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ABSTRACT

We have developed a compiler for the lexically-scoped
dialect of LISP known as SCHEME. The compiler knows
relatively little about specific data manipulation primitives
such as arithmetic operators, but concentrates on general
issues of environment and control. Rather than having
specialized knowledge about a large variety of control and
environment constructs, the compiler handles only a small
basis set which reflects the semantics of lambda-calculus.
All of the traditional imperative constructs, such as
sequencing, assignment, looping, GOTO, as well as many
standard LISP constructs such as AND, OR, and COND,
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are expressed as macros in terms of the applicative basis
set. A small number of optimization techniques, coupled
with the treatment of function calls as. GOTO statements,
serve to produce code as good as that produced by more
traditional compilers. The macro approach enables speedy
implementation of new constructs as desired without
sacrificing efficiency in the generated code.

A fair amount of analysis is devoted to determining whether
environments may be stack-allocated or must be heap-
allocated. Heap-allocated environments are necessary in
general because SCHEME (unlike Algol 60 and Algol 68,
for example) allows procedures with free lexically scoped
variables to be returned as the values of other procedures;
the Algol stack-allocation environment strategy does not
suffice. The methods used here indicate that a heap-
allocating generalization of the "display" technique leads to
an efficient implementation of such "upward funargs".
Moreover, compile-time optimization and analysis can
eliminate many "funargs" entirely, and so far fewer
environment structures need be allocated at run time than
might be expected.

A subset of SCHEME (rather than triples, for example)
serves as the representation intermediate between the
optimized SCHEME code and the final output code; code is
expressed in this subset in the so-called continuation
passing style. As a subset of SCHEME, it enjoys the same
theoretical properties; one could even apply the same
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optimizer used on the input code to the intermediate code.
However, the subset is so chosen that all temporary
quantities are made manifest as variables, and no control
stack is needed to evaluate it. As a result, this apparently
applicative representation admits an imperative
interpretation which permits easy transcription to final
imperative machine code. These qualities suggest that an
applicative language like SCHEME is a better candidate for
an UNCOL than the more imperative candidates proposed
to date.

Thesis Supervisor: Gerald Jay Sussman
Title: Associate Professor of Electrical Engineering
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Note

The first part of this report is a slightly revised version of a
dissertation submitted in May 1977. Where it was of
historical interest to reflect changes in the SCHEME
language which ocurred in the following year and the effect
they had on RABBIT, the text was left intact, with notes
added of the form, "Since the dissertation was written, thus-
and-so occurred." The second part, the Appendix, was not
part of the dissertation, and is a complete listing of the
source code for RABBIT, with extensive commentary.

It is intended that the first part should be self-contained, and
provide a qualitative overview of the compilation methods
used in RABBIT. The second part is provided for those
readers who would like to examine the precise mechanisms
used to carry out the general methods.

Thus there are five levels of thoroughness at which the
reader may consume this document:

(1) The reader who wishes only to skim is advised to read
sections 1, 5, 6, possibly 7, 8A, 8B, 8C, 10, 11, and 12. This
will give a basic overview, including the use of macros and
the optimizing techniques.
(2) The reader who also wants to know about the details of
SCHEME, the run-time system, and a long example is
advised to read the entire main text (about a third of the
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document). 
(3) The reader who wants to understand the low-level
organization of the algorithms, and read about the more
tricky special cases, should read the main text and then the
commentary on the code. 
(4) The reader who additionally wants to understand the nit-
picking details should read the code along with the
commentary. 
(5) The reader who wants a real feel for the techniques
involved should read the entire document, invent three new
SCHEME constructs and write macros for them, and then
reimplement the compiler for another run-time
environment. (He ought please also to send a copy of any
documents on such a project to this author, who would be
very interested!)
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