
1

Rabbit: A Compiler for Scheme

Guy L. Steele, Jr.

1978

Exported from Wikisource on October 25, 2021

2

A scan-backed, verifiable version of this work can be edited at
Index:AITR-474.djvu.
If you would like to help, please see Help:Match and split and Help:Proofread.

This work is incomplete. If you'd like to help expand it, see the help pages
and the style guide, or leave a comment on the talk page.
(sources: Index:AITR-474.djvu)

RABBIT:

A Compiler for SCHEME

(A Dialect of LISP)

A Study in

Compiler Optimization

Based on Viewing
LAMBDA as RENAME

and
PROCEDURE CALL as GOTO

using the techniques of

Macro Definition of Control and Environment Structures
Source-to-Source Transformation

Procedure Integration
and

Tail-Recursion

Guy Lewis Steele Jr.

Massachusetts Institute of Technology

May 1978

https://en.wikisource.org/wiki/Index:AITR-474.djvu
https://en.wikisource.org/wiki/Help:Match_and_split
https://en.wikisource.org/wiki/Help:Proofread
https://en.wikisource.org/wiki/File:Incomplete-document.svg
https://en.wikisource.org/wiki/Help:Contents
https://en.wikisource.org/wiki/Wikisource:Style_guide
https://en.wikisource.org/wiki/Talk:Rabbit:_A_Compiler_for_Scheme
https://en.wikisource.org/wiki/Index:AITR-474.djvu

3

Revised version of a dissertation submitted (under the title "Compiler Optimization
Based on Viewing LAMBDA as RENAME plus GOTO") to the Department of
Electrical Engineering and Computer Science on May 12, 1977, in partial fulfillment
of the requirements for the degree of Master of Science.

4

Chapters (not listed in original)

Front matter
Abstract
Author's Note
Acknowledgements

Contents
1. Introduction 7

A. Background 7
B. The Thesis 10

2. The Source Language - SCHEME 15
3. The Target Language 18
4. The Target Machine 22
5. Language Design Considerations 25
6. The Use of Macros 28
7. The Imperative Treatment of Applicative Constructs 37
8. Compilation Strategy 44

A. Alpha-conversion and macro-expansion 45
B. Preliminary analysis 46
C. Optimization 49
D. Conversion to Continuation-Passing Style 56
E. Environment and closure analysis 60
F. Code generation 64

9. Example: Compilation of Iterative Factorial 69
10. Performance Measurements 86
11. Comparison with Other Work 88
12. Conclusions and Future Work 90
Notes 93
References 113
Appendix 117

https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_1
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_2
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_3
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_4
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_5
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_6
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_7
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_8
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_9
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_10
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_11
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Chapter_12
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Notes
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/References
https://en.wikisource.org/wiki/Rabbit:_A_Compiler_for_Scheme/Appendix

5

This work is licensed under the Creative Commons Attribution 3.0
Unported License.

This page must provide all available authorship information.

https://en.wikisource.org/wiki/Creative_Commons_Attribution_3.0_Unported

6

This work is free and may be used by anyone for any purpose. If you
wish to use this content, you do not need to request permission as
long as you follow any licensing requirements mentioned on this
page.

Wikimedia has received an e-mail confirming that the copyright
holder has approved publication under the terms mentioned on this
page. This correspondence has been reviewed by an OTRS member
and stored in our permission archive. The correspondence is available
to trusted volunteers.

https://meta.wikimedia.org/wiki/OTRS/Users
https://meta.wikimedia.org/wiki/OTRS

7

Technical Report 474

RABBIT:
A Compiler

for SCHEME

Guy Lewis Steele

MIT Artificial Intelligence Laboratory

8

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS (When

Data Entered)

Sent
12/7/78

ADA
061996

9

REPORT
DOCUMENTATION

PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT
NUMBER 2.

GOVT
ACCESSION
NO.

2. RECIPIENT'S CATALOG NO.

TR474
4. TITLE (and Subtitles) 5. TYPE OF REPORT & PERIOD

COVERED

RABBIT: A Compiler
for SCHEME (A Study
in Compiler
Optimization)

Technical Report

6. PERFORMING ORG. REPORT
NUMBER

7. AUTHORS(s) 8. CONTRACT OR GRANT NUMBERS

Guy Lewis Steele N00014-75-C-0643

9.
PERFORMING
ORGANIZATION NAME
AND ADDRESS

10.
PROGRAM ELEMENT, PROJECT,
TASK AREA & WORK UNIT
NUMBERS

Artificial Intelligence
Laboratory

545 Technology Square
Cambridge,
Massachusetts 02139

11. CONTROLLING OFFICE
NAME AND ADDRESS 12. REPORT DATE

Advanced Research
Projects Agency

May 1978
13. NUMBER OF PAGES

272

10

1400 Wilson Blvd
Arlington, Virginia
22209

14.

MONITORING AGENCY
NAME & ADDRESS(if
different from Controlling
Office)

15. SECURITY CLASS (of this report)

Office of Naval
Research

Information Systems
Arlington, Virginia
22217

UNCLASSIFIED

15a. DECLASSIFICATION/DOWNGRADE
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if

different from Report.)

18. SUPPLEMENTARY NOTES

None
19. KEY WORDS (Continue on reverse side if necessary and identify by block

number)

compiler optimization tail-recursion
code generation lambda calculus
LISP lexical scoping
macros continuations

18. ABSTRACT (Continue on reverse side if necessary and identify by block
number)

We have developed a compiler for the lexically-scoped

11

dialect of LISP known as SCHEME. The compiler knows
relatively little about specific data manipulation
primitives such as arithmetic operators, but concentrates
on general issues of environment and contral. Rather than
having specialized knowledge about a large variety of
control and environment constructs, the compiler handles
only a small basis set which reflects the semantics of
lambda-calculus. All of the traditional imperative
constructs, such as sequencing, assignment, looping,
GOTO, as well as many standard (cont'd) LISP constructs
such as AND, OR, and COND, are expressed as macros
in terms of the applicative basis set. A small number of
optimization techniques, coupled with the treatment of
function calls as GOTO statements, produced by more
traditional compilers. The macro approach enables speedy
implementation of new constructs as desired without
sacrificing efficiency in the generated code.

A fair amount of analysis is devoted to determining
whether environments may be stack-allocated or must be
heap-allocated. Heap-allocated environments are
necessary in general because SCHEME (unlike Algol 60
and Alqol 68, for example) allows procedures with free
lexically scoped variable to be returned as the values of
other procedures: the Algol stack-allocation environment
strategy does not suffice. The methods used here indicate
heap-allocating generalization of the "display" technique
leads to an efficient implementation of such "upward
funarqs". Moreover, compile-time optimization and

12

analysis can eliminate many "funargs" entirely, and so far
fewer environment structures need be allocated at run
time than might expected.

A subset of SCHEME (rather than triples, for example)
serves that as the representation intermedieate between
the optimized SCHEME code and the final output code;
code is expressed in this subset in the so-called
constinuation-passing style. As a subset of SCHEME, it
enjoys the same theoretical properties; one could even
apply the same optimizer used on the input code to the
intermediate code. However, the subset is so chosen that
all temporary quantities are made manifest as variables,
and no control stack is needed to evaluate it. As a result,
this apparently applicative representation admits an
imperative interpretation which permits easy transcription
to final imperative machine code. These qualities suggest
that an applicative language like SCHEME is a better
candidate for an UNCOL than the more imperative
candidates proposed to date.

DD
FORM
1 JAN

73
1473

EDITION OF 1 NOV
63 IS OBSOLETE
S/N 0:02-014-6601

UNCLASSIFIED
SECURITY CLASSIFICATION
OF THIS (When Data Entered)

13

This research was conducted at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology.
Support for the Laboratory's artificial intelligence research is
provided in part by the Advanced Research Projects Agency
of the Department of Defense under Office of Naval
Research contract number N00014-75-C-0643.

14

RABBIT: A Compiler for SCHEME (A Dialect of LISP)

A Study in Compiler Optimization
Based on Viewing LAMBDA as RENAME and

PROCEDURE CALL as GOTO

using the techniques of
Macro Definition of Control and Environment Structures,
Source-to-Source Transformation, Procedure Integration,

and Tail-Recursion

Guy Lewis Steele Jr.
Massachusetts Institute of Technology

May 1978

ABSTRACT

We have developed a compiler for the lexically-scoped
dialect of LISP known as SCHEME. The compiler knows
relatively little about specific data manipulation primitives
such as arithmetic operators, but concentrates on general
issues of environment and control. Rather than having
specialized knowledge about a large variety of control and
environment constructs, the compiler handles only a small
basis set which reflects the semantics of lambda-calculus.
All of the traditional imperative constructs, such as
sequencing, assignment, looping, GOTO, as well as many
standard LISP constructs such as AND, OR, and COND,

15

are expressed as macros in terms of the applicative basis
set. A small number of optimization techniques, coupled
with the treatment of function calls as. GOTO statements,
serve to produce code as good as that produced by more
traditional compilers. The macro approach enables speedy
implementation of new constructs as desired without
sacrificing efficiency in the generated code.

A fair amount of analysis is devoted to determining whether
environments may be stack-allocated or must be heap-
allocated. Heap-allocated environments are necessary in
general because SCHEME (unlike Algol 60 and Algol 68,
for example) allows procedures with free lexically scoped
variables to be returned as the values of other procedures;
the Algol stack-allocation environment strategy does not
suffice. The methods used here indicate that a heap-
allocating generalization of the "display" technique leads to
an efficient implementation of such "upward funargs".
Moreover, compile-time optimization and analysis can
eliminate many "funargs" entirely, and so far fewer
environment structures need be allocated at run time than
might be expected.

A subset of SCHEME (rather than triples, for example)
serves as the representation intermediate between the
optimized SCHEME code and the final output code; code is
expressed in this subset in the so-called continuation
passing style. As a subset of SCHEME, it enjoys the same
theoretical properties; one could even apply the same

16

optimizer used on the input code to the intermediate code.
However, the subset is so chosen that all temporary
quantities are made manifest as variables, and no control
stack is needed to evaluate it. As a result, this apparently
applicative representation admits an imperative
interpretation which permits easy transcription to final
imperative machine code. These qualities suggest that an
applicative language like SCHEME is a better candidate for
an UNCOL than the more imperative candidates proposed
to date.

Thesis Supervisor: Gerald Jay Sussman
Title: Associate Professor of Electrical Engineering

17

Note

The first part of this report is a slightly revised version of a
dissertation submitted in May 1977. Where it was of
historical interest to reflect changes in the SCHEME
language which ocurred in the following year and the effect
they had on RABBIT, the text was left intact, with notes
added of the form, "Since the dissertation was written, thus-
and-so occurred." The second part, the Appendix, was not
part of the dissertation, and is a complete listing of the
source code for RABBIT, with extensive commentary.

It is intended that the first part should be self-contained, and
provide a qualitative overview of the compilation methods
used in RABBIT. The second part is provided for those
readers who would like to examine the precise mechanisms
used to carry out the general methods.

Thus there are five levels of thoroughness at which the
reader may consume this document:

(1) The reader who wishes only to skim is advised to read
sections 1, 5, 6, possibly 7, 8A, 8B, 8C, 10, 11, and 12. This
will give a basic overview, including the use of macros and
the optimizing techniques.
(2) The reader who also wants to know about the details of
SCHEME, the run-time system, and a long example is
advised to read the entire main text (about a third of the

18

document).
(3) The reader who wants to understand the low-level
organization of the algorithms, and read about the more
tricky special cases, should read the main text and then the
commentary on the code.
(4) The reader who additionally wants to understand the nit-
picking details should read the code along with the
commentary.
(5) The reader who wants a real feel for the techniques
involved should read the entire document, invent three new
SCHEME constructs and write macros for them, and then
reimplement the compiler for another run-time
environment. (He ought please also to send a copy of any
documents on such a project to this author, who would be
very interested!)

19

Acknowledgements

I would like to acknowledge the contributions to this work
of the following people and other entities:

Gerald Jay Sussman, who is not only my thesis advisor but
a colleague and a good friend; who is fun to hack
programs with; who not only provided insights on the
issues of programming, but also was willing to give
me a kick in the right direction when necessary;

Jon Doyle, one of the first real "users" of SCHEME, who
was always willing to discuss my problems, and who
carefully proofread the thesis in one day when no one
else would or could;

Richard Zippel, the other first real SCHEME user, who has
discussed with me many possibilities for the practical
use of SCHEME-like languages in such large systems
as MACSYMA;

Carl Hewitt, whose actors metaphor inspired in part first
SCHEME and then the investigations presented here;

Scott Fahlman, who has Great Ideas, and who paid some of
his dues at the same place I did;

Jon L White, resident LISP compiler expert and agreeable
office-mate, who likes both tea and ();

Dan Weinreb, Bernie Greenberg, Richard Stallman, Dave
Moon, Howard Cannon, Alan Bawden, Henry Baker,
and Richard Greenblatt for their companionship,

https://en.wikisource.org/wiki/Author:Gerald_Jay_Sussman
https://en.wikipedia.org/wiki/Carl_Hewitt
https://en.wikipedia.org/wiki/Scott_Fahlman
https://en.wikipedia.org/wiki/Daniel_Weinreb
https://en.wikipedia.org/wiki/Bernard_Greenberg
https://en.wikisource.org/wiki/Author:Richard_Stallman
https://en.wikipedia.org/wiki/David_Moon
https://en.wikipedia.org/wiki/Richard_Greenblatt_(programmer)

20

advice, comments, enthusiasm, criticism, and/or
constructive opposition;

the rest of the gang at the AI Lab and Project MAC (loosely
known as the Lab for Computer Science), for their
continued interest in my work and for the pleasant
social atmosphere they provide;

Bill Wulf, Charles Geschke, Richard Johnsson, Charles
Weinstock, and Steven Hobbs, whose work on BLISS-
II I found a great inspiration, for it told me that there
was at least one beautiful compiler already;

Dan Friedman and Dave Wise, who also know that LISP is
the One True Way; Dick Gabriel, a most singular
person (that's odd...), who knows that Lapin is, best
dealt with gingerly;

the National Science Foundation, which provided the
fellowship under which this work was done;

Cindy Ellis and J.J. McCabe, who always treated me as just
a regular guy; Julie Genovese, my main (and only)
groupie;

the congregation at the Brighton Evangelical
Congregational Church, for their social and moral
support;

Mittens Jr., our cat, who was willing to communicate when
the rest of the world was asleep;

Chuck, the peculiar poodle, who carried on as best she
could after Mittens Jr. had gone, and who still barks in
the night;

my brother, David A. Steele, who has kept me up to date on
cultural affairs, and who probably understands me

https://en.wikipedia.org/wiki/William_Wulf
https://en.wikipedia.org/wiki/Charles_Geschke

21

better than anyone else;
and my parents, Guy L. Steele Sr. and Nalora Steele, who

provided unbounded amounts of patience,
encouragement, opportunity, and support.

22

23

About this digital edition
This e-book comes from the online library Wikisource[1].
This multilingual digital library, built by volunteers, is
committed to developing a free accessible collection of
publications of every kind: novels, poems, magazines,
letters...

We distribute our books for free, starting from works not
copyrighted or published under a free license. You are free
to use our e-books for any purpose (including commercial
exploitation), under the terms of the Creative Commons
Attribution-ShareAlike 3.0 Unported[2] license or, at your
choice, those of the GNU FDL[3].

Wikisource is constantly looking for new members. During
the transcription and proofreading of this book, it's possible
that we made some errors. You can report them at this
page[4].

The following users contributed to this book:

Billinghurst
Pi Delport
Jesscmcmxc
Jarnsax
Inductiveload
Santoposmoderno

https://en.wikisource.org/wiki/Main_Page
https://www.creativecommons.org/licenses/by-sa/3.0
https://www.gnu.org/copyleft/fdl.html
https://en.wikisource.org/wiki/Wikisource:Scriptorium

24

Doodledoo
Geni
Sasa Stefanovic
Neils51
Guillom
Thomas Linard
Kwj2772
Digipoke
Xover
Rjd0060

1. ↑ https://en.wikisource.org
2. ↑ https://www.creativecommons.org/licenses/by-sa/3.0
3. ↑ https://www.gnu.org/copyleft/fdl.html
4. ↑

https://en.wikisource.org/wiki/Wikisource:Scriptorium

	Title page
	Rabbit: A Compiler for Scheme
	Front matter
	Abstract
	Author's Note
	Acknowledgements
	About

