ModelCheckResult :

counterexample(

{go([0]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : critical > <[1]: Proc | mode : wait >

<[2]: Proc | mode : wait > <[3]: Proc | mode : wait >
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<[4]: Proc | mode : wait >, ’exit}

{go([1]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : critical >

<[2]: Proc | mode : wait > <[3]: Proc | mode : wait >

<[4]: Proc | mode : wait >, ’exit}

{go([2]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : wait >

<[2]: Proc | mode : critical > <[3]: Proc | mode : wait >

<[4]: Proc | mode : wait >, ’exit},

{go([3]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : wait >

<[2]: Proc | mode : wait > <[3]: Proc | mode : critical >

<[4]: Proc | mode : wait >, ’exit}

{go([4]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : wait >

<[2]: Proc | mode : wait > <[3]: Proc | mode : wait >

<[4]: Proc | mode : critical >, ’exit}

{go([0]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : critical > <[1]: Proc | mode : wait >

<[2]: Proc | mode : wait > <[3]: Proc | mode : wait >

<[4]: Proc | mode : wait >, ’exit}

{go([1]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : critical >

<[2]: Proc | mode : wait > <[3]: Proc | mode : wait >

<[4]: Proc | mode : wait >, ’exit}

{go([2]) <[0]: Proc | mode : wait >

<[1]: Proc | mode : wait > <[2]: Proc | mode : wait >

<[3]: Proc | mode : wait > <[4]: Proc | mode : wait >, ’enter}

{<[0]: Proc | mode : wait > <[1]: Proc | mode : wait >

<[2]: Proc | mode : critical > <[3]: Proc | mode : wait >

<[4]: Proc | mode : wait >, ’exit})

21.9 From object-oriented modules to system modules

The best way to understand classes and class inheritance in Full Maude is by
making explicit the full structure of an object-oriented module, which is left
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somewhat implicit by the syntactic conventions adopted for them. Indeed, al-
though object-oriented modules provide convenient syntax for programming
object-oriented systems, their semantics can be reduced to that of system
modules. We can regard the special syntax reserved for object-oriented mod-
ules as syntactic sugar. In fact, each object-oriented module can be translated
into a corresponding system module whose semantics is by definition that of
the original object-oriented module.

In the translation process, the most basic structure shared by all object-
oriented modules is made explicit by the CONFIGURATION functional module.
The translation of a given object-oriented module extends this structure with
the classes, messages and rules introduced by the module. For example, the
following system module is the translation of the ACCOUNT module introduced
earlier. Note that a subsort Account of Cid is introduced. The purpose of this
subsort is to range over the class identifiers of the subclasses of Account. For
the moment, no such subclasses have been introduced; therefore, at present
the only constant of sort Account is the class identifier Account.

mod ACCOUNT is

protecting INT .

protecting QID .

including CONFIGURATION+ .

including CONFIGURATION .

sorts Account .

subsort Qid < Oid .

subsort Account < Cid .

op Account : -> Account .

op credit : Oid Int -> Msg [msg] .

op debit : Oid Int -> Msg [msg] .

op from_to_transfer_ : Oid Oid Int -> Msg [msg] .

op bal :_ : Int -> Attribute .

var A : Oid .

var B : Oid .

var M : Int .

var N : Int .

var N’ : Int .

var V@Account : Account .

var ATTS@0 : AttributeSet .

var V@Account1 : Account .

var ATTS@2 : AttributeSet .

rl [credit] :

credit(A, M)

< A : V@Account | bal : N, ATTS@0 >

=> < A : V@Account | bal : (N + M), ATTS@0 > .

crl [debit] :

debit(A, M)

< A : V@Account | bal : N, ATTS@0 >

=> < A : V@Account | bal : (N - M), ATTS@0 >

if N >= M = true .



706 21 Object-Oriented Modules

crl [transfer] :

(from A to B transfer M)

< A : V@Account | bal : N, ATTS@0 >

< B : V@Account1 | bal : N’, ATTS@2 >

=> < A : V@Account | bal : (N - M), ATTS@0 >

< B : V@Account1 | bal : (N’ + M), ATTS@2 >

if N >= M = true .

endm

We can describe the desired transformation from an object-oriented mod-
ule to a system module as follows:5

• The module CONFIGURATION+ is imported, which in turn imports the mod-
ule CONFIGURATION from Section 11.1. It adds a function class which
returns the actual class of the given object, and also syntax for objects
with no attributes <_:_| >.

mod CONFIGURATION+ is

protecting CONFIGURATION .

op <_:_| > : Oid Cid -> Object .

op class : Object -> Cid .

eq < O:Oid : C:Cid | > = < O:Oid : C:Cid | none > .

eq class(< O:Oid : C:Cid | A >) = C:Cid .

endm

• For each class declaration of the form class C | a1:S1, . . . ,an:Sn, the
following is introduced: a subsort C of sort Cid, a constant C of sort C,
and declarations of operations

ai : : Si -> Attribute

for each attribute ai.
• For each subclass relation C < D a subsort declaration

subsort C < D .

is introduced, and the set of attributes for objects of class C is completed
with those of D.

• The system modules resulting from the transformation have the spe-
cial features supported in Core Maude for object-based programming ex-
plained in Chapter 11. Specifically, the msg attribute is added to message
declarations starting with the msg keyword.

• The rewrite rules are modified to make them applicable to all objects of
the given classes and of their subclasses, that is, not only to objects whose
class identifiers are those explicitly given. The rules are then “inherited”
by all objects in their subclasses by replacing the class identifiers in the
objects in the rules by variables of the corresponding class sort. Variables

5 We have simplified the transformation of object-oriented modules into system
modules that originally appeared in [245].
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of sort AttributeSet are also introduced, to range over the additional
attributes that may appear in objects of a subclass. That is, each ob-
ject expression < O : C | . . . > appearing in a rule is translated into
< O : X | . . . , Atts >, where the new variable X is declared of sort
C, and the new variable Atts has sort AttributeSet.

• The rewrite rules are modified to give the user the possibility of not men-
tioning in a given rule those attributes of an object that are not relevant
for that rule. To explain the transformation, let −−→a : v denote the attribute-
value pairs a1 : v1, . . . , an : vn, where −→a are the attribute identifiers of
a given class C (after completing it with all the attributes in its super-

classes) having
−→
S as the corresponding sorts of values prescribed for those

attributes. Then, in object-oriented modules we allow rules where the at-
tributes for an object O, mentioned in the lefthand and righthand sides
of a rule, need not exhaust all the object’s attributes, but can instead be
in any of two arbitrary subsets of the object’s attributes. We can picture
this as follows

. . . 〈O : C | −−−→al : vl,
−−−−→
ab : vb〉 . . . −→ . . . 〈O : C | −−−−→ab : vb′,−−−−→ar : vr〉 . . .

where
−→
al are the attributes appearing only on the left,

−→
ab are the attributes

appearing on both sides, and −→ar are the attributes appearing only on the
right. In the transformation into a system module, this rule is translated
into

. . . 〈O : X | −−−→al : vl,
−−−−→
ab : vb,−−−→ar : x,

−−−→
ac : x′, Atts〉 . . .

−→ . . . 〈O : X | −−−→al : vl,
−−−−→
ab : vb′,−−−−→ar : vr,

−−−→
ac : x′, Atts〉 . . .

where X is a variable of sort C, −→ac are the attributes defined in the class

C that do not appear in
−→
al ,
−→
ab, or −→ar, the −→x and

−→
x′ are new variables

of the appropriate sorts, and Atts matches the remaining attribute-value
pairs.

The rewrite rules given in the original ACCOUNT module are interpreted
here—according to the conventions already explained—in a form that can
be inherited by subclasses of Account that could be defined later. Thus,
SavingAccount inherits the rewrite rules for crediting and debiting ac-
counts, and for transferring funds between accounts that had been defined
for Account.

Let us illustrate the treatment of class inheritance with the system module
resulting from the transformation of the module SAVING-ACCOUNT introduced
previously.

mod SAVING-ACCOUNT is

including CONFIGURATION+ .

including CONFIGURATION .

including ACCOUNT .

sorts SavingAccount .
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subsort SavingAccount < Cid .

subsort SavingAccount < Account .

op SavingAccount : -> SavingAccount .

op rate :_ : Int -> Attribute .

endm

Note that by translating a rule like credit above

rl [credit] :

credit(A, M)

< A : Account | bal : N >

=> < A : Account | bal : (N + M) > .

into its corresponding transformed form

rl [credit] :

credit(A, M)

< A : V0@:Account | bal : N, V1@:AttributeSet >

=> < A : V0@:Account | bal : (N + M), V1@:AttributeSet > .

it is guaranteed that the rule will be applicable to objects of class Account as
well as of any of its subclasses.

Note also that a rule like change-age (discussed in Section 21.1.4)

rl [change-age] :

< O : Person | >

to O : new age A

=> < O : Person | age : A > .

is translated into a rule like

rl [change-age] :

< O : V0@:Person | name : V1:String, age : V2:Nat,

account : V3:Oid, V4@:AttributeSet >

to O : new age A

=> < O : V0@:Person | age : A, name : V1:String,

account : V3:Oid, V4@:AttributeSet > .

With this translation we allow the rule to be applied to objects in subclasses
of Person. Furthermore, we guarantee that it is only applied to well-formed
objects, that is, to objects with all the required attributes.

See [111] for a detailed explanation of the transformation of object-oriented
modules into system modules and how their semantics is by definition that of
the original object-oriented module.
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A Sampler of Application Areas

This chapter gives an overview of some application areas of rewriting logic
and Maude, with pointers to papers and web sites where more information
can be found. Some of the material is adapted, with some modifications and
extensions, from [232, 3, 250]. Since Maude is a general-purpose declarative
programming language, there is in principle no limit to the applications that
could be developed using it. Therefore, the areas discussed, although quite
diverse, are only a sample of types of applications for which Maude seems
particularly well suited. But there are many others. For example, the avail-
ability of built-in internet sockets since Maude 2.2 (see Section 11.4.1) opens
up interesting possibilities for a new style of declarative internet programming
which have already begun to be exploited (see Chapter 17).

22.1 Models of computation

A wide variety of models of computation, including concurrent ones, can be
naturally and directly expressed as rewrite theories in rewriting logic and can
be executed as system modules in Maude. In this way, models hitherto quite
different from each other can be naturally unified and interrelated within a
common framework.

The following is a concise list of models of computation that have been
represented in rewriting logic, with relevant literature citations; more details
can be found in [247, 249] and in the following sections:

1. equational programming, which is the special case of rewrite theories
whose set of rules is empty and whose equations are Church-Rosser, pos-
sibly modulo some axioms A;

2. lambda calculi and combinatory reduction systems [243, 216, 217, 340,
334] (see also Section 8.3.6);

3. labeled transition systems [243];
4. grammars and string-rewriting systems [243];
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5. Petri nets, including place/transition nets, contextual nets, algebraic nets,
colored nets, and timed Petri nets [243, 247, 335, 342, 288, 332] (see also
Section 6.5.1);

6. Gamma and the Chemical Abstract Machine [243];
7. CCS and LOTOS [252, 231, 374, 45, 87, 368, 367, 220, 34] (see also Sec-

tion 23.2.3 for a description of related Maude tools);
8. the π calculus [375, 334, 357];
9. concurrent objects and actors [243, 245, 348, 350, 353] (see also Chap-

ters 11, 17, and 21);
10. the UNITY language [243];
11. concurrent graph rewriting [247];
12. dataflow [247];
13. neural networks [247];
14. real-time systems, including timed automata, timed transition systems,

hybrid automata, and timed Petri nets [288, 283] (see Sections 22.5 and
23.1.6);

15. probabilistic systems [214, 215, 3] (see Section 22.6); and
16. the tile logic [166, 167, 160] model of synchronized concurrent computation

[255, 39, 35, 168].

The above specifications of models of computation as rewrite theories are
typically executable in Maude, establishing that rewriting logic is a very flex-
ible operational framework in which to specify the semantics of such models.
What is not immediately apparent from the above list is that it is also a
flexible mathematical semantic framework at the level of concurrency models.
That is, quite often a well-known mathematical model of concurrency happens
to be isomorphic to the initial model TR of the rewrite theory R axiomatiz-
ing that particular model, or at least closely related to such an initial model.
Some examples will illustrate this point:

1. In [217] it is shown that for rewrite theories of the form R = (Σ, ∅, L,R),
with the rules R left-linear, TR is isomorphic to a model based on residuals
and permutation equivalence proposed by Boudol;

2. The same paper also shows that for R = (Σ,E,L,R) a rewrite theory
axiomatizing an orthogonal combinatory reduction system, including the
λ-calculus, a quotient of TR by a few additional equations is isomorphic
to a well-known model of parallel reductions based on residuals and per-
mutation equivalence;

3. The paper [342] shows in detail that for R = (Σ,E,L,R) a rewrite theory
axiomatizing a place/transition net, TR is naturally isomorphic (in the
categorical sense) to the Best-Devillers net process model—a result es-
sentially known from the coincidence of TR with the Meseguer-Montanari
algebraic model of nets [243] and the Degano-Meseguer-Montanari alge-
braic characterization of net processes—and then generalizes this natural
isomorphism to one between TR and a Best-Devillers-like model for R the
axiomatization of an algebraic net;
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4. The papers [45, 87] show that for R = (Σ,E,L,R) a rewrite theory
axiomatizing CCS, a truly concurrent semantics causal model based on
proved transition systems is isomorphic to a quotient of TR by a few
additional axioms;

5. The paper [264] shows that for R = (Σ,E,L,R) a rewrite theory axiom-
atizing a concurrent object-oriented system satisfying reasonable require-
ments, a subcategory of TR is isomorphic to a partial order of events model
which, for asynchronous object systems corresponding to actors, coincides
with the finitary part of the Hewitt-Baker partial order of events model.

An important additional development in this area is the ρ-calculus of
Cirstea and Kirchner [59, 58, 61, 62]. This is a very general rewrite theory
that can play for rewriting logic specifications a role similar to that played by
the λ-calculus in functional computing; its generality is shown by the fact that
ρ-terms generalize the rewriting logic proof terms defined in [243]. Further-
more, the ρ-calculus can simulate the λ-calculus itself. In fact, by replacing
and generalizing the λ-calculus idea of function application by that of rule ap-
plication, the ρ-calculus unifies both the λ-calculus and first-order rewriting.
In analogy with λ-calculi, there are typed versions, including a simply typed
ρ-calculus and a “ρ cube” [60, 63].

22.2 Semantics of programming languages and software
analysis

As illustrated by means of a simple programming language in Section 13.6,
rewriting logic is a promising semantic framework for formally specifying pro-
gramming languages as rewrite theories. Since those specifications usually can
be executed in Maude, they in fact become interpreters for the languages in
question. In addition, such formal specifications allow both formal reasoning
and a variety of formal analyses for the languages so specified.

The use of rewrite rules to define the semantics of programming languages
is of course not new. In a higher-order version it goes back to the use of se-
mantic equations in denotational semantics; in a first-order version, the power
of equational specifications to give semantic definitions of conventional lan-
guages has been understood and used for a long time. However, both the
lambda calculus and executable equational specifications implicitly assume
that such language definitions can be given in terms of functions, and rely on
the Church-Rosser property to ensure the result of an execution is meaningful.
For sequential languages, by making the state of the computation explicit, a
functional description of this kind can always be achieved. The situation be-
comes more difficult for languages that support highly concurrent and nonde-
terministic applications, and where the possibly nonterminating interactions
between processes or components—as opposed to the computation of an out-
put value from given inputs—are often the whole point of a program. Such
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languages and applications do not have a natural equational description in
terms of functions, but do have a very natural rewriting logic semantics, not
only operationally (by means of rewriting steps) but also denotationally (TR
and related models).

A number of case studies giving rewriting logic definitions of programming
languages have been carried out. Firstly, some of the models of computation
discussed in Section 22.1 are so closely connected with languages that their
rewriting logic specifications are also language specifications. Good examples
are rewriting logic definitions of the lambda calculus and (mini-) ML, CCS,
the π-calculus, and sketches of UNITY and Gamma, which are given in some
of the references cited in Section 22.1. Secondly, the usefulness of rewrit-
ing strategies to specify program evaluations has been clearly demonstrated
in ELAN specifications, for example of Prolog and of the functional-logic
programming language Babel [378], and also in the Maude executable spec-
ifications for CCS developed by Bruni and Clavel [65, 35], and by Verdejo
and Mart́ı-Oliet [368, 366, 369, 371, 365]. Thirdly, the fact that rewriting
logic naturally supports concurrent objects has proved very useful in formally
specifying a number of novel concurrent and mobile languages. For example,
Ishikawa et al. have given a Maude specification of a representative subset of
GAEA, a reflective concurrent logic programming language developed at ETL,
Japan [198, 197]. Mason and Talcott have used rewriting logic to give semantic
definitions of actor languages, and to “compile away” certain language fea-
tures by defining semantics-preserving translations between actor languages
that are formalized as translations between their corresponding rewrite the-
ories [237]. Van Baalen, Caldwell, and Mishra have used Maude to give a
formal semantics to the DaAgent mobile agent system and to analyze key
fault-tolerant protocols in that language [13]; their analysis has revealed mis-
takes and inconsistencies in the protocols’ informal specifications. Yet another
example is the formal executable specification in Maude of UPenn’s PLAN
active network programming language [261, 379]. Maude itself has been used
to define the semantics of its Mobile Maude extension [113]. Finally, Maude
has been used not only to specify programming languages, but also to spec-
ify and verify microprocessors in work by Harman [180, 181]; and to analyze
hardware/software co-designs in hardware description languages in work by
Katelman and Meseguer [204].

Many languages have already been given semantics in this way using
Maude. The language definitions can then be used as interpreters, and—
in conjunction with Maude’s search command and its LTL model checker
(Chapters 12 and 13, respectively)—to formally analyze programs in those
languages. For example, large fragments of Java and the JVM have been spec-
ified in Maude this way, with the Maude rewriting logic semantics being used
as the basis of Java and JVM program analysis tools that for some examples
outperform well-known Java analysis tools [156, 153] (see Section 23.2.5). A
similar Maude specification of the semantics of Scheme at the University of
Illinois at Urbana-Champaign (UIUC) yields an interpreter which on average,
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for the benchmarks tested, has a speed which is 75% the speed of the standard
Scheme interpreter. The specification of a C-like language and the correspond-
ing formal analyses are discussed in detail in [259]. A semantics of a Caml-like
language with threads was discussed in detail in [258], and a modular rewrit-
ing logic semantics of CML has been given by Chalub and Braga in [54].
d’Amorim and Roşu have given a definition of the Scheme language in [86].
Grigore Roşu and his collaborators have developed several domain-specific
program analysis tools based on their rewriting semantics in Maude [56, 320].
Other language case studies, all specified in Maude, include: bc [34], CCS
[368, 369, 34], CIAO [345], Creol [199], ELOTOS [365], MSR [51, 52, 339],
PLAN [344, 345], Orc [5], the π-calculus [357], the ambient calculus [318],
and Eden [194]. In fact, the semantics of large fragments of conventional lan-
guages are by now routinely developed by UIUC graduate students as course
projects in a few weeks, including, besides the languages already mentioned:
Beta, Haskell, Lisp, LLVM, Pict, Python, Ruby, and Smalltalk.

Since structural operational semantics definitions can be used for lan-
guages not amenable to a functional description, it is natural to compare them
with rewriting logic definitions. Their relationship has been discussed in detail
in [231], and, more recently, in [371, 251, 258, 259]. In fact, both “big-step”
and “small-step” structural operational semantics definitions can be naturally
regarded as special formats of corresponding rewrite theory definitions [231].
Tile models provide yet another systematic way of understanding structural
operational semantics definitions as tile rewrite theories [166, 167, 168], which
can then be mapped into rewriting logic for execution purposes [255, 39, 35].
There is also a close connection between rewriting logic and Mosses’s modular
structural operational semantics (MSOS) which has been recognized from the
beginning [268, 269], and that has led to subsequent research on:

• a Maude Action Tool to execute MSOS definitions and Action Semantics
definitions [33, 32];

• a faithful translation from MSOS to rewriting logic [251, 34]; and
• based on such a translation, a tool to execute MSOS definitions [53, 55],

namely the Maude MSOS tool described in Section 23.2.2.

Besides the obvious interest of having a formal executable specification
of the semantics of a programming language, if one does this in rewriting
logic using Maude, one gets much more than just an interpreter. The point
is that now Maude can be used as a metatool to obtain powerful software
analysis tools for the programming language in question, essentially for free.
The generic formal analysis capabilities of Maude are specialized to get soft-
ware analysis tools for a given programming language precisely by providing
the Maude specification of that language’s semantics. For example, Maude’s
generic breadth-first search capability (see Sections 6.4 and 25.4) becomes spe-
cialized to a semi-decision procedure for finding violations of invariants in any
concurrent program in the language [258, 259]. Similarly, Maude’s generic LTL
model-checking capability (see Chapter 13) becomes specialized to a model
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checker for the programming language in question [258, 259]. When model
checking a concurrent program in a given language, in addition to the enor-
mous state space reduction afforded by rewriting logic’s distinction between
equations and rules [258, 259], it is even possible to obtain a further drastic
state space reduction by using a generic partial order reduction (POR) tech-
nique based on transforming the Maude semantic definition of the language
into a semantically equivalent POR-enabled one [155].

It is also possible to base on the Maude semantics of a programming lan-
guage various deductive tools and analyses. For example, Ahrendt, Roth, and
Sasse [4, 322] have used the Maude specification of Java developed in the
JavaFAN project (see Section 23.2.5) to automatically validate a large set
of transformation rules in a dynamic logic for Java Card programs. Both the
ASIP+ITP tool [81] mentioned in Section 23.1.1, and the Java+ITP tool [324]
discussed in Section 23.2.6 support, to varying degrees, Hoare logic reasoning
and ITP dischargement of verification conditions for, respectively, a fragment
of a Pascal-like language, and a fragment of sequential Java. In a similar fash-
ion, as further discussed in Section 23.2.3, a Maude semantics of CCS has
been extended to a tool to check whether a formula in the Hennessy-Milner
modal logic [193] is satisfied by a finite CCS process [368, 370].

22.3 Maude as a metalanguage

Rewriting logic is like a coin with two inseparable sides: one computational
and another logical. The generality and expressiveness of rewriting logic as
a semantic framework for concurrent computation has also a logical counter-
part. Indeed, rewriting logic is also a promising logical framework in which
many different logics and formal systems can be naturally represented and
interrelated [231, 229]. Furthermore, it has also good properties as metalog-
ical framework, in which one can reason about the metalogical properties of
the represented logics [18, 19]. With Maude, such representations can then be
used to generate a wide range of formal tools.

22.3.1 Representing, mapping, and reasoning about logics

The basic idea is that we can represent a logic L with a finitary syntax and
inference system within rewriting logic by means of a representation map

Φ : L −→ RWLogic.

The map Φ should be conservative, that is, it should preserve and reflect
theoremhood. The reason why rewriting logic is a good framework is that the
formulas of a logic L can typically be axiomatized by an equational theory, and
the rules of inference can then be typically understood as rewrite rules, that
may be conditional if the inference rules have “side conditions.” Therefore, the
mappings Φ are usually very simple and direct. In addition, using reflection
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we can define and execute a map Φ of this kind inside rewriting logic itself by
means of an equationally defined map

Φ : ModuleL −→ Module.

The map Φ can be defined by extending the universal theory U , which has a
sort Module representing rewrite theories (see Section 14.3), with the equa-
tional definition of a new sort ModuleL whose terms represent (finitely pre-
sentable) theories in the logic L.

In fact, we can go a step further, and represent inside rewriting logic a map-
ping Θ : L −→ L′ between any two finitary logics L and L′ as an equationally
defined function Θ : ModuleL −→ ModuleL′ . If the map Θ is computable,
then, by a metatheorem of Bergstra and Tucker [21], it is possible to define
the function Θ by means of a finite set of Church-Rosser and terminating
equations. That is, such functions can be effectively defined and executed
within rewriting logic.

In summary, using reflection, computable mappings between logics, includ-
ing maps representing other logics in rewriting logic, can be internalized and
executed within rewriting logic, as indicated in the picture below.
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There is yet another reason why rewriting logic is very useful for logical
framework applications. Thanks to reflection and the existence of initial mod-
els, rewriting logic can not only be used as a logical framework in which the
deduction of a logic L can be faithfully simulated, but also as a metalogical
framework in which we can reason about the metalogical properties of a logic
L. Basin, Clavel, and Meseguer have studied the use of reflection, induction,
and Maude’s inductive theorem prover (see Section 23.1.1) enriched with re-
flective reasoning principles to prove such metalogical properties [17, 18, 19].

A good number of examples of representations of logics in rewriting logic
have been given by different authors, often in the form of executable specifi-
cations, including:
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1. The logics represented by Mart́ı-Oliet and Meseguer in [231, 229], includ-
ing equational logic, Horn logic with equality, linear logic, logics with
quantifiers, and any sequent calculus presentation of a logic for a very
general notion of “sequent”;

2. The map LinLogic −→ RWLogic in [231, 229] representing propositional
linear logic was subsequently specified in a reflective way in Maude by
Clavel and Mart́ı-Oliet [65, 66];

3. The map HOL −→ Nuprl between the logics of the HOL and Nuprl theo-
rem provers has been specified in Maude by Stehr, Naumov, and Meseguer
[276, 343];

4. Dowek, Hardin, and Kirchner have presented (what obviously are) rewrite
theories for doing deduction modulo an equational theory of equivalence
between formulas specified by the equations E of the rewriting logic ax-
iomatization, both for first-order and higher-order logics [108, 106, 107];

5. The connections with rewriting logic of that work have been made explicit
by Viry, who has given a coherent sequent calculus rewrite theory in this
style in [376, 377] (see also [100]);

6. Stehr and Meseguer have defined a natural representation map PTS −→
RWLogic of pure type systems (a parametric family of higher-order logics
generalizing the λ-cube) in rewriting logic [340]; and

7. Bruni, Meseguer, and Montanari have defined a mapping Tile Logic −→
RWLogic from tile logic into rewriting logic that can be used to execute
tile logic specifications [35, 37, 38, 39, 40].

22.3.2 Specifying and building formal tools

Theorem provers and other formal tools have underlying inference systems
that can be naturally specified and prototyped in rewriting logic. Furthermore,
the strategy aspects of such tools and inference systems can then be specified
by rewriting strategies. In Maude, formal tools have typically a reflective de-
sign that, by metarepresenting theories as data, easily allows inference steps
that may transform the object theory. Strategies are then specified as rewrite
theories controlling the application of such metalevel inference rules at the
meta-metalevel. A simple example of this reflective methodology, namely, an
order-sorted unification procedure modulo commutativity, has been explained
in detail in Sections 16.1 and 19.7. Several formal tools developed in this re-
flective way are part of the Maude formal environment, namely, an inductive
theorem prover (see Section 23.1.1); Church-Rosser (see Section 23.1.3), co-
herence (see Section 23.1.4), termination (see Section 23.1.2), and sufficient
completeness (see Section 23.1.5) checkers; a Knuth-Bendix completion tool;
Real-Time Maude (see Section 23.1.6); and the Maude predicate abstraction
tool (see Section 23.1.7) [71, 72, 73, 74, 109, 110, 120, 119, 117, 187]. Also
closely related to Maude itself is the Full Maude tool (see Part II), which ex-
tends Maude with special syntax for object-oriented specifications, and with
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a rich module algebra of parameterized modules and module composition op-
erations [121, 111, 125].

This method of building formal tools is not restricted to Maude-related
tools. One can generate tools from their rewriting logic specifications for any
finitary logic, such as:

1. A proof assistant built by Stehr for the Open Calculus of Constructions,
which extends Coquand and Huet’s calculus of constructions with equa-
tional reasoning and a flexible universe hierarchy [336] (see Section 23.2.1);

2. The Maude Action Tool [33] already mentioned in Section 22.2;
3. The Maude MSOS tool, which supports execution and analysis of MSOS

semantic definitions [53, 55] (see Section 23.2.2);
4. CCS and LOTOS execution and verification environments developed by

Verdejo and Mart́ı-Oliet [368, 366, 369, 371, 365] (see Section 23.2.3);
5. The MSR Tool, which supports specification, simulation, and analysis of

cryptographic protocols expressed in the multiset rewriting formalisms
[51, 52, 313] (see Section 23.2.4);

6. The JavaFAN tool, which supports efficient execution and formal analysis
of Java and JVM programs [156, 153] (see Section 23.2.5);

7. The Java+ITP tool, which supports Hoare logic reasoning on a subset of
sequential Java and discharging of first-order verification conditions in the
Maude ITP [324] (see Section 23.2.6);

8. The ITP/OCL tool to validate UML static diagrams with respect to OCL
invariants [75] (see Section 23.2.7);

9. The Pathway Logic Assistant, a tool to visualize and formally analyze
biological processes, such as metabolism or signaling, specified in Maude
as rewrite theories [138, 355, 354] (see Section 23.2.8);

10. A tool by Havelund and Roşu for testing linear temporal logic formulas
on finite execution traces [182, 183, 184, 185, 319];

11. A tool by Fischer and Roşu to automatically check an abstract interpre-
tation against user-given properties [161].

Furthermore, as already explained in Section 22.2, tools like JavaFAN are
not an isolated instance, but a legion; since any rewriting logic semantics of a
programming language in Maude can be automatically endowed not only with
an interpreter, but also with a semi-decision procedure for invariant failures,
an LTL model checker, and even with partial order reduction capabilities
[258, 259, 155].

22.4 Modeling and analysis of networks and distributed
systems

22.4.1 Distributed architectures and components

It is very important to detect errors and inconsistencies as early as possi-
ble in the software design cycle. For this reason, formal approaches that can
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increase the analytic power of architectural notations such as architectural de-
scription languages (ADLs) and object-oriented design formalisms like UML
are quite valuable. A related concern is the formal specification and analysis
of distributed component architectures.

Rewriting logic has been used by several authors in these areas to allow
formal analysis of software designs and, in some cases, to support code gen-
eration from the associated executable specifications. Relevant work in this
direction includes:

1. work of Nodelman and Talcott representing both the Wright architecture
description language and its underlying CSP semantics in Maude;

2. work of Durán, Meseguer, and Talcott on semantic interoperation of het-
erogeneous software architectures based on their rewriting logic semantics
[263] (see also Appendix E of [67]);

3. work of Wirsing and Knapp on the systematic transformation of UML dia-
grams and similar object-oriented notations into formal executable rewrit-
ing logic specifications in Maude, which can then be used to execute and
formally analyze the designs, and even to generate code in a conventional
language such as Java [382, 209, 210, 383];

4. work by Fernández and Toval formalizing in Maude the UML metamodel
and its evolution [361, 159], with applications to formal analysis and pro-
totyping [158, 362];

5. work by Nakajima and Futatsugi on the transformation of scenario-based
object-oriented design diagrams for execution and formal analysis [275];

6. work by Talcott on a rewriting logic semantics for actor systems axioma-
tized by actor theories [348, 349, 350, 352, 353]; such systems can be ex-
tended by an algebra of components, that are encapsulated by interfaces,
and that can include actors, messages, and other (sub-)components; in
addition Talcott has developed methods to reason formally about such
open component systems;

7. work by Denker, Meseguer, and Talcott on a general middleware archi-
tecture for composable distributed communication services such as fault-
tolerance, security, and so on, that can be composed and can be dynam-
ically added to selected subsets of a distributed communications system
[92];

8. work by Meseguer and Talcott on models of distributed object reflection
proposing the “Russian Dolls” model [262];

9. work by Najm and Stefani giving a rewriting logic semantics to the op-
erational subset of the Reference Model for Open Distributed Processing
(RM-ODP) [271, 272, 273] (see also [130, 129]);

10. work by Nakajima that uses rewriting logic specifications in CafeOBJ to
formally specify the architecture of WEB-NMS, a Java/ORB implemen-
tation of a network management system [274];
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11. work by Albarrán, Durán, and Vallecillo on interoperating Maude ex-
ecutable specifications with distributed component platforms such as
CORBA and SOAP [6, 7, 8];

12. work by Denker and Talcott modeling architectures for goal operated au-
tonomous systems [98, 99] (also see http://www.csl.sri.com/~denker/

remoteAgents/ and http://pagoda.csl.sri.com);
13. work by Clavel and Egea on modeling UML class diagrams and validating

OCL invariants against them by means of the ITP/OCL tool [132, 75];
and

14. work by Boronat, Carśı, and Ramos on using Maude within the MO-
MENT framework [26], whose purpose is to provide support for model
management within the Eclipse Modeling Framework, and in particular
for model transformations through the standard QVT language [280].

22.4.2 Specification and analysis of communication protocols

Because of its flexibility to model distributed objects with different modes
of communication and interaction, rewriting logic is very well suited to spec-
ify and analyze communication protocols, including cryptographic protocols,
and, more generally, network software such as active network programming
languages, active network algorithms, and network management systems.

Applications of this kind include:

1. work by researchers at Stanford, SRI, and at the Computer Communica-
tions Research Group at University of California Santa Cruz using Maude
to analyze the early design of a new reliable broadcast protocol for active
networks [88, 89];

2. work of Wang, Gunter, and Meseguer using Maude to formally specify
and analyze a PLAN active network algorithm [379];

3. work by Ölvecky, Keaton, Meseguer, Talcott, and Zabele using Real-Time
Maude (see Section 23.1.6) to specify and analyze the AER/NCA suite of
active network protocol components for reliable multicast [285, 292];

4. work by Lien using Real-Time Maude to specify and analyze the NORM
multicast protocol developed by the Internet Engineering Task Force [221];

5. work by Ölvecky and Thordvalsen using Real-Time Maude to specify and
analyze the OGDC wireless sensor network algorithm [359, 293];

6. work of Verdejo, Pita, and Mart́ı-Oliet on the Maude specification and
verification of the FireWire leader election protocol [372];

7. work of Mason and Talcott on modeling, simulation and analysis of net-
work architectures and communication protocols [239];

8. work of Pita and Mart́ı-Oliet using the reflective features of Maude to
specify some management processes of broadband telecommunication net-
works [299, 300, 301]; and

9. work of Stehr and Talcott modeling the Spread group communication pro-
tocols http://formal.cs.uiuc.edu/stehr/spread_eng.html; and of Gutierrez-

http://www.csl.sri.com/~denker/remoteAgents/
http://www.csl.sri.com/~denker/remoteAgents/
http://pagoda.csl.sri.com
http://formal.cs.uiuc.edu/stehr/spread_eng.html
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Nolasco, Venkatasubramanian, Stehr, and Talcott on the formal specifi-
cation and analysis of Secure Spread [178].

22.4.3 Modeling and analysis of security protocols

Security is a concern of great practical importance for many systems, mak-
ing it worthwhile to subject system designs and implementations to rigorous
formal analysis. Security, however, is many-faceted : on the one hand, we are
concerned with properties such as secrecy : malicious attackers should not be
able to get secret information; on the other, we are also concerned with prop-
erties such as availability, which may be destroyed by a denial-of-service (DoS)
attack: a highly reliable communication protocol ensuring secrecy may be ren-
dered useless because it spends all its time checking spurious signatures gen-
erated by a DoS attacker. Rewriting logic and Maude have been successfully
applied to analyze security properties, including both secrecy and availability,
for a wide range of systems. More generally, using distributed object-oriented
reflection techniques [92, 262], it is possible to analyze tradeoffs between dif-
ferent security properties, and between them and other system properties;
and it is possible to develop system composition and adaptation techniques
allowing systems to behave adequately in changing environments.

Work in this general area includes:

1. work of Denker, Meseguer, and Talcott on the specification and analysis
of cryptographic protocols using Maude [90, 91] (see also [317]);

2. work of Basin and Denker on an experimental comparison of the advan-
tages and disadvantages of using Maude versus using Haskell to analyze
security protocols [20];

3. work of Millen and Denker using Maude to give a formal semantics to
the cryptographic protocol specification language CAPSL, and to endow
CAPSL with an execution and formal analysis environment [93, 94, 95, 96];

4. work of Gutierrez-Nolasco, Venkatasubramanian, Stehr, and Talcott on
the Secure Spread protocol [178];

5. work of Goodloe, Gunter, and Stehr on the formal specification and anal-
ysis of the L3A security protocol [176];

6. work of Cervesato, Stehr, and Reich on the rewriting logic semantics of
the MSR security specification formalism, leading to the first executable
environment for MSR [51, 52, 339]; and

7. work by Agha, Gunter, Greenwald, Khanna, Meseguer, Sen, and Thati on
the specification and analysis of a DoS-resistant TCP/IP protocol using
probabilistic rewrite theories [2].

A related technique with important security applications is narrowing, a
symbolic procedure like rewriting, except that rules, instead of being applied
by matching a subterm, are applied by unifying the lefthand side with a non-
variable subterm. Traditionally, narrowing has been used as a method to solve
equations in a confluent and terminating equational theory. In rewriting logic,
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narrowing has been generalized by Meseguer and Thati to a semi-decision pro-
cedure for symbolic reachability analysis [265, 266]. That is, instead of solving
equational goals ∃x. t = t′, we solve reachability goals ∃x. t −→ t′. The rel-
evant point for security applications is that, since narrowing with a rewrite
theory R = (Σ,E,R) is performed modulo the equations E, this allows more
sophisticated analyses than those performed under the usual Dolev-Yao “per-
fect cryptography assumption.” It is well known that protocols that had been
proved secure under this assumption can be broken if an attacker uses knowl-
edge of the algebraic properties satisfied by the underlying cryptographic func-
tions. In rewriting logic we can specify a cryptographic protocol as a rewrite
theory R = (Σ,E,R), and can model those algebraic properties as equations
in E. Under suitable assumptions that are typically satisfied by cryptographic
protocols, narrowing then gives us a complete semi-decision procedure to find
attacks modulo the equations E; therefore, any attack making use of algebraic
properties can be found this way [265, 266]. Very recent work in this direction
by Escobar, Meadows, and Meseguer [143, 144, 145] is using rewriting logic
and narrowing to give a precise rewriting semantics to the inference system of
one of the most effective analysis tools for cryptographic protocols, namely the
NRL Analyzer [242]. Further recent work on narrowing with rewrite theories
focuses on generalizing the procedure to so-called “back-and-forth narrowing,”
so as to ensure completeness under very general assumptions about the rewrite
theory R [356], and efficient lazy strategies to restrict as much as possible the
narrowing search space [150].

22.5 Real-time systems

In many reactive and distributed systems, real-time properties are essential
to their design and correctness. Therefore, the question of how systems with
real-time features can be best specified, analyzed, and proved correct in the
semantic framework of rewriting logic is an important one. This question has
been investigated by several authors from two perspectives. On the one hand,
an extension of rewriting logic called timed rewriting logic has been investi-
gated, and has been applied to some examples and specification languages
[212, 286, 333]. On the other hand, a simple way to express real-time and hy-
brid system specifications directly in rewriting logic is presented in [288, 291].
Such specifications are called real-time rewrite theories and have “ordinary”
rules representing instantaneous transitions that take no time and only change
some part of the state, as well as “tick” rewrite rules that model time elapse
in the system. Tick rules have the form

l : {t} r−→ {t′} if C

with r a term denoting the duration of the transition (where the time domain
can be chosen to be either discrete or continuous), {t} representing the whole
state of a system, and C an equational condition. By making the clock an



724 22 A Sampler of Application Areas

explicit part of the state, these theories can be desugared into semantically
equivalent ordinary rewrite theories [288, 291]. That is, in the desugared ver-
sion we can model the state of a real-time or hybrid system as a pair ({t}, r),
with {t} the current state and with r the current global clock time. Then the
above rule becomes desugared as

l : ({t}, x) −→ ({t′}, x+ r) if C

where x is a new variable which does not appear in t, t′, r or C.
By characterizing equationally the enabledness of each rule and using con-

ditional rules and frozen operators (see Section 4.4.9), it is always possible
to define tick rules so that instantaneous rules are always given higher pri-
ority; that is, so that a tick rule can never fire when an instantaneous rule
is enabled [291]. When time is continuous, tick rules are typically nondeter-
ministic, in the sense that the time r advanced by the rule is not uniquely
determined, but is instead a parametric expression. In such cases, tick rules
need a time sampling strategy to choose suitable values for time advance. For
dense time such a time sampling strategy would in general make search and
model-checking analyses feasible (when model checking time-bounded prop-
erties) but incomplete; however, under very widely applicable and relatively
easy to check conditions such analyses turn out to be complete [290].

Besides being able to show that a wide range of known real-time models
(including, for example, timed automata, hybrid automata, timed Petri nets,
and timed object-oriented systems), and of discrete or dense time values, can
be naturally expressed in a direct way in rewriting logic (see [288]), an impor-
tant advantage of this approach is that one can use an existing implementation
of rewriting logic like Maude to execute and analyze real-time specifications.
Indeed, Real-Time Maude [283, 287, 289, 291] is a specification language and
a formal tool built in Maude by reflection (see Section 23.1.6) which provides
special syntax to specify real-time systems. It systematically exploits the un-
derlying Maude efficient rewriting, search, and LTL model-checking capabili-
ties to both execute and formally analyze real-time specifications. A number
of substantial applications have been specified and analyzed in Real-Time
Maude, including the AER-NCA active network protocol suite [285, 292]; the
NORM multicast protocol [221]; the OGDC wireless sensor network algorithm
[359, 293]; and the CASH adaptive scheduling algorithm [284].

22.6 Probabilistic systems

Many systems are probabilistic in nature. This can be due either to the uncer-
tainty of the environment in which they must operate, such as message losses
and other failures in an unreliable environment, or to the probabilistic nature
of some of their algorithms, or to both. In general, particularly for distributed
systems, both probabilistic and nondeterministic aspects may coexist, in the
sense that different transitions may take place nondeterministically, but the
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outcomes of some of those transitions may be probabilistic in nature. To spec-
ify systems of this kind, rewrite theories have been generalized to probabilistic
rewrite theories in [214, 215, 3]. Rules in such theories are probabilistic rewrite
rules of the form

l : t(x)→ t′(x,y) if cond(x) with probability y := πl(x)

where the first thing to observe is that the term t′ has new variables y disjoint
from the variables x appearing in t. Therefore, such a rule is nondeterministic;
that is, the fact that we have a matching substitution θ for the variables x
such that θ(cond) holds does not uniquely determine the next state fragment:
there can be many different choices for the next state, depending on how we
instantiate the extra variables y in t′. In fact, we can denote the different such
next states by expressions of the form t′(θ(x), ρ(y)), where θ is fixed as the
given matching substitution, but ρ ranges over all the possible substitutions
for the new variables y. The probabilistic nature of the rule is expressed by the
notation: with probability y := πl(x), where πl(x) is a probability distribution
which may depend on the matching substitution θ. We then choose the values
for y, that is, the substitution ρ, probabilistically according to the distribution
πl(θ(x)).

The fact that the probability distribution may depend on the substitution
θ can be illustrated by means of a simple example. Consider a battery-operated
clock. We may represent the state of the clock as a term clock(T, C), with
T a natural number denoting the time, and C a positive real number denoting
the amount of battery charge. Each time the clock ticks, the time is increased
by one unit, and the battery charge slightly decreases; however, the lower the
battery charge, the greater the chance that the clock will stop, going into a
state of the form broken(T, C’). We can model this system by means of the
probabilistic rewrite rule

rl [tick] : clock(T, C)

=> if B

then clock(s(T), C - (C / 1000.0))

else broken(T, C)

fi

with probability B := BERNOULLI(C / 1000.0) .

that is, the probability of the clock breaking down instead of ticking nor-
mally depends on the battery charge, which is here represented by the battery-
dependent bias of the coin in a Bernoulli trial. Note that here the new variable
on the rule’s righthand side is the Boolean variable B, corresponding to the
result of tossing the biased coin.

As shown in [214], probabilistic rewrite theories can express a wide range
of models of probabilistic systems, including continuous-time Markov chains
[346], probabilistic nondeterministic systems [308, 327], and generalized semi-
Markov processes [171]. They can also naturally express probabilistic object-
based distributed systems [215, 3], including real-time ones. Yet another class
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of probabilistic models that can be simulated by probabilisitic rewrite theories
is the class of object-based stochastic hybrid systems discussed in [260].

The PMaude language [215, 3] is an experimental specification language
whose modules are probabilistic rewrite theories. Note that, due to their non-
determinism, probabilistic rewrite rules are not directly executable. However,
probabilistic systems specified in PMaude can be simulated in Maude. This
is accomplished by transforming a PMaude specification into a corresponding
Maude specification in which actual values for the new variables appearing
in the righthand side of a probabilistic rewrite rule are obtained by sampling
the corresponding probability distribution functions. This theory transforma-
tion uses three key Maude modules as basic infrastructure, namely, COUNTER,
RANDOM, and SAMPLER. The predefined module COUNTER (see Section 9.3) pro-
vides a built-in strategy for the application of the nondeterministic rewrite
rule

rl counter => N:Nat .

that rewrites the constant counter to a natural number. The built-in strategy
applies this rule so that the natural number obtained after applying the rule is
exactly the successor of the value obtained in the preceding rule application.
The RANDOM module is a predefined Maude module (see Section 9.3) providing
a (pseudo-)random number generator function called random. The SAMPLER

module supports sampling for different probability distributions. It has a rule

rl [rnd] : rand => float(random(counter + 1) / 4294967295) .

which rewrites the constant rand to a floating point number between 0 and 1
pseudo-randomly chosen according to the uniform distribution. SAMPLER has
rewrite rules supporting sampling according to different probability distribu-
tions; this is based on first sampling a floating point number between 0 and
1 pseudo-randomly chosen according to the uniform distribution by means of
the above rnd rule. For example, to sample the Bernoulli distribution we use
the following operator and rewrite rule in SAMPLER:

op BERNOULLI : Float -> Bool .

rl BERNOULLI(R) => rand < R .

that is, to sample a result of tossing a coin with bias R, we first sample the
uniform distribution. If the sampled value is strictly smaller than R, then the
answer is true; otherwise the answer is false. Any discrete probability dis-
tribution on a finite set can be sampled in a similar way. The ordinary Maude
specification that simulates the PMaude specification for a clock with the
above tick probabilistic rewrite rule imports COUNTER, RANDOM, and SAMPLER,
and has then a corresponding Maude rewrite rule

rl [tick] : clock(T, C)

=> if BERNOULLI(C / 1000.0)

then clock(s(T), C - (C / 1000.0))
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else broken(T, C)

fi .

In general, provided that sampling for the probability distributions used
in a PMaude module are supported in the underlying SAMPLER module, we
can associate with it a corresponding Maude module. We can then use this
associated Maude module to perform Monte Carlo simulations of the proba-
bilistic systems thus specified. The point is that, given a probabilistic rewrite
theory and a term t describing a given state, there can be several different
rewrites, perhaps with different rules, at different positions, and with different
matching substitutions, that can be applied to t. Therefore, the choice of rule,
position, and substitution is nondeterministic. To eliminate all nondetermin-
ism, at most one rule at exactly one position and with a unique substitution
should be applicable to any term t. As explained in [3], for many systems, in-
cluding probabilistic real-time object-oriented systems, this can be naturally
achieved, essentially by scheduling events at real-valued times that are all dif-
ferent, because we sample a continuous probability distribution on the real
numbers. Provided all nondeterminism has been eliminated from the original
PMaude module, we can then use the results of such Monte Carlo simulations
to perform a statistical model-checking analysis of the given system to ver-
ify certain properties. For example, for a PMaude specification of a TCP/IP
protocol variant that is resistant to denial-of-service (DoS) attacks, we may
wish to establish that, even if an attacker controls 90% of the network band-
with, it is still possible for the protocol to establish a connection in less than
30 seconds with 99% probability. Properties of this kind, including proper-
ties that measure quantitative aspects of a system, can be expressed in the
QATEX probabilistic temporal logic [3], and can be model checked using the
VeStA tool [328]. See [2] for a substantial case study specifying a DoS-resistant
TCP/IP protocol as a PMaude module, performing Monte Carlo simulations
by means of its associated Maude module, and formally analyzing in VeStA
its properties, expressed as QATEX specifications, according to the method-
ology just described. More recently, several object-based stochastic hybrid
system case studies have been specified in PMaude, and have been simulated
in Maude. Then, relevant formal properties for each case study, expressed as
QATEX specifications, have been statistically model checked in VeStA using
Monte Carlo simulations performed in Maude [260].

22.7 Modeling and analysis of biological systems

Biology lacks at present adequate mathematical models that can provide
something analogous to the analytic and predictive power that mathematical
models provide for, say, physics. Of course, the mathematical models of chem-
istry describing, say, molecular structures are still applicable to biochemistry.
The problem is that they do not scale up to something like a cell, because they
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are too low-level. One can of course model biological phenomena at different
levels of abstraction. Higher, more abstract levels seem both the most crucial
and the least supported. The most abstract the level, the better the chances
to scale up.

All this is analogous to the use of different levels of abstraction to model
digital systems. There are great scaling up advantages in treating digital sys-
tems and computer designs at a discrete level of abstraction, above the con-
tinuous level provided by differential equations, or, even lower, the quantum
electrodynamics level. The discrete models, when they can be had, can also
be more robust and predictable: there is greater difficulty in predicting the
behavior of a system that can only be modeled at lower levels. Indeed, the
level at which biologists like to reason about cell behavior is typically the dis-
crete level; however, at present descriptions at this level consist of semi-formal
notations for the elementary reactions, together with informal and potentially
ambiguous notations for things like pathways, cycles, feedback, etc. Further-
more, such notations are static and therefore offer little predictive power.
What are needed are new computable mathematical models of cell biology that
are at a high enough level of abstraction so that they fit biologist’s intuitions,
make those intuitions mathematically precise, and provide biologists with the
predictive power of mathematical models, so that the consequences of their
hypotheses and theories can be analyzed, and can then suggest laboratory
experiments to prove them or disprove them.

Rewriting logic seems ideally suited for this task. The basic idea is that
we can model a cell as a concurrent system whose concurrent transitions are
precisely its biochemical reactions. In fact, the chemical notation for a reaction
like AB −→ C D is exactly a rewriting notation. In this way we can develop
symbolic models of biological systems which we can then analyze just as we
would analyze any other rewrite theory, for example using search and model
checking.

Implicit in the view of modeling a cell as a rewrite theory (Σ,E,R) is the
idea of modeling the cell states as elements of an algebraic data type specified
by (Σ,E). This can of course be done at different levels of abstraction. We
can, for example, introduce basic sorts such as AminoAcid, Protein, and DNA

and declare the most basic building blocks as constants of the appropriate
sort. For example,

ops T U Y S K P : -> AminoAcid [ctor] .

ops 14-3-3 cdc37 GTP Hsp90 Raf1 Ras : -> Protein [ctor] .

But sometimes a protein is modified, for example by one of its component
amino acids being phosphorylated at a particular site in its structure. Con-
sider, for example, the c-Raf protein, denoted above by Raf1. Two of its S

amino acid components can be phosphorylated at sites, say, 259 and 261. We
then obtain a modified protein that we denote by the symbolic expression

[Raf1 - phos(S 259) phos(S 621)]
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A fragment, relevant for this example, of the signature Σ needed to sym-
bolically express and analyze such modified proteins is given by the following
sorts, subsorts, and operators:

sorts Site Modification ModSet .

subsort Modification < ModSet .

op phos : Site -> Modification [ctor] .

op none : -> ModSet [ctor] .

op __ : ModSet ModSet -> ModSet [ctor assoc comm id: none] .

op __ : AminoAcid Int -> Site [ctor] .

op [_-_] : Protein ModSet -> Protein [ctor right id: none] .

Proteins can stick together to form complexes and complexes can com-
bine with proteins or other complexes to form larger complexes. This can be
modeled by the following subsort and operator declarations:

sorts Thing Complex .

subsorts Protein Complex < Thing .

op _:_ : Thing Thing -> Complex [ctor comm] .

In the cell, proteins and other molecules exist in “soups,” such as the
cytosol, or the soups of proteins inside the cell and nucleus membranes, or
the soup inside the nucleus. All these soups, as well as the “structured soups”
making up the different structures of the cell, can be modeled by the following
fragment of sort, subsort, and operator declarations:

sort Soup .

subsort Thing < Soup .

op empty : -> Soup [ctor] .

op __ : Soup Soup -> Soup [ctor assoc comm id: empty] .

sorts Enclosure MemType .

subsort Enclosure < Soup .

ops CM NM : -> MemType [ctor] .

op {_|_{_}} : MemType Soup Soup -> Enclosure [ctor] .

that is, soups are made up out of complexes and individual proteins by means
of the above binary “soup union” operator (with juxtaposition syntax) that
combines two soups into a bigger soup. This union operator models the fluid
nature of soups by obeying associative and commutative laws. A cell is an
enclosure, composed of two subsoups, namely the soup in the membrane and
that inside the membrane. The nucleus is also an enclosure with a similar
abstract structure. This is expressed by the operator {_|_{_}}, where differ-
ent enclosure types are distinguished by the MemType argument, CM for Cell
Membrane and NM for Nuclear Membrane. The following expression gives a
partial description of a cell:
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{CM | cm [Ras - GTP]

{cy (([Raf1 - phos(S 259) phos(S 621)]

: (cdc37 : Hsp90)) : 14-3-3)

{NM | nm {n}} }}

where cm denotes the rest of the soup in the cell membrane, cy denotes the
rest of the soup in the cytoplasm, and nm and n likewise denote the remaining
soups in the nucleus membrane and inside the nucleus.

Once we have cell states defined as elements of an algebraic data type
specified by (Σ,E), the only missing information has to do with cell dynam-
ics, that is, with its biochemical reactions. They can be modeled by suitable
rewrite rules R, giving us a full model (Σ,E,R). Consider, for example, the
following reaction described in a survey by Kolch [211]:

“Raf-1 resides in the cytosol, tied into an inactive state by the binding
of a 14-3-3 dimer to phosphosterines-259 and -621. When activation
ensues, Ras-GTP binding . . . brings Raf-1 to the membrane.”

We can model this reaction by the following rewrite rule:

rl [10] :

{CM | cm [Ras - GTP]

{cy (([Raf1 - phos(S 259) phos(S 621)]

: (cdc37 : Hsp90)) : 14-3-3)}}

=> {CM | cm ([Ras - GTP] : (([Raf1 - phos(S 259) phos(S 621)]

: (cdc37 : Hsp90)) : 14-3-3))

{cy}} .

where cm and cy are variables of sort Soup, representing, respectively, the
rest of the soup in the cell membrane, and the rest of the soup inside the
cell (including the nucleus). Note that in the new state of the cell represented
by the righthand side of the rule, the complex has indeed migrated to the
membrane.

Given a type of cell specified as a rewrite theory (Σ,E,R), rewriting logic
then allows us to reason about the complex changes that are possible in the
system, given the basic changes specified by R. That is, we can then use
(Σ,E,R) together with Maude and its supporting formal tools to simulate,
study, and analyze cell dynamics. In particular, we can study in this way
biological pathways, that is, complex processes involving partially ordered sets
of biological reactions and leading to important cell changes. In particular we
can:

• observe progress in time of the cell state by symbolic simulation, obtaining
a corresponding trace;
• answer questions of reachability from a given cell state to another state

satisfying some property; this can be done both forwards and backwards;
• answer more complex questions by model checking LTL properties; and
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• do meta-analysis of proposed models of the cell to weed out spurious
conjectures and to identify consequences of a given model that could be
settled by experimentation.

As part of the Pathway Logic project (http://www.csl.sri.com/users/
clt/PLweb/), substantial sets of rules have been curated from the literature
using representations similar to that discussed above, and tools have been
developed to help the biologist visualize and query these models (see Sec-
tion 23.2.8 for a discussion of the Pathway Logic Assistant) using familiar
concepts and graphical representations [138, 355]. These tools make use of re-
flection to analyze and transform the models and Maude’s search and model-
checking tools are used to answer queries. Maude models satisfying certain
conditions can be transformed into 1-safe Petri nets and analyzed using special
purpose tools such as LoLA [325] that take advantage of the simple structure
and can answer reachability queries for very large models (Petri nets with
more than 3000 places and transitions) within seconds. The paper [355] con-
tains a good discussion of related work in this area, using other formalisms,
such as Petri nets or process calculi, that can also be understood as particular
rewrite theories; and shows how cell behavior can be modeled with rewrite
rules and can be analyzed at different levels of abstraction, and even across
such levels. An important future direction for this work is to use more ad-
vanced specification and analysis techniques—for example, techniques based
on real-time and probabilistic rewrite theories as discussed in Sections 22.5
and 22.6—so as to develop a range of complementary models for cell biology.
In this way, aspects such as the probabilistic nature of cell reactions, their
dependence on the concentration of certain substances, and their real-time
behavior could also be modeled, and more sophisticated analyses could be
developed.

http://www.csl.sri.com/users/clt/PLweb/
http://www.csl.sri.com/users/clt/PLweb/
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This chapter describes some existing Maude-based tools that are available
for download. The first section describes tools concerned with analysis of
either Maude specifications, or of extensions of such specifications. The second
section describes tools that are not Maude-specific; they are instead concerned
with specification and analysis in various application domains and support
domain-specific notations. For each tool, its description addresses the following
questions:

What does the tool do?
When would you want to use it?
How can the tool and documentation be obtained?

The material in this chapter is a reformulation and adaptation of the material
kindly provided to us by the authors of each tool. We cordially thank them
all for their help.

23.1 Maude tools

23.1.1 The ITP: an Inductive Theorem Prover

The ITP tool [79] is a theorem-proving assistant. It can be used to interactively
verify properties of membership equational specifications with respect to its
ITP-models. An ITP-model is a model of the specification such that:

• it is an inductive model, in the sense that the sets interpreting the sorts in
the model are inductively generated by the membership axioms defining
the sorts in the specification;
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• it is a standard model of the theory of arithmetic for the integer numbers.

By default, the ITP tool assumes that the sets interpreting the sorts are
also freely generated [140], that is, two different ground constructor-terms al-
ways denote different elements. However, users can “customize” the tool for
verifying properties about models that do not satisfy the freeness require-
ment; of course, some of the commands, whose soundness is based on this
requirement, would not be then available.

An important feature of the proposed semantic framework is that it sup-
ports proofs by structural induction and complete induction. Another inter-
esting feature is that incompletely specified operations can be reasoned about
so as to support incrementality. That is, unlike in most reasoning systems, in-
cluding RRL [202] and ACL2 [205], operations do not have to be completely
specified before inductive properties about them can be verified mechanically.

Notice that the class of the ITP-models includes the initial model of the
specification,1 but possibly also many other models. This tolerance provides
the extra freedom that is needed to inductively reason about incompletely
specified operations.

The ITP tool is a Maude program. It comprises over 8000 lines of Maude
code that make extensive use of the reflective capabilities of the system. In
fact, rewriting-based proof simplification steps are directly executed by the
powerful underlying Maude rewriting engine.

The ITP tool is currently available as a web-based application that includes
a module editor, a formula editor, and a command editor. These editors allow
users to create and modify their specifications, to formalize properties about
them, and to guide the proofs by filling in and submitting web forms. The web
application also offers a goal viewer, a script viewer, and a log viewer. They
generate web pages that allow the user to check, print, and save the current
state of a proof, the commands that have guided it, and the logs generated in
the process by the Maude system.

The Web ITP tool can be executed in two different ways: either as a
remote or as a local application. It comprises 2000 lines of Maude code, 3000
lines of JSP, and 7500 lines of Java. The only requirements to run the remote
application are a computer with an internet connection and with JDK 1.4.1
installed (it should be available on most computers) and a browser. The remote
application can be accessed at the URL http://maude.sip.ucm.es:8080/

webitp/.
Running the ITP tool as a local application is more demanding: in addition

to JDK 1.4.1 and a browser, it is also necessary to have the Tomcat server
installed, as well as Maude and the files containing the specification of the ITP.
The concrete details of the files needed and the steps to follow to complete
the installation can be found at http://maude.sip.ucm.es/itp/.

1 In the initial model [248], sorts are interpreted as the smallest sets satisfying
the axioms in the theory, and equality is interpreted as the smallest congruence
satisfying those axioms.

http://maude.sip.ucm.es:8080/webitp/
http://maude.sip.ucm.es:8080/webitp/
http://maude.sip.ucm.es/itp/
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The ITP is still an experimental tool, but the results obtained so far are
quite encouraging. The ITP tool is the only theorem prover at present that
supports reasoning about membership equational logic specifications. The
powerful integration of term rewriting with a decision procedure for linear
arithmetic with uninterpreted function symbols [80], while also available in
other rewriting-based theorem provers like RRL [201], has been easily and ef-
ficiently implemented in the ITP by exploiting the reflective design of the tool
and the reflective capabilities of the Maude system. This fact has encouraged
us to plan to add other decision procedures to our tool in the near future.
Another interesting extension of the tool is the implementation of the cover
set induction method [384], a feature already available in RRL [202].

23.1.2 The Maude Termination Tool

The Maude Termination Tool (MTT) is a tool that checks the termination
of Maude equational specifications. MTT takes Maude functional modules as
inputs and tries to prove them terminating by using a number of existing
termination tools as backends. Maude, as other equational and rule-based
programming languages, has expressive features such as:

• advanced typing constructs including sorts, subsorts, kinds, and member-
ships;

• matching modulo;
• evaluation strategies; and
• very general conditional rules.

Proving termination of expressive equational programs having such features
is nontrivial, since some of these features are not supported by standard
termination methods and tools. Yet, the use of such features may be es-
sential to ensure termination. MTT uses two theory transformations de-
scribed in [119, 117] to bridge the gap between expressive equational pro-
grams and conventional termination tools for term rewriting systems, which
are used as backends. It can send the transformed termination problems to any
tool supporting the TPDB syntax currently shared by many such tools (see
http://www.lri.fr/~marche/termination-competition). In particular it
can use CiME, MU-TERM, and AProVE as backends.

The tool implementation distinguishes two parts:

• a reflective Maude specification implements the theory transformations
described in [119, 117], and

• a Java application connects Maude to various term rewriting termina-
tion tools—including CiME, MU-TERM, and AProVE—and provides a
graphical user interface.

The Java application is in charge of sending the Maude specification provided
by the user to Maude to perform transformations. Depending on the selections,
one transformation or another will be accomplished. The resulting unsorted

http://www.lri.fr/~marche/termination-competition
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unconditional rewriting system obtained from such transformations is proved
terminating by using the above-mentioned tools as backends.

MTT is based on the theoretical work described in [119, 117], and has
been developed by Francisco Durán, with the collaboration of David Mart́ın.
The application, its source code, and all the related information is available
at http://www.lcc.uma.es/~duran/MTT. The application itself consists of a
single jar file; the reflective Maude specification of the transformations from
Maude specifications to unconditional untyped specifications is also provided.
The tool depends on the external tools CiME, MU-TERM, and AProVE,
which must be available in the system (in addition to Maude, of course). To
alleviate the requirements on external tools, the application includes support
for connecting to the external tools remotely. That is, MTT can interact either
with a local copy of the termination tool, which it internally executes, or with
a remote copy of it. This feature is particularly attractive for those platforms
for which there is no version available of some of the tools (including Maude
itself). For example, one may be running MTT on a Windows box which
connects to the external tools running on different machines. Of course, the
Java Runtime Environment is required for the execution of the jar file.

Examples making use of the MTT can be found in Sections 12.4 and 13.4.

23.1.3 The Church-Rosser Checker

The Church-Rosser Checker (CRC) is a tool to help checking whether an
order-sorted equational specification satisfies the Church-Rosser property. The
tool can be used to prove such a property for equational specifications in
Maude, that is, for Maude functional modules.

The goal of executable equational specification languages is to make com-
putable the abstract data types specified in them by initial algebra seman-
tics. In practice this is accomplished by using specifications that are ground
Church-Rosser and terminating, so that the equations can be used from left
to right as simplification rules; the result of evaluating an expression is then
the canonical form that stands as a unique representative for the equiva-
lence class of terms equal to the original term according to the equations. For
order-sorted specifications, being Church-Rosser and terminating means not
only confluence—so that a unique normal form will be reached—but also a
sort decreasingness property, namely that the normal form will have the least
possible sort among those of all other equivalent terms. Therefore, the tool’s
output consists of a set of critical pairs and a set of membership assertions
that must be shown, respectively, ground-joinable, and ground-rewritable to
a term with the required sort.

For computational purposes it becomes very important to know whether
a given specification is indeed ground Church-Rosser and terminating. Es-
tablishing the ground Church-Rosser property for a terminating specification
is a thorny issue. The problem is that a specification with an initial algebra

http://www.lcc.uma.es/~duran/MTT
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semantics can often be ground Church-Rosser even though some of its criti-
cal pairs may not be joinable. That is, the specification can often be ground
Church-Rosser without being Church-Rosser for arbitrary terms with vari-
ables. In such a situation, blindly applying a completion procedure that is
trying to establish the Church-Rosser property for arbitrary terms may be
both quite hopeless—the procedure may diverge or get stuck because of un-
orientable rules, and even with success may return a specification that is quite
different from the original one—and even unnecessary if the specification was
already ground Church-Rosser.

The Church-Rosser Checker can be used to check specifications with an
initial algebra semantics that have already been proved terminating and now
need to be checked to be ground Church-Rosser. Since, for the reasons men-
tioned above, user interaction will typically be quite essential, completion is
not attempted. Instead, if the specification cannot be shown to be ground
Church-Rosser by the tool, proof obligations are generated and are given
back to the user as a useful guide in the attempt to establish the ground
Church-Rosser property. Since this property is in fact inductive, in some cases
an inductive theorem prover can be enlisted to prove some of these proof
obligations. In other cases, the user may in fact have to modify the original
specification by carefully considering the information conveyed by the proof
obligations.

The tool is written entirely in Maude, and is in fact a rewriting logic ex-
ecutable specification of the formal inference system that it implements. A
complete execution environment for the tool has been built in Maude, and
it has been integrated within Full Maude. The tool treats equational speci-
fications as data that is manipulated. The CRC computes critical pairs and
membership assertions by inspecting the equations in the original specifica-
tion. This makes a reflective design—in which theories become data at the
metalevel—ideally suited for the task. Indeed, the fact that rewriting logic
is a reflective logic, and that Maude efficiently supports reflective rewriting
logic computations is systematically exploited in the tool. The same reflective
design has been followed for other tools, like the Knuth-Bendix completion
tool [110], and the coherence checker tool (see Section 23.1.4).

The very high level of abstraction at which the tool has been developed has
made it relatively easy for us to build it, makes understanding its implemen-
tation, as well as its maintenance and extension, much easier than if a con-
ventional implementation, say in C, C++, or Java, had instead been chosen.
Thanks to the high performance of the Maude engine, these important bene-
fits in ease of development, understandability, extensibility, and in flexibility
for introducing formally-defined proof tactics, are achieved without sacrificing
performance. Even though it has not been optimized for performance, and in
spite of using reflection and sophisticated rewriting modulo associativity and
associativity-commutativity, the tool has competitive performance.

The tool and its documentation are available from http://maude.lcc.

uma.es/CRChC/. The documentation includes some methodological guidelines

http://maude.lcc.uma.es/CRChC/
http://maude.lcc.uma.es/CRChC/
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for the use of the tool, and its use is illustrated with some examples; it is also
explained there that the issue of finding general inductive proof techniques for
proving the ground Church-Rosser property is at the moment an interesting
open problem. Additional information on the tool can be obtained from [126,
128, 73, 71, 72] and [120].

Examples making use of the Church-Rosser Checker can be found in Sec-
tions 12.4 and 13.4.

A previous version of this tool, together with an inductive theorem prover
to prove theorems about such specifications developed by Manuel Clavel, was
developed as part of the Cafe project [165] by Francisco Durán. The tool was
updated to Maude 2.2 with the help of Miguel Palomino. The current tool
only accepts order-sorted conditional specifications where each of the opera-
tors has either no equational attributes, or only the commutativity attribute.
Furthermore, it is assumed that such specifications do not contain any built-in
sort or function, and that they have already been proved terminating (using,
for example, the MTT tool described in Section 23.1.2 above). The tool at-
tempts to establish the Church-Rosser property modulo the commutativity of
some of the operators by checking a sufficient condition. We plan to develop a
version of the Church-Rosser Checker that will handle different combinations
of assoc, comm, and id attributes.

23.1.4 The Maude Coherence Checker

As explained in Section 6.3 and illustrated with examples in Sections 12.4
and 13.4, coherence [377] is a key executability requirement for rewrite the-
ories, and therefore for Maude system modules. It allows reducing the, in
general undecidable, problem of computing rewrites of the form [t]E∪A −→
[t′]E∪A, with A a set of equational attributes (associativity, commutativity,
identity) for which matching algorithms exist (see Section 4.4.1), to the much
simpler and decidable problem of computing rewrites of the form [t]A −→ [t′]A.

The Maude Coherence Checker [127, 128] (ChC), which is written in
Maude using a reflective design as an extension of Full Maude, provides a de-
cision procedure for order-sorted2 system modules whose equations and rules
are unconditional. The only equational attributes supported by the current
implementation are commutativity axioms, declared with the comm keyword. A
future version will cover other attributes such as associativity-commutativity,
and identity. The tool generates a set of critical pairs, whose coherence guar-
antees that of the entire system module [377]. It then checks whether each
of these pairs is coherent. The system module given as input to the tool is
always assumed to be ground Church-Rosser and terminating. The Church-

2 These are system modules whose only membership axioms are implicit ones,
taking the form of subsort and operator declarations, and such that only equations
(resp., only equations and rewrites) can appear in conditional equations (resp.,
conditional rules).
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Rosser Checker (see Section 23.1.3) and the Maude Termination Tool (see
Section 23.1.2) can be used to try to prove such properties.

For Maude system modules, which always have an initial model seman-
tics (see Section 6.3), the weaker requirement of ground coherence, that is,
coherence for ground terms, is enough. When the ChC tool cannot prove
coherence—either because this fails, or because the input specification falls
outside the class of decidable theories—it outputs a set of proof obligations
associated with the critical pairs that it could not prove coherent. The user
can then interact with the ChC tool to try to prove the ground coherence
of the input system module by a constructor-based process of reasoning by
cases. In the end, either:

1. all proof obligations are discharged and the module is shown to be ground
coherent; or

2. proving ground coherence can be reduced to proving that the inductive
validity of a set of equations follows from the equational part of the input
system module, for which the ITP can be used (see Section 23.1.1); or

3. it is not possible to reduce some of the proof obligations to inductively
proving some equations.

Case (3) may be a clear indication that the specification is not ground coher-
ent, so that a new specification should be developed (see Section 7.8 for an
example of this kind). Sections 12.4 and 13.4 illustrate the use of the ChC tool
in proving the coherence or ground coherence of some Maude specifications.

The tool and its documentation are available at http://maude.lcc.uma.
es/CRChC/, including some methodological guidelines for the use of the tool
and some examples.

23.1.5 The Sufficient Completeness Checker

Assuming an equational specification in which a subsignature of constructors
has been specified and such that the equations are terminating, the suffi-
cient completeness problem consists in verifying that the canonical forms of
all well-typed ground terms are constructor terms. Intuitively, this means that
all defined operations have been fully defined, without leaving out any special
cases. In Maude, constructors are specified with the ctor attribute, and suf-
ficient completeness must be understood with respect to the given operator
declarations and memberships [191]. This is because a ground term having
a kind but not a sort may very well contain defined function symbols. It is
only ground terms having a sort that should be provably equal to constructor
terms.

The tree automata-based sufficient completeness checker (SCC) [190] is a
tool for checking sufficient completeness of order-sorted specifications with
rewriting modulo axioms, that are left-linear, weakly-normalizing, ground
confluent, and ground sort-decreasing modulo the axioms. The tool is still

http://maude.lcc.uma.es/CRChC/
http://maude.lcc.uma.es/CRChC/
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under active development, and may be downloaded from its website at
http://maude.cs.uiuc.edu/tools/scc.

A detailed example of how to use the SCC can be found in Section 4.4.3,
and additional examples in Sections 12.4 and 13.4.

The SCC checker is a decision procedure for left-linear, unconditional
order-sorted specifications with any combination of associativity, commuta-
tivity, and identity axioms, except associativity or associativity and identity
alone. In this last case, the tool has a specialized algorithm that will always
eventually find a counterexample if the specification is not sufficiently com-
plete, and will often show sufficient completeness in practice. However, the
sufficient completeness problem itself is undecidable in this context, and so
no checker will always show sufficient completeness for specifications with
associative symbols.

The checker casts this sufficient completeness problem with rewriting mod-
ulo axioms as a decision problem for equational tree automata [281]. The pa-
per [191] shows in detail how to convert the sufficient completeness property
into a propositional tree automata emptiness problem. The key idea is that
given an order-sorted specification E = (Σ,A ∪ R) with sorts S, we can con-
struct the following automata for each sort s ∈ S:

• an automaton Ac
s accepting constructor terms of sort s;

• an automaton Ad
s accepting terms whose root is a defined symbol of sort

s and whose subterms are constructor terms; and
• an automaton Ar accepting any term reducible by equations in R.

If E is left-linear, weakly-normalizing, ground confluent, and ground sort-
decreasing modulo A, then E is sufficiently complete iff L(Ad

s) ⊆ L(Ar)∪L(Ac
s)

for each sort s ∈ S.
Since equational tree automata with associative symbols are not closed

under Boolean operations [281], we found it useful to introduce a new tree
automata framework in [191, 192], called propositional tree automata (PTA),
that is closed with respect both to Boolean operations and an equational
theory. Using our propositional tree automata framework, we in turn translate
the previous equational tree automata problem into the problem of checking
the emptiness of

⋃
s∈S L(Ad

s)− (L(Ar) ∪ L(Ac
s)).

The SCC has two major components: an analyzer written in Maude that
generates the tree automaton emptiness problem from a Maude specification;
and a C++ library called CETA that performs the emptiness check.

Analyzer

The analyzer accepts commands from the user, generates PTA from Maude
specifications, forwards the PTA decision problems to CETA, and presents the
user with the results. If the specification is not sufficiently complete, the tool
shows the user a counterexample illustrating the error. The analyzer consists
of approximately 900 lines of Maude code, and exploits Maude’s support for
reflection. The specifications it checks are also written in Maude.

http://maude.cs.uiuc.edu/tools/scc
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If the user asks the tool to check the sufficient completeness of an order-
sorted specification that is not linear and unconditional, the tool transforms
the specification by renaming variables and dropping conditions into a check-
able order-sorted linear specification. Even if the tool is able to verify the
sufficient completeness of the transformed specification, it warns the user
that it cannot show the sufficient completeness of the original specification.
However, any counterexamples found in the transformed specification are also
counterexamples in the original specification. We have found this feature quite
useful to identify errors in Maude specifications falling outside the decidable
class, including the sufficient completeness checker itself.

CETA

The propositional tree automaton generated by the analyzer is forwarded to
the tree automata library CETA which we have developed. CETA is a complex
C++ library with approximately ten thousand lines of code. Emptiness check-
ing is performed by a subset construction algorithm extended with support
for associativity and commutativity axioms as described in [192]. The perfor-
mance of CETA is quite good: most examples can be verified in seconds. The
slowest specification that has been checked is the sufficient completeness an-
alyzer itself; the library requires just under a minute on a Pentium 4 desktop
to check the 900 lines of Maude code in the analyzer.

23.1.6 The Real-Time Maude tool

Real-Time Maude [283, 287, 289, 291] is a specification language and a formal
tool that extends Maude to specify and analyze real-time systems, defined
as real-time rewrite theories (see Section 22.5). It provides special syntax
to specify object-oriented real-time systems, for which useful specification
techniques have been developed [291].

The Real-Time Maude tool systematically exploits the underlying Maude
efficient rewriting, search, and LTL model-checking capabilities to both exe-
cute and formally analyze real-time specifications. Reflection is crucially ex-
ploited in the Real-Time Maude 2.1 implementation. On the one hand Real-
Time Maude specifications are internally desugared into ordinary Maude spec-
ifications by transforming their metarepresentations. On the other, reflection
is also used for execution and analysis purposes. The point is that the de-
sired modes of execution and formal properties to be analyzed have real-time
aspects with no clear counterpart at the Maude level. To faithfully support
these real-time aspects a reflective transformational approach is adopted: the
original real-time theory and query (for either execution or analysis) are simul-
taneously transformed into a semantically equivalent pair of a Maude rewrite
theory and a Maude query [291]. In practice, this makes those executions and
analyses quite efficient and allows scaling up to highly nontrivial specifications
and case studies.
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Typical application domains for Real-Time Maude include high-level mod-
eling and analysis of all kinds of advanced time-dependent systems, such as,
e.g., timed communication protocols, scheduling algorithms, time-sensitive se-
curity protocols, and so on. In particular, Real-Time Maude, which does not
rely on fixed communication primitives, may be particularly useful to model
systems with advanced and novel models of communication, such as, e.g.,
wireless sensor networks.

Existing Real-Time Maude applications include the formal specification
and analysis of the following:

• the AER/NCA suite of protocols [203], intending to achieve reliable, scal-
able, and TCP-friendly multicast in active networks [292];

• the NORM multicast protocol developed by the Internet Engineering Task
Force [221];

• the OGDC wireless sensor network algorithm [359, 293];
• the CASH adaptive scheduling algorithm [284]; and
• the wide-mouthed frog and Kerberos security protocols [177].

The analysis of the AER/NCA suite of protocols uncovered subtle design
errors and independently found all bugs discovered by traditional testing [283,
285, 292].

The Real-Time Maude tool is a mature and quite efficient tool available
(with source code, a tool manual, examples, case studies, and papers) from
http://www.ifi.uio.no/RealTimeMaude.

23.1.7 Predicate abstraction in Maude

Model checking is a verification technique that can be used to prove properties
of finite-state systems in an automatic way, essentially by exhaustively enu-
merating all states. Unfortunately, many interesting systems are infinite and
therefore outside the scope of standard model-checking algorithms. In those
cases, or in cases where the state space is finite but too large to be model
checked in practice, a possible way of dealing with the difficulty consists in
computing a finite-state system that simulates the concrete system at hand,
in the sense that if a certain property holds in the simpler one then it must
be true also of the original system.

Predicate abstraction is a technique to automatically compute finite-state
systems that simulate more complex and possibly infinite ones. More precisely,
assume a system with states a, b, c, . . . , belonging to a set S of states, and with
transitions given by a relation → ⊆S × S. Then, a predicate abstraction is
defined by a set of predicates φ1, . . . , φn over the set S of states in the following
manner:

• The set of states of the abstract system is the set of n-tuples of Boolean
values, where n is the number of predicates.

• A concrete state a is mapped to the tuple α(a) = 〈φ1(a), . . . , φn(a)〉.

http://www.ifi.uio.no/RealTimeMaude
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The transition relation in the abstract system is then determined in a
standard way:

• There is a transition from the abstract state 〈b1, . . . , bn〉 to 〈b′1, . . . , b′n〉 iff
there are concrete states a and b such that α(a) = 〈b1, . . . , bn〉, α(b) =
〈b′1, . . . , b′n〉, and a→ b.

Computing the abstract state associated with a concrete state a, though
dependent on the complexity of the predicates, is usually straightforward. It is
in the computation of the abstract transition relation that the difficulty really
lies, since a single transition step potentially depends on an infinite number
of concrete states.

The Maude’s predicate abstraction prototype automates the construc-
tion of this abstract system. Each rule defining the transition relation of the
concrete system is directly transformed into another rule that is then used
to define the transition relation in the abstract system. This relation does
not usually coincide with the exact abstract transition relation as defined
above, but it is a useful over-approximation. More precisely, given a module
named M specifying the concrete system as well as the predicates phi1, . . . ,
phiN, the tool implements an operation abstractionGen such that the term
abstractionGen(’M, ’phi1 ... ’phiN) reduces to the metarepresentation
of the corresponding abstract system. This metarepresentation can then be
analyzed with the metaSearch command for checking safety properties, or
can be manually transformed into a module at the object level to study it
with Maude’s model checker.

The tool runs on top of Maude 2.1.1 and makes use of a slightly modified
version of the ITP theorem prover described in Section 23.1.1. It can be ob-
tained, together with its manual and some examples and the modified ITP,
from http://maude.sip.ucm.es/~miguelpt/bibliography.html.

23.2 Other tools

23.2.1 The Open Calculus of Constructions

Logical type theories in the line of Martin-Löf’s type theory [298] or the cal-
culus of constructions [85] can be motivated by the observation that, when we
give proofs a formal status in the deductive system of a logic, we naturally
obtain a type theory where the proofs correspond to elements and theorems
correspond to their types. Intuitively, a type conveys certain abstract infor-
mation about the proof, namely, its corresponding theorem, and thus it hides
the structure of the proof, which is usually desirable if the theorem is applied
as a lemma as part of a larger development. The logical type theories men-
tioned above are typed λ-calculi with dependent types of the form {X : S} T ,
that is, types that can depend on universally quantified variables. This makes
these type theories at least as expressive as higher-order logic.

http://maude.sip.ucm.es/~miguelpt/bibliography.html
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Several applications studied in [336] suggest that rewriting logic, includ-
ing its membership equational sublogic, and logical type theories have features
that are nearly complementary, so that much could be gained from a unifica-
tion of these two lines of research. As an example, rewriting logic can serve
as a framework logic [231, 229, 247], and higher-order logic can be used to
formulate induction principles and to reason about the formalism that has
been embedded into the framework. Furthermore, rewriting logic can benefit
from an expressive type system with dependent types and universes, which
in particular provides type operators and explicit polymorphism. Conversely,
type theory could benefit from equational logic and rewriting logic. For in-
stance, the lack of a notion of executable specification, providing a notion
of abstract execution, is a clear weakness of logical type theories, which in
turn leads to severe difficulties with principles of modularity and informa-
tion hiding. Furthermore, the notion of computation in type theories is rather
rigid, compared with the powerful notion of computation based on conditional
rewriting modulo the axioms of an equational theory as in rewriting logic.

In [336] a unified formalism called the open calculus of constructions
(OCC) was presented. The calculus is parameterized by a flexible universe
hierarchy, which admits impredicative universes in the style of the calculus
of constructions and predicative universes in the style of Martin-Löf’s type
theory. Similar to the calculus of inductive constructions, it is inspired by the
extended calculus of constructions [225], but has more general computational
capabilities. Specifically, OCC incorporates membership equational logic and
the corresponding version of rewriting logic as computational sublanguages,
and as a consequence supports conditional assertions, equations, and rules
together with an operational semantics based on conditional rewriting and
goal-oriented proof search modulo equational theories. A unique feature of
OCC is that the operational semantics is context-dependent, in the sense that
checking a judgement like Γ `M : T can involve reduction and goal-oriented
search that depends on operational propositions in Γ . All subproofs which
are subsumed by the operational semantics are performed automatically and
hence are of a purely computational nature, so that no structured proof object
is needed.

Executable specifications

A common use of dependent types, where the quantification ranges over a type
universe is the declaration of polymorphic functions. This is illustrated by the
following sample specification of polymorphic finite multisets. In addition to
the type constructor, and three multiset constructors, we have three equa-
tional axioms designated by the syntax || as structural equations, meaning
that everything that follows operates modulo those equations.

( fms : Type -> Type )

( fms_nil : {T | Type} (fms T) )
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( fms_single : {T | Type} T -> (fms T) )

( fms_union : {T | Type} (fms T) -> (fms T) -> (fms T) )

( fms_union_comm : || {T : Type}{m1,m2 : (fms T)}

(fms_union m1 m2) = (fms_union m2 m1) )

( fms_union_assoc : || {T : Type}{m1,m2,m3 : (fms T)}

(fms_union m1 (fms_union m2 m3)) = (fms_union (fms_union m1 m2) m3))

( fms_union_right_id : || {T : Type}{m : (fms T)}

(fms_union m fms_nil) = m )

Like in LEGO [304], the implicitly dependent type {x | A} B is syntactic
sugar for the (explictly) dependent type {x : A} B, and denotes the type of
functions with a result of type B and an implicit argument of type A.

Assuming a polymorphic predicate fms_empty to verify emptiness, we
can write the following specification of a polymorhic higher-order function
fms_select, which selects all elements from a multiset satisfying a given
predicate. The specification has four equational axioms, designated by the
syntax !! as computational equations, meaning that their operational seman-
tics corresponds to equational simplification.

( fms_select : {T | Type} (T -> Prop) -> (fms T) -> (fms T) )

( fms_select_nil : !! {T : Type}{P : (T -> Prop)}

(fms_select P (fms_nil | T)) = (fms_nil | T) )

( fms_select_single_1 : !! {T : Type}{P : (T -> Prop)}{x : T}

(P x) -> (fms_select P (fms_single x)) = (fms_single x) )

( fms_select_single_2 : !! {T : Type}{P : (T -> Prop)}{x : T}

(Not (P x)) -> (fms_select P (fms_single x)) = fms_nil )

( fms_select_union : !! {T : Type}{m,m’ : (fms T)}{P : (T -> Prop)}

(Not (fms_empty m)) -> (Not (fms_empty m’)) ->

(fms_select P (fms_union m m’)) =

(fms_union (fms_select P m) (fms_select P m’)) )

Assuming a specification of, say, natural numbers, we can now perform
sample executions like the following. In the first line, we define a predicate
P using a typed λ-abstraction, then we invoke a reduction. What is inter-
esting in this simple example is that a combination of both reduction (just
β-reduction in this case) and goal-oriented search (in this case to verify the
equality predicate) is needed to arrive at the given result.

( P := [x : nat](x = 0) )

( red (fms_select P (fms_union (fms_single 0)

(fms_union (fms_single 1)

(fms_single 0)))) )

( fms_union (fms_single 0) (fms_single 0) )
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Interactive theorem proving

Proof principles such as induction can be naturally expressed in higher-order
logic, as for instance in the case of natural number induction:

( nat_ind : {P : nat -> Prop}

(P 0) ->

({i : nat} (P i) -> (P (suc i))) ->

{n : nat} (P n) )

To give just a flavor of interactive theorem proving we use it to prove
monotonicity of the predicate nat_le by stepwise refinement in two steps.
First we apply the induction principles, and then we prove the remaining
subgoal (the base case is automatic).

( nat_suc_is_monotone = ? : {n : nat} (nat_le n (suc n)) )

----------------------------

?7585 : { n : nat } ( nat_le n ( suc n ) )

1 new goal

( Inst (nat_ind ([n : ?] ?) ? ?) )

----------------------------

?7616 : { i : nat }

( ( [ n : nat ] ( nat_le n ( suc n ) ) ) i ) ->

( ( [ n : nat ] ( nat_le n ( suc n ) ) ) ( suc i ) )

1 new goal

( Inst ([i : nat] ?) )

{ i : nat }

----------------------------

?7693 : ( ( [ n : nat ] ( nat_le n ( suc n ) ) ) i ) ->

( ( [ n : nat ] ( nat_le n ( suc n ) ) ) ( suc i ) )

1 new goal

( Inst ([H : ?? ?] ?) )

all goals solved

The last step of this inductive proof is noteworthy, since by forcing the
premise H into the form ?? ? we express that it should be added to the
context as an assertional hypothesis, to support an automatic proof (using
goal-oriented search) of the righthand side of the implication.

Prototype implementations

The implementation of a type theory like OCC presents a challenge, mainly
because of the context-dependent operational semantics and the tricky inter-
dependency between the computational mechanism and the typing rules. Two
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prototype implementations for OCC language fragments of different general-
ity are available. Maude and Prolog, respectively, are used as implementation
frameworks. Both prototypes are based on a reflective architecture to address
the challenges mentioned above.

For the term representation and associated operations, both prototypes
use CINNI, the explicit substitution calculus with names and indices that
has been developed in [336, 334]. Thanks to its use of names, the transla-
tion between internal and external syntax becomes trivial. The typing rules
are directly represented as rewrite rules (in Maude) or as Horn clauses (in
Prolog). This is done in a way that generalizes the idea of a first-order repre-
sentation of pure type systems developed in [341] and hence avoids potential
closure problems associated with α-conversion [305]. Metavariables have been
added to the syntax to delay decisions and to support type inference based on
various heuristics. The interactive proof mode then becomes a special case of
type checking, where the metavariables represent unknown proof terms (cor-
responding to subgoals) that are too complicated to be synthesized by the
system. As we have seen, proof by stepwise refinement amounts to nothing
other than instantiating unsolved metavariables.

But where does reflection come into play? It is used to represent the op-
erational semantics of OCC in terms of the operational semantics of the un-
derlying framework (Maude or Prolog). The basic idea is the following: Given
a judgement Γ ` J that needs to be solved, the system applies a function
extr that extracts the operational contents from Γ and represents it either
as a first-order rewrite theory over membership-equational logic (in the case
of Maude) or simply as a Horn clause theory (in case of Prolog). After this
translation the judgement J is solved in the new theory extr(Γ ) using com-
putational reflection. The function extr abstracts from all non-computational
aspects, e.g., from purely logical theorems that are not equipped with a com-
putational interpretation.

With all this one needs to keep in mind that a typical type or proof-
checking problem can involve a huge number of judgements with many differ-
ent associated contexts, and hence may trigger computations in many different
contexts (possibly with different structural axioms). In Maude, the module
resulting from the extraction is internally compiled into automata, so that
rewriting can be performed efficiently, but clearly the overhead of this com-
pilation process is not negligible. Although some optimizations, like caching
for example, have been applied, it is clear that much more can be done here
in order to obtain a more efficient implementation.

In summary, OCC offers a general higher-order framework for specification,
programming, and interactive theorem proving, which, due to the flexibility
of its underlying equational/rewriting logic, is widely applicable in various
domains. Among the topics covered by the examples in [337, 338, 336] we find
executable equational/behavioral specifications, programming with dependent
types, symbolic execution of system models, formalization of algebraic and cat-
egorical concepts, inductive/coinductive theorem proving, and theorem prov-
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ing modulo equational theories. Also the implementation of the cryptoprotocol
specification language MSR (discussed in Section 23.2.4) presents an interest-
ing application of the Maude prototype of the open calculus of constructions
as part of a larger system.

The OCC prototypes together with libraries and many examples are
available at http://formal.cs.uiuc.edu/stehr/occ.html. A good start-
ing point to explore the features of OCC are the examples from the tutorial
part of [336], which are all available at the given website.

23.2.2 The Maude MSOS tool

The Maude MSOS Tool (MMT) [53, 55] is an execution environment for
modular structural operational semantics (MSOS) specifications that brings
the power of analysis available in the Maude system to MSOS specifications.

MSOS [270], developed by Mosses, is a modular variant of Plotkin’s SOS
[303]. Like SOS, MSOS is a framework suitable for the specification of a wide
range of computational formalisms, including programming language seman-
tics and concurrent systems. Unlike SOS, MSOS has the advantage of sup-
porting completely modular specifications, an important advantage when con-
sidering the engineering decisions that one must face when some features to
be implemented are not known in advance. As an example, consider an SOS
specification of a functional language fragment with environments; if imper-
ative features must be added later to the language, therefore requesting a
store component to be considered, all SOS rules written for the functional
language fragment would have to be retracted and replaced by new rules that
also involve the store component. MSOS makes this unnecessary by structur-
ing the labels in SOS rules as records of semantic components, such as the
environment and the store, and by abstracting from the rules the fact that
new components may be added in future extensions.

MMT is formally designed, which means that it is an implementation
of a semantics-preserving mapping from MSOS to rewriting logic [251]. It
supports a specification language, designed by Mosses and Chalub, called
MSDF, the modular SOS specification formalism, which is a language that
combines an extended-BNF notation for the definition of abstract grammar
and a textual representation for MSOS transitions that captures mathematical
notation commonly used in papers and textbooks, making the language itself
based on well-known “user-friendly” notations available in the literature.

MMT is implemented as an extension of Full Maude, therefore the bulk of
the tool consists of a read-eval-print loop where a user inputs MSDF modules
and MMT commands. The tool then compiles MSDF modules into Full Maude
system modules, which enables their use with the suite of Full Maude’s com-
mands. MMT’s commands include a pretty-printing and a compilation flag
that enables and disables MMT’s default rewrite strategy, a necessary feature
when combining MMT with other Maude-based tools such as Mart́ı-Oliet,
Meseguer, and Verdejo’s interpreter for a Maude strategy language [234].

http://formal.cs.uiuc.edu/stehr/occ.html
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Several case studies, both in the programming languages and concurrent
systems realms, have been developed using MMT, with very positive results,
including the following:

• Constructive MSOS (CMSOS), a library of reusable common abstract
language features,

• the semantics of two programming languages based on CMSOS: subsets
of Concurrent ML and Java,

• the semantics of Mini-Freja, a lazy functional language, and
• many distributed algorithms, such as dining philosophers, bakery algo-

rithm, leader election on an asynchronous ring, and mutual exclusion us-
ing semaphores.

The paper [55] gives an overview of MMT. The tool itself is available from
http://maude-msos-tool.sourceforge.net/ and runs on top of Maude 2.2
and Full Maude 2.2. The tool’s website provides all the necessary information
on how to download and execute the tool, together with a simple example
and many fully documented case studies.

23.2.3 The CCS and LOTOS tools

The CCS and LOTOS tools are part of a broader effort in which several tools
have been developed with the purpose of exploring the features of rewriting
logic, and in particular of Maude, as a logical and semantic framework for
representing and executing inference systems. Two different methodologies
for representing these inference systems have been investigated, and structural
operational semantics definitions illustrating these two methodologies on two
process algebras have been developed.

In the first methodology, the basic idea of the representation used is that
judgments in the inference system are represented as terms in Maude, and
inference rules are mapped to rewrite rules. In order to illustrate the general
ideas, we have represented both the semantics of Milner’s CCS [267] and a
modal logic for describing properties of CCS processes. Although a rewrit-
ing logic representation of the CCS semantics was given previously [231], it
cannot be directly executed in Maude. Moreover, it cannot be used to an-
swer questions such as which are the successors of a process after perform-
ing an action, which is used to define the semantics of the Hennessy-Milner
modal logic [193]. Basically, the problems are the existence of new variables
in the righthand side of the rewrite rules, and the nondeterministic applica-
tion of the semantic rules, inherent to CCS. These problems can be solved
in a general, not CCS-dependent, way by exploiting the reflective properties
of rewriting logic. Furthermore, the semantics can be extended to traces of
actions and to the CCS weak transition relation. This executable specifica-
tion plus the reflective control of the rewriting process can be used to analyze
CCS processes. The papers [368, 370] explain all the details of these repre-
sentations and how the combined tool can be used by showing examples. The

http://maude-msos-tool.sourceforge.net/
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Maude code (for Maude version 1.05) and examples can be downloaded from
http://maude.cs.uiuc.edu/maude1/casestudies/ccs/.

A second possible way of representing in Maude inference systems in gen-
eral, and structural operational semantics definitions in particular, is one
where transitions are represented as rewrites and the inference rules are
mapped to conditional rules with rewrites in the conditions. This is possible
because Maude allows conditional rules with rewrites in the conditions, where
those rewrites are solved at execution time by means of a built-in search mech-
anism. In this way, it becomes possible, for example, to represent in Maude in a
fully executable way the CCS operational semantics considering transitions as
rewrites. In fact, both the usual transition semantics and the weak transition
semantics, where internal actions are not observed, can be implemented this
way. On top of them it is also possible to implement in Maude the Hennessy-
Milner modal logic for describing processes. The paper [369] describes in de-
tail the results obtained in this second implementation and compares both
implementations. The Maude 2 code for this second approach can be also
downloaded from http://maude.cs.uiuc.edu/maude1/casestudies/ccs.

The same techniques have also been used to implement a symbolic seman-
tics for LOTOS [44]. The Full LOTOS case study extends those techniques
to a bigger language and, moreover, does this in such a way that the ACT
ONE algebraic specifications [133] used in LOTOS to define data types are
really integrated into the operational semantics (this is the reason for talk-
ing about Full LOTOS instead of just LOTOS), something that really breaks
new ground in this approach. In addition, by means of the metalanguage fea-
tures supported by Maude, the Full LOTOS semantics tool is also integrated
with Full Maude: this way, in the same semantic framework one can build
an entire environment with parsing, pretty printing, and input/output pro-
cessing of LOTOS specifications and commands for executing them, hiding
from the user the underlying use of Maude. The paper [364] explains how
this complete tool has been developed, shows examples of its usage, and de-
scribes the available commands. The Maude 2 code can be downloaded from
http://maude.sip.ucm.es/~alberto/esf.

23.2.4 The MSR cryptoprotocol specification language

MSR originated as a simple logic-based language aimed at investigating the
decidability of protocol analysis under a variety of assumptions [50]. It evolved
into a precise, powerful, flexible, and still relatively simple framework for the
specification of complex cryptographic protocols, possibly structured as a col-
lection of coordinated subprotocols [43, 48]. It uses strongly-typed multiset
rewriting rules over first-order atomic formulas to express protocol actions
and relies on a form of existential quantification to symbolically model the
generation of nonces and other fresh data. Dependent types are a useful ab-
straction mechanism not available in other languages. For instance, the de-
pendency of public/private keys on their owner can be naturally expressed

http://maude.cs.uiuc.edu/maude1/casestudies/ccs/
http://maude.cs.uiuc.edu/maude1/casestudies/ccs
http://maude.sip.ucm.es/~alberto/esf
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Fig. 23.1. Embedding of MSR into rewriting logic

at the type level. Finally, MSR supports an array of useful static checks that
include type checking [47] and data access verification [49].

Architecture of the MSR tool

An efficient embedding from MSR into rewriting logic with dependent types
(RWLDT) was presented in [51, 52]. RWLDT is a restricted instance of the
open calculus of constructions (OCC). This mapping forms the basis for the
implementation of an MSR execution and analysis environment [313]. The
MSR tool also makes use of the mapping from RWLDT into rewriting logic
(RWL), implemented as part of the OCC prototype in Maude [336] (see also
Section 23.2.1).

This two-level approach, which is summarized in Figure 23.1, has some
advantages over a direct mapping into RWL. The first is modularity and
separation of concerns: the mapping from MSR into RWLDT is only concerned
with the dynamics (given by the rules) but preserves the static part (given by
declarations, types, and terms). The second advantage is that RWLDT seems
to be the right level for user interaction, because terms and types closely
correspond to those of MSR. Finally, the preservation of types and the fact
that RWLDT is a sublogic of OCC provides a suitable level of abstraction for
formal reasoning.

The MSR tool supports symbolic execution and symbolic static space ex-
ploration of the translated MSR specification. The user interaction takes place
at the level of RWLDT terms, which directly correspond to MSR terms, and
hence the user does not need to be concerned with the resulting translation
into RWL. The MSR tool implements not only symbolic execution at the MSR
language level, but also symbolic search, both with several options similar to
those available in Maude. To facilitate the interactive analysis of security pro-
tocols, the tool also supports interactive state space navigation, where sym-
bolic executions and searches can be composed in an interactive session to
explore the protocol state space. A similar MSR interface to Maude’s model
checker is left for future work. At the moment, we can instead export the
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RWL translation of the RWLDT specification and perform model checking at
the Maude level.

Example

To just give a flavour of the syntax and the interaction with the MSR tool we
use the well-known Needham-Schroeder public-key two-party protocol, which
can be specified in MSR syntax as shown below. The type princ contains the
principals participating in the protocol, and the dependent type pubK A rep-
resents the public keys of principal A, which can be used to encrypt messages
using enc. Here, msg is the built-in type of messages, which comes with a
concatenation operator &. The overall specification consists of two roles, mod-
eling the initiator and the responder, respectively, each of them containing
two labeled multiset-rewrite rules. To control the instantiation of roles and
to observe termination of the protocol we have added tokens START-i and
TERMINATED-i.

pubK: princ -> type. %enum

enc: pubK A -> msg -> msg.

START-1: princ -> state.

START-2: princ -> state.

TERMINATED-1, TERMINATED-2: princ -> princ -> nonce -> state.

initiator : forall A: princ.

{ exists L: princ -> nonce -> state.

Init1: forall B: princ. forall PKB: pubK B.

START-1 A

=> exists nA: nonce. A & B & enc PKB (nA & A), L B nA .

Init2: forall B: princ. forall PKA: pubK A. forall PKB: pubK B.

forall nA: nonce. forall nB: nonce.

B & A & enc PKA (nA & nB), L B nA

=> A & B & enc PKB nB, TERMINATED-1 A B nB.

}

responder : forall B: princ.

{ exists L: princ -> nonce -> nonce -> state.

Resp1: forall A: princ. forall PKA: pubK A. forall PKB: pubK B.

forall nA: nonce.

START-2 B, A & B & enc PKB (nA & A)

=> exists nB: nonce. B & A & enc PKA (nA & nB), L A nA nB.

Resp2: forall A: princ. forall PKB: pubK B. forall nA: nonce.

forall nB: nonce.

A & B & enc PKB nB, L A nA nB

=> TERMINATED-2 B A nA.

}
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Given this specification of the protocol we can prepare a sample execution
by introducing two concrete principals with their public keys, and define the
initial configuration using the keyword config.

A, B: princ. pkA: pubK A. pkB: pubK B.

config START-1 A, START-2 B.

Now we have different options to explore the behavior of the protocol. For
instance, we could use search to ask for all possible reachable states:

(search)

1: N(princ-msg A & princ-msg B & enc pkB(nonce-msg F1 & princ-msg A)),

START-2 B, T_initiator_Init2 A F0, F0 B F1

2: N(princ-msg B & princ-msg A & enc pkA(nonce-msg F1 & nonce-msg F3)),

T_initiator_Init2 A F0, T_responder_Resp2 B F2, F0 B F1,F2 A F3

3: N(princ-msg A & princ-msg B & enc pkB(nonce-msg F3)),

TERMINATED-1 A, T_responder_Resp2 B F2, F2 A F3

4: TERMINATED-1 A,TERMINATED-2 B

Alternatively, we could simply perform a complete state space exploration
asking for all reachable states that cannot be further reduced:

(search !)

1 : TERMINATED-1 A,TERMINATED-2 B

Of course, the analysis becomes more interesting when an explicit attacker
model is added to the specification, which is unfortunately beyond the scope
of this brief overview.

The MSR tool, examples, and related documentation are available at
http://formal.cs.uiuc.edu/stehr/msr.html.

23.2.5 JavaFAN

JavaFAN (Java Formal ANalyzer) [153, 156] is a tool to simulate and formally
analyze multithreaded Java programs at source code and/or bytecode levels.
A novel feature of JavaFAN’s design is that it is directly based on formal
definitions of the Java and the JVM semantics in the form of rewrite theories
in Maude, following the general methodology outlined in Section 22.2. The
following types of analysis are directly supported by Maude:

• symbolic simulation, with Java and JVM specifications used as interpreters
executing programs with actual or symbolic inputs;

• breadth-first search within a concurrent program’s state space to find vi-
olations of safety properties; and

• model checking of linear temporal logic (LTL) properties for programs
whose state space is finite.

http://formal.cs.uiuc.edu/stehr/msr.html
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To keep the framework user-friendly, JavaFAN wraps the Maude specifications
and accepts Java or JVM code from the user as input.

Figure 23.2 presents the architecture of JavaFAN. The user interface mod-
ule hides the Maude back-end behind a user-friendly environment. It also plays
the role of a dispatcher, sending the Java source code and/or the bytecode
to Java and/or JVM analyzers, respectively. The analyzers wrap the input
programs into properly defined Maude modules and invoke Maude, which an-
alyzes the code based on formal specifications of the Java language and the
JVM. The output formatter collects the output of Maude, transforms it into
a user-readable format, and sends it to the user.

Maude has been used to specify the operational semantics of all of Java and
the JVM (except for the libraries). Java and the JVM are modeled differently.
For Java, a continuation-based style is adopted, while for the JVM an object-
oriented style, that makes the specification simpler and easier to understand,
is used.

Although the development effort of JavaFAN has been quite modest, it
compares well with other Java analysis tools in its application to the analysis
of Java and JVM programs [153]. JavaFAN’s efficiency relies both on the
efficiency of Maude and on the choice of representation. For example, the use
of equations instead of rules to express the semantics of deterministic features,
the use of continuation-based interpretation, and distinguishing between the
static and dynamic parts of a program, so that only the dynamic component
is kept in the state representation, all result in significant resource savings for
large programs.

JavaFAN can be downloaded from http://javafan.cs.uiuc.edu/, where
the reader can find more information.

23.2.6 Java+ITP

Java+ITP [324] is an experimental tool for the verification of properties of a
sequential imperative subset of the Java language. It is based on an algebraic

http://javafan.cs.uiuc.edu/
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continuation passing style (CPS) semantics of this fragment as an equational
theory in Maude. It supports compositional reasoning in a Hoare logic for
this Java fragment that has been proposed and proven correct with respect
to the algebraic semantics in [323]. After being decomposed, Hoare triples
are translated into semantically equivalent first-order verification conditions
(VCs) which are then sent to Maude’s Inductive Theorem Prover (ITP) (see
Section 23.1.1) to be discharged. The long-term goal of this project is to use
extensible and modular rewriting logic semantics of programming languages,
for which CPS axiomatizations are indeed very useful, to develop similarly
extensible and modular Hoare logics on which generic program verification
tools can be based.

The Maude specification of Java+ITP’s underlying Java language frag-
ment adapts the Maude-based rewriting logic semantics of Java developed for
JavaFAN (see Section 23.2.5) by adding to it extra features making it suitable
for theorem-proving purposes. Although Java+ITP focuses for the moment on
a modest sequential Java fragment, there is ample evidence, both in Java and
in other languages (see [259]), supporting the claim that CPS-based rewrit-
ing logic definitions are modular and extensible; therefore, the present work
should naturally extend to more ambitious language fragments in Java and in
other languages.

A Hoare logic for this Java fragment has been proposed, and its correctness
has been mathematically justified based on the CPS semantics in [323]. Even
for this modest fragment this turns out to be nontrivial, because some of
the standard Hoare rules, including the rules for conditionals and for while
loops, are in fact invalid and have to be properly generalized in order to be
applicable to Java programs.

The Java+ITP tool is a mechanization of this Hoare logic supporting:

1. compositional reasoning with the Hoare rules to decompose Hoare triples
into simpler ones;

2. generation of first-order verification conditions (VCs); and
3. discharging of such VCs by Maude’s inductive theorem prover (ITP) (see

Section 23.1.1), using the underlying CPS semantics.

Java+ITP has been developed as an extension of Maude’s ITP and is entirely
written in Maude.

Although Java+ITP is primarily a research vehicle to advance the longer-
term goal of developing generic logics of programs and generic program ver-
ifiers based on modular rewriting logic semantic definitions, it has proved to
be also quite useful as a teaching tool at the University of Illinois at Urbana-
Champaign to teach graduate students and seniors the essential ideas of alge-
braic semantics and Hoare logic. It has been used quite extensively by students
on several graduate courses on program verification and formal methods.

To summarize, Java+ITP is a research tool to investigate modularity and
extensibility of programming languages and of Hoare logics. It has proved to
be useful for this purpose by uncovering subtleties in the Hoare logic needed
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for Java not present in toy languages, and not even present in the Hoare logics
of Java tools like Jive. Keeping the compositional Hoare logic reasoning at the
source code level is also one of the goals that, in contrast to other approaches,
has been advanced. But of course this is just a snapshot of work in progress.
The current Java fragment is still quite modest, so new features should be
added to it such as exceptions and objects; this should be easy thanks to the
extensible CPS semantics. After this, threads and concurrency should also be
added, and Hoare rules for these new features should also be investigated. The
long-term goal is of course modularity, so that Hoare rules will be applicable
not just to Java, but to any other languages using some of the same features
in a modular way, but this still remains an exciting goal for the future.

An overview of this tool can be found in [324]. For a more detailed descrip-
tion, including proofs, a technical report is also available [323]. The actual tool
can be downloaded from http://maude.cs.uiuc.edu/tools/javaitp where
more documentation about technicalities is also available.

23.2.7 The ITP/OCL tool

The Unified Modeling Language (UML) [279, 321, 23] is a general-purpose
visual modeling language that is used to specify, visualise, construct, and
document the artifacts of a software system. The UML notation is largely
based on diagrams; however, for certain aspects of a design, diagrams do not
provide the level of conciseness and expressiveness that a textual language can
offer. The Object Constraint Language (OCL) [278, 380] is a textual constraint
language with a notational style similar to common object-oriented languages.
OCL’s purpose is to increase the expressive power of the modelers specifying
and documenting UML diagrams.

Validation and testing in software development has been recognized of key
importance for a long time. There are many different approaches to validation:
simulation, rapid prototyping, etc. We validate a model by checking whether
its instances (also called “snapshots”) fulfill the desired invariants. This can
lead to several consequences with respect to the design. First, if there are
reasonable snapshots that do not fulfill the invariants, this may indicate that
the invariants are too strong or the model is not adequate in general. On the
other hand, invariants may be too weak, allowing undesirable system states.

The ITP/OCL tool [75] is a rewriting-based tool that supports automatic
validation of UML static class diagrams with respect to OCL invariants. It
is intended as a lightweight formal method: it should help software modelers
to find flaws in UML class diagrams in the early phases of the software de-
velopment process. It is intended also as a practical formal method: it should
be directly usable by UML+OCL modelers. The ITP/OCL tool is directly
based on the equational specification of UML+OCL class diagrams developed
in [132]: basically, class and object UML diagrams are specified as membership
equational theories, and OCL invariants are represented as Boolean terms over
extensions of those theories. Then, validating object diagrams with respect to

http://maude.cs.uiuc.edu/tools/javaitp
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invariants is reduced to checking whether the corresponding Boolean terms
rewrite to true or false. Although the equational semantics developed in [132]
only covers UML+OCL static class diagrams, it provides a solid ground upon
which to develop equational extensions to express the semantics of other UML
diagrams.

The ITP/OCL tool is written entirely in Maude, making extensive use
of its reflective capabilities to implement the user interface. In this way, the
tool underlying equational semantics remains hidden to the user, who only
needs to be familiar with the standard notions of UML diagrams and OCL
constraints. The ITP/OCL commands can be grouped in four classes:

• Commands that create a diagram. They are defined by equations that add
to the tool database the module that specifies an empty class or object
diagram. For example, to create a class diagram we use the command
(create-class-diagram CD .), where CD is the class diagram name.

• Commands that insert an element (class, attribute, association, and so on)
in a diagram. They are defined by equations that add to the module spec-
ifying the diagram in the tool database the declarations (sorts, operators,
memberships, equations) that specify that the diagram has this element.
For example, to insert a class we use the command (insert-class CD :

C .), where CD is the class diagram name and C is the class name.
• Commands that state a constraint over a class diagram. They are defined

by equations that associate with the module specifying the class diagram
in the tool database the Boolean term that represents this constraint.
For instance, to state a contextualized invariant we use the command
(insert-invariant CD : C : INV .), where CD is the class diagram
name, C is the contextual class name, and INV is the invariant.

• Commands that validate an object diagram (and evaluate queries). They
are defined by equations that check whether the Boolean terms represent-
ing the invariants reduce to true or false in the module that specifies the
union of the class diagram, with its invariants, and the object diagram.
For example, to check whether an object diagram validates the invariants
stated over the class diagram of which it is an instance, we use the com-
mand (check-invariants CD : OD .), where CD is the class diagram
name and OD is the object diagram name.

The implementation of the ITP/OCL tool comprises around 4000 lines
of Maude code. The latest version of the ITP/OCL tool, with the avail-
able documentation (including a comparison with related tools) and a col-
lection of examples, can be found at http://maude.sip.ucm.es/mova. We
are also currently developing the MOVA tool, a Java visual front-end for the
ITP/OCL tool: events on the MOVA worksheets and toolbars are transformed
into ITP/OCL commands and are interpreted and executed in a Maude pro-
cess running the ITP/OCL tool.

http://maude.sip.ucm.es/mova


758 23 Some Tools

23.2.8 The Pathway Logic Assistant

Pathway logic [138, 355, 354] is an approach to modeling biological systems as
executable rewriting logic specifications, using formal methods tools to analyze
these models. As discussed in Section 22.7, a pathway logic model consists of a
collection of Maude modules specifying the structure and components of a cell;
giving rules describing how signals are propagated in order to control cellular
processes such as transcription, metabolism, proliferation, or self-destruction;
and defining one or more initial states (called dishes) to study.

For such a model to be useful to biologists, it is crucial to have an interac-
tive visual representation that can be used to navigate and query the model.
A few examples of what a biologist might want to do are:

• List the dishes that are available to study.
• Display the network of signaling reactions for a given dish.
• Locate a particular network element, a reaction, or reactant.
• Ask for more information about a particular network element.
• Formulate and submit a query about pathways in the network.

The Pathway Logic Assistant (PLA) was designed to meet the require-
ments listed above and many others. From an architectural point of view,
PLA is a collection of components that communicate using IOP [240], an
asynchronous message passing infrastructure designed to support interopera-
tion of formally based tools (see Section 18.5.2). The key components of PLA
are PLA-M, an extension of IMaude (see Section 18.5.1) that serves both
as coordinator and reasoning engine, and PLA-V, a Java-based viewer that
provides interactive visual representations of both models and query results.

Because of the restricted nature of the pathway logic rules, Petri nets are
used as the basis for visualization and efficient analysis. In particular, given a
specific initial state, the Maude rules are specialized to rule instances reach-
able from the initial state, and the resulting specialized rules are mapped to
Petri net transitions. Figure 23.3 shows the display of a typical model. The
full network is displayed in the upper right as a thumbnail with a portion
displayed in the main frame at a readable magnification. The graph is gen-
erated by PLA-M and a description of the graph is sent to PLA-V as an
expression in the JLambda language (see http://turing.une.edu.au/~iop)
(a Scheme-like interpreted language with access to Java classes and primi-
tives for interactive display.) Graph nodes are made interactive by defining
event listeners (JLambda closures) for them. A PLA graph is made interac-
tive by associating actions with the graph as a whole, using tools and menus
associated with the graph to provide user access. The result of invoking an
event listener or action is typically to send a message to PLA-M requesting
some analysis, or informing PLA-M of some graph annotation that has been
updated by the user.

http://turing.une.edu.au/~iop
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Fig. 23.3. A screen shot of the PLA Viewer

The Pathway Logic Assistant runs on Linux and MacOS X and can be
downloaded from the pathway logic web site http://pl.csl.sri.com/ along
with sample models and tutorial material.

http://pl.csl.sri.com/
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Debugging and Troubleshooting

24.1 Debugging approaches

There are several approaches to debugging and optimizing Maude programs:
tracing, term coloring, using the debugger, and using the profiler.

24.1.1 Tracing

The tracing facilities allow us to follow the execution of our specifications,
that is, the sequence of rewrites or equational simplification reductions that
take place. Tracing is turned on with the command

set trace on .

A log of the trace can be captured using script or xterm logging. This can
then be studied using a text editor. Since the trace is usually voluminous,
there are a number of trace options to control just what is traced. We refer
to Section 25.6 for a complete list of tracing commands and options.

One of the most useful options is selective tracing:

set trace select on .

trace select foo bar ([_,_]) .

This will cause only rewrites where the statement (equation, membership
or rule) is labeled with a selected name or the redex is headed by operators
with a selected name to be traced. In the above example, suppose foo and
bar are rule labels, [_,_] is an operator name, and foo is also an operator
name. Then, rewrites using the rules labeled by foo or bar will be reported, as
will also rewrites with redex whose top-level operator is either foo or [_,_].
Note that these labels or operators need not be in existence at the time the
trace select command is executed; thus it is possible to select statements
and operators that will only be created at runtime via the metalevel.

A useful option for metaprogramming is



764 24 Debugging and Troubleshooting

trace exclude FOO BAR .

This will exclude the named modules from being traced and thus allows
one to selectively avoid tracing the chosen object and/or metalevel modules.
This is particularly useful when using Full Maude to localize the tracing to
the “object modules” being executed and not to the FULL-MAUDE module itself
(see Chapter 19). After loading Full Maude, its specification is excluded from
the tracing, which allows us to trace Full Maude specifications as Core Maude
specifications.

As we have mentioned, there are different commands that may help us in
the control of the trace of the execution at hand. If the number of rewrites is
small, we may use the whole trace to check the behavior of our specification.
However, the number of rewrites is usually big, and considering the whole trace
is completely impossible. The different options may help us, for example, to
focus on a particular rule or set of rules, exclude certain modules from the
trace, or not tracing the rewrites happening in the conditions.

Let us illustrate some of these commands to trace the bank accounts ex-
ample presented in Section 11.1. To see the trace we just need to set the trace
on. After it, the trace of any rewrite command will be given, according to
the active options. By default, the application of every equation, membership
axiom, and rule will be printed, showing the corresponding substitution, the
current whole term, and the subterm on which the axiom is being applied
before and after its application. To get a flavor of the information we get, let
us rewrite the bankConf term with a bound of 1.

Maude> set trace on .

Maude> rew [1] bankConf .

rewrite [1] in BANK-ACCOUNT-TEST : bankConf .

*********** equation

eq bankConf = (((((< A-003 : Account | bal : 1250 > from A-003 to

A-002 transfer 300) debit(A-002, 400)) < A-002 : Account | bal :

250 >) debit(A-001, 150)) debit(A-001, 200)) < A-001 : Account |

bal : 300 > .

empty substitution

bankConf

--->

(((((< A-003 : Account | bal : 1250 > from A-003 to A-002 transfer

300) debit(A-002, 400)) < A-002 : Account | bal : 250 >) debit(

A-001, 150)) debit(A-001, 200)) < A-001 : Account | bal : 300 >

*********** trial #1

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => < A:Oid

: Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat = true

[label debit] .

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

*********** solving condition fragment

N:Nat >= M:Nat = true
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*********** equation

(built-in equation for symbol _>=_)

300 >= 150

--->

true

*********** success for condition fragment

N:Nat >= M:Nat = true

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

*********** success #1

*********** rule

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => < A:Oid

: Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat = true

[label debit] .

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

debit(A-001, 150) debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 300 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

--->

(debit(A-001, 200) debit(A-002, 400) < A-002 : Account | bal : 250 >

< A-003 : Account | bal : 1250 > from A-003 to A-002 transfer

300) < A-001 : Account | bal : (300 - 150) >

*********** equation

(built-in equation for symbol _-_)

300 - 150

--->

150

rewrites: 4 in 1ms cpu (1ms real) (4000 rewrites/second)

result Configuration: debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 150 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

Notice that, even though the bound for the rewrite command is one, there
are four rewrites. Recall that the bound only concerns rule application. In this
trace we see how three equations—two of them built-in—are also applied. In
addition to the statement used in each rewriting step, the trace shows the
matching substitution and the whole term, before and after the application
of the statement. Notice also the information concerning the evaluation of
conditions. We can see that, although there is a match with the debit rule,
this rule is not applied until the success of its condition has been checked.

Suppose we are mainly concerned with the application of rules. In this
case we may think that there is too much “noise” due to the application of
equations. We may request hiding the information about the application of
equations with the command set trace eq off. Then the trace for rewriting
the same bankConf term with the same bound of 1 is as follows:
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Maude> set trace eq off .

Maude> rew [1] bankConf .

rewrite [1] in BANK-ACCOUNT-TEST : bankConf .

*********** trial #1

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => < A:Oid

: Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat = true

[label debit] .

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

*********** solving condition fragment

N:Nat >= M:Nat = true

*********** success for condition fragment

N:Nat >= M:Nat = true

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

*********** success #1

*********** rule

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => < A:Oid

: Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat = true

[label debit] .

A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

debit(A-001, 150) debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 300 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

--->

(debit(A-001, 200) debit(A-002, 400) < A-002 : Account | bal : 250 >

< A-003 : Account | bal : 1250 > from A-003 to A-002 transfer

300) < A-001 : Account | bal : (300 - 150) >

rewrites: 4 in 1ms cpu (0ms real) (4000 rewrites/second)

result Configuration: debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 150 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

The selection of the concrete operator or statement label to trace may also
be a good alternative when looking for something specific. Suppose that we
are suspicious of a particular rule, say transfer. We may get the applications
of such a rule for the unbounded rewrite of the bankConf term by using the
trace select command as follows.

Maude> set trace select on .

Maude> trace select transfer .

Maude> rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

*********** trial #1

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :
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N’:Nat > fromA:Oid to B:Oid transfer M:Nat => < A:Oid : Account |

bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

A:Oid --> A-003

N:Nat --> 1250

B:Oid --> A-002

N’:Nat --> 250

M:Nat --> 300

*********** solving condition fragment

N:Nat >= M:Nat = true

*********** success for condition fragment

N:Nat >= M:Nat = true

A:Oid --> A-003

N:Nat --> 1250

B:Oid --> A-002

N’:Nat --> 250

M:Nat --> 300

*********** success #1

*********** rule

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account

| bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

A:Oid --> A-003

N:Nat --> 1250

B:Oid --> A-002

N’:Nat --> 250

M:Nat --> 300

debit(A-001, 200) debit(A-002, 400) < A-001 : Account | bal : 150 >

< A-002 : Account | bal : 250 > < A-003 : Account | bal : 1250 >

from A-003 to A-002 transfer 300

--->

(debit(A-001, 200) debit(A-002, 400) < A-001 : Account | bal : 150 >)

< A-003 : Account | bal : (1250 - 300) > < A-002 : Account |

bal : (300 + 250) >

rewrites: 13 in 1ms cpu (1ms real) (13000 rewrites/second)

result Configuration: debit(A-001, 200) < A-001 : Account |

bal : 150 > < A-002 : Account | bal : 150 > < A-003 : Account |

bal : 950 >

We may also hide some of the information being shown. For example,
we may get the same trace without the substitutions being shown with the
set trace substitution off command.

Maude> set trace substitution off .

Maude> rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

*********** trial #1

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :
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N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account

| bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

*********** solving condition fragment

N:Nat >= M:Nat = true

*********** success for condition fragment

N:Nat >= M:Nat = true

*********** success #1

*********** rule

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account

| bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

debit(A-001, 200) debit(A-002, 400) < A-001 : Account | bal : 150 >

< A-002 : Account | bal : 250 > < A-003 : Account | bal : 1250 >

from A-003 to A-002 transfer 300

--->

(debit(A-001, 200) debit(A-002, 400) < A-001 : Account | bal : 150 >)

< A-003 : Account | bal : (1250 - 300) > < A-002 : Account |

bal : (300 + 250) >

rewrites: 13 in 0ms cpu (0ms real) (~ rewrites/second)

result Configuration: debit(A-001, 200) < A-001 : Account |

bal : 150 > < A-002 : Account | bal : 150 > < A-003 : Account |

bal : 950 >

Let us consider now a different example, namely, the PATH module pre-
sented in Sections 3.5 and 4.3. This module was already used for illustrating
the possibility of using the tracing facilities in Full Maude in Section 19.1, but
we did not show there some of the more interesting issues on the traces for
such a module. We use it here to illustrate the trace given for membership
axioms and for conditional axioms with multiple fragments. We recall first the
conditional membership axiom defining multi-edge paths and the conditional
equation defining the associativity of path concatenation.

var E : Edge .

vars P Q R S : Path .

cmb E ; P : Path if target(E) = source(P) .

ceq (P ; Q) ; R = P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

Now we request the trace for the reduction of the term length((b ; c) ; d).
The information shown is particularly illustrative for understanding the way in
which the membership axioms are used and the way conditions are evaluated.
Note that the equation expressing the associativity of path concatenation has
two fragments, one of which is evaluated after the other. In case the condi-
tion of a matching equation fails another equation is attempted; furthermore,
equations with matching conditions have unbounded variables initially.

Since the full trace is more than six pages long, we use the set trace

condition off command, so that the evaluation of the conditions is omitted.
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Maude> set trace on .

Maude> set trace condition off .

Maude> red length((b ; c) ; d) .

reduce in PATH : length((b ; c) ; d) .

*********** trial #1

cmb E ; P : Path if target(E) = source(P) .

E --> b

P --> c

*********** solving condition fragment

target(E) = source(P)

*********** success for condition fragment

target(E) = source(P)

E --> b

P --> c

*********** success #1

*********** membership axiom

cmb E ; P : Path if target(E) = source(P) .

E --> b

P --> c

[Path]: b ; c becomes Path

*********** trial #2

ceq (P ; Q) ; R = P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

P --> b

Q --> c

R --> d

*********** solving condition fragment

target(P) = source(Q)

*********** success for condition fragment

target(P) = source(Q)

P --> b

Q --> c

R --> d

*********** solving condition fragment

target(Q) = source(R)

*********** success for condition fragment

target(Q) = source(R)

P --> b

Q --> c

R --> d

*********** success #2

*********** equation

ceq (P ; Q) ; R = P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .

P --> b

Q --> c

R --> d

(b ; c) ; d

--->
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b ; (c ; d)

*********** trial #3

cmb E ; P : Path if target(E) = source(P) .

E --> c

P --> d

*********** solving condition fragment

target(E) = source(P)

*********** success for condition fragment

target(E) = source(P)

E --> c

P --> d

*********** success #3

*********** membership axiom

cmb E ; P : Path if target(E) = source(P) .

E --> c

P --> d

[Path]: c ; d becomes Path

*********** trial #4

cmb E ; P : Path if target(E) = source(P) .

E --> b

P --> c ; d

*********** solving condition fragment

target(E) = source(P)

*********** success for condition fragment

target(E) = source(P)

E --> b

P --> c ; d

*********** success #4

*********** membership axiom

cmb E ; P : Path if target(E) = source(P) .

E --> b

P --> c ; d

[Path]: b ; (c ; d) becomes Path

*********** trial #5

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> b

P --> c ; d

*********** solving condition fragment

E ; P : Path

*********** success for condition fragment

E ; P : Path

E --> b

P --> c ; d

*********** success #5

*********** equation

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> b

P --> c ; d

length(b ; (c ; d))
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--->

1 + length(c ; d)

*********** trial #6

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> c

P --> d

*********** solving condition fragment

E ; P : Path

*********** success for condition fragment

E ; P : Path

E --> c

P --> d

*********** success #6

*********** equation

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> c

P --> d

length(c ; d)

--->

1 + length(d)

*********** equation

eq length(E) = 1 .

E --> d

length(d)

--->

1

*********** equation

(built-in equation for symbol _+_)

1 + 1

--->

2

*********** equation

(built-in equation for symbol _+_)

1 + 2

--->

3

rewrites: 20 in 2ms cpu (1ms real) (10000 rewrites/second)

result NzNat: 3

But the trace is too long to observe what we were interested in. Suppose
we just wanted to check a possible mistake in the specification of the length

function. We may select it for filtering the equations defining it.

Maude> set trace select on .

Maude> trace select length .

Maude> red length((b ; c) ; d) .

reduce in PATH : length((b ; c) ; d) .

*********** trial #1

ceq length(E ; P) = 1 + length(P) if E ; P : Path .
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E --> b

P --> c ; d

*********** solving condition fragment

E ; P : Path

*********** success for condition fragment

E ; P : Path

E --> b

P --> c ; d

*********** success #1

*********** equation

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> b

P --> c ; d

length(b ; (c ; d))

--->

1 + length(c ; d)

*********** trial #2

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> c

P --> d

*********** solving condition fragment

E ; P : Path

*********** success for condition fragment

E ; P : Path

E --> c

P --> d

*********** success #2

*********** equation

ceq length(E ; P) = 1 + length(P) if E ; P : Path .

E --> c

P --> d

length(c ; d)

--->

1 + length(d)

*********** equation

eq length(E) = 1 .

E --> d

length(d)

--->

1

rewrites: 20 in 0ms cpu (1ms real) (~ rewrites/second)

result NzNat: 3

24.1.2 Term coloring

A common failure mode of Maude programs is when a term does not fully
reduce. This is a lack of sufficient completeness. For linear unconditional order-
sorted specifications, sufficient completeness can be checked with the SCC tool
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[190](see Section 23.1.5). However, for general Maude specifications proving
sufficient completeness may require inductive theorem proving. If a term does
not fully reduce, that is, if nonconstructor symbols remain in the term’s canon-
ical form, it can be difficult to determine just where the problem began, since
when a subterm fails to reduce, the enclosing term often fails to reduce, and
so on, leading to a large unreduced term. If the specification makes consistent
use of the ctor attribute, problem subterms can be pinpointed by switching
on term coloring with the command

set print color on .

Symbols within terms that are being executed (i.e., in a trace or in the
final result of a reduce command) are colored as follows:

reduced, ctor not colored
reduced, non-ctor, strangeness below blue
reduced, non-ctor, no strangeness below red
unreduced, no reduced above green
unreduced, reduced directly above magenta
unreduced, reduced not directly above cyan

If an operator is colored, this means that the term contains nonconstruc-
tors, that is, that there is “strangeness” in the term. The different colors
indicate the source of the strangeness. The idea is that red and magenta indi-
cate the initial locus of a bug, while blue and cyan indicate secondary damage.
Green denotes reduction pending and cannot appear in the final result. An
example is the following module, in which there is a missing case in each of the
definitions of the _<_ and min operators (0 < 0 and min(N N), respectively).

fmod NAT-MSET-MIN is

protecting BOOL .

sorts Nat NatMSet .

subsort Nat < NatMSet .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _ _ : NatMSet NatMSet -> NatMSet [assoc comm ctor] .

op _<_ : Nat Nat -> Bool .

op min : NatMSet -> Nat .

vars N M : Nat .

var S : NatMSet .

eq 0 < s(N) = true .

eq s(N) < 0 = false .

eq s(N) < s(M) = N < M .

eq min(N N S) = min(N S) .

ceq min(N M S) = min(N S) if N < M .

ceq min(N M) = N if N < M .

eq min(N) = N .

endfm
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With color printing turned on, reducing min(s(s(0)) s(s(0))) returns
the term with the min operator colored red, indicating a nonconstructor that
can’t be reduced. Reducing min(s(s(0)) min(s(0) s(0))) returns the term
with the inner occurrence of the min operator colored red as above, and the
outer occurrence colored blue, indicating that the problem probably lies in a
subterm.

To avoid confusion, any colors that may have been specified using the
format attribute (see Section 4.4.5) are ignored in this mode.

24.1.3 The debugger

There are three ways to get into the Maude debugger:

• a control-C interrupt during rewriting,
• prefixing a command with the keyword debug, and
• hitting a break point.

Break points are set with the command

break select foo bar ([_,_]) .

where the names refer to operators or statement (equation, membership or
rule) labels in a way that is completely analogous to the trace select com-
mand described in Section 24.1.1. Break points are enabled with the command

set break on .

On entering the debugger, the prompt changes to Debug(n)> where n
is the debug level, that is, the number of times the debugger has been re-
entered (it is fully re-entrant). All top-level commands can be executed from
the debugger, along with four commands that are special to the debugger:

where . Prints out the stack of pending rewrites, explaining how each one
arose.

step . Executes the next rewrite with tracing turned on.
resume . Exits the debugger and continues with the current rewriting task.
abort . Exits the debugger and abandons the current rewriting task.

We illustrate these commands using the bank accounts example presented
in Section 11.1 (assuming it is in the file bank-account-test.maude).

We first use the debug command to activate the debugger from the begin-
ing of a rewrite. Note the use of the where, step, and resume commands.

Maude> load bank-account-test.maude

Maude> debug rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

Debug(1)> where .

Current term is:
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bankConf

which arose while executing a top level command.

Debug(1)> step .

*********** equation

eq bankConf = (((((< A-003 : Account | bal : 1250 > from A-003 to

A-002 transfer 300) debit(A-002, 400)) < A-002 : Account | bal :

250 >) debit(A-001, 150)) debit(A-001, 200)) < A-001 : Account |

bal : 300 > .

empty substitution

bankConf

--->

(((((< A-003 : Account | bal : 1250 > from A-003 to A-002 transfer

300) debit(A-002, 400)) < A-002 : Account | bal : 250 >) debit(

A-001, 150)) debit(A-001, 200)) < A-001 : Account | bal : 300 >

Debug(1)> where .

Current term is:

debit(A-001, 150) debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 300 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

which arose while executing a top level command.

Debug(1)> resume .

rewrites: 13 in 2ms cpu (85160ms real) (6500 rewrites/second)

result Configuration: debit(A-001, 200) < A-001 : Account | bal :

150 > < A-002 : Account | bal : 150 > < A-003 : Account | bal :

950 >

As said above, we can also enter into the debugger by reaching a break
point or typing control-c. In the following example we set a break point on
the debit rule, take a step, and then abort the rewrite process.

Maude> set break on .

Maude> break select debit .

Maude> rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

break on labeled rule:

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => < A:Oid

: Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat = true [

label debit] .

Debug(1)> where .

Current term is:

debit(A-001, 150) debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 300 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

which arose while executing a top level command.

Debug(1)> step .

*********** trial #1

crl debit(A:Oid, M:Nat) < A:Oid : Account | bal : N:Nat > => <

A:Oid : Account | bal : (N:Nat - M:Nat) > if N:Nat >= M:Nat =

true [label debit] .
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A:Oid --> A-001

M:Nat --> 150

N:Nat --> 300

*********** solving condition fragment

N:Nat >= M:Nat = true

Debug(1)> where .

Current term is:

300 >= 150

which arose while checking a condition during the evaluation of:

debit(A-001, 150) debit(A-001, 200) debit(A-002, 400) < A-001 :

Account | bal : 300 > < A-002 : Account | bal : 250 > < A-003 :

Account | bal : 1250 > from A-003 to A-002 transfer 300

which arose while executing a top level command.

Debug(1)> abort .

Maude>

Our last example illustrates the re-entering nature of the debugger. As
said above, any command can be used during the debugging process, allowing,
for example, starting an execution while debugging another one. We execute
a debug rew command, entering the debugger, where we set a break point
on the transfer rule. Notice the Debug(2)> prompt. Notice also how after
getting out of the inner debugger the break point is still active.

Maude> debug rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

Debug(1)> step .

*********** equation

eq bankConf = (((((< A-003 : Account | bal : 1250 > from A-003 to

A-002 transfer 300) debit(A-002, 400)) < A-002 : Account | bal

: 250 >) debit(A-001, 150)) debit(A-001, 200)) < A-001 : Account

| bal : 300 > .

empty substitution

bankConf

--->

(((((< A-003 : Account | bal : 1250 > from A-003 to A-002 transfer

300) debit(A-002, 400)) < A-002 : Account | bal : 250 >) debit(

A-001, 150)) debit(A-001, 200)) < A-001 : Account | bal : 300 >

Debug(1)> set break on .

Debug(1)> break select transfer .

Debug(1)> rew bankConf .

rewrite in BANK-ACCOUNT-TEST : bankConf .

break on labeled rule:

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account

| bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

Debug(2)> where .

Current term is:

debit(A-001, 200) debit(A-002, 400) < A-001 : Account | bal : 150 >
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< A-002 : Account | bal : 250 > < A-003 : Account | bal : 1250 >

from A-003 to A-002 transfer 300

which arose while executing a top level command.

Debug(2)> resume .

break on labeled rule:

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account |

bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat + N’:Nat)

> if N:Nat >= M:Nat = true [label transfer] .

Debug(2)> abort .

Debug(1)> resume .

break on labeled rule:

crl < A:Oid : Account | bal : N:Nat > < B:Oid : Account | bal :

N’:Nat > from A:Oid to B:Oid transfer M:Nat => < A:Oid : Account

| bal : (N:Nat - M:Nat) > < B:Oid : Account | bal : (M:Nat +

N’:Nat) > if N:Nat >= M:Nat = true [label transfer] .

Debug(1)> set break off .

Debug(1)> resume .

rewrites: 13 in 4ms cpu (63920ms real) (2600 rewrites/second)

result Configuration: debit(A-001, 200) < A-001 : Account | bal :

150 > < A-002 : Account | bal : 150 > < A-003 : Account | bal :

950 >

24.1.4 The profiler

Tuning up of specifications is something that may be useful in many practical
situations. We illustrate the use of the profiling facilities available in Maude to
understand better the execution of our specifications, helping us in this way
to make them more efficient. We will discuss the use of the profiler on two
examples, namely, the specification of the Fibonacci function already discussed
in Section 4.4.8 and the specification of sorted lists presented in Section 10.5.

First of all, it must be clear that there is no magic recipe on how to opti-
mize our specifications. On the contrary, although there are some guidelines
that we may try to follow when possible, it is not always the case that they
work, or that they are applicable. For example, conditional rules are generally
expensive from a computational point of view, as are membership axioms,
but in some cases we may be interested in using proving tools for which using
them could be a better alternative. Similarly, in Section 4.4.8 we saw that
using the memo attribute was a big win in the case of the Fibonacci function,
but it is not always applicable; for some specifications, the consumption of
memory can become so big that we may be getting a slower specification.
There is always a tradeoff between the speedup obtained using memoization
and the amount of memory and the cost of handling it. We illustrate all these
and other concerns in this section.

Profiling is switched on by the command set profile on. When profil-
ing is switched on, a count of the number of executions of each statement
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(equation, membership, and rule) is kept. For unconditional statements, the
profile information is just the number of rewrites using that statement. For
conditional ones there is also the number of matches, since not every match
leads to a rewrite, due to condition failure. Moreover, when searching there
can be multiple rewrites for each match, since the condition may be solved in
multiple ways. There is a table that for each condition fragment gives:

1. the number of times the fragment was initially tested,
2. the number of times the fragment was tested due to backtracking,
3. the number of times the fragment succeeded, and
4. the number of times the fragment failed.

Normally, (1) + (2) = (3) + (4).
Special rewrites such as built-in rewrites and memoized rewrites are also

tracked, but these are associated with symbols rather than with statements.
For conciseness, symbols with no special rewrites, and statements that are not
matched are omitted. There are some limitations: metalevel rewrites are not
displayed, due to the ephemeral nature of metamodules. In addition, condition
fragments associated with a match or search command are not tracked (though
any rewrites initiated by such a fragment are). If you turn profiling on or off
in the debugger you may get inconsistent results.

The profile information is associated with each module and is usually
cleared at the start of any command that can do rewrites, except continue.
This behavior can be changed with the set clear profile on / off com-
mand.

Let us first consider the Fibonacci function described in Section 4.4.8.

fmod FIBONACCI is

protecting NAT .

op fibo : Nat -> Nat .

var N : Nat .

eq fibo(0) = 0 .

eq fibo(1) = 1 .

eq fibo(s s N) = fibo(N) + fibo(s N) .

endfm

Notice in the following reductions that the times given when the profile is
active are slightly higher.

Maude> red fibo(30) .

reduce in FIBONACCI : fibo(30) .

rewrites: 4038805 in 3920ms cpu (3960ms real) (1030201 rews/sec)

result NzNat: 832040

Maude> set profile on .

Maude> red fibo(30) .

reduce in FIBONACCI : fibo(30) .



24.1 Debugging approaches 779

rewrites: 4038805 in 4170ms cpu (4194ms real) (968453 rews/sec)

result NzNat: 832040

After doing the reduction with the profiler activated, we can request the
collected information by means of the command show profile. In this exam-
ple, since the module has no memberships or rules and there are no conditional
axioms, the profiler gives the number of times each of the equations has been
applied and also the number of times built-in functions are called.

Maude> show profile .

op _+_ : [Nat] [Nat] -> [Nat] .

built-in eq rewrites: 1346268 (33.3333%)

eq fibo(0) = 0 .

rewrites: 514229 (12.7322%)

eq fibo(1) = 1 .

rewrites: 832040 (20.6011%)

eq fibo(s_^2(N)) = fibo(N) + fibo(s N) .

rewrites: 1346268 (33.3333%)

In this very simple example we observe that only the three equations in the
FIBONACCI module plus the predefined addition operation on natural num-
bers have been used. We can also observe how the equations are applied a
number of times relatively similar, with percentages 12, 20, and 33, respec-
tively. More interesting is the number of times each of them is applied, which
goes to 1346268 for the third equation. Taking into account that we reduced
fibo(30), it means that the calculations have been repeated many times. As
we saw in Section 4.4.8, this is a good place to use the memo attribute: calcu-
lations on small arguments are repeated many times and a small amount of
memory is needed for storing the result of such calculations.

After adding the memo attribute to the fibo operator, we get the following
results from the profiler:

Maude> set profile on .

Maude> red fibo(30) .

reduce in FIBONACCI : fibo(30) .

rewrites: 88 in 1ms cpu (1ms real) (88000 rews/sec)

result NzNat: 832040

Maude> show profile .

op _+_ : [Nat] [Nat] -> [Nat] .

built-in eq rewrites: 29 (32.9545%)

op fibo : [Nat] -> [Nat] .

memo rewrites: 28 (31.8182%)
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eq fibo(0) = 0 .

rewrites: 1 (1.13636%)

eq fibo(1) = 1 .

rewrites: 1 (1.13636%)

eq fibo(s_^2(N)) = fibo(N) + fibo(s N) .

rewrites: 29 (32.9545%)

As we already saw in Section 4.4.8, the number of rewrites and the time
consumed in the computation have decreased dramatically. We may observe
that now each of the values in the Fibonacci sequence is calculated only once.

Let us consider now another example, namely, the parameterized module
SORTED-LIST presented in Section 10.5, which defines a sort SortedList{X}

of sorted lists as a subsort of the sort List{TOSET}{X} of lists. In this case we
deal with a parameterized module which imports several other modules, and
which has membership axioms and equations, some of which are conditional.

First of all, notice that by default the profiler provides information on a
particular computation. In this example, it is not the same sorting a list in
reverse order as an already sorted list, and is not the same using insertion
sort, mergesort, or quicksort for sorting. To have a better insight about our
specification, and thus gaining chances of improving it, we should consider
several reductions, dealing with different cases, the different sorting algorithms
in our case.

To be able to run examples on big lists, with numbers initially sorted in
different ways, let us consider the following module NAT-LIST-GENERATOR,
which imports the module SORTED-LIST{NatAsToset} defining sorted lists
of natural numbers, and specifies functions nats-upto, that builds lists from
zero to the specified value, and random-nats, which generates a list of the
specified number of random numbers.

fmod NAT-LIST-GENERATOR is

protecting SORTED-LIST{NatAsToset} .

protecting RANDOM .

vars N M : Nat .

op nats-upto : Nat -> NeSortedList{NatAsToset} .

eq nats-upto(s N) = nats-upto(N) ++ s N : [] .

eq nats-upto(0) = 0 : [] .

op random-nats : Nat -> List{TOSET}{NatAsToset} .

op random-nats : Nat Nat -> List{TOSET}{NatAsToset} .

eq random-nats(N) = random-nats(0, N) .

ceq random-nats(N, M)

= random(N) : random-nats(s N, M)

if N <= M .
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eq random-nats(N, M) = [] [owise] .

endfm

We execute each one of the insertion-sort, mergesort, and quicksort

algorithms on three lists, namely, a sorted list, a list in reverse order, and a
random one, each of them with 1000 elements.

Maude> red insertion-sort(nats-upto(1000)) .

rewrites: 2012009 in 1032ms cpu (1079ms real) (1948029 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red insertion-sort(reverse(nats-upto(1000))) .

rewrites: 5519515 in 3634ms cpu (3694ms real) (1518667 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red insertion-sort(random-nats(1000)) .

rewrites: 1535372 in 1286ms cpu (1397ms real) (1193166 rews/sec)

result NeSortedList{NatAsToset}: 23772 : 1738648 : 2016694 : ...

Maude> red mergesort(nats-upto(1000)) .

rewrites: 2082358 in 1079ms cpu (1134ms real) (1928402 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red mergesort(reverse(nats-upto(1000))) .

rewrites: 2578581 in 1210ms cpu (1221ms real) (2129622 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red mergesort(random-nats(1000)) .

rewrites: 88005 in 71ms cpu (77ms real) (1222478 rews/sec)

result NeSortedList{NatAsToset}: 23772 : 1738648 : 2016694 : ...

Maude> red quicksort(nats-upto(1000)) .

rewrites: 6519514 in 5065ms cpu (5344ms real) (1287111 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red quicksort(reverse(nats-upto(1000))) .

rewrites: 6528518 in 4096ms cpu (4130ms real) (1593729 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red quicksort(random-nats(1000)) .

rewrites: 97858 in 75ms cpu (84ms real) (1287791 rews/sec)

result NeSortedList{NatAsToset}: 23772 : 1738648 : 2016694 : ...

Instead of considering the profiling information separately, we use the set

clear profile off command, so that the profiling information gets accu-
mulated.

Maude> set clear profile off .

Maude> set profile on .
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Maude> red insertion-sort(nats-upto(1000)) .

rewrites: 2012009 in 1169ms cpu (1351ms real) (1719927 rews/sec)

result NeSortedList{NatAsToset}: 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : ...

Maude> red insertion-sort(reverse(nats-upto(1000))) .

...

As mentioned above, with the profiler active, the times taken by the reduc-
tions are slightly higher. The number of rewrites and cpu time for each of the
cases is presented in the tables displayed in Figure 24.1 (page 787), where we
also include these values for all the different executions discussed in the rest
of the section.1 The information shown by the profiler with the show profile

command is three pages long; we just comment the most interesting pieces.

1. Predefined operators _+_, _quo_, _<=_, _>_, and random are used an im-
portant number of times, in particular _<=_ and _>_, which are applied,
respectively, 7599823 (28.2%) and 1770593 times (6.6%). Notice that _<=_
is only used in the conditions of one of the membership axioms and in some
of the conditions of the equations for insert-list, merge, leq-elems,
gr-elems, and random-nats; the operator _>_ is used in the conditions
of the equations for insert-list, mergesort, merge, leq-elems, and
gr-elems.

op _+_ : [Nat] [Nat] -> [Nat] .

built-in eq rewrites: 29961 (0.111124%)

op _quo_ : [Nat] [Nat] -> [Nat] .

built-in eq rewrites: 3000 (0.0111269%)

op _<=_ : [Nat] [Nat] -> [Bool] .

built-in eq rewrites: 7599823 (28.1874%)

op _>_ : [Nat] [Nat] -> [Bool] .

built-in eq rewrites: 1770593 (6.56706%)

op random : [Nat] -> [Nat] .

built-in eq rewrites: 3003 (0.011138%)

2. From the numbers for the membership axioms we may conclude that they
are applied a considerable number of times, in particular the conditional
one—4790561 rewrites (17.8%)—. Note that for conditional membership
axioms, as for all conditional axioms, the system gives information on
the number of matches, that is, the number of times that the conditions

1 All these figures have been obtained running Maude during a hot summer night
on a Linux platform with an Intel Pentium M760 2GHz processor and 1GB of
memory.



24.1 Debugging approaches 783

are reduced. It also provides the number of times each one of the frag-
ments of the condition is reduced. In the case of the membership axioms
in this specification, there is only one fragment. The part of the output
corresponding to the membership axioms is the following:

mb [] : SortedList{NatAsToset} .

rewrites: 22040 (0.0817455%)

mb N : [] : NeSortedList{NatAsToset} .

rewrites: 17505 (0.0649254%)

cmb N : NEOL:NeSortedList{NatAsToset} : NeSortedList{NatAsToset}

if N <= head(NEOL:NeSortedList{NatAsToset}) = true .

lhs matches: 4795972 rewrites: 4790561 (17.768%)

Fragment Initial tries Resolve tries Successes Failures

1 4795972 0 4790561 5411

We see that the condition has been checked 4795972 times, out of which
only 5411 failed.

3. From the equations specifying the insertion-sort algorithm, the ones
used more times are the two conditional ones for the insert-list func-
tion. From the information in the profile we see that these conditional
equations have been attempted almost the same number of times, 756888
and 754895. We also see that both have been applied almost the same
number of times, because the one that was attempted first almost always
failed the evaluation of its condition, and then the second equation was
applied.

eq insertion-sort([]) = [] .

rewrites: 3 (1.11269e-05%)

eq insertion-sort(N : L:List{TOSET}{NatAsToset}) = insert-list(

insertion-sort(L:List{TOSET}{NatAsToset}), N) .

rewrites: 3003 (0.011138%)

eq insert-list([], M) = M : [] .

rewrites: 1010 (0.00374605%)

ceq insert-list(N : OL:SortedList{NatAsToset}, M) = M : N :

OL:SortedList{NatAsToset} if M <= N = true .

lhs matches: 756888 rewrites: 1993 (0.00739196%)

Fragment Initial tries Resolve tries Successes Failures

1 756888 0 1993 754895

ceq insert-list(N : OL:SortedList{NatAsToset}, M) = N :

insert-list(OL:SortedList{NatAsToset}, M) if M > N = true .

lhs matches: 754895 rewrites: 754895 (2.79988%)

Fragment Initial tries Resolve tries Successes Failures

1 754895 0 754895 0
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4. The information on the equations for mergesort presents a similar pat-
tern, the main difference being that there is only one conditional equa-
tion, since merge is declared as commutative. In this case the number of
rewrites of all the equations is relatively small, much smaller than the
total of rewrites in the computation. This makes us think that the weight
of the computation of the memberships and generation of the lists to sort
is much higher that the sorting itself.

eq mergesort(N : []) = N : [] .

rewrites: 3003 (0.011138%)

ceq mergesort(L:List{TOSET}{NatAsToset}) = merge(mergesort(take

length(L:List{TOSET}{NatAsToset}) quo 2 from L:List{TOSET}{

NatAsToset}),mergesort(throw length(L:List{TOSET}{

NatAsToset}) quo 2 from L:List{TOSET}{NatAsToset})) if

length(L:List{TOSET}{NatAsToset}) > 1 = true .

lhs matches: 3000 rewrites: 3000 (0.0111269%)

Fragment Initial tries Resolve tries Successes Failures

1 3000 0 3000 0

eq merge([], OL:SortedList{NatAsToset}) = OL:SortedList{

NatAsToset} .

rewrites: 3000 (0.0111269%)

ceq merge(N : OL:SortedList{NatAsToset}, M : OL’:SortedList{

NatAsToset}) = N :merge(OL:SortedList{NatAsToset}, M :

OL’:SortedList{NatAsToset}) if N <= M = true .

lhs matches: 18705 rewrites: 18705 (0.0693761%)

Fragment Initial tries Resolve tries Successes Failures

1 18705 0 18705 0

5. The information for the quicksort algorithm follows a similar pattern as
well. However, in this case it is interesting to notice that the equations for
the leq-elems and gr-elems operations are attempted the same number
of times, and for each of these operations the condition (say, N <= M) of
one of the equations fails in around half of the cases, being then used the
other equation (with condition, say, N > M.

eq quicksort([]) = [] .

rewrites: 3006 (0.0111491%)

eq quicksort(N : L:List{TOSET}{NatAsToset}) = quicksort(

leq-elems(L:List{TOSET}{NatAsToset}, N)) ++ N : quicksort(

gr-elems(L:List{TOSET}{NatAsToset}, N)) .

rewrites: 3003 (0.011138%)

eq leq-elems([], M) = [] .

rewrites: 3003 (0.011138%)
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ceq leq-elems(N : L:List{TOSET}{NatAsToset}, M) = N :

leq-elems(L:List{TOSET}{NatAsToset}, M) if N <= M = true .

lhs matches: 1012626 rewrites: 506277 (1.87776%)

Fragment Initial tries Resolve tries Successes Failures

1 1012626 0 506277 506349

ceq leq-elems(N : L:List{TOSET}{NatAsToset}, M) = leq-elems(

L:List{TOSET}{NatAsToset}, M) if N > M = true .

lhs matches: 506349 rewrites: 506349 (1.87803%)

Fragment Initial tries Resolve tries Successes Failures

1 506349 0 506349 0

eq gr-elems([], M) = [] .

rewrites: 3003 (0.011138%)

ceq gr-elems(N : L:List{TOSET}{NatAsToset}, M) = gr-elems(

L:List{TOSET}{NatAsToset}, M) if N <= M = true .

lhs matches: 1012626 rewrites: 506277 (1.87776%)

Fragment Initial tries Resolve tries Successes Failures

1 1012626 0 506277 506349

ceq gr-elems(N : L:List{TOSET}{NatAsToset}, M) = N : gr-elems(

L:List{TOSET}{NatAsToset}, M) if N > M = true .

lhs matches: 506349 rewrites: 506349 (1.87803%)

Fragment Initial tries Resolve tries Successes Failures

1 506349 0 506349 0

6. From the rest of the equations applied we may highlight those for the
head and _++_ operations.

eq head(E:Nat : L:List{TOSET}{NatAsToset}) = E:Nat .

rewrites: 4795972 (17.7881%)

eq [] ++ L:List{TOSET}{NatAsToset} = L:List{TOSET}{

NatAsToset} .

rewrites: 12006 (0.0445298%)

eq (E:Nat : L:List{TOSET}{NatAsToset}) ++ L’:List{TOSET}{

NatAsToset} =E:Nat : (L:List{TOSET}{NatAsToset} ++ L’:List{

Toset}{NatAsToset}) .

rewrites: 5010777 (18.5848%)

The equation for the head function is used in the evaluation of the condi-
tion of the membership axiom. The concatenation operator is used in the
quicksort, nats-upto, and reverse functions.

Taking all the information provided by the profiler into account, we may
think of doing different types of modifications to the original specification.

• None of the operators seems to be appropriate for memoization, since
they are used on many different arguments, and if repeated, the size of
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the argument lists is so big that it is probably not worthy storing the
results.
Let us, in any case, add the memo attribute, e.g., to the head operator; the
result for one of the reductions above is the following:

Maude> red insertion-sort(random-nats(1000)) .

rewrites: 1535372 in 18500ms cpu (19221ms real) (82992 rews/sec)

result NeSortedList{NatAsToset}: 23772 : 1738648 : 2016694 : ...

That is, it goes from 1286 milliseconds cpu time to 18500. See Figure 24.1
for the rest of the values.

• Conditional equations are in general computationally expensive. Let us
write the two conditional equations for insertion-sort as one single
unconditional equation:

eq insert-list(N : OL, M)

= if M <= N

then M : N : OL

else N : insert-list(OL, M)

fi .

The result for the same reduction is the following:

Maude> reduce insertion-sort(random-nats(1000)) .

rewrites: 1536365 in 638ms cpu (704ms real) (2404692 rews/sec)

result NeSortedList{NatAsToset}: 23772 : 1738648 : 2016694 : ...

Although the number of rewrites increases slightly—from 1535372 to
1536365—, the amount of cpu time has dropped to a half—from 1286
ms. to 638 ms.

• We may use the owise attribute for making the conditional equation of
the mergesort function unconditional, that is, we may write it as:

eq mergesort(L)

= merge(mergesort(take (length(L) quo 2) from L),

mergesort(throw (length(L) quo 2) from L))

[owise] .

Although this clearly improves the equation, the win is not very signifi-
cant. To test it, we run the mergesort algorithm on a randomly generated
list.

Maude> red mergesort(random-nats(1000)) .

rewrites: 87005 in 68ms cpu (110ms real) (1261124 rews/sec)

result NeSortedList{NatAsToset}: 237728 : 17386481 : ...

The number of rewrites goes from 88005 to 87005 and the cpu time goes
from 71 ms. to 68 ms.

• A more important gain may be obtained by improving the splitting of the
lists for the quicksort algorithm. Let us join the leq-elems and gr-elems

functions in one single leq-gr-elems returning a pair of lists, one with
the smaller or equal elements and the other with the greater ones.



24.1 Debugging approaches 787

original spec. memo head unconditional
insert-list

profiler on profiler off

nats-upto
rews 2012009 2013009

ms 1169 1032 96188 1029

reverse-nats-upto
rews 5519515 5519515

ms 4189 3634 193977 2376

random-nats
rews 1535372 1536365

ms 1434 1286 18500 638

insertion-sort

original spec. memo head merge owise

profiler on profiler off

nats-upto
rews 2082358 2081358

ms 1223 1079 95760 1079

reverse-nats-upto
rews 2578581 2577581

ms 1409 1210 99579 1204

random-nats
rews 88005 87005

ms 108 71 559 68

mergesort

original spec. memo head improved
splitting

profiler on profiler off

nats-upto
rews 6519514 5267013

ms 5671 5065 221387 2523

reverse-nats-upto
rews 6528518 5777017

ms 4451 4096 196991 2650

random-nats
rews 97858 69612

ms 83 75 693 31

quicksort

Fig. 24.1. Number of rewrites and cpu time for different versions of the sorting
algorithms
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op quicksort : List{TOSET}{X} -> SortedList{X} .

op leq-gr-elems : List{TOSET}{X} X$Elt -> LGResult .

op leq-gr-elems : List{TOSET}{X} List{TOSET}{X} List{TOSET}{X}

X$Elt -> LGResult .

sort LGResult .

op {_,_} : List{TOSET}{X} List{TOSET}{X} -> LGResult .

eq quicksort([]) = [] .

ceq quicksort(N : L)

= quicksort(L’) ++ (N : quicksort(L’’))

if {L’, L’’} := leq-gr-elems(L, N).

eq leq-gr-elems(L, M) = leq-gr-elems(L, [], [], M) .

eq leq-gr-elems([], L, L’, M) = {L, L’} .

eq leq-gr-elems(N : L, L’, L’’, M)

= if N <= M

then leq-gr-elems(L, N : L’, L’’, M)

else leq-gr-elems(L, L’, N : L’’, M)

fi .

The execution of the quicksort function on a list of randomly generated
numbers takes now 69612 rewrites (against 97858) and does the reduction
in 31 milliseconds (around 75 before).

Maude> red quicksort(random-nats(1000)) .

reduce in SORTED-LIST-TEST : quicksort(random-nats(1000)) .

rewrites: 69612 in 31ms cpu (72ms real) (2175714 rews/sec)

result NeSortedList{NatAsToset}: 237728 : 17386481 : ...

There is still room for improvement in this specification. For instance,
some operations on lists can be made more efficient by means of tail-recursive
definitions with accumulator arguments, in the style of the definitions shown
in Section 9.12.1.

24.1.5 Performance note

Turning on tracing, break points, or profiling causes Maude to run much more
slowly, because these options force execution through a slow path that per-
forms extensive bookkeeping before and after each rewrite, membership appli-
cation, and condition fragment check. Therefore, execution will be significantly
slower if one or more of these options is on, even if no tracing information is
output, no break points are encountered, and the profile information is never
examined.

To ensure Maude is running at full speed one must use:

set trace off .

set break off .

set profile off .
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24.2 Traps and known problems

We list some commonly encountered problems with Maude.

24.2.1 Associativity and idempotency

Remember that the attributes assoc and idem (see Section 4.4.1) cannot
be used together in any combination of attributes, because the appropriate
matching and normalization algorithms have not been developed yet.

This requirement is quietly enforced by ignoring the attribute idem where
necessary.

Let us consider the following example, in which we wrongly declare an
operator with the attributes assoc and idem appearing together.

fmod WRONG-NAT-SET is

pr NAT .

sort WNatSet .

subsort Nat < WNatSet .

op none : -> WNatSet [ctor] .

op __ : WNatSet WNatSet -> WNatSet

[ctor assoc comm idem id: none] .

endfm

When we reduce a term like, e.g., 4 4 5 2, the duplication does not dis-
appear, because Maude has ignored the idempotency attribute; the remaining
attributes are applied as usual.

Maude> red 4 4 5 2 .

result WNatSet: 2 4 4 5

We can solve this by adding explicitly an idempotency equation, as we
have seen, for example, in Section 9.12.2.

Combining idem with attributes other than assoc is all right. For example,
the following module combines idempotency with commutativity.

fmod COMM-IDEM-EX is

pr NAT .

sort CI .

subsort Nat < CI .

op f : CI CI -> CI [ctor comm idem] .

vars N M : Nat .

var C : CI .

op g : CI -> Nat .

eq g(f(N, M)) = 0 .

eq g(C) = 1 [owise] .

endfm
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Maude> red f(2, 2) .

result NzNat: 2

Maude> red f(2, 3) == f(3, 2) .

result Bool: true

Notice that in this module, because of matching modulo commutativity
and idempotency, the first equation for g can be applied to a term such as,
e.g., g(2). For example, we have the following reductions:

Maude> red g(2) .

result Zero: 0

Maude> red g(f(2, f(2, 2))) .

result Zero: 0

Maude> red g(f(2, f(3, 4))) .

result NzNat: 1

24.2.2 Segmentation fault (core dumped)

This looks like a bug in Maude, but in fact it is a stack overflow (a real
segmentation fault is caught and reported as an “internal error”). On a Unix
box you can find out the current limit on your stack size with the (shell)
command

limit stacksize

This is often set to 8192K by default, which is quite inappropriate for a
highly recursive system like Maude. You can set the stack size to a larger
value with, for example,

limit stacksize 100M

or remove the limit altogether with

unlimit stacksize

Note that stack overflows are reported as Illegal instruction on both
PowerPC- and Intel-based Macs.

24.2.3 Bare variable lefthand sides

The use of a bare variable lefthand side for an equation, rule, or membership
axiom may lead to unexpected nontermination. The recommended place to
use them is in statements declared with the nonexec attribute, which are
only going to be applied via a strategy language. Using them in membership
axioms is seductive, but very tricky. For example:
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subsort Prime < Nat .

var N : Nat .

cmb N : Prime if favoritePrimeTest(N) .

will end up with the membership axiom and favoritePrimeTest being ap-
plied to every reduced term of sort Nat, including those that arise during
evaluation of favoritePrimeTest(N) with likely nontermination.

24.2.4 Operator overloading and associativity

The situation where two ad-hoc overloaded operators have the same kinds
in their arities but different ones in their coarities causes a warning to be
emitted, as already mentioned in Section 3.6. For example, loading the file
overloading-assoc-warning.maude containing the module

fmod OVER-ASSOC-EX1 is

sorts Foo Bar .

op f : Foo -> Foo .

op f : Foo -> Bar .

endfm

causes the following warning:

Warning: "overloading-assoc-warning.maude", line 8 (fmod

OVER-ASSOC-EX1): declaration for f has the same domain kinds as

the declaration on "overloading-assoc-warning.maude", line 7

(fmod OVER-ASSOC-EX1) but a different range kind.

A similar warning is obtained in the case where the arities differ but might
look the same because of associativity, like in the following example (loaded
as before):

fmod OVER-ASSOC-EX2 is

sort Foo .

op f : Foo Foo -> Foo [assoc] .

op f : Foo Foo Foo -> Foo .

endfm

Warning: "overloading-assoc-warning.maude", line 22

(fmod OVER-ASSOC-EX2): declaration for f clashes with

declaration on "overloading-assoc-warning.maude", line 21 (fmod

OVER-ASSOC-EX2) because of associativity.

24.2.5 Preregularity and equational attributes

We recall from Section 3.8 that Maude assumes that modules are preregular
and generates warnings when a module contains operator declarations that
do not satisfy this property. This means that for each possible combination
of argument sorts the resulting term has a unique least type, which is usually
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a sort but might also be the kind, depending on the operator declarations.
However, as also explained in Section 3.8, in the presence of equational at-
tributes, such as assoc, comm, id:, and idem (see Section 4.4.1), preregularity
must be understood modulo the axioms A declared by such attributes. That
is, we want not just each term t, but also each equivalence class [t]A to have a
least sort. Therefore, there is an additional requirement for an operator that is
declared associative, namely, that the least type of a term should not depend
on the way nested operators are associated. Let us explain this situation in
some detail.

The assoc attribute, stating that a binary operator is associative, appears
usually associated with declarations of operators whose arguments are both
of the same sort, like, for example,

op _+_ : Nat Nat -> Nat [assoc] .

However, in the presence of subsorts and overloaded operators it also makes
sense to have binary operators whose arguments are not the same, but are
related via subsorting; for example, to make it explicit that the addition of
a natural number to a nonzero natural number produces a nonzero natural
number, we can have an additional declaration

op _+_ : NzNat Nat -> NzNat [assoc] .

or also (see Section 4.4.6)

op _+_ : NzNat Nat -> NzNat [ditto] .

Thus, in general, the assoc attribute is allowed for binary operators such
that the two argument sorts and the result sort all belong to the same con-
nected component. Therefore, it is possible to consider a module like the
following:

fmod NON-ASSOCIATIVE-EX is

sorts s1 s2 .

subsort s1 < s2 .

op f : s1 s2 -> s2 [assoc] .

op a : -> s1 .

eq f(a,a) = a .

endfm

If we try to reduce the term f(a,a), we get the following warning:

Maude> red f(a, a) .

Warning: sort declarations for associative operator f are

non-associative on 2 out of 27 sort triples. First such triple is

(s1, s1, s2).

reduce in NON-ASSOCIATIVE-EX : f(a, a) .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result s1: a
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Maude has checked the preregularity property on the associative operator
f. It is enough to check this property on each triple of types, and when it
fails to hold Maude returns the first such triple. In this example we have
three possible types for each one of the two arguments and also for the result,
namely, the sorts s1 and s2, and the corresponding kind [s2], and therefore
we have 33 = 27 possible triples. Among those, the triple (s1, s1, s2)

does not satisfy the preregularity checking, because f(X:s1, X:s1) has sort
s2, f(X:s1, X:s2) has sort s2, and f(X:s2, X:s2) has kind [s2], but no
sort; thus the flattened term f(X:s1, X:s1, X:s2) could have either sort
s2, by grouping the arguments as f(X:s1, f(X:s1, X:s2)), or kind [s2],
by grouping the arguments as f(f(X:s1, X:s1), X:s2)). To sum up, the
sort structure for the operator f is said to be non-associative on the triple
(s1, s1, s2).

Two ways of avoiding this undesirable situation are the following: either
having a unique declaration at the top sort with both arguments of the same
sort,

fmod ASSOCIATIVE-EX1 is

sorts s1 s2 .

subsort s1 < s2 .

op f : s2 s2 -> s2 [assoc] .

op a : -> s1 .

eq f(a,a) = a .

endfm

Maude> red f(a, a) .

reduce in ASSOCIATIVE-EX1 : f(a, a) .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result s1: a

or adding enough declarations to cover all possible combinations of arguments;
in this case only one more declaration is enough, as follows:

fmod ASSOCIATIVE-EX2 is

sorts s1 s2 .

subsort s1 < s2 .

op f : s2 s2 -> s2 [assoc] .

op f : s1 s2 -> s2 [assoc] .

op a : -> s1 .

eq f(a,a) = a .

endfm

Maude> red f(a, a) .

reduce in ASSOCIATIVE-EX2 : f(a, a) .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result s1: a

When an associative operator is also declared to be commutative using the
comm atribute, Maude computes the commutative completion (switching the



794 24 Debugging and Troubleshooting

order of the argument sorts) of the given operator declarations before checking
preregularity.

In the case of the id: and idem attributes, preregularity modulo those
axioms requires that all collapses, that is, all passages from a term f(t, e) to an
equivalent term t by application of an identity equation f(x, e) = x; or from a
term f(t, t) to an equivalent term t by application of an idempotency equation
f(x, x) = x (where in both cases the top function symbol f disappears), should
be such that the least sort of the resulting term t is smaller than or equal to
the least sort of f(t, e) (resp. f(t, t)). A term that can collapse from one sort
to a greater or incomparable sort breaks the sort calculations and violates
preregularity modulo such axioms. Therefore, syntactic conditions ensuring
that a collapse is also into a lesser or equal sort are checked by Maude for
both the id: and idem attributes.

24.2.6 Collapse theories

Using id: or idem attributes means that you are (conceptually) working with
infinite equivalence classes, and that many lefthand side patterns will match in
unexpected ways. Unlike OBJ3, Maude has true collapse matching algorithms,
rather than identity completion, and it does not try to omit problematic
matches. Consider for example the module

fmod COLLAPSE-ID-EX is

sort Foo .

ops a e : -> Foo .

op f : Foo Foo -> Foo [left id: e] .

var X : Foo .

eq f(X, a) = ...

endfm

Then we have

a = f(e, a) = f(e, f(e, a)) = ...

In particular, the pattern f(X, a) matches a with X ← e, leading to
possible nontermination. You should be wary of having an operator with an
identity element as the top symbol for a lefthand side. One useful trick when
you need a pattern like f(X, a) is to use a pattern f(Y, a) where Y has a
sort lower than that of the identity element. For example,

fmod COLLAPSE-NAT-EX is

sorts Nat NzNat .

subsort NzNat < Nat .

op 0 : -> Nat .

op s : Nat -> NzNat .

op + : Nat Nat -> Nat [assoc comm id: 0] .

op + : Nat NzNat -> Nat [assoc comm id: 0] .

var X : Nat .
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var Y : NzNat .

eq +(s(X), Y) = s(+(X, Y)) .

endfm

Here +(s(X), Y) cannot match s(0) because, although s(0) = +(s(0), 0)

by the identity attribute, Y cannot match 0.
Rewriting with the idem attribute is even riskier. For example,

fmod COLLAPSE-IDEM-EX is

sort Foo .

ops a b : -> Foo .

op f : Foo Foo -> Foo [idem] .

var X : Foo .

eq a = b .

endfm

We then have

a = f(a, a) = f(f(a, a), f(a, a)) = ...

Thus, if a can be rewritten by an equation, then any number of rewrites
can be done by using the idem axiom to create new copies of a. In fact, the
current implementation would choose the obvious rewrite and just produce b,
but this should not be relied upon; COLLAPSE-IDEM-EX is a nonterminating
system. The only safe way to use idem is as follows. Whenever a connected
component is the domain and range of an operator having the idem attribute,
then its sorts are poisoned. Terms of poisoned sorts must never rewrite other
than by rules under the control of a strategy, that is, using metalevel descent
functions. Such terms must be built out of free constructors—operators that
may have equational attributes such as comm, but may not have equations
with these operators at the top. Of course, it is ok to have defined functions
that work on such constructor terms; it is just that the terms themselves may
not rewrite.

24.2.7 One-sided identities and associativity

When the associativity axiom is combined with a one-sided identity axiom
some unexpected matching properties result. Consider the module:

fmod ASSOC-ID-EX is

sort Foo .

ops a b 1f : -> Foo .

op f : Foo Foo -> Foo [assoc left id: 1f] .

var X Y : Foo .

endfm

Then (see Section 25.3 for matching commands),

match f(X, Y) <=? f(a, b) .
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yields three solutions:

Solution 1

X:Foo --> 1f

Y:Foo --> f(a, b)

Solution 2

X:Foo --> a

Y:Foo --> b

Solution 3

X:Foo --> f(a, 1f)

Y:Foo --> b

whereas the naive user may not have expected the last solution.
Matching with extension can be even more surprising. The command

xmatch f(X, Y) <=? f(a, b) .

yields five solutions:

Solution 1

Matched portion = f(a, 1f)

X:Foo --> a

Y:Foo --> 1f

Solution 2

Matched portion = f(a, 1f)

X:Foo --> f(a, 1f)

Y:Foo --> 1f

Solution 3

Matched portion = (whole)

X:Foo --> 1f

Y:Foo --> f(a, b)

Solution 4

Matched portion = (whole)

X:Foo --> a

Y:Foo --> b

Solution 5

Matched portion = (whole)

X:Foo --> f(a, 1f)

Y:Foo --> b

Here the first two solutions match a portion f(a, 1f) of the subject that
was not apparent from the original problem. However, if one considers the
equivalence class of f(a, b) they are valid solutions that are necessary for
correct simulation of (conditional) rewriting on equivalence classes.
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24.2.8 Memberships for associative operators

Membership axioms can interact with assoc or iter operator attributes in
undesirable ways.

The reason is that, for completeness, the operator declarations would have
to be tried on every subterm of every member of the equivalence class, and
this is not done (for efficiency reasons) in the current implementation, giving
rise to some warnings.

For associative operators declared at the sort level, membership axioms
will be applied only at the top, they will not be applied to subterms in the
process of applying an operator declaration to compute the sort. For example
in the following module

fmod ASSOC-MB-EX1 is

sort Foo .

op f : Foo Foo -> Foo [assoc comm] .

op e : -> [Foo] .

ops a b c d : -> Foo .

mb f(a, e) : Foo .

endfm

the membership axiom will not be used to lower the sort of f(a, f(b, e))

to foo as it does not match at the top.
Recall from Sections 3.9.3 and 4.8 that terms built with associative oper-

ators can be written in flattened form. This is the notation used for f-terms
in the following examples.

Maude> red f(a, b, e) .

Warning: membership axioms are not guaranteed to work correctly for

associative symbol f as it has declarations that are not at the

kind level.

reduce in ASSOC-MB-EX1 : f(e, a, b) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, a, b)

Maude> red f(a, b, e, a) .

reduce in ASSOC-MB-EX1 : f(e, a, a, b) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, a, a, b)

Maude> red f(e, b, e, a) .

reduce in ASSOC-MB-EX1 : f(e, e, a, b) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, e, a, b)

Maude> red f(a, b, e, e, a) .

reduce in ASSOC-MB-EX1 : f(e, e, a, a, b) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, e, a, a, b)
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Maude> red f(a, a, b, e, e, a) .

reduce in ASSOC-MB-EX1 : f(e, e, a, a, a, b) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, e, a, a, a, b)

Here the intuition is that each e forces the result to the kind level, unless
there is an a to bring it back down. Unfortunately, for f(a, b, e) we would
need to use the membership axiom on a proper subterm, and then use the
declaration at the top to arrive at the sort Foo, and this is not allowed.

Note that the warning produced by Maude is a per module warning and
is only printed once, when the first reduction or rewriting command is given
in the module.

The module ASSOC-MB-EX1 above can be rewritten so that sort computa-
tions work as expected as follows:

fmod ASSOC-MB-EX2 is

sort Foo .

op f : [Foo] [Foo] -> [Foo] [assoc comm] .

op e : -> [Foo] .

ops a b c d : -> Foo .

mb f(X:Foo, Y:Foo) : Foo .

mb f(a, e) : Foo .

endfm

Maude> red f(a, b, e) .

reduce in ASSOC-MB-EX2 : f(e, a, b) .

rewrites: 2 in 0ms cpu (1ms real) (~ rews/sec)

result Foo: f(e, a, b)

Maude> red f(a, b, e, a) .

reduce in ASSOC-MB-EX2 : f(e, a, a, b) .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f(e, a, a, b)

Maude> red f(e, b, e, a) .

reduce in ASSOC-MB-EX2 : f(e, e, a, b) .

rewrites: 6 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f(e, e, a, b)

Maude> red f(a, b, e, e, a) .

reduce in ASSOC-MB-EX2 : f(e, e, a, a, b) .

rewrites: 11 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f(e, e, a, a, b)

Maude> red f(a, a, b, e, e, a) .

reduce in ASSOC-MB-EX2 : f(e, e, a, a, a, b) .

rewrites: 12 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f(e, e, a, a, a, b)
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Here the operator declaration is at the kind level, and the effect of the
declaration of f in ASSOC-MB-EX1 is obtained by an extra membership axiom.2

Let us see another example of this situation, starting with a module spec-
ifying non-empty lists of natural numbers.

fmod SIMPLE-NAT-LIST is

protecting NAT .

sort NatList .

subsort Nat < NatList .

op __ : NatList NatList -> NatList [assoc] .

endfm

It seems natural to specify sorted lists of natural numbers by importing
SIMPLE-NAT-LIST and then defining a subsort of NatList.

fmod NAIVE-SORTED-NAT-LIST is

protecting SIMPLE-NAT-LIST .

sort SortedNatList .

subsort Nat < SortedNatList < NatList .

vars I J : Nat .

var SNL : SortedNatList .

cmb I J : SortedNatList if I <= J .

cmb I J SNL : SortedNatList if I <= J /\ J SNL : SortedNatList .

endfm

Maude> red 0 1 2 3 4 5 6 7 8 9 .

Warning: membership axioms are not guaranteed to work correctly for

associative symbol __ as it has declarations that are not at the

kind level.

reduce in NAIVE-SORTED-NAT-LIST : 0 1 2 3 4 5 6 7 8 9 .

rewrites: 1354 in 0ms cpu (0ms real) (~ rews/sec)

result SortedNatList: 0 1 2 3 4 5 6 7 8 9

To avoid this, we can rewrite the module above so that we only use kind-
level operator declarations (notice the form of the arrow) and convert all sort-
level operator declarations into memberships.

fmod NAT-LIST-KIND is

protecting NAT .

sort NatList .

subsort Nat < NatList .

op __ : NatList NatList ~> NatList [assoc] .

mb I:NatList J:NatList : NatList .

endfm

2 Maude 1 did not allow multiple membership axioms on associative operators.
In Maude 2 this works, although it will be extremely inefficient for large terms,
since matching the extra membership essentially amounts to expanding out the
equivalence class.
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fmod SORTED-NAT-LIST-KIND is

protecting NAT-LIST-KIND .

sort SortedNatList .

subsort Nat < SortedNatList < NatList .

vars I J : Nat .

var SNL : SortedNatList .

cmb I J : SortedNatList if I <= J .

cmb I J SNL : SortedNatList if I <= J /\ J SNL : SortedNatList .

endfm

Maude> red 0 1 2 3 4 5 6 7 8 9 .

reduce in SORTED-NAT-LIST-KIND : 0 1 2 3 4 5 6 7 8 9 .

rewrites: 1354 in 0ms cpu (0ms real) (~ rews/sec)

result SortedNatList: 0 1 2 3 4 5 6 7 8 9

24.2.9 Memberships for iterated operators

In analogy to interaction of associative operators and membership declara-
tions, terms constructed with a stack of iterated operators may not be as-
signed the expected sort when it is necessary to apply a membership axiom to
a subterm in order to infer the sort. Again, if an iter operator is declared at
the sort level, Maude will not apply membership axioms to subterms in order
to calculate the sort of a subterm before attempting to apply the operator
declaration to calculate the sort of the whole term. As an example, consider
the following module:

fmod ITER-MB-EX1 is

sort Foo .

op f : Foo -> Foo [iter] .

op e : -> [Foo] .

mb f(e) : Foo .

endfm

Maude> red f(e) .

Warning: membership axioms are not guaranteed to work correctly for

iterated symbol f as it has declarations that are not at the

kind level.

reduce in ITER-MB-EX1 : f(e) .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f(e)

Maude> red f(f(e)) .

reduce in ITER-MB-EX1 : f^2(e) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f^2(e)
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Maude> red f(f(f(e))) .

reduce in ITER-MB-EX1 : f^3(e) .

rewrites: 0 in 0ms cpu (0ms real) (~ rews/sec)

result [Foo]: f^3(e)

Here the intuition is that e is at the kind level, but f(e) is not. Unfortu-
nately, for f(f(e)) we would need to use the membership axiom on a proper
subterm and then use the declaration at the top to arrive at the sort Foo, and
declarations applying above membership axioms for iterated operators are not
allowed.

Again, recall that the warning that membership axioms may not work is
only given once per module. Here it just happens that it is given in response
to a reduction command that does give the right answer.

The example can be rewritten so that membership axioms can be used to
compute the desired sort as follows:

fmod ITER-MB-EX2 is

sort Foo .

op f : [Foo] -> [Foo] [iter] .

op e : -> [Foo] .

mb f(X:Foo) : Foo .

mb f(e) : Foo .

endfm

Maude> red f(e) .

reduce in ITER-MB-EX2 : f(e) .

rewrites: 1 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f(e)

Maude> red f(f(e)) .

reduce in ITER-MB-EX2 : f^2(e) .

rewrites: 2 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f^2(e)

Maude> red f(f(f(e))) .

reduce in ITER-MB-EX2 : f^3(e) .

rewrites: 3 in 0ms cpu (0ms real) (~ rews/sec)

result Foo: f^3(e)

Here the operator declaration is at the kind level, and as in the associativity
example in the previous section, the effect of the old declaration is obtained
by an extra membership axiom. Note that using membership axioms in this
way loses the efficiency for big towers of operators, which is the whole point
of the iter theory.

24.2.10 Ambiguity in print attribute items

Since Maude has few restrictions on variable names, it is possible to intro-
duce ambiguity with the print attribute by using strings or attribute names
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as variables. Consider, for example, the following module, where the string
"here" and the keyword metadata are also declared as variables.

fmod PRINT-ATTR-AMBIGUOUS is

sort Foo .

op a : -> Foo .

ops f g h : Foo -> Foo .

vars metadata "here" : Foo .

eq f("here") = g("here") [print "here"] .

eq g(metadata) = h(metadata)

[print "metadata = " metadata "g->h equation"] .

endfm

In the print attribute of the first equation, Maude cannot decide whether
"here" is a string constant or a variable. Similarly, in the print attribute of
the second equation, Maude will not be able to decide whether metadata is a
variable or a keyword. Under these circumstances, Maude will output warnings
about the multiple parses and then make an undefined choice between them.

Warning: <standard input>, line 6 (fmod PRINT-ATTR-AMBIGUOUS):

multiple distinct parses for statement

eq f ("here") = g ("here") [print "here"] .

Warning: <standard input>, line 7 (fmod PRINT-ATTR-AMBIGUOUS):

multiple distinct parses for statement

eq g (metadata) = h (metadata)

[print "metadata = " metadata "g->h equation"] .

In this particular example, the equations work but, as a consequence of the
ambiguity, the user does not get the expected information provided by the
print attribute.

Maude> set print attribute on .

Maude> red f(g(a)) .

reduce in PRINT-ATTR-AMBIGUOUS : f(g(a)) .

metadata =

h(a)

metadata =

rewrites: 3 in 0ms cpu (0ms real) (25210 rewrites/second)

result Foo: h(h(a))
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Complete List of Maude Commands

In this chapter we use curly bracket pairs, ‘{’ and ‘}’, to enclose optional
syntax.

25.1 Command line flags

The following command line flags are supported.

- -help
Displays information on the usage of the Maude command and its line
flags.

- -version
Displays the Maude version number.

-no-mixfix
Turns off mixfix printing; useful if Maude is being run by some other
program that does not want to deal with the intricacies of mixfix parsing.

-ansi-color, -no-ansi-color
By default ANSI escape codes for color and other effects are disabled if
the standard output is not a terminal or the TERM environment variable
is set to dumb. These flags allow the default behavior to be overridden.

-tecla, -no-tecla
By default Tecla-based command line editing is disabled if the standard
output is not a terminal or the TERM environment variable is set to dumb

or emacs. These flags allow the default behavior to be overridden.

-no-prelude
Causes Maude not to read in the standard prelude.

-batch
Disables control-C handling.
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-interactive
Pretends to be interactive, and enables control-C handling even though
standard output is not a terminal.

-xml-log=file-name
Generates an XML log for selected commands in the given file.

-no-banner
Causes Maude not to show the welcome banner at start-up.

-random-seed=number
Specifies the natural number number in the range [0, 232 − 1] as the seed
for the pseudo-random number generator random in module RANDOM (see
Section 9.3). The default seed is 0.

-no-advise
Switches off advisories at start up.

-no-wrap
Disables the automatic line wrapping of output.

25.2 Rewriting commands

reduce {in module :} term .
Causes the specified term to be reduced using the equations and mem-
bership axioms in the given module. reduce may be abbreviated to red.
If the in clause is omitted, the current module is assumed. For examples,
see Section 4.9.

rewrite {[ bound ]} {in module :} term .
Causes the specified term to be rewritten using the rules, equations, and
membership axioms in the given module. The default interpreter for rules
applies them using a rule-fair top-down (lazy) strategy and stops when
the number of rule applications reaches the given bound. No rule will
be applied if an equation can be applied. If the in clause is omitted,
the current module is assumed. If the upper bound clause is omitted,
infinity is assumed. rewrite may be abbreviated to rew. For examples,
see Section 6.4.1.

frewrite {[ bound {,number} ]} {in module :} term .
Like the previous command, causes the specified term to be rewritten
using the rules, equations, and membership axioms in the given mod-
ule. But now the default interpreter for rules applies them using a rule-
and position-fair strategy and stops when the number of rule applications
reaches the given bound. This strategy causes multiple passes over the
term, with at most number rule rewrites taking place at each position.
If the in clause is omitted, the current module is assumed. If the upper
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bound clause is omitted, infinity is assumed. If the number of rewrites per
position is omitted, 1 is assumed. frewrite may be abbreviated to frew.
For examples, see Section 6.4.2.
Unlike rewrite, which uses a leftmost outermost strategy for applying
rules and reduces the whole term with equations after each successful rule
rewrite, frewrite attempts to be position fair by making a number of
depth-first traversals of the term. On each traversal, each position that
existed at the start of the traversal is entitled to at most number rule
rewrites when its turn comes around. After a rule rewrite succeeds, only
the subterm that was rewritten is reduced with equations in order to
avoid destroying positions that have not yet had their turn for the current
traversal. Traversals are made until bound rule rewrites have been made,
or until no more rewrites are possible. When operators have the assoc

or iter attributes, term depth and positions are relative to the flattened
or compact form of the term, respectively. Thus, fair rewriting treats a
whole stack of an iter operator as a single position for the purposes of
position fairness.
The are a couple of caveats with frewrite:
• If position-fair rewriting stops in mid traversal, then the sort of the (in-

completely reduced) result has not yet been calculated and is printed
as (sort not calculated).

• Position-fair rewriting is not substitution fair; this is particularly ap-
parent if you have a multiset of messages and objects, as in Sec-
tion 11.2.

erewrite {[ bound {,number} ]} {in module :} term .
Works like the frewrite command and in addition it allows messages to
be exchanged with external objects that do not reside in the configuration.
It is abbreviated to erew.

continue {number} .
Attempts to continue rewriting the result of the last rewriting command
using the rules, equations, and membership axioms, stopping if the upper
bound on the number of rule applications is reached. This command is
only usable if the current module has not changed since the last rewrit-
ing command, and the last rewriting command was not reduce. If no
upper bound clause is given, infinity is assumed. In the case where the
last rewriting command was frewrite, the number given to the continue
command increases the bound on the number of traversals, leaving the
number of rewrites per position unchanged. In particular, considerable
extra information about the current traversal is saved by the frewrite

command so that, for example,

frewrite [n, k] t .

continue m .

produces the same final answer as
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frewrite [s, k] t .

when s = n + m. For an erewrite command, the same state information
is preserved as for frewrite, but in this case nothing can be guaranteed,
due to the interaction with the external environment.

loop {in module :} term .
This command is used to initialize the read-eval-print loop in a module
importing LOOP-MODE (see Section 18.1). The specified term is rewritten as
far as possible using the rules, equations, and membership axioms in the
given module. If the result has a loop constructor symbol at the top, then
it becomes the current state of the loop; also, the list of quoted identifiers
in the output position of the loop constructor is printed as a sequence of
identifiers.

( identifier* )
This command is used to input a list of identifiers to the loop in a module
importing LOOP-MODE (see Section 18.1). If the current module has not
changed since the last rewriting command, the result of previous rewrites
has a loop constructor symbol at the top, and the last rewriting command
was not reduce then:
1. the sequence of identifiers in the parentheses is converted into a list of

quoted identifiers and is placed under the input position of the loop
constructor;

2. a nil list of quoted identifiers is placed under the output position of
the loop constructor;

3. the new term is rewritten as far as possible using the rules, equations,
and membership axioms in the module to which the term belongs; and

4. if the new result has a loop constructor symbol at the top, the list
of quoted identifiers in the output position of the loop constructor is
printed as a sequence of identifiers.

set clear rules on . / set clear rules off .
Normally, each rewrite or frewrite command and each loop mode in-
vocation resets the rule state for each symbol. For most symbols the rule
state consists of the next rule to be executed in a round-robin scheme but
for counter symbols the rule state consists of the next number to rewrite
to. Setting clear rules to off means the rule state will not be reset between
commands.

25.3 Matching commands

Matching commands are used to directly invoke the rewriting engine’s term
pattern matcher. They can be useful for figuring out exactly what subjects
can be matched by a complex pattern.
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match {[ number ]} {in module :} pattern <=? subject-term {such
that condition} .
Performs straightforward matching in the given module. This kind of
matching is used by the engine for applying membership axioms. The
result is a list of at most number matching substitutions such that the
subject term matches the pattern and the substitution satisfies the op-
tional condition (whose syntactic form is the same as the one of conditions
for conditional equations and memberships; see Section 4.3). If the upper
bound clause is omitted, infinity is assumed. For examples, see Section 4.9.

xmatch {[ number ]} {in module :} pattern <=? subject-term {such
that condition} .
Works similarly to the previous command, except that it performs match-
ing with extension for those theories that need it (those including the
assoc or iter attributes). If the subject term (after theory normaliza-
tion) has a symbol f from an extension theory on top, only a piece of the
top theory layer with f on top need be matched. This kind of matching is
used by the engine for applying equations and rules in order to accurately
simulate equivalence class rewriting. The result is a list of all matches
satisfying the given condition. If only part of the subject was matched,
that part is given. For examples, see Sections 4.8 and 4.9.

25.4 Searching commands

search {[ bound {,depth} ]} {in module :} subject searchtype pattern
{such that condition} .
Performs a breadth-first search for rewrite proofs starting at subject to a
final state that matches pattern and satisfies an optional condition (whose
syntactic form is the same as the one of conditions for conditional equa-
tions and memberships; see Section 4.3). Possible values for searchtype
are

=>1 one step proof
=>+ one or more steps proof
=>* zero or more steps proof
=>! only canonical final states, that cannot be further rewritten,

are allowed as solutions

The optional bound argument provides an upper bound in the number of
solutions to be found; if it is omitted, infinity is assumed.
The optional depth argument indicates the maximum depth of the search.
If it is omitted, infinity is assumed. It is also possible to give a depth
bound without giving a bound on the number of solutions returned by
requesting a search of the form search [,m] ....
The search type =>1 is an abbreviation of the search type =>+ with the
depth bound set to 1.
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As usual, if the in clause is omitted, the current module is assumed.
For examples, see Section 6.4.3.

show search graph .
Displays the search graph generated by the last search.

show path number .
Displays the path to a given state, identified by the number, in a search
graph.

show path labels number .
Works like the command above, but only shows labels of applied rules
instead of the full path.

25.5 Unification and variants commands

unify {[ bound ]} {in module :} term1 =? term’ 1 { /\ . . . /\ termk

=? term’ k } .
Computes a complete set of order-sorted unifiers modulo the (supported)
equational axioms in the given module for the provided unification prob-
lem. If the cardinality of the set of unifiers is greater than the specified
bound, the unifiers beyond that bound are omitted. The module can be
any module or theory declared in the current Maude session; as usual, if
the in clause is omitted, the current module is used.
For examples, see Section 15.4.

variant unify {[ bound ]} {in module :} term1 =? term’ 1 { /\ . . . /\
termk =? term’ k } .
Computes a complete set of order-sorted unifiers modulo the equations
declared with the variant attribute (which must satisfy the finite variant
property) plus the (supported) equational axioms in the given module for
the provided unification problem. If the cardinality of the set of unifiers
is greater than the specified bound, the unifiers beyond that bound are
omitted. The module can be any module or theory declared in the current
Maude session; as usual, if the in clause is omitted, the current module is
used.
For more details, see Section 15.10.1.

get variants {[ bound ]} {in module :} term .
Computes a complete set of variants of the given term in the (supported)
equational theory of the given module, where the equations of interest
must be declared with the variant attribute. If the cardinality of the set
of variants is greater than the specified bound, the variants beyond that
bound are omitted. The module can be any module or theory declared
in the current Maude session; as usual, if the in clause is omitted, the
current module is used.
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For examples and more details, see Section 15.9.2.

25.6 Tracing commands

Tracing produces detailed information about each rewrite performed and each
conditional rewrite attempted. Since this typically results in an unmanageably
huge volume of output, there are commands to control what is actually dis-
played.

set trace on . / set trace off .
These commands turn tracing on and off. If tracing is turned on, all trace
information will be generated internally, even if none of it is displayed,
thus considerably slowing the speed of interpretation.

set trace condition on . / set trace condition off .
Determines whether the evaluations of conditions are traced.

set trace whole on . / set trace whole off .
Determines whether the whole term is printed before and after a rewrite.

set trace substitution on . / set trace substitution off .
Determines whether the substitution is printed.

set trace mb on . / set trace mb off .
Determines whether membership axiom applications are printed.

set trace eq on . / set trace eq off .
Determines whether equation applications are printed.

set trace rl on . / set trace rl off .
Determines whether rule applications are printed.

set trace select on . / set trace select off .
Determines whether only trace information for selected operator symbols
is printed (rather than all symbols).

trace select symbols . / trace deselect symbols .
Selects/deselects operator symbols and labels from the current module for
tracing with the select option. Examples:

trace select foo bar baz .

trace deselect baz .

trace exclude modules . / trace include modules .
Controls which modules are traced. Examples:

trace exclude META-LEVEL .

trace include MY-MOD1 MY-MOD2 .
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set trace rewrite on . / set trace rewrite off .
Determines whether the redex and its replacement are printed.

set trace body on . / set trace body off .
Determines whether the “start of rewrite” line (i.e., the one beginning
with *’s) and the body of the equation/rule/membership being used are
printed; if turned off, just the label and the substitution are printed. By
setting both body and rewrite to off (see previous command), these op-
tions reduce a trace to a list of labels much like that produced by the show
path labels number command.

set trace builtin on . / set trace builtin off .
Determines whether trace information for built-in operator symbols is
printed.

25.7 Print attribute commands

In print attribute mode, when a statement is executed, the items in its print
attribute are printed, with variables taking their value in the current substi-
tution.

set print attribute on . / set print attribute off .
These commands turn print attribute mode on and off. It is off by default.

set print attribute newline on . / set print attribute newline off .
These commands determine whether a newline is printed following the
items of a print attribute. By default a newline is printed (even if there
are no items).

Note that print attribute mode is like trace mode, break mode, and profile
mode in that in this mode all execution takes the slow path. This is true even
if no print attributes are encountered.

25.8 Print option commands

set print mixfix on . / set print mixfix off .
Controls whether operators with mixfix syntax are printed in either mixfix
or prefix form. User-defined syntax is supported for pretty-printing, even
though it is not currently supported for parsing. It is sometimes advan-
tageous to have uniform prefix notation for output; for example, if the
output is going to be postprocessed by some other tool. Default is on.

set print graph on . / set print graph off .
If on, terms that are internally represented by graphs (currently, result
terms together with terms being reduced and terms in substitutions dur-
ing tracing) are printed as graph representations rather than as terms,
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together with the number of operator symbols in the full term. This can
be useful in some pathological cases where the size of the term is expo-
nential on the size of the graph. Default is off.

set print flattened on . / set print flattened off .
Controls whether arguments under operators with the associative at-
tribute are printed in flattened form or not. Default is on.

set print with parentheses on . / set print with parentheses off .
If on, mixfix terms are printed with additional parentheses to make group-
ing explicit. Default is off.

set print with aliases on . / set print with aliases off .
Controls if variables aliases are used. Default is on.

set print number on . / set print number off .
Controls if special output convention for natural numbers is used. Default
is on.

set print rational on . / set print rational off .
Controls if special output convention for rational numbers is used. Default
is on.

set print color on . / set print color off .
Controls if reduction status coloring is used. Default is off.

set print format on . / set print format off .
Controls if format attributes are obeyed. Default is on.

set print conceal on . / set print conceal off .
Controls if argument hiding is used. Default is off.

print conceal symbols . / print reveal symbols .
Controls which operators have their arguments hidden.

25.9 Show option commands

set show stats on . / set show stats off .
Determines whether the number of rewrites is printed with the results of
the reduce, rewrite, and continue commands in Section 25.2. Default
is on.

set show loop stats on . / set show loop stats off .
As above but for loop mode.

set show timing on . / set show timing off .
Determines whether the cpu and real time used during rewriting is printed
with the results of the reduce, rewrite, and continue commands in
Section 25.2. Default is on.
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set show loop timing on . / set show loop timing off .
As above but for loop mode.

set show command on . / set show command off .
Determines whether the full form of certain commands is printed before
they are executed. Default is on.

set show breakdown on . / set show breakdown off .
Determines whether a breakdown of rewrites is dispayed. Default is off.

set show gc on . / set show gc off .
Determines which message is printed when a garbage collect is performed.
Default is off.

set show advisories on . / set show advisories off .
Determines whether advisories are displayed. Default is on.

25.10 Show commands

show modules .
Lists the names of all the modules that are currently in the module
database maintained by the system.

show module {module} .
Prints out a representation of the given module (or of the current module
if none is given).

show all {module} .
Prints out a flattened representation of the given module (or of the current
module if none is given).

show sorts {module} .
Prints out a representation of the sort and subsort information for the
given module (or for the current module if none is given).

show ops {module} .
Lists the operators in the given module (or in the current module if none
is given).

show vars {module} .
Lists the variables in the given module (or in the current module if none
is given).

show mbs {module} .
Lists the membership axioms in the given module (or in the current mod-
ule if none is given).



25.12 Debugger commands 813

show eqs {module} .
Lists the equations in the given module (or in the current module if none
is given).

show rls {module} .
Lists the rules in the given module (or in the current module if none is
given).

show components {module} .
Lists the connected components (kinds) of the poset of sorts for the given
module (or for the current module if none is given).

show summary {module} .
Shows a summary of statistics for the context free grammar and term
rewriting system generated for the given module (or for the current module
if none is given).

show views .
Lists the names of all the views that are currently in the view database
maintained by the system.

show view {view} .
Prints out the given view (or of the last view entered into the system if
none is given).

25.11 Profiler commands

set profile on . / set profile off .
Turns profiling on and off. Default is off.

set clear profile on . / set clear profile off .
Controls whether profile is clear before each command. Default is on.

show profile {module} .
Shows current profile for the given module (or in the current module if
none is given). It shows both percentages and absolute rewrite counts.

25.12 Debugger commands

set break on . / set break off .
Controls whether break points are obeyed.

break select symbols . / break deselect symbols .
Selects/deselects operator symbols and labels from the current module for
break points with the select option. Examples:

break select foo bar baz .

break deselect baz .
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debug reduce {in module :} term .
Works just like the reduce command in Section 25.2, except that it drops
into the debugger before executing the first rewrite.

debug rewrite {[ number ]} {in module :} term .
Works just like the rewrite command in Section 25.2, except that it drops
into the debugger before executing the first rewrite.

debug frewrite {[ bound {,number} ]} {in module :} term .
Works just like the frewrite command in Section 25.2, except that it
drops into the debugger before executing the first rewrite.

debug erewrite {[ bound {,number} ]} {in module :} term .
Works just like the erewrite command in Section 25.2, except that it
drops into the debugger before executing the first rewrite.

resume .
Only usable from the debugger. Exits the debugger and resumes the cur-
rent rewriting activity.

abort .
Only usable from the debugger. Exits the debugger and abandons the
current rewriting activity.

step .
Only usable from the debugger. Performs a single step of the current
rewriting activity with tracing switched on.

where .
Only usable from the debugger. Prints the stack of pending rewrite tasks
together with explanations of how they arose.

25.13 Miscellaneous commands

parse {in module :} term .
Causes the specified term to be parsed using the signature of the given
module. If the in clause is omitted, the current module is assumed.

select module .
Selects a named module to be the current module. All commands that
require a module refer to the current module, unless a module is explicitly
given. The current module is usually the last module entered or used; for
example, after the command show module AMODULE, the AMODULE module
becomes the current module.

set protect module on . / set protect module off .
Adds or removes the named module from the set of modules that are
automatically imported in protecting mode in every module.
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set extend module on . / set extend module off .
Adds or removes the named module from the set of modules that are
automatically imported in extending mode in every module.

set include module on . / set include module off .
Adds or removes the named module from the set of modules that are
automatically imported in including mode in every module.

set verbose on . / set verbose off .
Controls display of extra information, depending on command. Default is
off.

set clear memo on . / set clear memo off .
Controls whether the memoization tables are cleared before each com-
mand.

25.14 System level commands

These commands control system level activities. Unlike all the above com-
mands they are not followed by a period.

pwd
Prints the path of the working directory.

ls {flags} {directories}
Runs the UNIX ls command to list the files in the specified directories
or working directory if none specified. The allowable flags depend on your
local implementation of ls. Example:

ls -lF /usr/bin/usr/local

cd directory-name
Changes the working directory to directory-name.

pushd directory-name
Saves the current working directory on a stack and then changes the work-
ing directory to directory-name.

popd
Changes the working directory to that which is on the top of the directory
stack and pops the directory stack.

in file-name
Causes a specified file to be included at this point. For files specified by
a bare file name, it checks (with .maude, .fm, .obj extensions) if the
filename is in one of these locations: (a) the current directory; (b) the
directories in the MAUDE_LIB environment variable, and (c) the directory
containing the executable. Otherwise, the full file name must be given,
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together with a full path name if the file is not in the current working
directory. The in command may be nested, i.e., the included file may
contain in commands. Example:

in ../Examples/foo.maude

Notice that compilation of operator declarations and statements is done
lazily, so that the module is not necessarily fully compiled when included.
This implies that some warnings and advisories will only show up when a
reduction actually takes place in the module. This also holds for a module
that is entered by writing it in the prompt instead of a file.

load file-name
Performs the same job as in but does not produce detailed output as
modules are entered. Example:

load ../Examples/foo.maude

eof
Causes the interpreter to respond as if it had reached the end of file.

quit
Causes the interpreter to exit.
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Core Maude Grammar

This chapter describes the syntax of Maude using the following extended BNF
notation: the symbols ‘( ’ and ‘ )’ are used as metaparentheses; the symbol ‘|’ is
used to separate alternatives; square bracket pairs, ‘[’ and ‘]’, enclose optional
syntax; ‘*’ indicates zero or more repetitions of preceding unit; ‘+’ indicates
one or more repetitions of preceding unit; and the string “x” denotes x literally.
As an application of this notation, A(, A )* indicates a non-empty list of
A’s separated by commas. Finally, %%% indicates comments in the syntactic
description, as opposed to comments in the Maude code.

26.1 The grammar

〈MaudeTop 〉 ::=

( 〈SystemCommand 〉 | 〈Command 〉 | 〈DebuggerCommand 〉 |
〈Module 〉 | 〈Theory 〉 | 〈View 〉 )+

〈SystemCommand 〉 ::= in 〈FileName 〉 | load 〈FileName 〉 |
quit | eof | popd | pwd |
cd 〈Directory 〉 | push 〈Directory 〉 |
ls [ 〈LsFlag 〉 ] [ 〈Directory 〉 ]

〈Command 〉 ::= select 〈ModId 〉 . |
parse [ in 〈ModId 〉 : ] 〈Term 〉 . |
[ debug ] reduce [ in 〈ModId 〉 : ] 〈Term 〉 . |
[ debug ] rewrite [ [ 〈Nat 〉 ] ] [ in 〈ModId 〉 : ] 〈Term 〉 . |
[ debug ] frewrite [ [ 〈Nat 〉 [ , 〈Nat 〉 ] ] ] [ in 〈ModId 〉 :

] 〈Term 〉 . |
[ debug ] erewrite [ [ 〈Nat 〉 [ , 〈Nat 〉 ] ] ] [ in 〈ModId 〉 : ]

〈Term 〉 . |
( match | xmatch ) [ [ 〈Nat 〉 ] ] [ in 〈ModId 〉 : ]

〈Term 〉 <=? 〈Term 〉 [ such that 〈Condition 〉 ] . |
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unify [ [ 〈Nat 〉 ] ] [ in 〈ModId 〉 : ]
〈UnificationEquation 〉 ( /\ 〈UnificationEquation 〉 )* . |

[ debug ] variant unify [ [ 〈Nat 〉 ] ] [ in 〈ModId 〉 : ]
〈UnificationEquation 〉 ( /\ 〈UnificationEquation 〉 )* . |

[ debug ] get variants [ [ 〈Nat 〉 ] ] [ in 〈ModId 〉 : ] 〈Term 〉 . |
search [ [ 〈Nat 〉 ] ] [ in 〈ModId 〉 : ]

〈Term 〉 〈SearchType 〉 〈Term 〉 [ such that 〈Condition 〉 ] . |
[ debug ] continue 〈Nat 〉 . |
loop [ in 〈ModId 〉 : ] 〈Term 〉 . |
( 〈TokenString 〉 ) |
trace ( select | deselect | include | exclude )

( 〈OpId 〉 | ( 〈OpForm 〉 ) )+ . |
print ( conceal | reveal ) ( 〈OpId 〉 | ( 〈OpForm 〉 ) )+ . |
break ( select | deselect ) ( 〈OpId 〉 | ( 〈OpForm 〉 ) )+ . |
show 〈ShowItem 〉 [ 〈ModId 〉 ] . |
show view [ 〈ViewId 〉 ] . |
show modules . |
show views . |
show search graph . |
show path [ labels ] 〈Nat 〉 .

do clear memo . |
set 〈SetOption 〉 ( on | off ) .

〈UnificationEquation 〉 ::= 〈Term 〉 =? 〈Term 〉

〈ShowItem 〉 ::= module | all | sorts | ops | vars | mbs |
eqs | rls | summary | kinds | profile

〈SetOption 〉 ::= show 〈ShowOption 〉 |
print 〈PrintOption 〉 |
trace [ 〈TraceOption 〉 ] |
break | verbose | profile |
clear ( memo | rules | profile ) |
protect 〈ModId 〉 |
extend 〈ModId 〉 |
include 〈ModId 〉

〈ShowOption 〉 ::= advise | stats | loop stats | timing |
loop timing | breakdown | command | gc

〈PrintOption 〉 ::= mixfix | flat | with parentheses |
with aliases | conceal | number | rat | color |
format | graph | attribute | attribute newline

〈TraceOption 〉 ::= condition | whole | substitution | select |
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mbs | eqs | rls | rewrite | body

〈DebuggerCommand 〉 ::= resume . | abort . | step . | where .

〈Module 〉 ::= fmod 〈ModId 〉 [ 〈ParameterList 〉 ] is 〈ModElt 〉* endfm |
mod 〈ModId 〉 [ 〈ParameterList 〉 ] is 〈ModElt’ 〉* endfm

〈Theory 〉 ::= fth 〈ModId 〉 is 〈ModElt 〉* endfth |
th 〈ModId 〉 is 〈ModElt’ 〉* endth

〈View 〉 ::= view 〈ViewId 〉 from 〈ModExp 〉 to 〈ModExp 〉 is

〈ViewElt 〉*
endv

〈ParameterList 〉 ::= { 〈ParameterDecl 〉 ( , 〈ParameterDecl 〉 )* }

〈ParameterDecl 〉 ::= 〈ParameterId 〉 :: 〈ModExp 〉

〈ModElt 〉 ::= including 〈ModExp 〉 . |
extending 〈ModExp 〉 . |
protecting 〈ModExp 〉 . |
sorts 〈Sort 〉+ . |
subsorts 〈Sort 〉+ ( < 〈Sort 〉+ )+ . |
op 〈OpForm 〉 : 〈Type 〉* 〈Arrow 〉 〈Type 〉 [ 〈Attr 〉 ] . |
ops ( 〈OpId 〉 | ( 〈OpForm 〉 ) )+ : 〈Type 〉* 〈Arrow 〉 〈Type 〉

[ 〈Attr 〉 ] . |
vars 〈VarId 〉+ : 〈Type 〉 . |
〈Statement 〉 [ 〈StatementAttr 〉 ] .

〈ViewElt 〉 ::= var 〈varId 〉+ : 〈Type 〉 . |
sort 〈Sort 〉 to 〈Sort 〉 . |
label 〈LabelId 〉 to 〈LabelId 〉 . |
op 〈OpForm 〉 to 〈OpForm 〉 . |
op 〈OpForm 〉 : 〈Type 〉* 〈Arrow 〉 〈Type 〉 to 〈OpForm 〉 . |
op 〈Term 〉 to 〈Term 〉 .

〈ModExp 〉 ::= 〈ModId 〉 |
( 〈ModExp 〉 ) |
〈ModExp 〉 + 〈ModExp 〉 |
〈ModExp 〉 * 〈Renaming 〉
〈ModExp 〉 { 〈ViewId 〉 ( , 〈ViewId 〉 )* }

〈Renaming 〉 ::= ( 〈RenamingItem 〉 ( , 〈RenamingItem 〉 )* )

〈RenamingItem 〉 ::= sort 〈Sort 〉 to 〈Sort 〉 |
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label 〈LabelId 〉 to 〈LabelId 〉 |
op 〈OpForm 〉 〈ToPartRenamingItem 〉 |
op 〈OpForm 〉 : 〈Type 〉* 〈Arrow 〉 〈Type 〉 〈ToPartRenamingItem 〉

〈ToPartRenamingItem 〉 ::= to 〈OpForm 〉 [ 〈Attr 〉 ]

〈Arrow 〉 ::= -> | ~>

〈Type 〉 ::= 〈Sort 〉 | 〈Kind 〉

〈Kind 〉 ::= [ 〈Sort 〉 (, 〈Sort 〉 )* ]

〈Sort 〉 ::= 〈SortId 〉 | 〈Sort 〉 { 〈Sort 〉 ( , 〈Sort 〉 )* }

〈ModElt’ 〉 ::= 〈ModElt 〉 |
〈Statement’ 〉 [ 〈StatementAttr 〉 ] .

〈Statement 〉 ::= mb [ 〈Label 〉 ] 〈Term 〉 : 〈Sort 〉 |
cmb [ 〈Label 〉 ] 〈Term 〉 : 〈Sort 〉 if 〈Condition 〉 |
eq [ 〈Label 〉 ] 〈Term 〉 = 〈Term 〉 |
ceq [ 〈Label 〉 ] 〈Term 〉 = 〈Term 〉 if 〈Condition 〉

〈Statement’ 〉 ::= rl [ 〈Label 〉 ] 〈Term 〉 => 〈Term 〉 |
crl [ 〈Label 〉 ] 〈Term 〉 => 〈Term 〉 if 〈Condition’ 〉

〈Label 〉 ::= [ 〈LabelId 〉 ] :

〈Condition 〉 ::= 〈ConditionFragment 〉 ( /\ 〈ConditionFragment 〉 )*

〈Condition’ 〉 ::= 〈ConditionFragment’ 〉
( /\ 〈ConditionFragment’ 〉 )*

〈ConditionFragment 〉 ::= 〈Term 〉 = 〈Term 〉 | 〈Term 〉 := 〈Term 〉
| 〈Term 〉 : 〈Sort 〉

〈ConditionFragment’ 〉 ::= 〈ConditionFragment 〉 | 〈Term 〉 => 〈Term 〉

〈Attr 〉 ::=

[ ( assoc | comm |
[ left | right ] id: 〈Term 〉 |
idem | iter | memo | ditto |
config | obj | msg |
metadata 〈StringId 〉
strat ( 〈Nat 〉+ ) |
poly ( 〈Nat 〉+ ) |
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frozen [ ( 〈Nat 〉+ ) ] |
prec 〈Nat 〉 |
gather ( ( e | E | & )+ ) |
format ( 〈Token 〉+ ) |
special ( 〈Hook 〉+ ) )+ ]

〈StatementAttr 〉 ::=

[ ( nonexec | otherwise | variant |
metadata 〈StringId 〉 |
label 〈LabelId 〉 |
print 〈PrintItem 〉* )+ ]

〈PrintItem 〉 ::= 〈StringId 〉 | 〈VarId 〉 | 〈VarAndSortId 〉

〈Hook 〉 ::= id-hook 〈Token 〉 [ ( 〈TokenString 〉 ) ] |
( op-hook | term-hook ) ( 〈TokenString 〉 )

〈FileName 〉 %%% OS dependent

〈Directory 〉 %%% OS dependent

〈LsFlag 〉 %%% OS dependent

〈StringId 〉 %%% characters enclosed in double quotes "..."

〈ModId 〉 %%% simple identifier, by convention all capitals

〈ViewId 〉 %%% simple identifier, by convention capitalized

〈ParameterId 〉 %%% simple identifier, by convention single capital

〈SortId 〉 %%% simple identifier, by convention capitalized

〈VarId 〉 %%% simple identifier, by convention capitalized

〈VarAndSortId 〉 %%% an identifier consisting of a variable name

followed by a colon followed by a sort name

〈OpId 〉 %%% identifier possibly with underscores

〈OpForm 〉 ::= 〈OpId 〉 | ( 〈OpForm 〉 ) | 〈OpForm 〉+
〈Nat 〉 %%% a natural number

〈Term 〉 ::= 〈Token 〉 | ( 〈Term 〉 ) | 〈Term 〉+
〈Token 〉 %%% Any symbol other than ( or )

〈TokenString 〉 ::= 〈Token 〉 | ( 〈TokenString 〉 ) | 〈TokenString 〉*
〈LabelId 〉 %%% simple identifier

In parsing module expressions, instantiation has higher precedence than
renaming, which in turn has higher precedence than summation.

26.2 Synonyms

sort = sorts
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subsort = subsorts

var = vars

Command only synonyms:

advise = advisory = advisories

alias = aliases

attr = attribute

cmd = command

cond = condition

cont = continue

eqs = eq

erew = erewrite

flat = flattened

frew = frewrite

kinds = components

label = labels

mbs = mb

norm = normalize

paren = parens = parentheses

q = quit

rat = rational

red = reduce

rew = rewrite

rls = rl = rule = rules

s.t. = such that

subst = substitution

Module only synonyms:

assoc = associative

ceq = cq

comm = commutative

config = configuration

ctor = constructor

ex = extending

id: = identity:

idem = idempotent

inc = including

iter = iterated

msg = message

obj = object

owise = otherwise

poly = polymorphic

prec = precedence

pr = protecting

strat = strategy
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26.3 Lexical Issues

Tokens are sequences of printable ASCII characters delimited by white space,
except that ‘(’, ‘)’, ‘[’, ‘]’, ‘{’, ‘}’, and ‘,’ are always considered as single
character tokens, unless backquoted.

Single line comments are started by one of *** or ---, and ended by the
end of line. Multiline comments are started by ***( and ended by ). Paren-
theses (whether backquoted or not) must balance within multiline comments.

String identifiers use C backslash conventions [206, Section A2.5.2].
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283. P. C. Ölveczky. Specification and Analysis of Real-Time and Hybrid Systems
in Rewriting Logic. PhD thesis, University of Bergen, Norway, 2000. http:

//maude.cs.uiuc.edu/papers/.
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330. J. Siekmann and P. Szabó. A Noetherian and confluent rewrite system for
idempotent semigroups. Semigroup Forum, 25:83–110, 1982.

331. G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-sorted equational
computation. In M. Nivat and H. Aı̈t-Kaci, editors, Resolution of Equations
in Algebraic Structures, volume 2, pages 297–367. Academic Press, 1989.

332. L. J. Steggles. Rewriting logic and Elan: Prototyping tools for Petri nets
with time. In J.-M. Colom and M. Koutny, editors, Applications and Theory

http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=ira/2005/16
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=ira/2005/16
http://www.sciencedirect.com/science/journal/15710661
http://www.informatik.hu-berlin.de/~kschmidt/lola.html
http://www.informatik.hu-berlin.de/~kschmidt/lola.html


References 849

of Petri Nets 2001, 22nd International Conference, ICATPN 2001, Newcastle
upon Tyne, UK, June 25–29, 2001, Proceedings, volume 2075 of Lecture Notes
in Computer Science, pages 363–381. Springer, 2001.

333. L. J. Steggles and P. Kosiuczenko. A timed rewriting logic semantics for SDL: a
case study of the alternating bit protocol. In Kirchner and Kirchner [208], pages
295–316. http://www.sciencedirect.com/science/journal/15710661.

334. M.-O. Stehr. CINNI — A generic calculus of explicit substitutions and its
application to λ-, ς- and π-calculi. In Futatsugi [164], pages 71–92. http:

//www.sciencedirect.com/science/journal/15710661.
335. M.-O. Stehr. A rewriting semantics for algebraic nets. In C. Girault and

R. Valk, editors, Petri Nets for System Engineering – A Guide to Modelling,
Verification, and Applications, pages 318–338. Springer, 2001.

336. M.-O. Stehr. Programming, Specification, and Interactive Theorem Proving
— Towards a Unified Language based on Equational Logic, Rewriting Logic,
and Type Theory. PhD thesis, Universität Hamburg, Fachbereich Informatik,
Germany, 2002. http://www.sub.uni-hamburg.de/disse/810/.

337. M.-O. Stehr. The open calculus of constructions (Part I): An equational type
theory with dependent types for programming, specification, and interactive
theorem proving. Fundamenta Informaticae, 68(1-2):131–174, 2005.

338. M.-O. Stehr. The open calculus of constructions (Part II): An equational type
theory with dependent types for programming, specification, and interactive
theorem proving. Fundamenta Informaticae, 68(3):249–288, 2005.

339. M.-O. Stehr, I. Cervesato, and S. Reich. An execution environment for the MSR
cryptoprotocol specification language. http://formal.cs.uiuc.edu/stehr/

msr.html, 2004.
340. M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic. In Proceed-

ings of LFM’99: Workshop on Logical Frameworks and Meta-languages, Paris,
France, September 28, 1999. http://www.site.uottawa.ca/~afelty/LFM99/

index.html.
341. M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic: Specifying

typed higher-order languages in a first-order logical framework. In O. Owe,
S. Krogdahl, and T. Lyche, editors, From Object-Orientation to Formal Meth-
ods: Essays in Memory of Ole-Johan Dahl, volume 2635 of Lecture Notes in
Computer Science, pages 334–375. Springer, 2004.

342. M.-O. Stehr, J. Meseguer, and P. C. Ölveczky. Rewriting logic as a unifying
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Universidad Complutense de Madrid, February 2000. http://maude.csl.sri.
com/casestudies/ccs.

367. A. Verdejo and N. Mart́ı-Oliet. Executing E-LOTOS processes in Maude. In
H. Ehrig, M. Grosse-Rhode, and F. Orejas, editors, INT 2000, Integration of
Specification Techniques with Applications in Engineering, Extended Abstracts,
pages 49–53, 2000. Technical report 2000/04, Technische Universität Berlin.

368. A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude. In T. Bolog-
nesi and D. Latella, editors, Formal Methods For Distributed System Develop-
ment. FORTE/PSTV 2000 IFIP TC6 WG6.1 Joint International Conference
on Formal Description Techniques for Distributed Systems and Communication
Protocols (FORTE XIII) and Protocol Specification, Testing and Verification
(PSTV XX) October 10–13, 2000, Pisa, Italy, volume 183 of International
Federation for Information Processing, pages 351–366. Kluwer Academic Pub-
lishers, 2000.

369. A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In Gad-
ducci and Montanari [169], pages 263–281. http://www.sciencedirect.com/

science/journal/15710661.
370. A. Verdejo and N. Mart́ı-Oliet. Two case studies of semantics execution in

Maude: CCS and LOTOS. Formal Methods in System Design, 27:113–172,
2005.

371. A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in
Maude. Journal of Logic and Algebraic Programming, 67(1-2):226–293, 2006.

http://www.ifi.uio.no/RealTimeMaude/OGDC/
http://www.ifi.uio.no/RealTimeMaude/OGDC/
http://maude.csl.sri.com/casestudies/ccs
http://maude.csl.sri.com/casestudies/ccs
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661


852 References

372. A. Verdejo, I. Pita, and N. Mart́ı-Oliet. The leader election protocol of
IEEE 1394 in Maude. In Futatsugi [164], pages 385–406. http://www.

sciencedirect.com/science/journal/15710661.
373. E. Viola. E-unifiability via narrowing. In A. Restivo, S. R. D. Rocca, and

L. Roversi, editors, Theoretical Computer Science, 7th Italian Conference,
ICTCS 2001, Torino, Italy, October 4-6, 2001, Proceedings, volume 2202 of
Lecture Notes in Computer Science, pages 426–438. Springer, 2001.

374. P. Viry. Rewriting: An effective model of concurrency. In C. Halatsis, D. Mar-
itsas, G. Philokyprou, and S. Theodoridis, editors, PARLE’94 Parallel Archi-
tectures and Languages Europe, 6th International PARLE Conference, Athens,
Greece, July 4–8, 1994, Proceedings, volume 817 of Lecture Notes in Computer
Science, pages 648–660. Springer, 1994.

375. P. Viry. Input/output for ELAN. In Meseguer [246], pages 51–64. http:

//www.sciencedirect.com/science/journal/15710661.
376. P. Viry. Adventures in sequent calculus modulo equations. In Kirchner and

Kirchner [208], pages 367–378. http://www.sciencedirect.com/science/

journal/15710661.
377. P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,

285(2):487–517, 2002.
378. M. Vittek. ELAN: Un Cadre Logique pour le Prototypage de Langages de

Programmation avec Contraintes. PhD thesis, Université Henri Poincaré –
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abort 152 (debugger), 774 (debugger),
814 (debugger)

abstraction see model checking
ansi-color 803
AProVe 386
array 303–304
ASF+SDF 67n, 92n, 188, 578
assoc 65, 71, 213, 789, 791, 792, 795,

797, 805
associative see assoc

attribute 70–90
equational 70–72
statement 91–97

batch 803
Boolean value 236–241
break point 774, 788
break select 774, 813
bubble 577

CafeOBJ X
CCS 749
cd 815
ceq 66
ChC 17, 387, 405, 487, 630, 738
CHR 188
Church-Rosser 101

context-sensitive 103
ground 101
modulo 102

class 667 (Full Maude)
inheritance 668 (Full Maude)

multiple 668 (Full Maude)
Clear 189

cmb 66
coherence 140, 181, 466

checking 141
completion 629 (Full Maude)
ground 141

collapse theory 489, 794
comm 65, 71, 793
comment 37, 823

multiline 823
commutative see comm

config 344, 349, 354, 355
configuration see config

confluence 100
connected component see subsort

relation
constant 47

metarepresentation 426
qualified 50

constructor 73–77
non-free 74

constructor see ctor

cont see continue

continue 146, 805
core dumped 790
Core Maude 20
counter 245–248
cq see ceq

CRC 17, 385, 405, 409, 487, 630, 736
crl 138
ctor 73, 81

deadlock freedom 380, 403, 410,
526–531, 642 (Full Maude)
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debug erewrite 814
debug frewrite 814
debug reduce 814
debug rewrite 814
debugger 152, 248, 774–777
debugging 612 (Full Maude), 763, see

tracing, term coloring
dependent type 255
descent function 424, 433–461
design 1–11
dictionary 328
Diophantine equation solver 305
distributed dataset 357
ditto 82
do clear memo 89

ELAN X, 67n, 188
eof 816
eq 64
equation 64–65

executable 64, 98
metarepresentation 427

equational condition 66–70
abbreviated Boolean equation 66,

68
matching equation 67, 68
ordinary equation 68
satisfaction 68

equational simplification 100
modulo 65, 71, 72
sharing 113, 113n

erew see erewrite

erewrite 246, 365, 805
error

constant 121
propagation 120
supersort 120

evaluation strategy see strategy
ex see extending

explicit substitution calculus 228
expressiveness 5–9
extending 190, 192
external object 365–376

finite variant property 493
checking 494

fmod 43, 63
forest 326
format 78, 198, 774

foundation 11–14
frew see frewrite

frewrite 142, 146, 147, 246, 804
metarepresentation see descent

function
frozen argument see strategy
frozen 89
fth 202
Full Maude 20, 210n, 216n, 219n, 343,

410, 422, 607–648
differences with Core Maude 632
extending Full Maude 634

gather 55, 198
get variants 495–501, 808

help 803

id 71, 794
idem 71, 789, 794, 795
idempotent see idem

identifier 41–42, 44, 47, 48, 51
escape character 41
nonprinting characters 42
quoted see quoted identifier
special 41

identity see id

IMaude see Interactive Maude
in 35–37, 815
inc see including

including 190, 193, 194, 204
initial algebra 70
interaction 33–37, 608 (Full Maude)

interrupt 152
metarepresentation see read-eval-

print loop
interactive 804
Interactive Maude 585–603
invariant 377–378

model checking of 378–382
bounded 382–384

violation 486
iter 73, 105, 109, 213, 241, 797, 805
iterated see iter

ITP 342, 407, 733
ITP/OCL 756

Java+ITP 754
JavaFAN 753
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kind 48–50
canonical representation 49
metarepresentation 425

Kripke structure 391
associated to a module 392

label 91, 136
lambda calculus 228–234
left id 71, 795
linear temporal logic 389

model checking see model checking
satisfiability 412

linear.maude 305
list

circular 169
from set 284–285
generalized 285–287
non-empty 167
of sets 219
parameterized 278–280, 317

sorted 319
sortable 291–298

strict weak order 291
total preorder 295

sorted 226
load 35, 37, 816
loop 576, 806
LOTOS 749
ls 815
LTL see linear temporal logic

machine-int.maude 235
map 301–303
match 111, 807

metarepresentation see descent
function

matching 99
modulo 102–109, 140, 795

with extension 104, 796
Maude-NPA 485
MAUDE LIB 36, 37
mb 65
membership 65–66, 797

metarepresentation 427
membership equational logic 63, 319
memo 86
memoization 86–89

table size 87
message 666 (Full Maude)

message 354, 356
metadata 82, 91, 136
MMT 748
Mobile Maude 376, 533–570
mod 43, 135
model checker

implementation 397
procedure 396

model checking 396–403
abstraction 384–388, 403–412

tool support 743
logical 486, 651

model-checker.maude 389, 393, 397,
399, 412

module 42–43
algebra 189
database 613 (Full Maude)
expression 189, 203, see module

operation
functional 42, 63–121

admissible 98–99
mathematical semantics 63, 65, 69,

70
operational semantics 63, 65, 103

hierarchy see module importation
importation 190–196, 203, 204, 223

extending 192–193
implicit 191
including 193–194
protecting 191–192

metarepresentation 427
object-based 344–355

asynchronous 344
configuration 344
fairness 351
synchronous 344
uniqueness 351

object-oriented 666 (Full Maude)
as system module 704 (Full

Maude)
operation 688 (Full Maude)
parameterized 685 (Full Maude)

operation 189
deadlock freedom 642 (Full

Maude)
instantiation 189, 202, 218–224
metarepresentation 431
power 618 (Full Maude)
renaming 189, 198–201, 224
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summation 189, 197–198, 224
tuple 617 (Full Maude)

parameterized 202, 214–218
bound parameter 223
free parameter 223
interface 214
metarepresentation 430
parameter 202
parameter label 214
parameter theory 214, 216, 217

predefined 235–304
signature 42

extended see parsing
system 43, 135–162

admissible 139
mathematical semantics 135, 142

monoid 203
commutative 204

monomial 220
MSCP IX, 53
msg see message

MSR 750
MTT 17, 385, 386, 410, 630, 735
multiset 164, 172, 173, 176, 177, 184

parameterized 322

narrowing 483, 502, 649–662
based unification 483–484
completeness 652–653
folding variant 484, 503, 651
modulo axioms 483
search 654 (Full Maude)
with extra variables 657 (Full

Maude)
with rules 485
with simplification 653

no-advise 804
no-ansi-color 803
no-banner 804
no-mixfix 803
no-prelude 803
no-tecla 803
no-wrap 804
nonexec 64, 92, 136
number

floating-point 260–264
integer 248–251
machine 252–255
natural 241–245

random 245–248
rational 255–260
string conversion 268–270

OBJ 189, 202
obj see object

OBJ3 IX, 5n, 7, 83, 189, 215
object 345, see module object-based,

666 (Full Maude)
communication 542 (Mobile Maude)
mobile 536 (Mobile Maude)

object 345, 354, 356
op 46, 49
open calculus of constructions 743–748
operation

metalevel see descent function
partial 49, 118–121

using error supersort 120
using subsort 119

total 49
operator 46–48, 51

arity 46
at the kind level 49, 799
at the sort level 797
built-in 90, 213
coarity 46
derived see view
domain sort see operator arity
gathering see parsing
iterated see iter

mapping 209, see view, 213
metarepresentation 427
name

empty syntax 47
mixfix form 47
prefix form 47, 52
several identifiers 47

overloaded 50–51, 791
ad-hoc 50
subsort 50, 81

polymorphic 77, 213
precedence see parsing
range sort see operator coarity

ops 47
optimizing 763, see debugger, profiler
otherwise 68, 92–96, 111
overloading see operator overloaded
owise see otherwise, 185, 186
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paramodulation 662–663
parse 58, 814

metarepresentation see descent
function

parsing 53–61
extended grammar 57
gathering 54

default pattern 56
precedence 54

default value 55
overridden 54

Pathway logic 758
pattern 68
performance 9–11, 788
PMaude 726
poly see polymorphic

polymorphic 77, 201, 237, 241
polynomial 220, 222
popd 815
pr see protecting

prec see precedence

precedence 54, 198
prelude.maude 36, 235, 271, 272, 365,

423, 426, 427, 429, 458
preregularity 52, 791

modulo 53
print 97, 136, 801
print conceal 811
print reveal 811
printing

format 78
color 79
space 78

metarepresentation see descent
function

probabilistic models 247, 724–727
process 534 (Mobile Maude)
profiler 777–788
profiling 612 (Full Maude), 788
protecting 190, 191
pushd 815
pwd 815

q see quit

queue 314
priority 315

quit 35, 816
quoted identifier 270–271

random-seed 246, 804
reachability problem 484
read-eval-print loop 571
Real-Time Maude 17, 724, 741
record 329
red see reduce

reduce 35, 70, 110, 804
metarepresentation see descent

function
reflection 423

moving between levels see descent
function, 626 (Full Maude)

tower of 432
resume 774 (debugger), 814 (debug-

ger)
rew see rewrite, 232, 233
rewrite condition 138–139

rewrite expression 138
satisfaction 140

rewrite rule 135
executable 139
meaning

computational 135
logical 135

metarepresentation 427
object-oriented 669 (Full Maude)
probabilistic 725
tick 723

rewrite 142, 143, 147, 165, 246, 804
metarepresentation see descent

function
rewriting

modulo 141
sharing 113n

rewriting logic
proof equivalence 142
reflective 423
rewrite proof 142
timed 723

right id 71, 795
ring 204
rl 136

SCC 17, 75, 385, 387, 409, 739
search 148, 165, 166, 168, 172, 175,

177, 807
metarepresentation see descent

function
object-oriented 672 (Full Maude)
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such that 174, 177, 185, 187
searching see search

segmentation fault 790
select 35, 814
semiring 204
set

from list 284–285
generalized 288–291
parameterized 281–283
partially ordered 205
totally ordered 205

set clear memo 89
set break 774, 813
set clear memo 815
set clear profile 778, 813
set clear rules 806
set extend 240, 815
set include 815
set print 773
set print attribute 810
set print attribute newline 810
set print color 811
set print conceal 811
set print flattened 811
set print format 811
set print graph 810
set print mixfix 810
set print number 242, 811
set print parentheses 811
set print rat 256
set print rational 811
set print with aliases 811
set profile 777, 813
set protect 239, 814
set show advisories 812
set show breakdown 812
set show command 812
set show gc 812
set show loop stats 811
set show loop timing 812
set show stats 811
set show timing 811
set trace 112, 763, 809
set trace body 810
set trace builtin 810
set trace condition 809
set trace eq 809
set trace mb 809
set trace rewrite 810

set trace rl 809
set trace select 112, 763, 809
set trace substitution 809
set trace whole 809
set verbose 815
set print format 79
show 113
show all 812
show components 114, 813
show eqs 812
show mbs 812
show module 812
show modules 812
show ops 812
show path 161, 168, 173, 808
show path labels 161, 169, 808
show profile 779, 813
show rls 143, 813
show search graph 149, 808
show sorts 113, 812
show summary 813
show vars 812
show view 813
show views 813
simplicity 2–5
socket 365–372

buffered 373–376
socket.maude 365
sort 43–45

error supersort see kind
least sort 52, 99
mapping 209, see view
metarepresentation 425
name collision 216
parameterized 215
structured 44

sort constraint 319n
sort decreasingness 101
sort 43
sorts 43
special 90, 235
stack 312, 685 (Full Maude)
step 774 (debugger), 814 (debugger)
strat 83
strategy

internal 86, 461–464
object-message fair 354–357
operator 82–86

bottom-up see eager
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default 83
eager 82
frozen 86, 89–90, 142
lazy 83
operator-by-operator 83

strategy see strat

string 264–268
number conversion 268–270

structural axiom see attribute
equational

submodule 190, see module importa-
tion

subsort relation 45–46
connected component 46
metarepresentation 427
partial order 46

subsort 45
subsorts 45
substitution 99

well-sorted 99
sufficient completeness 75
supermodule 190, see module

importation
symbolic reachability analysis 484–

486, 651

tautology checker 412
tecla 803
term 51–53

canonical form 63, 100
relative to strategy 84

coloring 772–774
error 48
flattened 105
ground 53, 63
metarepresentation 426
qualified 50
undefined 48

termination 100
context-sensitive 103
ground 101
modulo 102

th 202
theory 202–208

flat 204, 205n
functional 202

admissible 202
mathematical semantics 202
operational semantics 203

importation 203
including 204, 205

metarepresentation 427
object-oriented 684 (Full Maude)
predefined 271–277
structured see theory importation
system 202

admissible 203
mathematical semantics 203
operational semantics 203

token 578, 823
trace deselect 809
trace exclude 763
trace include 809
trace select 112, 763, 809
tracing 612 (Full Maude), 763–772,

788
tree

2-3-4 337
AVL 333
binary 324
general 326
parameterized

leftist 622 (Full Maude)
red-black 340
search 328

unification 465–492, 508–520, 634
(Full Maude)

E-unification 465
algorithm 467

endogenous 487
exogenous 487
order-sorted 487–492

combination 489–490
equational 465
finitary 467
implementation 489–492
narrowing-based 483–484
order-sorted modulo axioms

466–468
problem 467
semantic 465
syntactic 465
unitary 467
variant-based 502–506

unifier 465
E-unifier 467
complete set 467
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most general 465
semantic 465

unify 469–479, 808
universal theory 423
Universal 77, 237, 241

var 51
in views 211

variable 51
fresh 471, 480, 496, 501
in a module 51
metarepresentation 426
on-the-fly 51

variant 492
based unification 502–506
complete set 492
finite variant property 493
generation 495–502

variant 492

variant unify 503–505, 808
vars 51
vector 306
version 803
view 202, 208–213

between theories 212
metarepresentation 432
object-oriented 685 (Full Maude)
parameterized 619 (Full Maude)
predefined 271–277

view 209

where 774 (debugger), 814 (debugger)

xmatch 107, 111, 112, 807
metarepresentation see descent

function
xml-log 804
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234TREES 337
234TREES-TEST 339
3*NAT 65
8-PUZZLE 673

ABELIAN-GROUP 499
ABSTRACT-BAKERY 405
ABSTRACT-BAKERY-PREDS 409
ACCOUNT 670, 705
ACTOR-CONF 349
ACTOR-O-CONF 354
AGENT-TEST 362
ARRAY 303
ASSOC-ID-EX 795
ASSOC-MB-EX1 797
ASSOC-MB-EX2 798
ASSOCIATIVE-EX1 793
ASSOCIATIVE-EX2 793
AVL 333
AVL-TEST 336

BAG 217
BAKERY 404
BAKERY-PREDS 408
BANK-ACCOUNT 345
BANK-ACCOUNT-TEST 196, 347
BANK-MANAGER 348
BANK-MANAGER-TEST 348
BASIC-NAT 124
BASIC-NAT-LIST 127
BASIC-NAT-MSET 128
BASIC-NAT-NE-LIST 126
BASIC-NAT-SET 130
BASIC-NAT-TREE 124

BASIC-SET 215
BB-TEST 147
BETA-ETA 230
BIN-TREE 325
BIN-TREE-TEST 326
BLACKBOARD 166
BLOCKS-WORLD 158
BOOL 239
BOOL-OPS 239
BUFFERED-SOCKET 373
BUYER 559
BUYING-STRATS 461

CHECK-RROBIN 702
CHESS-COVER 184
CHIPS 176
CLOCK 247
COLLAPSE-ID-EX 794
COLLAPSE-IDEM-EX 795
COLLAPSE-NAT-EX 794
COLOR-TEST 79
COMM-ID-UNIFICATION-EX 478
COMM-IDEM-EX 789
CONFIGURATION 344
CONFIGURATION+ 706
CONVERSION 268
COUNTER 246

DATA-AGENTS 359
DATA-AGENTS-CONF 196, 358
DATA-AGENTS-INTERFACE 358
DEADLOCK-FREEDOM 527
DEKKER 416
DEKKER-CHECK 418
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DF-ABSTRACT-BAKERY 410
DF-ABSTRACT-BAKERY-CHECK 411
DF-ABSTRACT-BAKERY-PREDS 411
DF-BAKERY 410
DF-BAKERY-PREDS 410
DIE-HARD 172
DIOPHANTINE 306

EXCLUSIVE-OR 493
EXCLUSIVE-OR-MB 496
EXCLUSIVE-OR-NOT-COHERENT 631
EXT-BOOL 83, 240
EXTENDED-RENT-A-CAR-

STORE-TEST 699

FACTORIAL 241
FACTORIAL-CLIENT 372
FACTORIAL-SERVER 371
FIBONACCI 87, 113, 778
FLOAT 260
FLOAT-STRING 197
FORMAT-DEMO 80
FULL-MAUDE 639

GEN-TREE 326
GEN-TREE-TEST 328
GENERIC-SET-LIST 619

HET-LIST 77
HTTP/1.0-CLIENT 368

ID-UNIFICATION-EX 477
IDEM-SEMIGROUP 133
INDEX-PAIR 305
INSTRUMENTATION 521
INSTRUMENTATION-

INFRASTRUCTURE 520
INSTRUMENTATION-TEST 523
INT 249
INT-GT-3 251
INT-LIST 280
INT-LIST* 287
INT-LIST-AND-SET 285
INT-MATRIX 305
INT-SET 283
INT-SET-MAX 222
INT-SORTABLE-LIST-AND-SET 299
INT-SORTABLE-LIST-AND-SET’ 300
INT-VECTOR 306

ITER-EXAMPLE 473
ITER-MB-EX1 800
ITER-MB-EX2 801

JOSEPHUS 170
JOSEPHUS-GENERALIZED 171

KHUN-PHAN 178

LAMBDA 229
LAST-APPEND 658
LEFTID-UNIFICATION-EX 476
LEFTIST-TREES 623
LEFTIST-TREES-TEST 624
LEFTIST-TREES-TEST-PAIR 625
LEGAL-INST 225
LEX-PAIR 217, 221
LIBRARY 618
LIBRARY-PETRI-NET 154
LIST 278
LIST* 285
LIST-AND-SET 284
LIST-CONS 317
LIST-CONS-TEST 319
LIST-KIND 226
LOOP-MODE 571
LTL 390
LTL-SIMPLIFIER 397

MACHINE-INT 253
MACHINE-INT-TEST 254
MAP 301
MATRIX 305
MAYBE 216
MEMBERSHIP 659
MEMORY 414
META-LEVEL 433
META-MODULE 427
META-TERM 425
META-VIEW 432
METADATA-EX 91
METAXMATCH-EX 447
MINI-MAUDE 582
MINI-MAUDE-SYNTAX 579
MOBILE-OBJECT-INTERFACE 540
MOBILE-PRINTERS-PREDS 569
MODEL-CHECK-BAD-EX 402
MODEL-CHECKER 399
MONOMIAL 220
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MULTISET 322
MULTISET-TEST 324
MUTEX 394
MUTEX-CHECK 400
MUTEX-PREDS 394
MY-QID-SET-LIST 224
MY-SET-LIST 224

NAIVE-IDEM-SEMIGROUP 132
NAIVE-NAT-LIST-MIXFIX-

MAX 199
NAIVE-SORTED-NAT-LIST 799
NARROWING-VM-NOTOP 662
NAT 241
NAT-LIST 280
NAT-LIST-GENERATOR 780
NAT-LIST-KIND 799
NAT-LIST-MAX 198
NAT-LIST-MIXFIX-MAX 199
NAT-MSET-MIN 773
NAT-NARROWING 650
NAT-PLUS 626
NAT-PRED-KIND 118
NAT-PRED-SUB 119
NAT-PRED-SUPER 120
NAT-SORTED-LIST-KIND 227
NAT-VARIANT 493
NAT/ 700
NAT3 578
NON-ASSOCIATIVE-EX 792
NUMBERS 75, 109

O-TICKER 354
O-TICKER-CUSTOMER 354
O-TICKER-FACTORY 354
OO-BLOCKS-WORLD 678
OO-BLOCKS-WORLD-COLOR 679
OO-STACK 685
OO-STACK2 687
OVER-ASSOC-EX1 791
OVER-ASSOC-EX2 791
OWISE-TEST1 95
OWISE-TEST2 95
OWISE-TEST2-TRANSFORMED 96

PAIR 217
PARALLEL 415
PARSING-EX1 59
PARSING-EX2 59

PARSING-EX3 60
PARSING-EX4 60
PATH 609
PEANO-INT 116
PEANO-NAT 115
PEANO-RAT 117
PERSON-RECORD 618
PFUN 621
POLYNOMIAL 220
POWER[5] 618
PRELIM-SET 214
PRINT-ATTR-AMBIGUOUS 802
PRINT-ATTRIBUTE-EX 97
PRINTERS-PREDS 568
PRIORITY-PAIR 316
PRIORITY-QUEUE 315
PRIORITY-QUEUE-TEST 316
PRIORITY-QUEUE-TEST-PAIR 317
PROCS-RESOURCES 379
PROCS-RESOURCES-ENABLED 381

QID 270
QID-LIST 280
QID-RAT-POLY 223
QID-SET 283
QID-SET* 290
QUEUE 314
QUEUE-TEST 314
QVAL 588

RABBIT-HOP 168
RANDOM 245
RAT 256
RAT-POLY 222
RB-TREES 340
RB-TREES-TEST 341
READERS-WRITERS 382
READERS-WRITERS-ABS 386
READERS-WRITERS-PREDS 385
RECOLORING 186
RECORD 329
RENAMED-INT 252
RENAMING-EX-A 200
RENAMING-EX-B 200
RENAMING-EX-C 200
RENAMING-EX-D 201
RENAMING-EX-E 201
RENAMING-EX-F 201
RENAMING-PAR-MOD-A 224
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RENAMING-PAR-MOD-B 225
RENAMING-PAR-MOD-C 225
RENT-A-CAR-STORE-TEST 697
REW-SEQ 696
REW-SEQ-TEST 697
RIGHTID-UNIFICATION-EX 477
RIVER-CROSSING 182
RIVER-CROSSING-2 420
RIVER-CROSSING-2-PROP 421
RROBIN 701

SAMPLER 246
SAT-SOLVER 412
SAT-SOLVER-TEST 412
SATISFACTION 393
SAVING-ACCOUNT 671, 707
SEARCH-TREE 330
SEARCH-TREE-TEST 332
SELLER 558
SEQUENTIAL 415
SET 281
SET* 288
SET-KIND 620
SET-LIST 219
SET-MAX 221
SIEVE 85, 195
SIMPLE-CLOCK 378
SIMPLE-NAT 35
SIMPLE-NAT-LIST 799
SIMPLE-VENDING-MACHINE 145
SOCKET 365
SORTABLE-LIST 294
SORTABLE-LIST’ 297
SORTABLE-LIST-AND-SET 298
SORTABLE-LIST-AND-SET’ 300
SORTED-LIST 320
SORTED-LIST-KIND 226
SORTED-LIST-TEST 322
SORTED-NAT-LIST-KIND 800
SPREADSHEET 676
SPREADSHEET-ASYNCH 676
STACK 313
STACK-TEST 313
STRAT-EX1 84
STRAT-EX2 84
STRING 265
STRING-NAT-ARRAY 304
STRING-NAT-MAP 302
STRING-OPS 367

STRING-SET-MAX 222
STRING-SORTABLE-LIST 294
STRING-SORTABLE-LIST’ 297
STRING-SORTED-LIST-KIND 227

TESTS 414
TICKER 349
TICKER-CUSTOMER 351
TICKER-FACTORY 351
TICKER-FACTORY-TEST 352
TICKER-TEST 350
TREE-NODE 622
TRUTH 237
TRUTH-VALUE 236
TUPLE[2] 617

U2 174
UNIF-VENDING-MACHINE 474
UNIF-VENDING-MACHINE-MB 475
UNIFICATION 513
UNIFICATION-AUX-OPS 511
UNIFICATION-BANNER 639
UNIFICATION-COMMAND-

PROCESSING 637
UNIFICATION-CYCLE 490
UNIFICATION-DATABASE-

HANDLING 638
UNIFICATION-EX1 470
UNIFICATION-EX3 472
UNIFICATION-META-SIGN 636
UNIFICATION-SIGN 635
UNTYPED-LAMBDA-CALCULUS 231
UP-DOWN-TEST 437

VARIANT-VENDING-MACHINE 497, 655
VECTOR 306
VENDING-MACHINE 137, 143, 195, 594
VENDING-MACHINE-GRAMMAR 572
VENDING-MACHINE-

INTERFACE 573
VENDING-MACHINE-QUERY 594
VENDING-MACHINE-

SIGNATURE 136
VENDING-MACHINE-TOP 144

WEAKLY-SORTABLE-LIST 292
WEAKLY-SORTABLE-LIST’ 295
WRONG-NAT-SET 789

XMATCH-TEST 107
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+MONOID 204

BIT-WIDTH 252

CELL 685
CHOICE 207
CONTENTS 329

DEFAULT 273

MONOID 203

NSPOSET 206
NSTOSET 207
NZNAT# 700

POSET 206

RING 204

SEMIRING 204
SPOSET 205
STOSET 207, 312
STRICT-TOTAL-ORDER 274
STRICT-WEAK-ORDER 274

TAOSET 205
TOSET 207, 315
TOTAL-ORDER 276
TOTAL-PREORDER 276
TRIV 203, 272

UNIFICATION-EX2 471

VAR 228
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32-BIT 253
64-BIT 253

5 703

Account 689

Bool 272

Contents 330

DEFAULT 273

Float 272
Float0 273
Float< 275
Float<= 277

IndexPair 305
Int 212, 272, 312
Int0 273
Int< 275
Int<= 277
IntAsStoset 211, 332
IntAsToset 212, 316, 624
IntStringAsToset 317, 625
IntVector 306

Nat 272
Nat0 273
Nat< 275
Nat<= 227, 277
NatAsToset 230, 322
Node 622
NSTOSET 226

POSET 225
PosetToToset 212

Qid 223, 272
Qid0 274

Rat 272
Rat0 273
Rat< 275
Rat<= 277
Record 329
RING 225
RingToRat 210

Set 619
SPosetToInt 211
STOSET 221
STRICT-TOTAL-ORDER 275
STRICT-WEAK-ORDER 275
String 272
String0 273
String< 275
String<= 227, 277
StringAsContents 332
StringAsToset 210
Substitution 696

TOSET 213, 320
TOTAL-ORDER 277
TOTAL-PREORDER 277
Tuple 620

VarNat 231
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