
A Tutor ia l on ALGOL 68

ANDREW S. TANENBAUM

Vakgroep Informatica, Wiskund~g Seminarium, Vrije Universiteit, de Boelelaan 1081, Amsterdam,
The Netherlands

This paper is an introduction to the main features of ALGOL 68, emphasizing the novel
features not found in many other programming languages. The topics, data types
(modes), type conversion (coercion), generalized expressions (units), procedures,
operators, the standard prelude, and input/output, form the basis of the paper. The
approach is informal, relying heavily on many short examples. The paper applies to the
Revised Report, published in 1975, rather than to the original report, published in
1969.

Keywords and Phrases: ALGOL 68, ALGorithmic Language, expression languages,
general programming languages, high-level languages, problem-oriented languages.

CR Categories: 4.20, 4.22.

INTRODUCTION

This paper is an introduction to ALGOL 68--
in plain English--for the nonspecialist. In
its short lifetime, ALGOL 68 has acquired
something of an international reputation for
being obscure. An early description of the
language [8] was entitled "ALQoL 68 with
Fewer Tears." The feeling has persisted. One
recent author [11] has written, "The ALGOL
68 Report is one of the most unreadable
documents which has ever been printed."
I t is our intention to demonstrate tha t
ALGOL 68 is neither inscrutable nor difficult,
but rather is an extremely powerful pro-
gramming language which is easily learned
and which is ~pplicable to a wide variety of
problems.

One reason ALGOL 68 has been slow to be
accepted is not hard to discover. The defin-
ing report used a completely new kind of
grammar to define the language, instead of
the now familiar and comfortable Backus-

Naur grammar (BNF). This new grammar,
often called a vW-grammar (in honor of its
inventor, A. van Wijngaarden), is context
sensitive rather than context free. Like
many new ideas, it takes some getting used
to, just as B N F grammars did. The new
grammar was introduced for some very good
reasons. In particular, it allows not only the
syntax, but also tha t par t of the semantics
having to do with declarations to be defined
by the grammar. For example, the non-
terminal <program> simply does not gener-
ate any program in which variables are un-
defined, multiply defined, or defined incon-
sistently with their usage. No English prose
is needed to say tha t variables must not be
defined twice, etc. Consequently, W-gram-
mars provide a more complete and accurate
definition than do B N F grammars.

During several years of experience with
the language, several trouble spots came to
light, particularly features of the language

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Computing Surveys, VoL 8, No. 2, June 1976

156 • Andrew S. Tanenbaum

CONTENTS

Introduction

1 Bird's-Eye View of AT.eeL 68
1 1 Program Structure
1.2 Data and Declarations
1 3 Statements

2 Modes
2 1 Primitive Modes
2 2 Array Modes
2 3 Structured Modes
2 4 Procedure Modes
2 5 United Modes
2 6 Reference-to Modes
2.7 Mode Declaratmns
2 8 Using New Modes

3. Units
3 1 Denotatmns
3 2 Variables
3 3 Formulas
3.4 Slices
3 5 Selections
3 6 Procedure Calls
3.7 Assignments
3 8 Generators
3.9 Nil
3.10 Idenhty Relations
3 11 Casts
3 12 Choice Clauses
3.13 Closed Clauses
3 14 Skip
3 15 Routine Texts
316 Other Units

4 Coercions
5. Contexts
6 Procedures

6 1 Parameter Mechanism
0 2 More About Procedures

7. Operators
7.1 Operator Ident, ficatmn
7 2 Operator Priorities

8. Standard Prelude
8 1 Environment Enquiries
8 2 Standard Prelude Operators

9 Input/Output
9.1 Books, Channels, and Files
9.2 Formatless Transput
9 3 Formatted Transput

10. Serial, Collateral, and Parallel Processing
101 Collateral Clauses
10.2 Synchronized Parallel Processing

11. Where To From Here?

Acknowledgments

References

Computing Surveys, Vol 8, No. 2, June 1976

that were tricky to implement efficiently. A
Revised Report [13] was published in 1975,
describing a slightly modified language that
does not have these problems. Furthermore,
the original report itself was completely re-
written, in order to make it easier to under-
stand. It is the revised language and the Re-
vised Report that are described in this arti-
cle. References to sections in the Revised
Report are indicated by the letters RR pre-
ceding the section number.

Rather than attempting to explore every
nook and cranny of ALGOL 68, we concen-
trate on the major features, illustrating them
with many examples. Readers wishing a book
length introduction to ALGOL 68 are re-
ferred to the books listed in Section 11, Where
To From Here?

The ALGOL 68 Report introduced a veri-
table cornucopia of new terminology to the
computing community, all of which are pre-
cisely defined in the Revised Report (Ra 2.1).
This was done to force the reader to rely on
the Report's definitions, rather than to rely
on his previous experience with similar con-
cepts that nonetheless may differ from the
Report's definitions in subtle, but crucial,
ways.

Nevertheless, to avoid inundating the
reader, we try to shun when possible the bus
tokens (RR 1.3.3e) invisible production
trees (RR 1.1.3.2h), primal environs (RR
2.2.2a), incestuous unions (RR 4.7), notions
(RR 1.1.3.1C), protonotions (RR 1.1.3.1b),
metanotions (RR 1.1.3.1d), hypernotions
(RR 1.1.3.1e), paranotions (RR 1.1.4.2), and
their ilk, for more familiar nomenclature. As
a starter, we refrain from using "assigna-
tion" when "assignment" does just as nicely,
and we use "integer" rather than "integral"
as an adjective.

Before plunging into the description of the
language itself, it is perhaps worthwhile to
say something about the principles of its de-
sign. One of the key ideas is that of ortho-
gonality. An orthogonal language has a small
number of basic constructions, and rules for
combining them in regular and systematic
ways. A very deliber,~,te attempt is made to
eliminate arbitrary restrictions.

The concept of orthogonal design may be
made clearer by an example of nonortho-

gonal design. Many programming languages
(for example, FORTRAN, ALGOL 60, and
PL/I) have a concept of data types that in-
cludes arrays. They also have a concept of
functions as rules for mapping parameters
onto results. Logically one might expect to be
able to combine the "orthogonal" (that is,
independent) concepts of data types and
functions to construct functions that take an
array as parameter and yield an array as the
result. An arbitrary restriction that allows
arrays to be used as parameters but pro-
hibits them to be used as results is an ex-
ample of nonorthogonal design. A funda-
mental principle of ALGOL 68 is that arbi-
trary rules like this restriction are only used
to resolve situations which might otherwise
be syntactically or semantically ambiguous.

Another principle, related to that of or-
thogonality, is the principle of extensibility.
ALGOL 68 provides a small number of primi-
tive data types, or modes, as well as mecha-
nisms for the user to extend these in a sys-
tematic way. For example, the programmer
may create his own data types and his own
operators to manipulate them. This philos-
ophy may be contrasted with, say APL,
which provides a very large number of stand-
ard operators, rather than a very small
number and the machinery for programmers
to define new ones. Together, orthogonality
and extensibility tend to produce a "com-
pact" yet powerful language.

I. BIRD'S-EYE VIEW OF ALGOL 68

In the following subsections we briefly men-
tion some basic features of ALGOL 68 that
are common to many programming lan-
guages in order to be able to use them in sub-
sequent examples.

1.1 Program Structure

An ALGOL 68 program consists of a sequence
of symbols enclosed by begin and end, or
by parentheses. Some symbols are written in
boldface type to distinguish them as key-
words. Other symbols are variable identifiers
(written in the same general font that is used
in programs) and special characters such as
(>, =, (), ~-, - , etc.

A Tutorial on ALaoL 68 • 157

Spaces and carriage returns (change to a
new card) may be used freely to improve
readability. Spaces are explicitly allowed
"inside" identifiers. Thus the three little pigs
and thethreelittlepigs are the same identifier.
Identifiers (for example, variable names) may
be arbitrarily long.

Comments are enclosed between comment
symbols, of which four representations are
allowed: ~, #, co, and comment . The com-
ment must begin and end with the same
comment symbol. A comment may be in-
serted between any two symbols.

ALGOL 68 is a block structured language,
like PL/ I and ALGOL 60. Blocks and pro-
cedures may be nested arbitrarily deep.
Declarations may appear in any block.
Semicolons are used to separate statements,
similar to ALGOL 60 (and in contrast to
PL/I , which uses them to terminate state-
ments).

1.2 Data and Declarations

One of the most basic features of a pro-
gramming language is the kind of data that
it can manipulate. ALGOL 68 provides a rich
collection of data types (described in Sec-
tion 2, Modes). The ALGOL 68 Report uses the
term mode instead of type, and we do too.
Four of the simplest modes are integer, real
(floating point), Boolean, and character. As
one might expect, there are integer, real,
Boolean, and character variables. All vari-
ables must be declared. Any variable used
but not declared will be flagged by the com-
piler as an error. The declaration of a vari-
able consists of a mode, followed by one or
more identifiers. The following program il-
lustrates variable declarations. An ALGOL
68 program must contain at least one state-
ment; skip is a dummy statement that can
be used to turn a collection of declarations
into a syntactically valid program.

begin
real e,x,y,z; ¢ 4 real variables
!)ool maybe; ~ 1 boolean variable
char first initial, middle $nitial,

grade desired; ~ 3 character variables
i n t i,3,girlfriends; ~ 3 integer variables
skip ~ dummy statement
end

Computing Surveys, ¥o| . 8, No. 2, June 1976

158 • Andrew S. Tanenbaum

Note that the declarations are separated by
semicolons. The symbols i n t , r e a l , b o o l ,
and c h a r are not abbreviations; in t ege r ,
boo lean , and c h a r a c t e r are not allowed
(although one can explicitly define them as
modes if so desired).

1.3 Statements

ALGOL 68 is an expression language. This
means that every construction in the lan-
guage yields a value and in principle can ap-
pear on the right-hand side of an assign-
ment. Nevertheless, certain constructions
can also be used as statements. Among these
constructions are assignment statements, i f
statements, procedure calls, for statements,
whi le statements, case statements, and g o t o
statements. Since these are all quite familiar
from other programming languages, a few ex-
amples, shown in the next column, should
suffice.

A few explanatory notes may be in order.
Observe that i f statements are closed by fi
(if backwards). This solves the dangling
else problem. Suppose fi were not used. Then
the statement

if i<0 t h e n if j<0
t h e n pmnt ("hello") else print ("goodbye")

would be ambiguous, possibly meaning

i f i<0
then if j<0 t h e n print ("hello") fi
e l se print ("goodbye")

fi

or perhaps meaning

if i<0
t h e n if j<0 t h e n print ("hello")

e l se print ("goodbye")
fi

fi

With the fi there is no ambiguity. Further-
more, since both then a n d e l s e parts must
be explicitly closed, either may contain an
arbitrary number of statements without the
need for b e g i n e n d as delimiters.

b e g i n
mentally insert the above declarations here

assignment statements
girlfriends := girlfriends-l;
middle initial := "x";
e := 2.78;

if statements
if maybe

t h e n grade desired := "d"
e l se grade desired := " f"

fi; ¢ fi delimits if--see note below ¢
if x<0 t h e n x := - x ti;
i f ~ = j~-2

t h e n x := pi;
y := 2*e;
Z : = 3*e

fi;

procedure calls
sum & initialize must be defined elsewhere

znztialize; ~ no parameters
sum(x,y,z) ;
print(grade desired) ;

for - while statements
the following 5 statements are all equivalent
for k from 1 by 1 to j+3 w h i l e t r u e

do print (new line) od;

for k from 1 by 1 to j+3
do print (new line) od;

for k f r o m 1 to j+3
do print (new line) od;

for k to iT3
do print (new line) od;

to 3"-{-3
do print (new line) od;

w h i l e i<j Y i<0
do i := i~-1;

j := j-b2;
print ((i,j))

od;

¢ case statements ¢
case i-~4 i n

j := 0, j := 3, i := i--5, print(i)
esac;
case i i n

j := iT3,
i f j = 0 t h e n j : = ifi,
print (i)

o u t j := 4
e s a e ;

g o t o s t a t e m e n t

bed: goto bed

e n d

Computing Surveys, Vol 8, No. 2, June 1976

A Tutorial on AL(~oL 68 • 159

To simplify nested if statements, else i f
may be contracted to elif, providing the fi
matching the contracted i f is deleted. For
example,

if word = "oui"
then pr in t ("french")
e l se i f word = "yes"

then pr in t ("english")
e l se i f word = " j a "

t hen pr in t ("dutch")
e lse p m n t ("minor language")

fl
fi

fi

can be written as

i f word = "oui"
t h e n pr in t ("french")
el i f word = "yes"

t h e n pr in t ("english")
el l f word = " j a "

t h e n pr in t ("dutch")
e lse pr in t ("minor language")

fi

Even with elif, begin and end are never
needed as delimiters.

The for and while statements shown on
page 158 are all special cases of a general for
statement including both counting parts
(f r o m . . . b y . . . to) and while parts. The
from, by, and to parts are each optional,
with default values of 1, 1, and infinity, re-
spectively. Each part may occur only once.
The "controled variable" following for is
automatically an integer; it can neither be
declared nor assigned. If the same identifier
occurs outside the statement, it is a different
variable. This makes the controled variable
inaccessible outside the loop (to give the com-
piler writer more freedom, and to make cor-
rectness proofs easier). Furthermore, the
f rom, by, and to parts are evaluated once
and for all before the loop begins. Subse-
quent changes to any of their variables have
no effect on the step size or loop termination
condition.

The ease statement has an integer ex-
pression which selects the first, second,
third, etc., clause if the expression is 1,2,3,
etc., respectively. A clause is a statement

(or a group of statements separated by semi-
colons and enclosed by b e g i n e n d or paren-
theses). The clauses are separated by com-
mas. If an out clause is present, it will be se-
lected when the expression exceeds the
number of clauses or is less than 1. If the ou t
clause is omitted and the expression is out of
range, the case statement is sldpped, esac is
ease backwards.

Input/output in ALGOL 68 is performed by
calling certain input/output procedures,
rather than by executing special statements.
Procedures are provided for unformatted,
formatted, and binary input/output. Files
and input/output devices can be handled in
a consistent and machine-independent way.
We examine these input/output procedures
in a later section; for now, read(x) is used for
input and print(x) is used for output. Each
of these procedures may be passed a paren-
thesized list of variables as parameter, for
example, read((x,y,z)) and print((i,j,x+z)).
(The reason for the extra parentheses is ex-
plained later on.) The calls print(new line)
and print(new page) cause subsequent out-
put to begin at the beginning of the next line
or next page, respectively.

A sample ALGOL 68 program is shown on
page 160.

2. MODES

One of the most powerful features of ALGOL
68 is its rich collection of data types (modes),
and the facilities it provides programmers to
define their own modes. Programmer-de-
fined modes are constructed from primitive
modes, using a few simple rules for creating
new modes from old modes. In the following
subsections we examine primitive modes,
methods for constructing new modes, and
finally the mode definition facility in its full
glory.

An object is an entity stored in memory
during the execution of a program. Integers
and reals are typical objects. Each object
has a unique mode, for example, in t , real,
bool, or char. Each object also has a value.
I t is objects that are assigned to variables.
For example, an integer with value 3 (some
bit pattern in memory) can be assigned to an
integer variable. A variable should be

Computing Surveys Vol 8, No. 2, June 1976

160 • Andrew S. Tanenbaum

begin
¢This program reads two numbers: the price of
an item, and the amount the customer gave to
the cashier. I t then calculates how much change
he should get, and prints out the correct number
of quarters, dimes, nickels, and pennies, mini-
mizing the number of coins returned. The pro-
gram only handles change up to 99 cents. ¢

begin
i n t price, amount paid, change, quarters, dimes,

nickels, pennies;

read ((price, amount paid)); ¢ read inpu~ data ¢
change := amount paid - price;
i f change > 99 Y change < 0

t h e n pr in t ("input data incorrect")
else
i f change = 0 ¢ was the payment exact?¢

t h e n pr in t ("no change")
else ¢ compute how many of each coin ¢

quarters := 0;
dimes := 0;
nickels := 0;
while change >_ 25

do quarters := quarters -~ 1;
change := change -- 25

od ;
while change >_ 10

do dimes := dimes ~ 1;
change := change -- 10

od;
while change >_ 5

do nickels := nickels + 1;
change := change - 5

od;
pennies := change

print results ¢
print ((new page, "the change is",

new line, quarters, " quarters",
new line, d~mes, " dimes",
new line, nickels, " nickels",
new line, pennies, " pennies",
new line

))

fi ¢ this matches i f change = 0 . . . ¢
fi ¢ this matches if change > 9 9 . . . ¢
end

Computing Surveys, Vol 8, No 2, June 1976

A Tutorial on ALaor. 68 • 161

thought of as a container (memory location)
into which a certain class of objects can be
put. Be aware that the container and the
containee are distinct kinds of entities.

2.1 Primitive Modes

We have already seen how to declare in t ,
real, bool, and char variables. These are
not the only possibilities, however. A list of
the predefined modes with a brief descrip-
tion of each follows:

in t integer;
real real number;
char character;
bool boolean;
s tr ing string of characters;
compl complex number (2 reals);
bits machine word full of bits;
bytes machine word full of characters;
sema Dijkstra semaphore [4];
format mode used with formatted I/O;
file mode used for input/output.

For some applications, the number of bits
in an integer or real is insufficient. To ac-
commodate these situations, ALGOL 68 al-
lows primitive modes of long int , long long
int , etc., and long real, long long real,
long long long real, etc. Furthermore, to
accommodate applications where very many
integers or reals are needed, but where fewer
than the standard number of bits will suffice,
there are modes of short in t , shor t short
int and short real, short short real, etc.

The number of different lengths and the
number of bits in each is up to each ALGOL 68
compiler writer. However, the number of
available lengths and the size of each is avail-
able to programs at run time to facilitate
transfer of programs from one machine to
another. For a computer with an 8-bit byte
and a 32-bit word, a typical implementation
might have: short short int (8 bits), short
int (16 bits), in t (32 bits), long in t (64 bits),
long long in t (96 bits), and long long long
in t (128 bits).

The mode string defines a string of zero
or more characters. Strings may be arbi-
trarily long, and strings of any length may be
assigned to any string variable. In PL/ I
terms, all strings are of maximum length
equal to infinity and VARYING. The fol-
lowing is a valid ALGOL 68 program:

begin
str ing s;

s := " " ; ¢ an empty string ¢
s := "li t t le"; ¢ a 6 character string ¢
s .= "hello there, mommies and daddies"
end

The modes bits and bytes are intended to
give the programmer the ability to pack in-
formation into machine words to save space.
The number of bits in an object of mode bits
is not determined by the programmer, but
by the ALGOL 68 compiler writer. I t is to be
expected that in most implementations an
object of mode bits will occupy a full ma-
chine word. Operations are provided, among
others, to insert, extract, and test the indi-
vidual bits. The mode bytes is similar, pro-
viding a way to pack characters into ma-
chine words to save storage. How many
characters to pack into a machine word is a
decision left to the implementer. Like int
and real, bits and bytes have long and
short versions.

The modes sema, format, and file have
specialized uses and are covered later on.

ALGOL 68 allows more complex modes to
be constructed from simpler modes in a
variety of ways. Roughly speaking, these
ways involve arrays, structures, procedures,
sets, and pointers. We examine each of these
in turn.

2.2 Array Modes

Many problems involve data which are or-
ganized into vectors or matrices. A vector is
a one-dimensional sequence of objects, all of
which have the same mode. A matrix is a two-
dimensional ordering of objects of the same
mode. Likewise, three, four, and higher di-
mensional arrays also consist of collections
of objects of the same mode. The elements of
an array may be of a primitive mode, such
as int , or they may be of a constructed
mode.

The official ALGOL 68 term for array is
multiple value (RR 2.1.3.4); however, we
continue to use the more familiar word
"array." An array is a run-time object and
therefore has a value and a mode. Array
variables exist and may be declared and as-
signed values, just as variables of any other
mode are. A one-dimensional array of inte-

Computing Surveys, Vol. 8, No. 2, June 1976

162 • Andrew S. Tanenbaum

gers has mode [] in t , pronounced "row of
integer"; a two-dimensional array of reals
has mode [,] real , pronounced "row row of
real"; a three-dimensional array of charac-
ters has mode [,,] cha r , pronounced "row row
row of character." In general, the mode of an
n-dimensional array is an opening square
bracket followed by n - 1 commas, a closing
square bracket, and then the mode of the
elements. Objects of different dimensions
have different modes.

When array variables are declared, the
bounds must be specified in order to allow
sufficient space to be reserved. To declare a
one-dimensional integer array variable
named "month" which is to contain an array
whose elements are numbered 1 to 12, one
writes

[1:12] int month

The lower and upper bounds are integer ex-
pressions; they are separated by a colon.
Much as you would expect,

[0 :n- 1,0 :n- 1] real physicist, chemist

declares physicist and .chemist to be n X n
real matrices. Note that physicist is a [,]
r e a l variable; the bounds are not part of the
mode (unlike PASCAL). Thus if

[1:10o,3: 9] real geologist

declares a nonsquare matrix, physicist and
geologist have the same mode, albeit different
sizes. The following program declares several
variables:

begin int n ,m;
read((m,n)); ¢ read 2 integers ¢

unlabeled statements may be followed by
more declarations, i.e., it is not necessary to
put all declarations first ¢

[--n:n] int hamlet; ¢ size depends on n ¢
[1 m,1 :n] real macbeth;
I1:10,1:10,1:10] hool othello;
[-100:--80] char richard 3;
[0:9.m -b 6*m*n] string henry 8;

¢ array elements may themselves be arrays
[1:10] [1:5,1.5] int king lear;
skip ¢ dummy statement ¢
end

Elements of arrays may be extracted by sub-
scripting and trimming (see Section 3.4,
Slices).

In the preceding program, king lear is a 10-
element vector, each of whose elements is a
5 X 5 square matrix. A vector whose elements
are matrices might be a more natural repre-
sentation for, say, the successive digitized
frames of television broadcasting, than a
three-dimensional array. Note that king
lear[n] can be used anywhere an object of
mode [,] i n t is needed, for example, as an
actual parameter. I t can also be subscripted,
as in king lear[n] [2,3], but not as in king
lear[n,2,3].

An array variable may be declared to be
flexible, in which case arrays of different
sizes may be successively assigned to it, pro-
vided they are of the proper mode. A string
variable is actually a flexible one-dimensional
character array variable.

2.3 Structured Modes

Arrays are used to group together objects of
the same mode. Structures (RR 2.1.3.3) are
used to group together objects whose modes
need not be identical. A structure is composed
of one or more fields, each having a name, or
more properly, a field selector (RR 4.8.1f).
Structures themselves are objects and have
modes. The mode of a structure depends
upon the modes of its fields, their order, and
the field selectors. Two structured modes are
the same if and only if the corresponding
fields have the same modes and field selec-
tors. Structured variables exist, and may be
assigned to one field at a time or "all at
once." Structures are called "records" in
some programming languages. An example
of a structured variable declaration is:

s truct (string species,
i n t number of feet,
bool makes good pet) beastie

This declares beastie to be a variable with
three fields whose field selectors are: species,
number of feet, and makes good pet. To use any
of the fields of beastie, one writes the field
selector, followed by the word of, followed

Computing Surveys, Vol 8, No. 2, June 1976

by the name of the structured variable, for
example:

species of beastie := "brontosaurus" ;
number of feet of beastie := 4;
makes good pet of beastie := false

The extraction of one field of a structure is
called selecting. Alternatively, it is possible
to assign all three fields at once by using a
structure display (RR 3.3.1h) on the right-
hand side of the assignment statement, for
example:

beastie := ("guinea pig", 4, true)

Some examples of structured variables fol-
low:

begin in t n; read(n);
s truct (real value, str ing color,

bool leaks, has fireplace) house;
s truct ([1:3] c h a r aircraft type,

i n t wheels, max speed) plane;
s truct ([1:3] c h a r area code,

[1:7] c h a r phone number) telephone;
farm has 3 fields: crop, farmer and dairy

s truct ([l:n] s truet (string variety,
real acres) crop,

str ing farmer, bool dairy) farm;
skip
end

2.4 Procedure Modes

In contrast to most programming languages,
ALGOL 68 considers procedures to be objects,
complete with values and modes. Further-
more, there are procedure variables, to
which procedures can be assigned. The mode
of a procedure is uniquely determined by the
mode of its parameters (if there are any) and
the mode of the value it returns. A procedure
that takes an integer as a parameter and re-
turns a real as a value has mode proc (int)
real. A procedure that takes a character and
a Boolean matrix as parameters and returns
a real vector as a value has mode proc (char,
[,] bool)[] real.

A procedure that is not used as a function,
that is, does not return any explicit value, is
said to return void. For example, a pro-
cedure that accepts an int as parameter and
cancels the corresponding flight (in an airline

A Tutorial on ALaOL 68 • 163

reservation system) has mode proe (int)
void. A procedure which has no param-
eters, but which returns a real, such as
random, has mode proe real. A procedure
which has no parameters and which delivers
no explicit value has mode proc void.

Both parameters and results may have
any mode. Unlike FORTRAN, ALGOL 60, and
PL/ I , in ALGOL 68, procedures may yield
strings, arrays, structures, pointers, or any
other mode. Furthermore, there is no reason
procedure modes cannot be used as param-
eters or results. For example, a procedure
used to perform a numerical integration of a
real function (that is, a proe (real) real) be-
tween two real limits might have mode

proc (proe (real) real, real, real) real.

The order of the parameters is significant;
proc (real, int) void and proc (int , real)
void are different modes. Because there are
an infinite number of combinations of param-
eters and results, there are an infinite num-
ber of procedure modes, just as there are an
infinite number of procedure modes.

As mentioned earlier, procedure variables
exist, and can be assigned values. The fol-
lowing program illustrates this feature:

begin real x;
Cf is a p roc (real) r ea l variable
proc (real) real f;
x := 3.14;

sin, cos, and tan are standard
f := sin, ~ assign sin t o f
print (f(x)); ~ print sin(3.14)
f := cos; ~ now assign cos to f
print (f(x)); ~ print cos(3.14)
f := tan; ~ now assign tan to f
print (f(x)) ¢ three guesses
end

When an integer variable acquires a new
value, as in i := 3, the bit pattern for the in-
teger 3 is put into location i. Obviously, as-
signing sin to f is not going to cause a copy of
the procedure's machine code to be stuffed
into the variable f. The ALGOL 68 compiler
writer must determine how to implement
this, but presumably he will assign pointers
to the procedure's code and environment
(or the equivalent) to f. Some examples of
procedure variable declarations follow:

Computing Surveys, Vol. 8, No. 2, June 1976

164 • Andrew S. Tanenbaum

begin
proc (real) real cotangent;
proc (int , in t) i n t integer divide;
proe (int , in t) bool coprime;
proc (char, char) bool char compare;
proc ([,] real, [,] real) [,] real matrix add;
proc (s t r ing, s t r ing) s t r i n g concatenate;
proc (int) void page eject;
proc (int) s t r u c t (s t r ing name, i n t age) find;
proc (int) proc (int) in t pick function;
proc (proc (real) real, real, real) real s~mpson;
skip ¢ dummy statement
end

2.5 United Modes

As we discuss later on, actual parameters in
procedure calls must be of the mode ex-
pected, for example, a p r o e (int) r ea l re-
quires an i n t as a parameter and will not
accept a rea l . Sometimes it is convenient to
have a procedure with a formal parameter
that can be any one of several modes. For ex-
ample, we might want to write a procedure
that accepts a vector parameter of mode []
in t , [] rea l , or [] c o m p l and checks to see if
any elements are zero.

To permit this sort of flexibility, ALGOL 68
permits programmers to create a special
kind of mode called a united mode. A vari-
able united from i n t and rea l can be as-
signed either an i n t value or a rea l value.
Similarly, a variable united from [] i n t ,
[] rea l , and [] c o m p l can accept a vector of
integers, reals, or complex numbers as a value
(but not a vector of Booleans). United mode
variables are declared as indicated here:

begin
union (int, real) zr;
union ([] in t , [] real , [] compl) irc;
union (proc (int) real, proc (real) real) u;
skip ¢ dummy statement ¢
end

I t is possible at run time to determine the
mode of the value currently occupying a
variable of united mode. This is done by
using a variation on the case statement
(RR 3.4.1h) with clauses for the various
possible modes. Each clause is headed by a
mode and (optionally) by an identifier, fol-

lowed by a colon. The clause corresponding
to the current mode of the united variable
is executed. Unlike the normal case state-
ment, the order of the clauses is irrelevant.

begin
union (int, real, boo/ , char, bi ts ,

by tes , [] i n t , [] real) kztchen s¢nk;
¢ here are 4 valid assignments
kitchen sznk := 3;
kitchen sink := 3.14;
kitchen sink := true;
k~tchen sink := "a";
¢ random is a standard p r o e r e a l
if random < .5

t h e n kitchen sink := 1
else k~tchen sink := 2.78

fi;
now figure out whether random was < .5 ¢

c a s e k~tchen sink i n
(int i): print (("integer", ¢)),
(rea l r): print (("real", r))

esac
end

In this example we determined the mode of
the union by using the case clause, and used
the value in kitchen sink once its mode was
known. Observe the (in t i) and (real r) in
the case clause. To compute with the value
in kitchen sink in the i n t part (first clause)
we can use the identifier i, now known to be
an in t . The value of i is the value of kitchen
sink. Likewise the identifier r can be used in
the second clause in any context where a
real number is allowed. I f j had been de-
clared as an integer variable in the preceding
program, j := kitchen sink would have been
forbidden (by the grammar) and would
have been flagged by the compiler. The rea-

Corf~uting Surveys, Vol 8, No 2, June 1976

A Tutorial on ALaoL 68 • 165

son is obvious: At the time of the assign-
ment the compiler cannot guarantee that
kitchen sink contains an integer, and we
would be in trouble if it contained a [] real .
However, inside the first case clause it is
guaranteed that kitchen sink contains an
integer. To make life easier for the compiler
writer, the new name i is introduced; there is
no doubt about the mode of i. Although
j: = kitchen sink would be forbidden, even in-
side the first clause, the assignment 3 := i
would be allowed (only) in the first clause.

You may be wondering how unions are im-
plemented. Presumably the compiler will
have to reserve enough space in a united
variable for the largest of the alternatives
(or if that is too painful, perhaps only a
pointer will be stored). Also, there must be
some information stored that tells which
mode is the "current" one. Note that there
are no objects or values of united modes,
just variables.

2.6 Reference-to Modes

Most programming languages are somewhat
lax about making a distinction between the
address of a variable and the contents of that
variable. The nature of the difficulty can be
most easily seen by means of an example
from FORTRAN:

S U B R O U T I N E S U M (I , J , K)

I N T E G E R I, J , K
I = J W K

R E T U R N
E N D

Now consider the result of the following call:

C A L L S U M (I , 2 , 3)

Although the subroutine declaration is gram-
matically correct, and the call is also gram-
matically correct, something is obviously
wrong.

The problem is not tha t the actual param-
eters are of the wrong type. I is declared an
integer, and the number 1 is certainly an in-
teger. The trouble occurs because the left-
hand side of an integer assignment must
evaluate to the address of a variable, not to
an integer value. Few compilers will even

give a precise error message at run time, let
alone at compile time. Typically an address
pointing into the run-time constant table is
passed as a parameter, and the value of the
constant 1 is changed to 5 so that subsequent
N = 1-~1 statements set N equal to 10
(decimal, not binary). In ALGOL 68 integer
variables and integer values have different
modes; so the error we are considering will
be detected at compile time as a parameter
mismatch.

An integer variable in ALGOL 68 has mode
r e f in t , (ref is a shortened form of reference
to); a real variable has mode r e f real , etc.
Consider the ALGOL 68 program

b e g i n i n t i ; i := 3 e n d

In this program, i is an integer variable and
has mode r e f in t . The constant 3, on the
other hand, has mode in t . A r e f i n t cor-
responds to the address of a memory loca-
tion into which an integer can be put,
whereas an i n t is a value, not an address.

This distinction is very important and
bears repeating. An integer constant and an
integer variable are different kinds of objects
and have different modes. The mode of the
former is i n t and the mode of the latter is
r e f in t . The value of an integer variable is
its memory address. Of course, given an inte-
ger variable one can ask about both its value
and the value of the integer it contains, but
these are clearly different objects.

The ALGOL 68 rule for an integer assign-
ment is tha t the left-hand side must be, or be
convertible to, an object of mode r e f in t ,
while the right-hand side must be, or be
convertible to, an object of mode in t . Pre-
cisely the same considerations hold for other
modes, of course. Although procedure defini-
tions are discussed later, the ALGOL 68
version of SUM is presented here for con-
trast with the FORTRAN version.

proc s u m = (r e f i n t i , i n t j,k) void: z := j- l-k

Here i is clearly a different mode from j and
k. Furthermore, the call sum(I,2,3) is in-
valid because the modes of the actual param-
eters (int , i n t , in t) do not match the modes
of the formal parameters (ref i n t , i n t , in t) .
If i had been specified as mode i n t instead of

Computing Surveys, Vol. 8, No. 2, June 1976

166 • Andrew S. Tanenbaum

r e f i n t , then the assignment i := jWk would
have been detected as an error because the
left-hand side of an integer assignment must
evaluate to something of mode ref int.
Either way the error would have been de-
tected by the compiler, which is obviously
better than its subsequent appearance as an
obscure program bug.

We have consistently said that the right-
hand side must be, or be convertible to, to
an object of mode int , rather than having
said that the right-hand side must be an ob-
ject of mode int. This choice of words was
deliberate.

Consider the following program:

b e g l n i n t i , j ; i : = 3 ; j := l e n d

In this program, i and j are both of mode r e f
int . In the first assignment the right-hand
side has mode i n t as it should, but in the
second assignment the right-hand side has
mode ref int . Thus it would appear that
j := i is forbidden. Fortunately, there exists
an automatic conversion between mode re f
i n t and int, which is called dereferencing.
Conversions between data types are familiar
from other programming languages; for ex-
ample, nearly all programming languages
allow an integer to be written in a position
where a real number is required, with auto-
matic conversion implied.

In exactly the same way, ALGOL 68 often
allows an object of mode ref m to be written
when an object of mode m (some arbitrary
mode) is expected, with automatic con-
version implied. Such automatic mode con-
versions are called coercions. There are six
kinds, of which derefereneing is one. Integer
to real coercion, called widening, is another.
Chapter 6 of the Revised Report gives the
exact rules about which coercions are al-
lowed in what situations.

I t should be pointed out that although
widening from i n t to real is typically an
actual operation performed on integers at
run time, dereferencing need not be per-
formed at run time. If the computer has an
instruction to move the contents of location
i to location j, the compiler writer is obviously
allowed to use it. No one is going to compel
him to first put the address of i in a register
and then explicitly dereference it using in-

direct addressing before storing the contents
o f i i n j .

Dereferencing is more than simply a syn-
tactic trick to allow variables on the right-
hand side of assignments. Since r e f i n t is a
valid mode, the curious reader may wonder
if reference-to-integer variables exist. The
answer is yes. Just as an integer variable is a
location in memory intended to hold an in-
teger, a reference-to-integer variable is a lo-
cation in memory intended to hold an ob-
ject of mode ref int , that is, the address of
an integer variable. In other words, a refer-
ence-to-integer variable can contain a pointer
to an integer variable. I t cannot contain a
pointer to a real variable or to any other kind
of variable, however. Likewise, a reference-
to-complex variable may contain only a
pointer to a complex variable.

Consider the following program:

begin
ref i n t pt;
in t i,j;
i : = O ; j : = 4 ;
i f random < 0.5

t h e n pt := i
else pt := j

fi
end

If pt is derefereneed once, it yields either the
address of i or the address of j. If it is de-
referenced twice, it yields either 0 or 4.
Barring some unusual hardware, derefer-
encing a pointer twice is going to involve
some run-time action. Note that pt itself has
mode r e f re f int .

Finally we get back to the subject of mode
construction. The rule for creating pointer
modesis simple. If m is some arbitrary mode,
then ref m is also a mode of pointers to m.
Applied repeatedly we discover that, m
re f m , re f re f m , re f re f r e f m , etc., are all
distinct modes. The program at the top of
page 167 shows how to declare some modes
involving pointers:

Variables involving ref "something" are
typically used in list processing applications.
The distinction between the mode of a vari-
able and the mode of the objects that can be
assigned to it is crucial, but often initially
confusing to people accustomed to other
programming languages. Variables have

Computing Surveys, VoL 8, No. 2, June 1976

A Tutorial on Ar, aox, 68 • 167

b e g i n
[] r e f i n t a; ~ a row of pointers
r e f [] real b; ¢ a pointer to a vector
r e f [[r e f c h a r e; ¢ a pointer to a pointer vector
s t r u c t (ref i n t p, r e f rea l q) d; ¢ 2 pointers
proe r e f b o o l e; ~ proc yielding a pointer
r e f proc b o o l f; ¢ pointer to a proc b o o l
u n i o n (ref i n t , r e f b o o l) g; ¢ either of 2 pointers
s k i p ~ dummy statement
e n d

mode r e f "something," and can contain ob-
jects of mode "something." In addition, a
variable is itself an object, with a mode and
a value. The mode of an integer variable is
r e f in t , and its value is the address where its
integer is stored. Thus an integer variable
can be regarded as an object of mode r e f
i n t , and it can be assigned to a pointer vari-
able whose mode is r e f r e f i n t .

In some programming languages (for
example, P L / I) , a pointer can point to an
object of any mode. This is a frequent source
of errors. Often a pointer somehow ends up
pointing to a variable of the wrong mode, or
worse yet, points into the program itself or to
unused memory. By strictly categorizing
pointers according to what they may point
to, ALGOL 68 greatly reduces the oppor-
tunities for making errors.

2.7 Mode Declarations

We have now seen how ALGOL 68 program-
mers can construct new modes from primi-
t ive modes through the use of arrays, struc-
tures, procedures, unions, and references.
ALGOL 68 provides a mechanism for pro-
grammers to give names to newly created
modes, so they can be used in the same way
tha t built-in modes are used. New modes are
declared by means of a mode declaration
(RR 4.2) as illustrated in the next column.

Mode declarations are used to create new
data types. I t is possible for user-defined
modes to be used to create still more complex
modes, as in f a m i l y , which uses p e r s o n .
ALGOL 68 provides the ability for the pro-
g rammer to build up an entire l ibrary of

mode definitions tailored to his particular
application.

b e g i n i n t n, size; read ((n, size));
m o d e v e c t o r ffi [l:n] rea l ;
m o d e m a t r i x = [l:n, 1 :n] rea l ;
m o d e r a t i o n a l = s t r u c t (i n t hum, denom);
m o d e f u n c t i o n s e t = [1 :n] p r o e (real) rea l ;
m o d e b o o k = s t r u e t (s t r i n g title, author,

publisher, in t pages, year,
b o o l paperback);

m o d e m a g a z i n e = s t r u c t (s t r i n g title,
i n t subscribers, publ frequency);
publisher,

m o d e l i b r a r y = [1: size] u n i o n (book ,
m a g a z i n e) ;

m o d e p e r s o n = s t r u e t (s t r i n g initials,
r e f p e r s o n ma, pa,
i n t age,
b o o l too fal);

m o d e family = s t r u c t (p e r s o n mommy, daddy,
[1:2] person child);

m o d e b r i d g e h a n d ffi [1:13] s t r u c t (char rank,
su~t) ;

m o d e w o r d = [0:15] b o o l ;
m o d e m e m o r y -- [0:4095] w o r d s ;
m o d e i n s t r u c t i o n 1 = s t r u e t (in t opeode,

addressl,address2,address3);
m o d e i n s t r u c t i o n 2 = [1:4] in t ;
m o d e f l i g h t = s t r u c t (s t r i n g plane, pilot,

movie, bool nonstop, [l:size] s t r u e t
(s t r i n g name, [1:10] char phone)
passenger);

m o d e m u l t i r e a l = u n i o n (real , l o n g rea l ,
l o n g l o n g real);

m o d e t r e e -- s t r u c t (i n t value,
r e f t r e e right, left) ;

m o d e i n t e g e r = i n t ;
m o d e i n t e r g e r = in t ; ~ for bad spell0rs ¢
s k i p ¢ dummy statement
e n d

Computing Surveys, Vol. 8, No. 2, June 1970

168 • Andrew S. Tanenbaum

A few comments about mode declarations
may be helpful. The modes in s t rue t ion l
and ins t ruct ion2 each consist of four in-
tegers. If add is declared to be in s t rue t ion l
and sub is declared to be instruct ion2, then
the fields of add are accessed via the field
selections:

opcode o f add, addressl o f add,
address2 o f add, address3 o f add,

whereas the components of sub are accessed
by subscripting:

sub[l], sub[2], sub[3], sub[4].

Which choice is made depends upon the ap-
plication.

The mode tree is interesting. It has three
fields, an integer and two pointers. In terms
of allocatingspace for tree variables, it hardly
matters that the pointers point to objects of
mode t ree . Binarytrees and graphs are widely
used in computer science, so modes like this
are valuable. A mode that is defined in terms
of itself, like tree, is called a recursive mode.
Note that although the nonrecursive mode
declarations are used merely for convenience,
the recursive modes really require the mode
definition facility (try declaring a variable
with the same mode as tree just using a
s t r u c t (r e f . . .)) .

One must exercise some care when defining
recursive modes. For example:

m o d e b u s h = s t r u c t (i n t v, b u s h h,t)

is incorrect. Suppose that an in t requires one
word of memory, and a bush requires k
words of memory. Then a declaration like

b u s h blueberry

would require that the variable blueberry be
allocated enough memory to store one ob-
ject of mode in t (one word) and two objects
of mode bush (2]c words) for a total of 2k-t-1
words. This contradicts our statement that a
bush requires only k words. The mode decla-
ration is impossible. A bush can hardly con-
tain two bushes and then some. In contrast,
the mode t r e e presents no such problem
since it only claims space for an in t and two
addresses (pointers), not two objects of mode
t ree . As you might expect, ALGOL 68 allows
all the modes that are intuitively reasonable
and prohibits those that are not (RR 7.4).

Same modes can be "spelled" in more
than one way. For example, in

m o d e m l = u n i o n (i n t , r e a l) ;
m o d e m 2 = u n i o n (r ea l , i n t)

m l and m2 represent the same mode. On
the other hand,

m o d e m 3 = s t r u c t (i n t ~, r e a l r) ;
m o d e m 4 = s t r u c t (i n t j , real r) ;
m o d e m 5 = s t r u c t (real r , i n t z)

are three different modes because the field
selectors are part of the mode. Mode equiva-
lence is dealt with in RR 7.3.

At least one aspect of the orthogonal de-
sign of ALGo~ 68 may now be clearer. From
the 11 primitive modes listed in Section 2.1
and the five simple mode construction rules
listed in Sections 2.2 through 2.6, one has the
ability to create a large and powerful collec-
tion of new data types.

In contrast, PL/I is not orthogonally de-
signed; there are no simple rules telling
which combinations of attributes are al-
lowed and which are not. A complete specifi-
cation of the allowed "modes" in PL/ I can
only be encoded by giving a large table of
compatible and incompatible attributes. This
difference is characteristic of other aspects of
ALGOL 68 and PL/ I as well.

2.8 Using New Modes

Variables of user-created modes are defined
in the same way that variables of the primi-
tive modes are: first the mode, then a list of
one or more identifiers. Declarations are
commands to the compiler to reserve storage
for variables. Keep in mind that the compiler
needs to know how much storage to reserve.
When declaring an array variable, one must
specify the actual bounds (evaluated at run
time) in order for the compiler to reserve
enough space. On the other hand, when de-
claring a pointer to an array (for example,
r e f [] int) , the bounds are not needed, since
the only storage reserved is that required for
the pointer, not the array; a pointer to a big
array takes up the same space as a pointer
to a small array. However, to be used, the
pointer must appear on the left-hand side of
an assignment, with some array (itself de-
clared with bounds) on the right-hand side.

Computing Surveys, Vol. 8, No. 2, June 1976

A Tutorial on Ar~oo~ 68 • 169

The rules for when bounds are and are not
needed are given in ~ 4.6.

When a mode declaration contains a vari-
able or an expression in an array bound, for
example, n in mode vector above, the
question arises whether the value of n at
mode declaration time or at variable decla-
ration time is the one that is used. Con-
sider this program:

b e g i n
i n t n;
n : = 3 ;
m o d e vec tor = [l :n] i n t ;
n := 25;
vector z;
n := 75;
vector y;
s k i p ~ d u m m y s t a t e m e n t
end

It is the value of n at variable declaration
time that matters; x has 25 elements and y
has 75 elements. The value of n at mode
declaration time is irrelevant. In a certain
sense, variable declarations are "carried

out" at run time, providing more flexibility
than most languages allow. (Of course, a
clever compiler writer will try to do as much
as possible at compile time.)

Variables may be declared with initial
values by following the identifier with a
"becomes" symbol (: -) and the initial
value. Structures and arrays may also be
initialized, with parenthesized lists of values.
I t is also possible to partially initialize struc-
tures or arrays by using skip for some of the
fields or elements. The value of skip is un-
defined; these elements or fields must be
initialized by explicit assignment before being
used.

Some sample variable declarations are
shown below.

3. UNITS

Like other programming languages, ALOOL
68 requires that expressions be placed in cer-
tain contexts, for example, on the right-hand
side of assignments, as actual parameters in
procedure calls, and as subscripts. Expres-
sions are called units in ALGOL 68 and are
much more general than in many other pro-

b e g i n ¢ m e n t a l l y i n s e r t t h e m o d e
d e c l a r a t i o n s of sec t ion 2.7 here

i n t n := 3, Size := 2;
c h a r c : = " q " ;
real leng(h := 2.503;
vector v := (14.2,--9.1,3.5678);
m a t r i x a := ((1.0,2.0,3.0), (0 .6 , -0 .9 ,100.0) ,

(1.1,2.1,3.4));
r a t i o n a l ra t := (1,2), tar := (3,4);
f u n c t i o n s e t f := (sin,cos,tan);
b o o k censored : = (s k i p , s k i p , s k i p , s k i p , s k i p , f a l s e) ;
m a g a z i n e cs := (" c o m p u t i n g s u r v e y s " , "acre" ,22000,4) ;
l ibrary mini :--- (censored,cs) ;
person tom := (" t r j " , s k i p , s k i p , 4 0 , t r u e) ;
person m a r y :-- (" m e j " , s k i p , s k i p , 4 1 , f a l s e) ;
f a m i l y jones := (mary, tom, (s k i p , s k i p)) ;
b r i d g e h a n d south := (

("A", ,'s"), ("K", "S"), ("q", "S"), ("J", "S"),
("A", "H"), ("Q", "H"), ("9", "H"), ("7", "H"),
("K", "D"), ("q", "D"), ("T", "D"),
("Q", "C"), ("J", "C"));

w o r d w; m e m o r y mere;
f l i ght twa 156:=

("747" , " b i l l " , " f r a n k e n s t e i n " , t r u e , s k i p) ;
s k i p ~ d u m m y s t a t e m e n t
end

Computing Surveym, Vol. 8, No. 2, Jul~ 1976

170 • Andrew S. Tanenbaum

gramming languages. In the following sub-
sections we discuss 15 kinds of units. The
complete list is given in RR 5.1A.

3.1 Denotations

The simplest form of a unit is a denotation
(usually called a constant in other program-
ming languages). Typical denotations of
mode int, real, bool, cha r , and string are:
4, 3.6, t rue , "x", and "hi". "Constants" of
array and structured modes are also al-
lowed. They are called row displays and
structure displays, respectively, and consist
of parenthesized lists of values. For example,

[1:2,1:3] i n t x2 := ((1,2,4),(8,16,32))

illustrates the use of a row display. Denota-
tions are described in Chapter 8 of the Re-
vised Report.

3.2 Variables

The "next simplest unit is the variable. In
this statement,

b e g i n i n t i,j; i := 3; j := i e n d

i, a variable, is used as a unit in the second
assignment. (Remember that it is derefer-
enced to an integer unit.)

3.3 Formulas

A formula (RR 5.4.2) is an operator and its
operand or operands. A monadic formula
has one operand, for example, abs i, - x ,
and sign y. Dyadic formulas have two
operands, for example, i - j , x<y, and
"abc" -t- "xyz".

ALGOL 68 has well over 100 "built-in"
operators (listed in RR 10.2) and provides a
mechanism that allows programmers to de-
fine new ones, just as it provides a mecha-
nism to define new modes. Operators are
akin to procedures. Each operator expects to
have one or two operands of specific modes,
and delivers a result of a specific mode. The
same symbol may represent two different
operators (cf. G E N E R I C in PL/I) .

In the following program:

b e g i n
i n t i := 1 ,3 : = 2, k;
r e a l x : = 0.1, y := 0.3, z;
k := i+j;
z : = x + y
e n d

the first ~- represents an operator with in-
teger operands and an integer result,
whereas the second -b represents a different
operator with real operands and a real re-
sult. Very likely they will require different
hardware instructions.

A formula may be used as an operand. For
example, the formula iWj could be used as
an operand of < , as in i+ j<k , which is a
formula yielding a Boolean result (as-
suming -t- has higher precedence than < ,
which it has).

3.4 Slices

Arrays may be subscripted as in other lan-
guages. When an object of mode [] m is
subscripted, an object of mode m is yielded.
ALGOL 68 also permits a generalization of
subscripting called trimming, yielding
some cross section of the original array. If z
has been declared by [1:10] i n t z, then
z[1:7], z[1:10], and z[2:5] are examples of
units (slices) and can be used in assignments,
actual parameters, etc. For example:

b e g i n
[1:10] i n t a,b;
[1:20] rea l x; [1.20,1:20] r e a l xx;
read((a,b,x,xx)) ;
b[1:4] := a[1:4]; ~ ass igns 4 e l e m e n t s
b[3:9] := a[1.7]; ~ ass igns 7 e l e m e n t s t~
b[l :10] := a[l :10] ; ~ ass igns a to b
b := a ; ¢ s ame as a b o v e ¢
xx[4,1:20] := x; ¢ ass ign to row 4 of xx ¢
xx[8:9,7] := x[1.2] ¢ xx[8,7] := x[1];

xx[9,71 := x[2] !~
e n d

A trimmer, such as 1:4 in the first assign-
ment does not affect the dimensionality of
the array, whereas a subscript (just one
bound, with no colon) reduces it by one, as
in xx[4,1:20].

All combinations of trimming and sub-
scripting are valid. For example, if s is a
three-dimensional array, s[i,j,k],s[i,j,kl :k2],
s[i,jl :j2,kl :k2], and s[il :i2,jl :j2,k 1 :k2] can

Computing Surveys, VoL 8, No. 2, June 1976

be used as a variable, and one-, two-, and
three-dimensional arrays, respectively. Fur-
thermore, s[i,jl :j2,k], sill :i2,j, kl :k2] and
other combinations are also allowed. In an
assignment, the bounds must "match," as
described in RR 5.3.2. Subscripting and
trimming are collectively called slicing.

3.5 Selections

A selection consists of a field selector, the
symbol of, and a structure to be selected
from. The field selector must be an identifier
and cannot be computed (because it is not
an object). The structure being selected
from may, however, be the result of evaluat-
ing an expression.

If a mode involves both structures and
rows, a unit derived from an object of tha t
mode may involve slicing (subscripting or
trimming) and selecting. Slicing binds more
tightly than selecting; so tail o f dog [k] means
tail o f (dog[k]) and not (tail o f dog)[k]. If
tail o f dog yields an array, then (tail o f
dog)[k] is the correct way to extract the kth
element of that array. When combining se-
lecting and slicing, keep in mind that any
array can be sliced and that any structure
can be selected from. Here are some examples:

b e g i n i n t m := 25, n := 40, k := 2;
m o d e p e r s o n = s t r u c t (s t r i n g ~n~tials,

i n t age) ;
m o d e c o u r s e = s t r u c t (p e r s o n prof,

[1 : n] p e r s o n student) ;
m o d e d e p t = [1.m] c o u r s e ;
p e r s o n smith, jones, brown, davis;
c o u r s e painting, drawing, etching;
d e p t art;

beg in a s s ign ing va lues
in~tials o f smith := " r b s " ;

age o f smith := 47;
jones := (" t m j " , 32);
prof o f painting .= (" j e d " , 47);
prof o f drawing := smith;
prof o f etching := prof o f painting;
art[1:3] := (paintzng, drawing, etching);
prof o f art[2] := jones; ~ s m i t h q u i t
age o f prof o f art[2] .= 39;
(student o f art[2]) [1] := davis;
age o f (student o f art[2]) [1] := 18;
(student o f art[k-hi]) [k-- l] := (" t n s " , 19)
e n d

A Tutorial on ALaoL 68 • 171

This may look imposing at first, but it is
really quite logical. The key is to keep track
of the mode of the objects. When faced with
an array, like (student o f art[2]), one slices.
When confronted with a structure, like
prof o f art[2], one selects a field from it. If
you still think ALGOL 68 is unnecessarily
complicated, t ry to rewrite the preceding
program in FORTRAN.

3.6 Procedure Calls

The mode of a procedure is uniquely de-
termined by the modes of its parameters and
its result. If a procedure returns mode m,
then a call of tha t procedure is a unit of mode
m and may be used anywhere a unit of mode
m is needed. If a procedure pl has mode p ro e
(real, bool) int, then a[pl(3.14,true)]
shows a call of pl used as a subscript. Simi-
larly, if a procedure p2 has mode p ro e (int)
bool, then i f p2(6) then print(k) fi is legiti-
mate.

A procedure call has two parts: the pro-
cedure to be called, and the parameter list.
The first part may be the result of a computa-
tion, for example,

b e g i n i n t i; r e a l x,y;
[1:3] p r o c (r e a l) r e a l f :.= (sin,cos,tan);
t o 100 ~ r e p e a t 100 t i m e s

d o read ((z,x));
i se lec ts sin, cos, or tan to cal l

y := f i l l (x);
print(y)

o d
e n d

A function with no parameters (that is, of
mode p roc m) is not "called". Instead the
procedure name is written with no param-
eter list. For technical reasons this is not re-
garded as a procedure call, but as a type con-
version (coercion) from mode p r o c m to
mode m. I t is called depmceduring (RR
6.3) and is completely analogous to the
widening coercion from int to rea l in rea l
x := 3 or the dereferencing coercion in
(int i := 1,j; j :-- i). If deproceduring did
not exist, then rea l x :-- random would
have to be prohibited, since random has
mode p ro e rea l and on the right-hand side
in the preceding example a r ea l is needed.

Computing Surveyv, Vol. 8, No. 2, June 1976

172 • Andrew S. Tanenbaum

3.7 Assignments

An assignment (called an assignation in the
Revised Report) consists of a destination
(the left-hand side), a "becomes" symbol
(:--) , and a source (the right-hand side). A
re f m assignment has a r e f m unit as the
destination and an m unit, or something
coerceable to an m unit, as the source (Pro
5.2.1.1).

Having detected a r e f m destination, the
compiler will coerce the source by all possible
means to m. We emphasize that after all
coercion the destination is mode r e f m and
the source is mode m.

An assignment can stand by itself as a
statement, or be used itself as a unit. I t may,
for example, be used as a source in another
assignment (but not as a destination to avoid
certain ambiguities). For example, j :-- k is
an assignment and as such may be used as
the source in i := source, yielding i := j : = k.
Because ALGOL 68 allows assignments as
sources, it also gets multiple assignments, as
an extra added attraction, for free. Further-
more, a[i := i~-1] is a perfectly valid way of
subscripting the array a: first the assignment
is carried out, and then the newly assigned
value of i is used as a subscript.

3.8 Generators

ALGOL 68 provides two storage management
strategies: local and heap. Local storage
consists of a last-in, first-out stack. When-
ever a procedure is called (and perhaps when
a b e g i n e n d block is entered, depending on
the implementation) a new stack frame is
created for all local variables needed in it.
When it is exited, the storage is released by
resetting the stack pointer to the value it
had prior to entry. This leads to a simple and
efficient method for allocating storage.

All variables declared in the usual way use
the local storage discipline. In addition, the
programmer may explicitly request more
stack storage to be reserved by using a
local generator, loc, followed by a specifica-
tion of the mode desired (the mode is needed
because loe [l:n] e o m p l may take much
more space than loe bool). The value of the
generator loe m is the address of the new ob-
ject, tha t is, a pointer to it, and as such has
mode r e f m.

An example may make the use of local
generators clearer.

b e g i n ~ ca lcu la te someth ing
begin ¢ demonstrate triangular arrays
i n t n; read(n);
[1 :n] r e f [] r e a l triangle;
for k f r o m 1 t o n

d o triangle[k] := loe[1 :k] real;
fill in some values

for j from 1 to k
do triangle[k][j] := kTj od

od
e n d

storage used by triangle is now
released

e n d

Numerical analysts often deal with sym-
metric n X n matrices. Using a representation
of n columns of n elements each is wasteful
of storage. The preceding program declares
triangle to be a row of pointers, each point-
ing to a different real vector. The vectors
pointed to are created during execution of
the program, each newly created vector be-
ing one element larger than its predecessor.
When the preceding block is exited, all the
storage reserved can be released. That is
why these generators are called local gen-
erators: the effect is local to the block they
occur in.

The array hamlet in the example at the end
of Section 2.2 is allocated by essentially the
same mechanism as the array triangle just
given. Tha t is why unlabeled statements can
be allowed before declarations.

Incidently, the declaration of triangle
should be carefully noted. Actual bounds are
needed in the first brackets, but not in the
second because triangle is a vector of
pointers. The compiler has to know how
large the vector is in order to reserve space
for it, but for the purposes of allocating space
to triangle, it does not mat ter what is being
pointed to. In fact, bounds are never needed
in a mode following a refi

The other storage management scheme is
the heap. The heap is a single homogeneous
section of memory from which storage can
be acquired by heap generators, of the form
h e a p m, where m is the specification of the
mode of the object needed. Because heap
objects are not dependent on the stack dis-
cipline, they do not vanish when the block

Computing Surveys, Vol. 8, No. 2, June 1976

in which they were created is exited. When
the heap is exhausted, a run-time garbage
collector has to come in and recycle the
garbage. For example,

b e g i n r e f [] r e a l ptr;
to 1 000 000 ¢ r e p e a t a mi l l i on t i m e s

do ptr := heap[1 :1000] rea l od
e n d

is a lovely little test to see whether your
garbage collector is working properly. Pass-
ing through the loop the first time, a piece of
the heap is allocated for a 1000-element real
array and the address of the array is assigned
to ptr. Passing through the loop the next time,
the same thing happens, overwriting the
address of the first array, which now becomes
garbage because there is no way to access it.
On some subsequent pass, all the free space
on the heap will be gone, and garbage collec-
tion will be automatically invoked to recover
unused storage.

Note that if a local instead of a heap gen-
erator had been used in the preceding exam-
ple, the stack frame would have kept growing
and growing until all of memory was full.
Since stack storage is only released at proce-
dure (or possibly block) exit, the program
eventually would have been aborted with a
"stack overflow" message.

3.9 Nil

In list processing applications, it is neces-
sary to have some marker to indicate the end
of a list. When programming in Assembly
Language, zero is often used. In ALGOL 68 a
special symbol, n i l (aR 5.2.4), is provided to
end lists.

3.10 Identity Relations

When performing list processing, it is some-
times necessary to compare two pointers to see
if they point to the same object. This can be
done using identity relations.

Identi ty relations are also used to com-
pare pointers to nil. In practice, it is usually
necessary that the programmer specify the

A Tutor ia l on ALaoT. 68 • 173

mode required using a cast (see next Sec-
tion 3.11). For example, consider a variable,
ptr, declared by: r e f p e r s o n ptr, that is, ptr
can point to an object of mode p e r s o n . To
see if ptr points to n i l , one uses the construc-
tion

ptr : = : r e f p e r s o n (nil).

The identity relators :-- : and : . : are not
operators (because they act on an infinite
number of modes), but they may be re-
garded roughly as operators of infinitely low
precedence. Thus, for example,

i f i < j /~ ptr := : n i l t h e n . . .

means

if(/ < j / ~ ptr) :ffi : n i l t h e n . . .

which is probably not what was intended.
To illustrate heap generators, nil , and

identity relations, we give a simple program
that reads in people's bowling scores and
stores the information as a singly linked list.
In phase two, names are looked up and the
scores are retrieved.

b e g i n
m o d e p e r s o n = s t r u e t (s t r i n g n a m e ,

i n t score, r e f p e r s o n next);
re f p e r s o n f i rs t : = nil , p t r ;
s t r i n g bowler; i n t bowled;
b o o l stzll looking;

make term (stand in , " ") ;
w h i l e read((bowled,bowler)) ; bowled • 0
do first := h e a p p e r s o n

:= (bowler,bowled,first)
o d ;

¢ p h a s e 2. lo0k up t h e sco re s ¢
w h i l e read ((newlme,bowler)) ; bowler ~
do ptr := first; stzll looking := true;

w h i l e (ptr :~= : r e f p e r s o n (n i l)) ^
still looking

do i f name o f ptr = bowler
t h e n pmnt((bowler,seore o f ptr,

newline)) ;
still looking := f a l s e

e l s e ptr := next o f ptr
fi

od;
if st~ll looking

then print((bowler, "not in our league",
new line))

fi
od
e n d

Computing Surveys, ~/ol. 8, No. 2, June 1976

174 • Andrew ,~. Tanenbaum

Some comments may be helpful. The condi-
tion in a while statement consists of zero or
more statements followed by a unit. In the
first while statement in the preceding pro-
gram, two variables are first read, and then
the condition (bowled > 0) is evaluated.
The data are arranged in such a way that
there is one person per card, first a score,
and then a name. It is necessary to specify
the string delimiter for the name, and this is
done by the call to the procedure make term,
defining space as the string delimiter for the
standard input file, stand in (see Section 9,
Input/Output).

Let us imagine that the first two people
are named Adam and Eve, with bowling
scores of 105 and 107, respectively. Prior to
execution of the initial while loop, first
points to nil. After the loop has been exe-
cuted once, an object of mode person has
been created, with its three fields initialized
to ("Adam", 105, nil). The variable first then
points to this object. Passing through the
loop the next time, a second object of mode
person is created, with its fields initialized
to ("Eve", 107, pointer to first object). Now
first points to Eve, which points to Adam,
which points to nil.

3.11 Casts

Most of the time it is not necessary to specify
the mode of a source, destination, operand,
etc., explicitly. It is usually obvious from
context. However, to handle those situations
that are inherently ambiguous, the required
mode may be specified explicitly using a
construction called a cast (RR 5.5.1), one
form of which consists of a mode followed
by a parenthesized unit, as in ref int(i).

To understand why casts are needed,
examine this program:

b e g i n i n t i := 0, k : = 1;
r e f i n t ptr : = i;
ptr : = k;
print (i)
e n d

Consider what ptr := k does. On one hand,
it looks like an innocuous assignment of the
address of k to a pointer variable (ptr has
mode ref ref int, and k has mode ref int).

But on the other hand, suppose both ptr and
k were derefereneed, yielding a ref int object
as destination and an in t object as source.
If that happened, i would be assigned the
value 1, quite different from assigning k to
ptr. To avoid the occurrence of this ambi-
guity, the ALGOL 68 grammar was con-
structed in such a way as to prevent de-
referencing destinations. This means that
the preceding program prints 0, not 1.

Now comes the 64 dollar question: sup-
pose you actually intended the second in-
terpretation; how can that be achieved?
Answer: use a cast; that is, replace the as-
signment by ref int (ptr) := k. The cast
explicitly forces ptr to be converted to
mode ref int. Since k cannot be assigned to
a ref int, k is derefereneed. (Dereferencing
is allowed for sources.)

When d cast is used, two modes are in-
volved: the starting mode (the mode of the
object inside the parentheses), and the goal
mode (the mode listed before the open
parenthesis). If there is no coercion path
between the starting and the goal modes, the
cast is invalid. For example, if ptr has mode
r e f p r o c r e f i n t , then real(ptr) i s a valid
cast because ptr can be dereferenced, de-
procedured, derefereneed, again, and widened.
However, bi ts (3.14) is invalid because there
is no coercion path from real to bits. Coer-
cion is discussed in more detail in Section 4,
Coercions.

3.12 Choice Clauses

ALGOL 68 allows if "statements" and ease
"statements" to be used as units if they
produce the proper mode. This is illustrated
by the following program:

b e g i n ~ e x a m p l e s of choice c l a u s e s
i n t i,j,k;
r e a l x := 0.1, y : = 0.2, z := 3.1;
r e a d ((i,j,k));
[1:10] b o o l a , b;
x : = i f ~ < 0 t h e n .3Ix e l s e z + 4 . 0 fi;
for n f r o m i t o i f j = 2 t h e n l e l s e k f i

d o b[n] := t r u e od;
b[ease i i n 6,3 o u t 4 e sae] := fa lse;
i f i - 0 t h e n j e l s e k f i :=

i f j > 0 t h e n j + l e l s e k - -1 fi;
[i f i > 0 t h e n 1 e l s e k - - 1 fi : 10] i n t c;
z : = i f i > 3 t h e n s in e l s e cos fi (3.14);
e n d

Computing Surveys, Vol. 8, No. 2, June 1976

Three kinds of choice clauses exist:
Boolean, integer, and united.

• The Boolean choice clause is the fami-
liar i f . . . t h e n . . . else . . . fi con-
struction. If the e l se part is absent and
the condition is false, the result is un-
defined.

• The second choice clause has the form
ease . . . in clausel, clause2, clause3,
• . . , clause n o u t . . . esae. The integer
expression between case and in selects
one of the clauses by indexing into
the clause list. Thus the order of the
clauses is critical. If there is no o u t
part, and the expression is out of range,
the result is undefined.

• The third choice clause takes a united
variable (such as kitchen sink used in
Section 2.5) and selects one of the
clauses based upon its current mode.
The order of the clauses for this type
of choice clause is irrelevant.

Variables may be declared in the condi-
tion, or integer parts, initialized, and then
used in the succeeding parts; tha t is, their
scope encompasses the entire choice clause.
For example:

begin ¢ p r i n t sma l l e r of 2 n u m b e r s
i f i n t i,j; read ((LJ)) ; i<3

then print (~)
else print (j)

fi
end

ALGOL 68 (and common sense) requires
tha t all the possible choices in a unit be of
the same mode, or be coerceable to the same
mode. The unit i f i (0 t h e n 4 e lse j fi can
be used anywhere an integer unit is expected,
because the t h e n part is already an integer
and the e l se part can be converted to one by
dereferencing it. The unit cannot be used as
a destination, however, because the t h e n
part cannot be converted to a re f in t ; there
is no "referencing" coercion.

Now consider the assignment in:

begin in t i,k; read (k) ;
i : = i l k (0 t h e n 6 else true fi

end

A Tutorial on ALaox, 68 • 175

This assignment is incorrect because an
integer unit is needed as the source, and it is
not possible to coerce all choices to mode
in t ; namely, t r u e cannot be turned into an
integer. The problem of making sure all
choices can be converted to the proper mode
is called ba[ancin9 (RR 3.2.1e). Since an
assignment may have long case units, both
as source and destination, just determining
the proper mode of the assignment may
itself be a substantial task for the compiler.
However, the grammar was constructed in
such a way as to insure that there is only one
possibility.

ALGOL 68 allows if, t h e n , else , and fi to
be written as (, l, [, and), respectively. Thus
i f k < 0 t h e n i e l se j fi can be written
(k < O [i l j) . This is often convenient in
constructions like:

x := (i<o lu lz) + (j<o I a.01 z+5)

3.13 Closed Clauses

ALGOL 68 is an expression language. This
means that every executable statement or
group of statements can (at least potentially)
deliver a value• A serial clause (RR 3•2) is a
series of zero or more declarations and/or
"statements" followed by a unit. The mode
and value of the serial clause consist of the
mode and value of the final unit. A closed
clause is a serial clause enclosed by b e g i n
e n d or by parentheses. A closed clause has
the mode and value of the serial clause, tha t
is, of the last unit in the clause.

Some examples of closed clauses follow:

begin ~ c losed c lauses
begin in t i; read(i) ; i end
begin r e a l x; read(x); sin(x) e n d ;
begin in t i,j; r e a d ((i d)) ; i -k j e n d ;
begin [1:10] in t a;

for i f r o m 1 t o 10 d o a[i] : = **i od ; a
e n d ;
(int 3; i := 20) ;
(" h o r s e ") ;
((10,20,30,40)) ;
((((((o))))));
(int i; (i := 3))
end

Since closed clauses axe units, they may be
used in the same way any other units are
used, even if this seems peculiar at first.

Computing Surveye, Voi. 8, l~lo. 2, June 1976

176 • Andrew S. Tanenbaum

Closed clauses may be used as sources; sub-
scripts; f rom, by, or to parts in for state-
ments; etc. For example, the following state-
ment is perfectly valid:

k := (i n t ~; read(i); iA-1)

3.14 Skip

There is a special unit, skip, which is ex-
plicitly undefined. I t takes on whatever
mode is needed. As we have seen earlier, it
can be used to omit the initialization of an
element or field of a row or structure display,
or to serve as a dummy statement. Do not
confuse skip with ni l ; n i l is a specific value
that can be tested for; skip is just "filler"
to make a construction syntactically correct,
vaguely analogous to CONTINUE state-
ments in FORTRAN.

3.15 Routine Texts

Since ALGOL 68 allows procedure variables,
it is only natural that it also allow procedure
units, so that there is something to assign to
these procedure variables. A routine text is a
procedure body, headed by the formal
parameter list, if there is one. We discuss
routine texts in the context of procedures and
operators later. As a preview, we give a few
examples of routine texts as sources:

begin p r o e (rea l) r e a l f;
p r o e i n t p; p r o c vo id q;
f := (r ea l r) r ea l : 3.14/r;
f := (real s) real: s-I-4.0;
f := (rea l t) real" sin(cos(t));
p := i n t : 3;
p := i n t : (i n t k; read(k) ; k);
q := void : print ("he l lo")

note : no procedures have been called ¢
end

Note that the formal parameters can be used
in the body of the routine text, following the
colon.

3.16 Other Units

For the sake of completeness, we note that
loop clauses (for loops), jumps (goto state-
ments), formats, parallel clauses, and col-
lateral clauses (for example, row displays)
are also units in the technical sense (aR
5.1A).

4. COERCIONS

Coercion is the ALGOL 68 term for automatic
mode conversion. Unlike some languages
(notably PL/ I) that allow practically any-
thing to be converted into practically any-
thing else, ALGOL 68 has very few automatic
conversions. Automatic conversions often
lead to unexpected and unwanted results, so
ALGOL 68 was specifically designed to keep
them well in hand.

There are exactly six kinds of coercions,
each converting some class of modes into
another. The six kinds of coercions are:

coercion input output mode
mode

dereferencing ref m m
deprocedur ing p r o e m m
widening i n t real
widening r e a l c o m p l
widening b i t s [] b o o l
widening b y t e s [] char
rowing m [] m , [,] m etc.
un i t ing m u n i o n (m , m l , . . .)
voiding m (no mode a t all)

We have already discussed dereferencing
(Section 2.6, Reference-to Modes), widening
(Section 2.6), and deproceduring (Section
3.6, Procedure Calls). Widening also applies
to the long and shor t forms of in t , real,
bi ts , and bytes.

Rowing can convert a unit into a one-
element array where required by the context,
such as in [1:1] i n t a :-- 3. Uniting turns a
unit into a union where required by the
syntax, as in u n i o n (i n t , real) u := 4.
Rowing and uniting happen when needed
and are of little interest to the average gar-
den variety programmer.

As is probably apparent by now, construc-
tions called statements (for example, assign-
ments, procedure calls) in most languages are
called units in ALGOL 68 and can be used as
sources, parameters, etc. Sometimes, how-
ever, the value of a unit is not needed. Con-
sider what happens to the value of i : = j
in the closed clause:

(i n t i,j := 3; i := j; i+3)

it is discarded after the assignment is per-
formed. Technically this is called voidin9
(RR 6.7). ALGOL 68 "statements" are prop-
erly called void units. Chapter 6 of the

Computing Surveys, Vol 8, No. 2, June 1976

Revised Report describes the coercions in
full.

Note that there is no coercion from r e a l to
i n t . However, the monadic operators r o u n d
and en t i e r operate on reals and deliver
integers, rounding and truncating, respec-
tively.

5. CONTEXTS

Not every coercion is allowed in every con-
text (for example, in source, destination,
subscript, actual parameter) In Section
3.11 Casts, we saw that ambiguities could
result if dereferencing of destinations was
allowed. Each context has an intrinsic
strength. The strength specifies which coer-
cions are allowed. There are five strengths:
strong, firm, meek, weak, and soft. In some
contexts no coercions at all are allowed.

Strong contexts are those in which the
mode of the unit is uniquely determined by
the context. For example, in

(real x; x := b ig h a i r y m e s s)

the destination is known to be of mode r e f
real. Any and all coercions may be used
(repeatedly) to turn the source into an object
of mode real . If the source is an i n t , it can be
widened; if it is a r e f real , it can be derefer-
enced; if it is a p r o c real , it can be deproce-
dured; if it is a r e f p r o c r e f i n t , it can be
dereferenced to proe re f in t , deprocedured
to r e f i n t , dereferenced again to i n t , and
finally widened to real. Some examples of
strong contexts are: sources in assignments,
initial values in declarations, actual parame-
ters, and procedure bodies.

In other contexts some coercions must be
prohibited to avoid ambiguities. For exam-
ple, consider:

b e g i n i n t i := 2, j ;
rea l x := 3.0, y;
j := i"ki;
y : = x~x
end

The -{- in i -~ i is an operator that operates
on integers and yields an integer. The ~- in
x W x is a different operator acting on reals.
The two operators correspond to different
hardware instructions. The compiler tells
which operator is to be used by looking at

A Tutorial on ALGoz 68 • 177

the modes of the operands. If operands could
be widened, the operands of the first -t-
could be dereferenced and then widened,
yielding reals. Then the compiler could not
tell which operator was meant. Operands are
always in firm context.

If every kind of unit were allowed in every
context, certain ambiguities would arise, as
can be easily seen by means of an example.
Consider what would happen to the integer
assignment i := j-l-2 if j , which is an oper-
and of + , were replaced by the assignment
k : = 3. We would have i : = k : = 3 + 2 ,
which is perfectly legal, but not what was
intended. I t adds 3 + 2 and then assigns the
result, 5, to k and i. If we wrote the operand
k := 3 as a closed clause (k := 3), we would
get i := (k := 3)+2, which first assigns 3
to k, and then 5 to i. This is quite a different
result than in the first case! To avoid am-
biguities, ALGOL 68 only allows constructions
in positions where no confusion can arise.

6. PROCEDURES

In ALGOL 68 procedures are objects and have
values, just as any other objects. Procedure
variables exist and may be declared, just as
other variables. They may also be initialized
to some value of the appropriate mode; for
example, by using a routine text:

proc rea l pl := r e a l : 1.O/(1.Oq-random);
proe i n t p2 := in t : (i n t k; read(k);k);
proe (in t k) i n t p8 : = (i n t) i n t : (k q - 1) d i v 2

Procedures (and all other modes) may also
be declared in a slightly different way, by use
of what is technically called an identity
declaration (aR 4.4.1a). This form consists of
proc , the identifier, an equals sign, and a
routine text. In this form the identifier is no
longer a variable and cannot be assigned a
new procedure. Some examples of this form
are:

begin ¢ proc declarations
proc next = (int k) int . k-I-l;
proc bump = (ref in t k) void: k := k~-l;
proc less = (int j ,k) bool: j<k;
proc readin = int: (int k; read(k);k);
proe eject = void: print(new page);

Computing Surveys, Vol. 8, No. 2, June 1976

178 • Andrew S. Tanenbaum

p r o c dot product = (i n t n,[] r e a l a,b) real:
beg in r e a l sum := 0;

for k f r o m 1 t o n d o sum := sura-~-a[k]*b[k]
od;
sum

end;
sk ip ~ d u m m y s t a t e m e n t
end

Note that the procedure body (the part
following the colon) is a unit. In the dot
product example, the unit is a closed clause.

6.1 Parameter Mechanism

A procedure may be declared with an ar-
bitrary number of formal parameters, but
calls to the procedure must supply precisely
the proper number of actual parameters, no
more and no less. The nth actual parameter
is accessed by using the identifier of the nth
formal parameter, just as in FORTRAN,
PL/I , ALGOL 60, etc. Thus the order of the
formal parameters is very important.

Unlike these other languages, however, the
modes of the parameters are specified di-
rectly in the formal parameter list. The mode
specified before the identifier of each formal
parameter is the mode of that parameter. In
the declaration:

proe recip = (r ea l x) real: 1.O/x

the mode of x is real, It is not ref real. By
way of contrast, in the variable declaration
real x, x is of mode ref real. This difference
is crucial to the understanding of the ALGOL
68 parameter mechanism.

The parameter passing works as follows.
The actual parameters are first coerced to
the modes specified by the formal parameters
(if necessary). Then each actual parameter
is evaluated. (An actual parameter is a unit,
and might be a closed clause 10 pages long.)
Copies of the values yielded are then passed
to the procedure. This may be regarded as a
generalization of the call by value used in
ALGOL 60, except that in ALGOL 68 a parame-
ter may be of any mode, including ref "some-
thing," in which case an address is passed.

To shed more light on the parameter
mechanism, let us begin with a syntactically
incorrect program:

begin int n := 4; ¢ incorrect program ¢
proc wrong = (int k) void: k := k~-l;
wrong (n) ;
print(n)
end

The problem here is that k has mode in t and
not ref int . The destination of an assignment
must be of moderef "something;" theassign-
ment k : - k + l will be flagged by the com-
piler as incorrect. Now let us try again.

beg in i n t n := 4; ~ co r r ec t p r o g r a m
proc right ~- (r e f i n t k) void: k := k-F1;
right (n) ;
print(n)
end

This program will print 5. When a formal
parameter is declared in t rather than ref
int , the corresponding actual parameter is
protected from being changed. This often
helps catch bugs.

To illuminate the more subtle aspects of
the parameter mechanism, consider these
two programs:

begin i n t i := 0;
procjekyll = (i n t a) void:

(i := i-4.-1;print (a)) ;
jekyll(i)
end

beg in i n t i := 0;
proc hyde ~- (r e f i n t a) void:

(i := i + 1 ; print (a)) ;
hyde (i)
end

The call jekyll(i) is executed in the following
steps. Since the formal parameter is of mode
int , the actual parameter, i, is dereferenced
to yield an integer. A copy of this integer
value is then passed to jekyll (on the stack,
in a register, or some other way). Then
jekyll increments i. Finally, jekyll accesses
the actual parameter passed to it and prints
it. The number 0 is printed.

The call hyde(i) is executed differently.
The formal parameter in program 2 is of
mode ref int ; so i is not dereferenced, be-
cause it is already in the proper mode. A
copy of the address of i is made and put on
the stack, in a register, or elsewhere. After
incrementing i, hyde picks up the actual
parameter, the address of i, dereferences it,
getting 1, and then prints the number 1.

Computing Surveys Vol. 8, No. 2, June 1976

An object of mode in t is passed to jekyll,
but an object of mode ref in t is passed to
hyde. In a sense, jekyll uses the ALGOL 60
call-by-value parameter mechanism, whereas
hyde uses something similar to a call-by-
reference mechanism. ALGOL 68 effectively
gives the programmer some control over how
parameters are passed via the modes of the
formal parameters.

In summary, the parameter mechanism
has three key features:

1) A formal parameter is written as a mode
followed by an identifier. A formal
parameter written as in t k really has
mode int, not mode ref int.

2) An actual parameter may be any unit,
and any coercion may be used on it,
but the result after coercion must
match the mode of the formal parame-
ter. If a formal parameter has mode
ref real, the actual parameter must
yield a real variable; the value 3.14 will
not suffice. The calling, and not the
called, procedure performs the coer-
cions.

3) A copy is made of the actual parameter
(after coercion). This copy is what is
passed (conceptually). All references to
the formal parameter use this copy.
Thus the parameter is only evaluated
once (as opposed to the call-by-name
mechanism used in ALGOL 60, where
the parameter is reevaluated on every
access).

6.2 More About Procedures

Unlike PL/I , parameters and results in
ALGOL 68 may have any mode; pointers,
arrays, structures, unions, and even proce-
dures are all allowed. As an example of using
a procedure as a parameter, consider the
following procedure for computing the sum:

f(1) ~- f(2) + f(3) ~- . . . -~ f (n) .

proc sum = (i n t n, p r o c (rea l) r e a l f) real:
b e g i n rea l sum := 0;
for i t o n do sum := sum~f (i) od;
8urn
e n d

A Tutorial on A~aox, 68 • 179

In this example, i is allowed as a parameter
to a proc(real) real because parameters are
strong units and therefore can be widened.
A typical call to sum might be sum(lOO, cos),
which would yield cos(l) ~- cos(2) ~- . . . ~-
cos(100).

In ALGOL 68 a routine text is a unit and as
such can be used as an actual parameter. In
the previous examples, routine texts were
used to the fight of the equals sign. Some
examples of routine texts as actual parame-
ters of sum are:

sum(lO0, (r ea l x) real: l /x)
sum(50, (r ea l x) real: sin(x))
sum(k+l , (rea l x) real: random)

ALGOL 60 fanciers will notice that using a
routine text as an actual parameter is essen-
tially equivalent to Jensen's device [5], but
a lot less sneaky.

It is sometimes useful to be able to write
procedures that accept a variable number of
parameters. Although strictly speaking this
is not possible in ALGOL 68, something very
close is possible. A procedure with one formal
parameter, an array, must have one actual
parameter, also an array. However, this
array may have an arbitrary number of
elements, provided it is of the proper mode.
Remember that a one-dimensional integer
array has mode [] i n t no matter how large
it is; the bounds are not part of the mode.

When it is expected that a procedure be
called with different sized arrays as parame-
ters, there must be some way of determining
the bounds of its actual parameters. Two
operators are provided for this purpose:
lwb and upb. If vec is a one-dimensional
array of any mode, lwb vec and upb vec have
the values of the lower and upper bounds,
respectively. For a higher dimensional array,
q, n lwb q and n upb q return the lower and
upper bounds of the nth subscript, respec-
tively. The lower bound of a row display is 1.

The following program declares a proce-
dure, outp, that accepts an integer array as
parameter and prints each of its elements on
a new line. Note that calls to outp (and also to
read) have two sets of parentheses. One set is
needed to enclose the parameter list and one
set is needed to construct the row display;

Computing Surveya, Vol. 8, No. 2, June 1976

180 • A n d r e w S . T a n e n b a u m

begin in t i,j,k;
proe outp = ([] in t a) void:

begin for i to upb a
do print ((new line, a[i])) od

end;
read ((z,j,k));
outp ((1,2,3,4)) ;
outp ((/,j,7,k,j+l,k-4)) ;
outp ((if i < j then 1 else k fi,

if j>0 then 4 else 2 fi,
lO,k.4-6,j,--k,--6,.4-7,0))

end

tha t is, (1,2,3,4) is a unit, but 1,2,3,4 is noth-
ing. This is why pr in t ((x , y)) and not
pr in t (x ,y) has been used to print two vari-
ables.

I t is possible to write procedures tha t ac-
cept any one of a prespecified list of modes
as a parameter by making the formal param-
eter a union. The following example is a
program that accepts parameters of mode
i n t , rea l , or boo l and returns the mode as a
string:

b e g i n i n t k .= 0; u n i o n (r e a l , b o o l) u : = 4.0;
procmohd = (u n i o n (i n t , r c a l , b o o l) a) s tr ing:

c a s e a i n
(int): " i n t " ,
(real): " r e a l " ,
(bool) : "b0ol"

esac;
print((mohd(k), " ", mohd(u)))
e n d

The output of this program consists of
int real .

7. OPERATORS

The following program defines a new mode,
v e c t o r , and a procedure, vecadd, to add two
vectors:

b e g i n i n t n; r e a d (n) ;
m o d e vec tor = [1 :n] real;
vector v l ,v2 ,vS ,v4,v5;
proc vecadd = (v e c t o r x,y) vector:

b e g i n vec tor sum;
for i to u p b x

do sum[i] : = x[i] -k y[s] od;
sum

end;

¢ read in 4 vectors
read ((vl,v~,vS,v~)) ;
v5 : = vecadd (vecadd (vecadd (v l ,v~) ,vS) ,v4) ;
print(v5)
e n d

The statement v5 := vecadd(vecadd(vecadd
(vl ,v2),v3),v~), although ghastly to look
at, is quite correct. Because vecadd(vl ,v2) is
a call, and hence a unit, it may be used as an
actual parameter to another call of vecadd.

The difficulty with the preceding expres-
sion is tha t although it is perfectly acceptable
to the ALGOL 68 compiler, for many applica-
tions, infix operators (that is, operators
placed between the operands) are much more
natural than nested procedure calls. ALGOL
68 solves this problem by allowing pro-
grammers to define new infix operators, just
as they can define new modes.

Operators are defined very much as pro-
cedures are. First comes op, followed by the
operator symbol (which may also be a
b o l d f a c e word), then an equals sign, and a
routine text. An operator must have either
one or two parameters, no more and no
fewer. Like those of a procedure, the parame-
ters and the result of an operator may be of
any mode. Let us t ry the vector addition
program again, using an operator this time.

b e g i n i n t n; read (n) ;
m o d e vec tor = [1 :n] real;
vec tor vl ,v2 ,vS,v4,v5;
o p -~ = (v e c t o r x,y) vector:

b e g i n vec tor sum;
for i to u p b x

do sum[i] := x[~l + y[il od;
sum

end;

read in 4 vectors
read ((vl,v~,vS,v~)) ;
v5 := vl -4- v2 -4- v$ + v~;
print (v5)
e n d

Just to prove that any mode can be used
as an operand or as a result of an operator,
we present an operator that takes an i n t and
a p r o c v o i d as operands, does something
useful, and delivers nothing.

C0mputlng Surveys, Vol 8, No. 2, June 1976

A Tutorial on ArooL 68 • 181

b e g i n
o p * = (i n t n ,proe vo id p) void:

to n d o p o d ; ¢ deprocedure p n t imes
proc eject = void : print(new page) ;
proc skip = void : print(new hne);
2 * eject; # skip 2 pages
3 * skip # skip 3 l ines
end

7.1 Operator Identification

Operators have one complication which pro-
cedures lack: the same symbol can be used
to represent different routine texts. This
property is called GENERIC in PL/I . The
T in 1T2 is a completely different 4- than
the 4- in 8.7114-8.72. When the ALOOL 68
compiler sees an operator symbol, it deter-
mines which operator definition to use by
looking at the modes of the operands. If they
have modes m l and m2, it looks to see if an
operator with that symbol and those modes
has been defined. If so, it uses it. If not, it
begins coercing the operands to see if they
can be converted into some other modes for
which an operator exists.

The process of determining which operator
a symbol corresponds to is called operator
identification (RR 7.2). It is one of the great
achievements of the ALGOL 68 Revised Re-
port that this entire process has been de-
scribed completely in the grammar; that is,
the nonterminal <program> simply does not
generate any ambiguous programs. No Eng-
lish text is needed to describe what is and
what is not permitted.

After an operator has been identified, the
evaluation of its formula is the same as that
for procedure calls, including the parameter
mechanism. Even Jensen's device will work
if you provide a routine text as an operand.

To illustrate how operator identification
works, consider the following program:

This program yields: 11.0, 4.0, 30.14, 9.2.
Each of the four occurrences of ? in the print
procedure invokeg a different routine text.

Not only can one define new operators on
existing modes (for example, "?" on ints)
and existing operators on new modes (for
example, + on vectors) and new operators
on new modes (for example, invert on
matrix), but one can even redefine the
existing operators on the existing modes. If
you really want to redefine + on integers to
mean subtract, that is your business; the
compiler will not complain.

More realistically, someone writing a sim-
ulator for a two's complement computer on a
one's complement computer (for example, a
PDP-11 simulator running on a CDC Cyber)
might be very concerned about the specific
bit patterns used to represent integers,
rather than just their numerical values. In
particular, he might want to redefine integer
arithmetic to prevent - 0 from ever occur-
ring.

Or a numerical analyst might want to
redefine real arithmetic to handle rounding
differently, or to print a warning message
when too much significance has been lost.

7.2 Operator Priorities

When someone writes print(6+3.5) he ex-
pects to get 21, because multiplication has
higher precedence (priority) than addition.
In ALGOL 68 the priority of an operator
symbol can be set by the programmer. For
example,

b e g i n
pr io + = 3, * = 2;
print (6+3*5)

e n d

b e g i n
o p ? = (i n t i,j) real: i+j;
o p ? = (in t / , rea l x) real: *--x;
o p ? = (real x , l n t i) real: i + x + 1 9 ;
o p ? = (r e a l x , y) real . (x<y Ix lY);
p r i n t ((2?9, 6?2.0, 3.1478, 9.2?9.9))
e n d

will print 45, that is, (6+3) * 5. Monadic
operators all have priority 10 and cannot
be changed. Dyadic operators may have
priorities 1 to 9. This means that --1 T 2 is
+ 1, not - 1 because it is equivalent to
(-1)'.

Computing Survey0, Vol. 8, No. 2, June 1976

182 • Andrew S. Tanenbaum

8. STANDARD PRELUDE

Section 10.2 of the Revised Report consists
of several hundred definitions of modes,
operators, procedures, and values. Collec-
tively they are called the standard prelude.
Every ALGOL 68 program is presumed to be
declared within the scope of these declara-
tions. The modes, operators, etc., declared
in the standard prelude may be used in any
ALGOL 68 program. In fact, that is precisely
why they are there. The standard prelude is
written (almost entirely) in ALGOL 68.

It can now be pointed out that the basic
nucleus of ALGOL 68 (the part defined by the
grammar) is really much smaller than one
might expect. For example, some of the
"primitive" modes are not really primitive at
all, but are defined in the standard prelude;
for example,

m o d e c o m p l = s t r u c t (r e a l re,ira)

appears in RR 10.2.2f. Furthermore, none of
the operators, trigonometric functions, or
input/output procedures are part of the
language proper. An implementor who was
not concerned at all about compilation or
execution efficiency, either in time or in
space, could have nearly the whole standard
prelude textually substituted in front of
every ALGOL 68 program, saving himself a
great deal of work.

8.1 Environment Enquiries

The standard prelude begins with the en-
vironment enquiries (RR 10.2.1). These en-
quiries allow a program to learn properties
of the implementation it is running under
without having to deduce them by experi-
ment. The largest integer is called max int,
the largest real is called max real, the smallest
positive real is called small real, the number
of bits in an object of mode bits is called
bits width, etc. For example, here is a pro-
gram to determine the largest integer in an
implementation: (print(max inO).

Since each implementor has the freedom to
decide how many long and short integers he
wants to provide, environment enquiries are
provided to allow the program to find out
how many there are. These include int

lengths, real lengths, bits lengths, and bytes
lengths among others. The purpose of these
and the other environment enquiries is to
ease the task of exchanging programs be-
tween computers. For example, a program
needing integers of at least 47 bits could first
check the value of max int; finding it less
than 247-1, it could use long ints instead
of in ts .

8.2 Standard Prelude Operators

10.2.2 of the Revised Report lists the stand-
ard modes. Section 10.2.3.0a of the Revised
Report lists the priorities of all the standard
operators, followed by the definitions of the
standard operators. For example, the opera-
tors on Boolean operands are as follows:

op V = (b o o l a,b) b o o l : (a [t r u e [b) ;
op ^ = (b o o l a,b) b o o l : (a [b] f a l s e) ;
op "~ = (bool a) bool: (a I f a l s e I true) ;
op = = (b o o l a,b) b o o l : (ahb)V(-lah~b);
op ~ = (b o o l a,b) b o o l : TM(a=b);
o p a b s = (b o o l a) i n t : (a I l l 0)

From the standard prelude one can see pre-
cisely which operators are defined on which
operands, and what they do. For example, to
determine if abs t r u e has a value of 0 or 1,
a glance at the standard prelude will show
that it has a value of 1. Few languages offer
such precise definitions of their operators as
ALGOL 68.

Subsequent sections of the standard pre-
lude define the operators for comparison,
arithmetic, string handling, etc. If one wants
to see exactly what -{- on strings (concatena-
tion) means, one can consult RR 10.2.3.10i.
A very small number of operators are defined
in English, such as -- on reals. To provide a
full definition one would have in fact had to
define how floating point arithmetic works.
This would have wreaked havoc with imple-
mentations on computers whose floating
point hardware worked differently. The im-
plementor would either have had to ignore
the standard prelude, or simulate floating
point operations in software.

ALGOL 68 allows mixed mode arithmetic.
The formula 3.1446 yields the real 9.14.
The mechanism by which this happens can
now be safely revealed: The operator ~- is

Computing Surveys, Vol. 8, No. 2, June 1976

A Tutorial on Ar~aox, 68 • 183

defined for parameters of niodes (int, int),
(int, real), (real, int), and (real, real).
Four definitions are necessary because oper-
ands are firm and because widening is for-
bidden in firm positions (to avoid ambigui-
ties in operator identification).

An interesting new idea in operators is
that of combining arithmetic and assign-
ment. For example, m~ 10.2.3.11d states:

o p t : = = (r e f i n t a , i n t b) r e f i n t : a : = a-}-b

This enables one to write: n + : = 1 rather
than n := n + l . The "plus and becomes"
operator, + : = , may also ease the task of
optimizing the object code, especially on
computers which can add directly to
memory. Similar operators exist for real
numbers and the other operations; for exam-
ple, - : = means "subtract and becomes."

A number of standard mathematical func-
tions are provided in RR 10.2.3.12 including
sqrt, exp, ln, cos, arccos, sin, arcsin, tan, and
arctan. Anyone who prefers sines as operators
rather than as procedure calls need only
write:

o p s i n = (r e a l x) rea l : sin(x).

If you don't care what values your functions
return, you may enjoy random (RR 10.5.1b).
And finally, pi is defined as a real value close
to you-know-what (RR 10.2.3.12a). Standard
prelude declarations may be overridden
simply by supplying other declarations.

9. INPUT/OUTPUT

ALGOL 60 was widely criticized for not dis-
cussing such mundane matters as input/
output. That is one problem from which
ALGOL 68 will not suffer. An extremely
powerful and flexible set of input/output
procedures is defined in the standard pre-
lude. A variety of input/output styles is
provided, ranging from the lowly print proce-
dure to formatted input/output on files with
user control over conversion codes, error
handling, and the like. The ALGOL 68 term
for input/output is transput.

9.1 Books, Channels, and Files

A book is a collection of information in the
form of a three-dimensional character array
(RR 10.3.1.1a). Books are comparable to
what some other languages call data sets. A
book consists of a certain number of pages,
each page consisting of a certain number of
lines, each line consisting of a certain number
of characters.

For example, llne printer output may
consist of many pages of 60 lines, each line
having 132 characters. Each position in the
output can be described by a triple (page,
line, char). Likewise, a multifile magnetic
tape can be modeled with page ffi file num-
ber, line -- record number, and character ffi
position within a record. A book on a card
reader might have only 1 page with many
80-character lines. Books may not be read or
written by being subscripted; instead special
procedures are provided for reading and
writing. We have already seen two of these:
read and print.

A channel (RR 10.3.1.2) corresponds to an
input/output device type, for example, a
disk, card reader, plotter, holographic store,
or on-line experimental rat. A file (RR

10.3.1.3) provides the machinery to use a
particular channel.

An object of mode file is actually a struc-
ture specifying a book, a channel, the current
position on the file (page, line, char), the
conversion code to use, and a number of
procedures of mode proc(ref file) bool, as
well as a few other details. A typical proce-
dure is: page mended. When the program
has filled up a page, page mended is automa-
tically called. Programmers may supply
their own versions of page mended: for exam-
ple, eject to a new page, print a heading, and
return true, indicating that the difficulty
has been corrected. A new version of page
mended, p, can only be associated with a file,
jr, by the call

on page end(f ,p)

and not by directly referencing the field
selector page mended. The other procedures
handle end of file, end of line, end of format,
and invalid data detected.

To access an existing book via a particular
channel, declare a file and call the procedure

Computi~ Surveys, Vol. 8, No. 2, June 1976

1 8 4 • Andrew S. Tanenbaum

open to associate the book and channel with
it. Open has three parameters: the file, an
identification string, and the channel. The
identification string and channel are installa-
tion dependent. To close a file, call close with
the file as parameter. To create a new book,
call create, specifying the file and channel.

Three files are declared and opened in the
standard prelude (RR 10.5.1c): stand in,
stand out, and stand back. These files cor-
respond to the normal input and output
files, and the binary scratch files. At some
installations the files may be card reader,
printer, and magnetic tape; at others they
may be an on-line terminal, an on-line ter-
minal and a disk. These files need (must)
not be declared by the programmer.

Here is a simple program to copy 1000
lines from filel to file2:

b e g i n file in, out;
s t r i n g s;
open (in, ("filel' ', stand in channel) ;
open(out,"file2", stand out channel) ;
for i from 1 to 1000

do get(~n,(s, new hne));
put(out,(s, new line))

od;
close (in) ;
close (out)
e n d

The procedure open defines a correspondence
between an ALGOL 68 file name and a pre-
existing operating system file name. The
procedures get and put are the analogs of
read and print. In fact, read(x) is declared
(RR 10.5.1e) as get(stand in,x) and print is
declared (RR 10.5.1d) as put(stand out,x).
The inclusion of new line in the calls to get
and put is needed to advance the current
position to the start of the next line.

ALGOL 68 supports random access books
as well as sequential books. Each installation
must decide which channels are random
access, and which are not. Typically, disks
and drums will be random access, whereas
card readers and paper tape punches will not
be. If a book is randomly accessible via a file
f, the procedure call set possible(/) will yield
t r u e , if not, it will yield false. To set the
current position of file f to (p,l,c) call
set(f,p,l,c).

A list of some (but not all) of the file
handling procedures declared in the stand-
ard prelude follows; f represents a file; p
represents a p r o e (r e f file) bool ; c represents
a character, and x represents a variable, a
constant, or a row display.

get posszble (if)
put possible i)
bin possible (f)

set possible (f)

reset possible i)
chan (i)
page number i)
line number i)
char number i)
lock i)

scratch (f)

get if, x)
put i,~)
new page i)
new line i)
space i)
backspace (f)
set (f , pg,l,c)
reset i)
on logical file endi,p)
on page end i ,P)
on line end i ,P)
on format end (f,p)
make term i , " e ")

t r u e if / is readable
t r u e if f is writeable
t r u e if binary

transput ok
t r u e if f is random

access
t r u e if f is rewindable
yields f 's channel
yields the current page
yields the current line
yields the current char
protects f from further

access
detach and burn the

book
read x from file f
write x to file f
advance to a new page
advance to a new line
advance one character
go back one character
current pos := (pg,l,c)
rewind to (1,1,1)
make p the procedure

to be called when the
corresponding event
occurs on file f

make c string terminator
on f

I t is also possible to perform transput
directly to a three-dimensional character
array in memory rather than to an external
book (cf. ENCODE/DECODE in CDC
6000 FORTRAN). To make an array buffer the
pseudobook of file f, call associate(f, buffer).

9.2 Formatless Transput

The simplest form of transput is formatless
transput, of which read, print, get, and put
are the most important examples. Since get
works precisely like read, except on arbitrary
files instead of on stand in, and put is ana-
logous to print, we concentrate on read and
print.

Read and print have modes that ordinary
programmers cannot construct. Roughly

Computing Surveys, VoL 8, No. 2, June 1976

A Tutorial on AI, eOZ, 68 • 185

speaking, the mode of print is proc([]
union (int, real, bool, char, [l int, [,, l int,
and everything else that can be printed, and
proe(file)void))void. Read has a similar
mode.

The procedure get is given in its entirety
in RR 10.3.3.2a. For the beginner, the follow-
ing rules will be enough to get started. The
input book is regarded as a continuous
stream of values separated by delimiters.

Integers, reals, and complex numbers may
be signed. Reals and complex numbers may
contain a decimal point and an exponent
part, indicated by the letter "e". When a
character variable is to be read, the next
character is taken (even space), except at
the end of a line or page, when the line or
page will be advanced first. Strings are
delimited by end of line or by a special
termination character associated with the
file.

When reading vectors and matrices, the
order in which the elements are read is im-
portant. The question of how an array (or
structure) is turned into a linear sequence of
elements'is called straightening (RR 10.3.2.3).
In short,' vectors are read from lowest ele-
ment to highest element. Matrices are read
in row order, beginning with the first row,
then the second row, etc.

The procedures new line, new page, space,
and backspace may be passed as parameters
to read. The "first three advance the current
position before reading. The last one moves
it backwards before reading, but not beyond
the beginning of the current line. Using
backspace, input data can be reread.

Print works as follows. For each mode of
data there is a standard format that is used.
The widths of the fields are implementation
dependent, depending on max int and max
real. Print refrains from splitting numbers
across lines or pages; if the number will not
fit, the line or page is advanced before print-
ing. The procedures new line, new page,
space, and backspace may be included as
parameters to print, and both read and print
expect a single parameter. If this is a row
display, an extra set of parentheses is re-
quired, for example,

print((new page, "title",new line,x,y,z))

For people who are slightly discriminating

about what their output looks like, but who
are nevertheless too lazy to use formatted
output, the procedures whole, fixed, and
float may be helpful (RR 10.3.2.1). The calls

print(whole(i,size)); ~ e.g. +3
print(f~ed(x,size,d)) ; ~ e.g. 6.02
print(float(x,size,d,e); ~ e.g. 1.234e-07 ¢

output the integer i or real x in a field of
width abe size. If size is positive, an explicit
sign is printed; if size is negative, plus signs
are suppressed. The integer d specifies the
number of places to the right of the decimal
point. The integer e specifies the number of
digits in the exponent field.

9.3 Formatted Transput

The standard prelude declares four proce-
dures for formatted transput: readf, printf,
getf, and putf. Inasmuch as readf and printf
are merely calls to getf and putf with stand in
and stand out, respectively, used as files, it is
not necessary to examine all four of them.
For simplicity we discuss only readf and
printf. Note that readf, printf, getf, and
putf are the formatted analogs of read, print,
get, and put.

There is a mode format whose values
describe how values are to be layed out on
the output or are expected to appear on the
input. A simple format text (that is, "deno-
tation") and its meaning on output is

$ p "m = " 5d, "n = " 5d $

This first advances to a new page, then prints
the string m = , then the value of a variable
as five digits, then the string n = , and finally
another value as five more digits. We discuss
the construction of format texts in a sub-
sequent paragraph. For now, it is sufficient
to say that f o r m a t is a mode (declared in
the standard prelude in RR 10.3.4.1.1a) and
may be manipulated like any other mode;
that is, []format, proc(int)format, and
ref format are all perfectly valid modes.
Variables of mode f o r m a t exist and may be
assigned values, namely, format texts.

Associated with each file is a format that
applies to that file. The format may be
changed whenever a new one is needed, but
a format remains in effect until explicitly

Computing Surveys, Vol. 8, No. 2, June 1976

186 • Andrew S. Tanenbaum

changed. The four formatted input /output
procedures each process their parameters
sequentially. If a parameter is a unit, it is
transmitted according to the format cur-
rently associated with the file. However, if
the parameter is a format, it supersedes the
current format and is used for transmitting
units until it itself is explicitly superseded.
Note that a format can remain associated
with a file over a time spanning many input//
output calls. (Contrast this with FORTRAN,
PL/ I , and other languages which require
exactly one explicit format on each input /
output call.)

The procedure print/ expects a single
parameter, roughly []union(al l transput-
table modes, fo rma t) . Here are some exam-
pies of calls to the formatted transput proce-
dures:

begin real x,y,z;
file f; open (f,"a",disk 1);
readf($1 5d, 7d $); ¢ new format for

stand in
printf($1 10x 6d $); ¢ new format for

stand out
pug(f, $ p "heading", 9d $); ~ new format

for f
prinl]((x,y,z)); ~ use existing format
print](($1 9d $,x,y,z)); ~ use this format
close 0")
end

A format text can be used directly in a call
to one of the formatted transput procedures,
as a source in an assignment to a format
variable, as the result of a procedure yielding
f o r m a t , etc. Format texts are delimited by
$ as we have seen. Between the dollar signs
are a series of pictures, separated by commas.
Each value input or output is controled by
some picture, although a picture need not
input or output a value; for example, it may
merely eject to a new page. Pictures may be
replicated as in 2(5d 4x, 7d 2x), which means
5d 4x, 7d 2x, 5d 4x, 7d 2x. Replieators need
not be constants; the letter "n" followed by
a closed clause is also acceptable (among
other possibilities).

Pictures can be subdivided into literal
strings, alignments, and patterns. Literal
strings, such as "x = " or "page heading" are
output as is, or are expected to be exactly
so on input. Literal strings may be repeated

by putting an integer in front; for example,
7"x" is the same as "xxxxxxx".

Alignments describe changes in the current
position of the book, such as "go to the next
line before reading or printing." There are
six alignments (RR 10.3.4.1.10 :

code m e a n i n g

p a d v a n c e to n e w p a g e
1 a d v a n c e to n e w l ine
x a d v a n c e one c h a r a c t e r
y b a c k s p a c e one c h a r a c t e r
q o u t p u t / e x p e c t one b l a n k
k move to specific character position

The alignments may also be replicated; for
example, p 21 5q on output means go to the
next page, skip 2 lines and 5 spaces. The
difference between x and q is this: on input x
just skips, whereas q expects blanks; on
output after backspace, x skips and q over-
writes with blanks. The alignments p,l,x,y,
and k cause the procedures new page, new
line, space, backspace, and set char number
to be called, respectively.

Patterns are used for converting values,
for example, integers, reals, Booleans, or
strings. They are described in detail in RR
10.3.4. The following is a rough summary of
some patterns. Each pattern consists of one
or more frames. A frame allows a certain
class of character, for example, sign, digit,
exponent symbol, or any character. A list of
frames and the allowed characters in each
follows:

code meaning

- blank or minus sign
+ plus or minus sign
z blank or digit
d digit
e letter e (exponent)

decimal point
b Boolean (namely, 0 or 1)
i letter i (for complex numbers)
a any character

Rather than attempting to give the precise
rules for combining frames into patterns, we
give some examples of how the integer 12345
would appear with various patterns. (The
letter B is used to indicate a blank space in
the output.) Note that z suppresses leading
zeros.

Computing Surveys, Vol. 8, No. 2, June 1976

pattern
8d 00012345
6d 012345
7zd BBB12345
+7zd +BBB12345
- 7 z d BBBB12345
7z+d BBB+12345
7 z - d BBBB12345

result of printing 12345

The following examples show how the real
number 123.45 would appear with various
patterns:

pat tern

5d .2d 00123.45
4d.3d 0123.450
3zd.2d B123.45
3z+d.2d B+123.45
+d.4dezd +1.2345eB2
-d.4dezd BI.2345eB2

result of printing 123.45

To understand how patterns work, first re-
move the rephcators by writing out the
pattern in full. For example, +4zd.2d means
+zzzzd.dd. This pattern contains nine
frames: one plus, four z's, one d, one point,
and two more d's. A number output using
this pattern will therefore occupy nine posi-
tious. The leftmost position will be a + or --
sign. The next four positions will be digits,
except that leading zeros will be converted
to blanks. The four positions following this
will be: one digit (even zero), one point, and
two more digits (even 00). For example,
123.45 will be output as +BB123.45.

To allow leading signs to "float right-
word" to the immediate left of the first non-
zero digit, two special combinations are
provided: N z + d and N z - d (N is some
integer). This does not cause ambiguities,
because putting the sign in the middle of the
digits is clearly something special. The field
width for N z T d or N z - d is N + 2 ; for
example, 6z-l-d means zzzzzz+d and gives
an eight-position field.

A picture may consist solely of a literal
string, an alignment, or a pattern, or a se-
quence of these. Thus Sp 1 8d$ is a format
text with one picture, and $p,l,8d$ is an
equivalent format text with three pictures.

As a final example of outputting numbers,
consider this program:

A Tutorial on ALqox, 68 • 187

begin in t i :ffi 2;
printf (($ p " ~ " 21 3d, 2z+d, 3qSzd.d,

z-d.2d $, i, - i , i+999, pi))
end

The output begins with "hi" on top of a new
page, then a blank line, then

002BB -2BBBBB 1001.0BB3.14

Characters and strings are read and
written using "a" frames. Booleaus are
transput using "b" frames, with implemen-
tation defined characters flip and flop (as in,
T and F), corresponding to t rue and false,
respectively. Values of modes b i ts can be
handled in binary, quaternary, octal, or
hexadecimal, using 2r, 4r, 8r, or 16r, respec-
tively, as illustrated in the following pro-
gram:

begin bits n;
¢ print the first 100 integers in decimal, binary,

octal; and hexadecimal, each in an 8 position
field with 2 spaces between fields.

for i to 100
do ¢ assign bit pattern of i to n (because only

objects of mode b i t s can be output in non-
decimal radices) ¢

n := b i n i ;
printf(($ 1 7zd,2q2rTzd, 2q8r7zd, 2q16rTzd $,

i, n, n, n))
od
end

Pictures may be replicated (as in 71 or
3d), and replicators may be p r o e i n t s .
Furthermore, there is a facility that chooses
dynamically among several formats during
transput, and a number of other sophisti-
cated techniques.

The procedures readbin, writebin, oetbin,
and putbin are the analogs of readf, printf,
getf, and pug for binary transput (cf. PL / I
record input/output).

10. SERIAL COLLATERAL, AND PARALLEL
PROCESSING

In general, ALGOL 68 statements are exe-
cuted one after another, in the order written.
The semicolon can be regarded as a go-on
operator that causes execution to continue.

Computing Surveys, VoL 8~ No. 2, June 1976

188 • Andrew S. Tanenbaum

The void units in a serial clause are executed
sequentially, for example. In some situa-
tions, however, there is no inherent sequenc-
ing. For example, there is no reason for the
first unit of a row display to be evaluated
before the last one. Nor is there any reason
for the left operand of a dyadic operator to
be evaluated before the right operand. In
some other programming languages oper-
ands are evaluated strictly from left to right,
but nothing in classical mathematics sug-
gests any precedent for this. Actions that
have no specific ordering in time are said to
be carried out collaterally.

In formulating ALGOL 68, the designers
intentionally specified that the order of
evaluating certain things, such as the left
and right operands of a dyadic operator, be
undefined. This was done to help compilers
produce an optimized object code and to take
advantage of multiprocessor systems.

By not fixing the order of evaluation of
operands and certain other constructions,
ALGOL 68 provides the compiler writer with
the freedom to do the evaluations in the most
efficient order. In some situations, evaluat-
ing the right operand before the left operand
may be more efficient. For example, con-
sider:

begin r e a l x,y,z;
p r o c f = (r e a l x) r e a l : (random < .5 I x I - - x) ;
rend(z);
y : = (p i + x) / 8 ;
z : = f (x) + f (y) ;
print (z)
end

On a computer with a single accumulator
used for arithmetic, after evaluating
(pi+x)/8, y is very likely to be in the ac-
cumulator. I t is also likely that better ob-
ject code can be generated if f(y) is evaluated
before f(x), because y is already in the ac-
cumulator, and x is not. If the ALGOL 68
specifications had required that left operands
be evaluated before right operands, the com-
piler would have no choice but to do the call
of f(x) first, even though it is less efficient in
that order.

The second reason for having the order of
evaluation of certain constructions be ex-
plicitly undefined is that some computers
have more than one processor and are capable

of performing several computations in paral-
lel. As the price of CPU's continues to fall,
both in absolute terms and relative to total
system cost, multi-CPU systems will be-
come more and more common. Consider the
following block, where f is assumed to be a
horrendously complicated function declared
in an outer block:

begin [1:4] r e a l x;

in t a,b,c,d;
read((a,b,c,d)) ;
x : = (.f(a),f(b),f(c),:f(d))
end

On a computer with four (or more) CPUs,
the ALGOL 68 compiler might decide to have
f(a), f(b), f(c), and f(d) all evaluated simul-
taneously, each on its own CPU. If the lan-
guage required f(a) to be evaluated before
f(b), this would be impossible.

Some of the constructions that are evalu-
ated collaterally are: Source and destination
in assignments; operands of a dyadic opera-
tor; elements of a row display; fields of a
structure display; actual parameters in a
call; f rom, to, and by parts of a for state-
ment; subscripts and bounds in a slice; upper
and lower bounds in an array declarations;
array to be sliced and its subscripts; pro-
cedure to be called and its parameters;
declarations separated by commas; and
units of a collateral clause.

10.1 Collateral Clauses

A collateral clause is a list of units separated
by commas and enclosed by begin and end,
or by parentheses. The order in which the
units of a collateral clause are evaluated is
expressly undefined. An important kind of
collateral clause is one composed of state-
ments (technically void units). Whereas the
statements of a serial clause are executed se-
quentially, the execution order of the state-
ments in a collateral clause is explicitly un-
defined. An example of a void collateral
clause is:

begin k : = 3, x :-- 3.14, s := " a " end

Consider the following two programs; the
first contains a closed clause, and the second
contains a collateral clause:

Computing Surveys, Vol. 8, No. 2, June 1976

begin ¢ p r o g r a m 1
i n t k :-- O;
(k : = k + l ; k := k + l) ;
print(k)
end

beg in ¢ p r o g r a m 2 ¢
i n t k : = O;
(k : = k-t- l , k : = b ~ - l) ;
print(k)
end

The only difference between the two pro-
grams is the use of a semicolon versus the use
of a comma between the assignments. There
is only one tiny spot of ink in typography,
but a world of difference in meaning, as we
shall see.

The first program prints 2, as you would
expect; the second program requires closer
scrutiny. Since the order of evaluation of the
units in a collateral clause is undefined, the
first one might be completed before the
second one was started, giving 2 as an answer.
However, on a computer with two CPUs the
compiler might arrange to give each CPU
one unit to process with the following se-
quence of actions occurring.

1) CPU 1 fetches k into its accumulator;
2) CPU 2 fetches k into its accumulator;
3) CPU 1 adds 1 to its accumulator;
4) CPU 2 adds 1 to its accumulator;
5) CPU 1 stores 1 into k;
6) CPU 2 stores 1 into k.

The result is that k becomes 1 instead of 2.
Depending upon the order of evaluation, the
second program may print 1 or 2. Random
numbers are very useful in computer science,
but this is not a recommended technique for
producing them. On the other hand,

begin in t m := O, n := O;
(m := r e + l , n := n + l) ;
print((m,n))
end

operates correctly no matter what the order
of evaluation is. The moral of this story is:
Collateral clauses are an important pro-
gramming technique for exploiting parallel
processing, but some care is required in
their use.

I t should be noted, however, that race
conditions of this kind are not unique to
ALGOL 68; any language or system permit-

A Tutorial on ALooL 68 • 189

ting parallel processes unrestricted access
to a common data base can produce the
same peculiar effects. To be safe, one should
avoid using collateral clauses which have
an execution order that matters, or which
modify each other's variables.

Collateral clauses may be nested, of course,
allowing more complicated mixtures of col-
lateral-serial execution to be described. For
example,

(a; (b, (c; d), ((e,f); g)); h)

describes the following situation (the letters
are assumed to be void units, for example,
procedure calls or closed clauses). First a is
executed. When a is finished, three actions
proceed collaterally:

1) b
2) (c;d)
3) fie,y); g)

If enough CPUs are available, b, c, e, and f
may all begin at once. When c finishes, d
may start. When e and f are both finished, g
may start. If e finishes before f, then g must
be held up unti lf is also done. When b, c, ,d, e,
f, and g are all completed, h begins.

10.2 Synchronized Parallel Processing

Collateral clauses are primarily useful for
allowing independent, noncommunicating
processes to run in parallel. For some appli-
cation,s however, the processes must com-
municate with each other. Typical examples
are producer-consumer problems, where one
process fills a shared buffer and the other one
empties it. The two processes need to be syn-
chronized to ensure that the producer stops
when the buffer is full and that the consumer
restarts the producer when it has (partially)
emptied it again.

Dijkstra [4] has described a general syn-
chronization method for parallel processing
based on semaphores, and operators that in-
crement and decrement them. An attempt
to decrement a semaphore which has value 0
causes the decrementing process to be
stopped. ALGOL 68 provides a mode sema
(for semaphore) and two operators, up and
down, to increment and decrement variables
of mode sema. These are given in RR 10.2.4.

When semaphores are used in a collateral

Computing Surveye, Voi. 8, No. 2, June 1976

190 • Andrew S. Tanerdoaum

clause, the symbol p a r must appear directly
before the opening beg in or parenthesis.
This is to warn the compiler. Such clauses
are then called pamffel clauses (RR 3.3.1C).

As a simple example of parallel processing
using semaphores, consider the problem of
two processes running in parallel, each of
which needs exclusive access to a certain
data base during part of its computation
cycle. (Readers unfamiliar with this type of
synchronization problem should see Brinch
Hansen [2]. A semaphore, mutex, initialized
to 1 (using the l e v e l operator) is used here
to achieve mutual exclusion.

b e g i n s e m a mulex := level 1;
b o o l notfinishod := true;

declare the data base here
proc producer -= void:

while not finished
do d o w n mutex;

insert item into data base here
up mutex

o d ;
proe consumer = void:

w h i l e not finished
do d o w n mutex;

remove item from data base here
up mutex

od;
here is the parallel processing

par (producer, consumer)
e n d

11. Where To From Here. e

Readers who want to continue their s tudy o f
ALGOL 68 may wish to read Lindsey [8]'
Woodward and Bond [15], Woodward [14],
Valentine [11], Branquart et al. [1], Cleave-
land and Uzgalis [3], Peck [10], and the Re-
vised Report, in roughly tha t order. For
those readers who want a book length expo-
sition, Learner and Powell [6], Peck [9], and
Lindsey and van der Meulen [7] are recom-
mended. For those who read German, van
der Meulen and Kiihling [12] is a good in-
t roductory text. In these references, be-
ware of minor differences between the Re-
vised Report, which is described in this
article, and the original report, which is
described in most of the references.

An even bet ter way to learn ALGOL 68 is
to write programs in this language. Com-
pilers for various computers exist, including
the IBM 370, CDC Cyber, Burroughs

B6700, and ICL 1900. A fairly large subset
of the language is even being implemented
on a minicomputer (PDP-11).

ACKNOWLEDGMENTS
I wish to express my appreciation to the

numerous people who have read and criti-
cized this article, especially Jack Alanen,
Willem Paul de Roever, Dick Grune, Ad
Kbnig, Kees Koster, Efrem Mallach, John
Peck, Mitchell Tanenbaum, Rober t Uzgalis,
Reind van de Riet, A. van Wijngaarden
and P. M. Woodward.

REFERENCES
[1] BRANQUART, P.; LEWI, J.; SINTZOFF, M.;

AND WODON, P. L. "The composition of
semantics in ALGOL 68," Comm. ACM 14,
11 (Nov. 1971), 697-707.

[2] BRINCH HANSEN, PER. "Concurrent pro-
gramming concepts," Computing Surveys 5,
4 (Dec. 1973), 223-245.

[3] CLEAVEnAND, J. C.; AND UZGALIS, R. C.
Grammars for programming languages: What
every programmer should know about grammar,
American Elsevier Publ. Co., New York,
1976.

[4] DIJKS~RA, E. W. "Cooperating sequential
processes," In Programming language, F.
Genuys (Ed.), Academic Press, New York,
1968.

[5] JENSEN, J.; AND NAUR, P. "Call by name:
An implementation of ALGOL 60 procedures,"
BIT 1, (1961), 38.

[6] LEARNER, A.; XND POWELL, A. J. An in-
troduction to ALGOL 68 through problems, Mac-
Millan, New York, 1974.

[7] LINDS~Y, C. H.; AND VAN DERMEULES, S. G.
An informal introduction to A~ao~ 68. North
Holland Publ. Co., Amsterdam, The Nether-
lands, 1971.

[8] LINDSEY, C. H. "ALGOL 68 with fewer
tears," Computer J. 15, (1972), 176-188.

[9] PECK, J. E. L. An ALoo~ 68 companion,
Univ. of British Columbia, 1972.

[10] PacK, J. E. L. "Two-level grammars in
action," in Proc. IFIP Congress 74, North-
Holland Publ. Co., Amsterdam, The Nether-
lands, 1974, 317-321.

[11] VAT.ENTINE, S .H. "Comparative notes on
ALGOL 68 and PL/I," Computer J. 17, (1974),
325-331.

[12] w,N DER MEULEN, S. G.; AND KUHnING, P.
Programmieren in ALaOL 68. Waiter de
Guyter & Co., New York, 1974 (in German).

[13] VAN WIJNGAARDEr% A.; MAILLOUX, B. J.;
P~.CK J. E. L.; KOSWER, C. H. A.; SINTZOFF,
M. ; LINDSEY, C. H. ; MEERTENS, L. G. L. T.;
AND FISHER, R.G. "Revised report on the
Algorithmic Language Algol 68," Acta Infor-
matica 5, (1975), 1-236.

[14] WOGnWARn, P. M. "Practical experience
with ALGOn 68" Software--Practice and Ex-
perience, 2, (1972), pp. 7-9.

[15] WOODWARD, P. M.; AND BONn, S.G. ALgoL
68-R users guide, 2nd Ed. Her Majesty's
Stationery Office, London, England, 1974.

[16] P.~GAN, F. G., A practical guide to Algol 68,
John Wiley Inc., New York, 1976.

Computing SurveyJ, Vol. 8, No. 2, June 1976

