
BLAKE3
one function, fast everywhere

Jack O’Connor (@oconnor663)
Jean-Philippe Aumasson (@veorq)

Samuel Neves (@sevenps)
Zooko Wilcox-O’Hearn (@zooko)

https://blake3.io

We present BLAKE3, an evolution of the BLAKE2 cryptographic hash that is both faster
and also more consistently fast across different platforms and input sizes. BLAKE3
supports an unbounded degree of parallelism, using a tree structure that scales up
to any number of SIMD lanes and CPU cores. On Intel Cascade Lake-SP, peak
single-threaded throughput is 4× that of BLAKE2b, 8× that of SHA-512, and 12×
that of SHA-256, and it can scale further using multiple threads. BLAKE3 is also
efficient on smaller architectures: throughput on a 32-bit ARM1176 core is 1.3× that
of SHA-256 and 3× that of BLAKE2b and SHA-512. Unlike BLAKE2 and SHA-2, with
different variants better suited for different platforms, BLAKE3 is a single algorithm
with no variants. It provides a simplified API supporting all the use cases of BLAKE2,
including keying and extendable output. The tree structure also supports new use
cases, such as verified streaming and incremental updates.

Version 20200221164500.

1

https://blake3.io

Contents

1 Introduction 3

2 Specification 4
2.1 Tree Structure . 4
2.2 Compression Function . 4
2.3 Modes . 6
2.4 Chunk Chaining Values . 7
2.5 Parent Node Chaining Values . 7
2.6 Extendable Output . 8

3 Performance 8

4 Security 12
4.1 Security Goals . 12
4.2 Compression Function . 12
4.3 Mode of Operation . 12
4.4 Cryptanalysis . 13

5 Implementation 14
5.1 Incremental Hashing . 14

5.1.1 Chunk State . 15
5.1.2 Chaining Value Stack . 15

5.2 Multi-threading . 17
5.3 SIMD . 18
5.4 Memory Requirements . 19

6 Applications 19
6.1 Pseudorandom Function and MAC . 19
6.2 Key Derivation . 19
6.3 Stateful Hash Object . 20
6.4 Verified Streaming . 21
6.5 Incremental Updates . 22

7 Rationales 23
7.1 Chunk Size . 23
7.2 Word Size . 23
7.3 Compression Function Feed Forward . 24
7.4 Keyed Permutation Key Schedule . 24
7.5 Chunk Counter . 25
7.6 Tree Fanout . 26
7.7 Domain Flags . 27
7.8 Key Derivation from Reused Key Material . 27

2

1 Introduction

Since its announcement in 2012, BLAKE2 [5] has seen widespread adoption, in large part
because of its superior performance in software. BLAKE2b and BLAKE2s are included in
OpenSSL and in the Python and Go standard libraries. BLAKE2b is also included as the
b2sum utility in GNU Coreutils, as the generichash API in Libsodium, and as the underlying
hash function for Argon2 [9], the winner of the Password Hashing Competition in 2015.

A drawback of BLAKE2 has been its large number of incompatible variants. The per-
formance tradeoffs between different variants are subtle, and library support is uneven.
BLAKE2b is the most widely supported, but it is not the fastest on most platforms. BLAKE2bp
and BLAKE2sp are more than twice as fast on modern x86 processors, but they are sparsely
supported and rarely adopted.

BLAKE3 eliminates this drawback. It is a single algorithm with no variants, designed for
consistent high performance in software on all platforms. The biggest changes from BLAKE2
to BLAKE3 are:

• A binary tree structure, providing an unbounded degree of parallelism.

• Fewer rounds in the BLAKE2s-based compression function (7 instead of 10).

• Three modes: hashing, keyed hashing, and key derivation. These modes replace the
BLAKE2 parameter block and provide a simpler API.

• Zero-cost keyed hashing, using the space formerly occupied by the parameter block
for the key.

• Built-in extendable output (a.k.a. XOF), which is parallelizable and seekable, like
BLAKE2X but unlike SHA-3 or HKDF.

BLAKE3 splits its input into 1 KiB chunks and arranges them as the leaves of a binary tree.
Each chunk is compressed independently, so the degree of parallelism is equal to the number
of chunks [1, 2]. This makes BLAKE3 very fast on modern processors, where it can take
advantage of SIMD instructions and multiple cores. Another benefit of compressing chunks
in parallel is that the implementation can use SIMD vectors of any width, regardless of the
word size of the compression function (see §7.2). That leaves us free to select a compression
function that is efficient on smaller architectures, without sacrificing peak throughput on
x86-64. Thus our choice of BLAKE2s instead of BLAKE2b.

BLAKE3 has the same 128-bit security level and 256-bit default output size as BLAKE2s.
The internal mixing logic of the compression function is also the same, with a simplified mes-
sage schedule derived from a single repeated permutation. Based on existing cryptanalysis
of BLAKE and BLAKE2, BLAKE3 reduces the number of rounds in the compression function
from 10 to 7 (see [3] for a detailed rationale). BLAKE3 also changes the setup and finalization
steps of the compression function to support the internal tree structure, more efficient keying,
and extendable output.

3

2 Specification

2.1 Tree Structure

The input of BLAKE3 is split into contiguous chunks of 1024 bytes, such that the last chunk
may be shorter, but not empty, unless the entire input is empty. If there is only one chunk,
that chunk is the root node and only node of the tree. Otherwise, the chunks are assembled
with parent nodes, each parent node having exactly two children. Two rules determine the
structure of the tree:

1. Left subtrees are full. Each left subtree is a complete binary tree, with all its chunks at
the same depth, and a number of chunks that is a power of 2.

2. Left subtrees are big. Each left subtree contains a number of chunks greater than or
equal to the number of chunks in its sibling right subtree.

In other words, given a message of n > 1024 bytes, the left subtree consists of the first

210+blog2(b n−1
1024c)c

bytes, and the right subtree consists of the remainder. For example, trees from 1 to 4 chunks
have the structure shown in Figure 1.

c0 c0 c1 c0 c1

c2

c0 c1 c2 c3

Figure 1: Example tree structures, from 1 to 4 chunks.

The compression function is used to derive a chaining value from each chunk and parent
node. The chaining value of the root node, encoded as 32 bytes in little-endian order, is
the default-length BLAKE3 hash of the input. BLAKE3 supports input of any byte length
0 ≤ ` < 264.

2.2 Compression Function

The compression function works with 32-bit words, and takes the following inputs:

• The input chaining value, h0 ... h7 (256 bits).

• The message block, m0 ... m15 (512 bits).

• A 64-bit counter, t = t0, t1, with t0 the lower order word and t1 the higher order word.

• The number of input bytes in the block, b (32 bits).

• A set of domain separation bit flags, d (32 bits).

4

Table 1: Constants IV0 ... IV7 used in the initialization of BLAKE3.

IV0 0x6a09e667
IV1 0xbb67ae85
IV2 0x3c6ef372
IV3 0xa54ff53a
IV4 0x510e527f
IV5 0x9b05688c
IV6 0x1f83d9ab
IV7 0x5be0cd19

The compression function initializes its 16-word internal state v0 ... v15 as follows:
v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

←

h0 h1 h2 h3
h4 h5 h6 h7
IV0 IV1 IV2 IV3
t0 t1 b d

The IV0 ... IV7 constants are the same as in BLAKE2s, and they are reproduced in Table 1.
The compression function applies a 7-round keyed permutation v′ = E(m, v) to the state

v0 ... v15, keyed by the message m0 ... m15.
The round function is the same as in BLAKE2s. A round consists of the following 8

operations:

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14) .

That is, a round applies a G function to each column of the 4× 4 state in parallel, and then to
each of the diagonals in parallel.

The “quarter-round” Gi(a, b, c, d) is defined as follows. Let ⊕ denote xor, + denote addition
modulo 232, ≫ denote bitwise right rotation, and mx be the xth message word:

a ← a + b + m2i+0

d ← (d⊕ a) ≫ 16
c ← c + d
b ← (b⊕ c) ≫ 12
a ← a + b + m2i+1

d ← (d⊕ a) ≫ 8
c ← c + d
b ← (b⊕ c) ≫ 7

After each round (except the last one where it would be useless), the message words are
permuted according to Table 2.

5

Table 2: Permutational key schedule for BLAKE3’s keyed permutation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 6 3 10 7 0 4 13 1 11 12 5 9 14 15 8

Table 3: Admissible values for input d in the BLAKE3 compression function.

Flag name Value

CHUNK_START 20

CHUNK_END 21

PARENT 22

ROOT 23

KEYED_HASH 24

DERIVE_KEY_CONTEXT 25

DERIVE_KEY_MATERIAL 26

The output of the compression function h′0 ... h′15 is defined as:

h′0 ← v′0 ⊕ v′8 h′8 ← v′8 ⊕ h0

h′1 ← v′1 ⊕ v′9 h′9 ← v′9 ⊕ h1

h′2 ← v′2 ⊕ v′10 h′10 ← v′10 ⊕ h2

h′3 ← v′3 ⊕ v′11 h′11 ← v′11 ⊕ h3

h′4 ← v′4 ⊕ v′12 h′12 ← v′12 ⊕ h4

h′5 ← v′5 ⊕ v′13 h′13 ← v′13 ⊕ h5

h′6 ← v′6 ⊕ v′14 h′14 ← v′14 ⊕ h6

h′7 ← v′7 ⊕ v′15 h′15 ← v′15 ⊕ h7 .

If we define vl (resp. v′l) and vh (resp. v′h) as the first and last 8-words of the input (resp.
output) of E(m, v), the compression function may be written as(

1 1
0 1

)
·
(

v′l
v′h

)
+
(

0
vl

)
.

The output of the compression function is most often truncated to produce 256-bit chaining
values.

The compression function input d is a bitfield, with each individual flag consisting of a
power of 2. The value of d is the sum of all the flags defined for a given compression. Their
names and values are given in Table 3.

2.3 Modes

BLAKE3 defines three domain-separated modes: hash(input), keyed_hash(key, input),
and derive_key(context, key_material). These are intended to be user-facing APIs in
an implementation. The hash mode takes an input of any byte length 0 ≤ ` < 264. The
keyed_hash mode takes an input of any length together with a 256-bit key. The derive_key

6

mode takes a context string and key material, both of any length. As described in §2.6, all
three modes can produce output of any length. The intended usage of derive_key is given in
§6.2.

The modes differ from each other in their key words k0 ... k7 and in the additional flags they
set for every call to the compression function. In the hash mode, k0 ... k7 are the constants
IV0 ... IV7, and no additional flags are set. In the keyed_hash mode, k0 ... k7 are parsed in
little-endian order from the 256-bit key given by the caller, and the KEYED_HASH flag is set for
every compression.

The third mode, derive_key, has two stages. First the context string is hashed, with
k0 ... k7 set to the constants IV0 ... IV7, and the DERIVE_KEY_CONTEXT flag set for every com-
pression. Then the key material is hashed, with k0 ... k7 set to the first 8 output words of the
first stage, and the DERIVE_KEY_MATERIAL flag set for every compression.

2.4 Chunk Chaining Values

Processing a chunk is structurally similar to the sequential hashing mode of BLAKE2. Each
chunk of up to 1024 bytes is split into blocks of up to 64 bytes. The last block of the last chunk
may be shorter, but not empty, unless the entire input is empty. If necessary, the last block is
padded with zeros to be 64 bytes.

Each block is parsed in little-endian order into message words m0 ... m15 and compressed.
The input chaining value h0 ... h7 for the first block of each chunk is composed of the key
words k0 ... k7. The input chaining value for subsequent blocks in each chunk is the output of
the truncated compression function for the previous block.

The remaining compression function parameters are handled as follows (see also Figure 2
for an example):

• The counter t for each block is the chunk index, i.e., 0 for all blocks in the first chunk, 1
for all blocks in the second chunk, and so on.

• The block length b is the number of input bytes in each block, i.e., 64 for all blocks
except the last block of the last chunk, which may be short.

• The first block of each chunk sets the CHUNK_START flag (cf. Table 3), and the last block
of each chunk sets the CHUNK_END flag. If a chunk contains only one block, that block
sets both CHUNK_START and CHUNK_END. If a chunk is the root of its tree, the last block of
that chunk also sets the ROOT flag.

The output of the truncated compression function for the last block in a chunk is the
chaining value of that chunk.

2.5 Parent Node Chaining Values

Each parent node has exactly two children, each either a chunk or another parent node. The
chaining value of each parent node is given by a single call to the compression function. The
input chaining value h0 ... h7 is the key words k0 ... k7. The message words m0 ... m7 are the
chaining value of the left child, and the message words m8 ... m15 are the chaining value of
the right child. The counter t for parent nodes is always 0. The number of bytes b for parent
nodes is always 64. Parent nodes set the PARENT flag. If a parent node is the root of the tree,

7

F

m0

IV

t = 0

b = 64

d = 20

F

m1

t = 0

b = 64

d = 0

F

m2

t = 0

b = 53

d = 21 + 23

F

m2

t = 1

b = 53

d = 21 + 23

h0

h1

Figure 2: Example of compression function inputs when hashing a 181-byte input (m0, m1, m2) into a
128-byte output (h0, h1). Trapezia indicate that the compression function output is truncated to 256
bits.

it also sets the ROOT flag. The output of the truncated compression function is the chaining
value of the parent node.

2.6 Extendable Output

BLAKE3 can produce outputs of any byte length 0 ≤ ` < 264. This is done by repeating
the root compression—that is, the very last call to the compression function, which sets the
ROOT flag—with incrementing values of the counter t. The results of these repeated root
compressions are then concatenated to form the output.

When building the output, BLAKE3 uses the full output of the compression function (cf.
§2.2). Each 16-word output is encoded as 64 bytes in little-endian order.

Observe that based on §2.4 and §2.5 above, the first root compression always uses the
counter value t = 0. That is either because it is the last block of the only chunk, which has a
chunk index of 0, or because it is a parent node. After the first root compression, as long as
more output bytes are needed, t is incremented by 1, and the root compression is repeated
on otherwise the same inputs. If the target output length is not a multiple of 64, the final
compression output is truncated. See Figure 2 for an example.

Because the repeated root compressions differ only in the value of t, the implementation
can execute any number of them in parallel. The caller can also adjust t to seek to any point
in the output stream.

Note that in contrast to BLAKE2 and BLAKE2X, BLAKE3 does not domain separate
outputs of different lengths. Shorter outputs are prefixes of longer ones. The caller can extract
as much output as needed, without knowing the final length in advance.

3 Performance

Several factors contribute to the performance of BLAKE3, depending on the platform and the
size of the input:

8

64
B

12
8

B

25
6

B

51
2

B

1
K

iB

2
K

iB

4
K

iB

8
K

iB

16
K

iB

32
K

iB

64
K

iB

12
8

K
iB

25
6

K
iB

51
2

K
iB

1
M

iB

0
0.49

1

2

3

4

5

6

7

8

9

10

Input Length

Th
ro

ug
hp

ut
(c

pb
)

BLAKE3
BLAKE2b
BLAKE2s
BLAKE2bp
BLAKE2sp
SHA-512
SHA-256
KangarooTwelve

Figure 3: Throughput for single-threaded BLAKE3 and other hash functions on an AWS c5.metal
instance, measured in cycles per byte. This is an Intel Cascade Lake-SP processor with AVX-512
support. Lower is faster.

• The implementation can compress groups of chunks in parallel using SIMD (cf. §5.3).
This is visible at 2 KiB and above in Figure 3.

• The implementation can use multiple threads (cf. §5.2). This is the subject of Figure 4.
Note that Figures 3 and 5 are single-threaded.

• The compression function performs fewer rounds than in BLAKE2s. This improves
performance across the board, but it is especially visible in the difference between
BLAKE3 and BLAKE2s in Figure 5.

• The compression function uses 32-bit words (cf. §7.2), which perform well on smaller
architectures. This is the subject of Figure 5.

• The 64-byte block size is relatively small, which helps performance for very short inputs.
This is visible at 64 bytes (the left edge) in Figures 3 and 5.

Figure 3 shows the throughput of single-threaded BLAKE3 on modern server hardware.
This benchmark ran on an AWS c5.metal instance with a pair of Intel Xeon Platinum 8275CL
(Cascade Lake-SP) processors, which support AVX-512 vector instructions.

The BLAKE3 curve passes through several different regimes in Figure 3. For a single
chunk of input, up to 1 KiB, BLAKE3 closely mirrors BLAKE2s (as it does throughout all

9

32
K

iB

64
K

iB

12
8

K
iB

25
6

K
iB

51
2

K
iB

1
M

iB

2
M

iB

4
M

iB

8
M

iB

16
M

iB

32
M

iB

64
M

iB

12
8

M
iB

25
6

M
iB

51
2

M
iB

1
G

iB

0

20

40

60

80

100

120

140

Input Length

Th
ro

ug
hp

ut
(G

iB
/s

)

48 threads
32 threads
16 threads
8 threads
4 threads
2 threads
1 thread

Figure 4: Throughput for multi-threaded BLAKE3 on the same c5.metal instance as in Figure 3,
measured in GiB/s, varying the number of threads. This machine has 48 physical cores. Higher is
faster.

of Figure 5). This is because their compression functions are very similar, apart from the
number of rounds. Between 1 and 2 KiB, the gap between BLAKE3 and BLAKE2s closes
slightly. This is because BLAKE3 divides the input into two chunks with a parent node,
and compressing the parent node adds overhead. At 2 KiB, BLAKE3 begins compressing
multiple chunks in parallel. This implementation uses 2-way row-based parallelism at 2 KiB,
4-way row-based parallelism at 4 KiB, 8-way word-based parallelism at 8 KiB, and 16-way
word-based parallelism at 16 KiB (see §5.3). Beyond 16 KiB, throughput is relatively stable,
until memory bandwidth effects appear for very long inputs.

On this platform, the biggest performance difference between algorithms is how much they
can benefit from SIMD. Only BLAKE3 and KangarooTwelve are able to take full advantage
of AVX-512. The fixed-interleaved tree structures of BLAKE2bp and BLAKE2sp limit those
algorithms to 256-bit vectors. Other hash functions are much slower, because they cannot
compress multiple blocks in parallel. BLAKE3 and KangarooTwelve are close to each other in
peak throughput, but KangarooTwelve needs more input to reach its peak, in part because of
its larger 8 KiB chunk size.

Figure 4 shows the throughput of multi-threaded BLAKE3. This benchmark ran on the
same c5.metal instance as in Figure 3, which has 48 physical cores. This implementation uses
the Rust Rayon library to manage threading, with the recursive divide-and-conquer approach
described in §5.2. Below 128 KiB of input, the overhead of threading is high, and increasing

10

64
B

12
8

B

25
6

B

51
2

B

1
K

iB

2
K

iB

4
K

iB

8
K

iB

16
K

iB

32
K

iB

64
K

iB

12
8

K
iB

25
6

K
iB

51
2

K
iB

1
M

iB

0

20

40

60

80

100

120

140

160

Input Length

Th
ro

ug
hp

ut
(c

pb
)

BLAKE3
BLAKE2b
BLAKE2s
BLAKE2bp
BLAKE2sp
SHA-512
SHA-256
KangarooTwelve

Figure 5: Throughput for single-threaded BLAKE3 and other hash functions on a Rasperry Pi Zero,
measured in cycles per byte. This is a 32-bit ARM1176 processor. Lower is faster.

the number of threads causes a performance drop. For longer inputs, throughput scales
almost linearly with the number of threads, up to 16 threads. Above 16 threads, throughput
levels off due to memory bandwidth effects.

Figure 5 shows the throughput of single-threaded BLAKE3 on a smaller embedded
platform. This benchmark ran on a Raspberry Pi Zero with a 32-bit ARM1176 processor.
Here, the biggest difference between algorithms is whether they use 32-bit or 64-bit words.
As noted above, BLAKE3 and BLAKE2s have similar performance profiles here, because
their compression functions are closely related, and because there is no multi-core or SIMD
parallelism for BLAKE3 to exploit.

Figures 3 and 5 also highlight that BLAKE3 performs well for very short inputs, at or
below its 64-byte block size. Very short inputs get padded up to a full block, and algorithms
with smaller block sizes benefit from compressing less padding. The fixed-interleaved tree
structures of BLAKE2bp and BLAKE2sp are especially costly when the input is short, because
they always compress a parent node and a fixed number of leaves. The advantage of a
fixed-interleaved tree structure comes at medium input lengths, where BLAKE3 has not yet
reached a high degree of parallelism. This is the regime around 1–4 KiB in Figure 3, where
BLAKE2bp and BLAKE2sp pull ahead.

The SHA-2 implementations used in these benchmarks are from OpenSSL 1.1.1.d, and
the KangarooTwelve implementations are from the eXtended Keccak Code Package (compiled
with gcc -Os for the ARM1176).

11

4 Security

4.1 Security Goals

BLAKE3 targets 128-bit security for all of its security goals. That is, 128-bit security against
(second-)preimage, collision, or differentiability attacks. The rationale for targeting 128-bit
security can be found in [3, §2].

The key length is nevertheless 256 bits, as an extra defense layer against weakly chosen
keys, key material leaks, and potentially multi-target attacks.

4.2 Compression Function

The BLAKE3 compression function is, at a high level, identical to that of BLAKE2s, with the
exception that:

• BLAKE2’s f0 and f1 “flags” are replaced by the b and d inputs, which encode the
functional context of the compression function instance.

• Finalization returns 16 words instead of 8, and only applies the feed-forward on the
second half of the output.

The latter change causes the BLAKE3 function to no longer be indifferentiable, unlike
its predecessor [22]. Indeed, an attacker with oracle access to C(...) and E(...) that obtains
y = C(x, m, b, d) can compute (x, b, d) = E−1(m, (yl, yh) ⊕ (yh, 0) ⊕ (0, xl)); a simulator with
access to a random oracle cannot perform the same inversion, and as such this scheme—
much like Davies-Meyer—is not indifferentiable from a random oracle. This causes some
surmountable complications in the next section.

We do note that the truncated compression function used in every compression except
the root nodes is indifferentiable. The simulator and proof are very similar to those in [22],
with the only change being the removal of the feed-forward, which has no effect on security
when truncating the output.1

4.3 Mode of Operation

One important aspect of any hash mode, parallel or otherwise, is its soundness. Several
works [7,12–14] have studied the requirements for the mode of operation of a hash function
such that, when instantiated with an ideal compression function, block cipher, or permutation,
it remains indistinguishable from a random oracle. We adopt the requirements from Daemen
et al. [13], which are:

• Subtree-freeness, i.e, no valid tree may be a subtree of another;

• Radical-decodability, i.e., preventing collisions by ambiguity of the tree shape;

• Message-completeness, i.e., the entire message can be recovered from the inputs to
the primitive in question.

1A recent work [11] improves upon [14,22] with a tighter bound for the indifferentiability of truncated permuta-
tions. A similar approach would work for BLAKE2 or truncated BLAKE3, but the benefits for our parameters are
negligible.

12

Subtree-freeness Subtree-freeness ensures that generalized length-extension attacks, like
the ones that plagued Merkle-Damgård, cannot happen. To ensure subtree-freeness, BLAKE3
defines the ROOT flag, which is only set on the last compression output. Thus, for any valid
tree, a valid subtree must have the same root node. There are two cases to consider here:

1. The ROOT flag is combined with CHUNK_END; in this case we are dealing with a single-
chunk message, and the root nodes must be the same, as well as its parents, grandpar-
ents, etc, until we reach a CHUNK_START node. Because both subtrees must start with
CHUNK_START, we conclude that both trees must be the same.

2. The ROOT flag is applied to a parent node. Here the root node necessarily has two
parents, each of which must be equal, recursing until they hit the same set of leaves
marked by the CHUNK_END flag.

Radical-decodability For radical-decodability, we can define the subset of final nodes. For
each final node, one can define a function radical() that returns a CV position for any final
node. Here we have, again, two cases:

1. The final node has the CHUNK_END flag set; here the radical is in the CV bits.

2. The final node is a parent node; here the CV comes in the message bits.

Message-completeness The entire input can be recovered from the message bits input to
the chunks.

If only considering 256-bit outputs or shorter, by [13, Theorem 1], for a distinguisher D of
total complexity q we have

Advdiff
BLAKE3(D) ≤

(q
2

)
2256 + (1)(q

2

)
2512 +

(q
2

)
2256 +

q
2128 . (2)

Here (1) corresponds to the contribution of [13, Theorem 1] and (2) corresponds to the
indifferentiability of the truncated compression function [22].

For the full-length output, we do not have a truncated ideal cipher, but instead use a
feed-forward to prevent inversion. We remark, however, that the truncation requirement
in [13, Theorem 3] is in place purely to prevent the distinguisher from inverting an output; as
such, the feed-forward serves the same purpose as truncation, and the result still follows as
long as the other soundness requirements are in place.

4.4 Cryptanalysis

The round reduction from 10 to 7 rounds is based on existent cryptanalysis, along with novel
research. High confidence in the security of 7 rounds follows from cryptanalysis efforts over
10 years, first on BLAKE [4, 6, 10, 16, 21, 25, 26] and then on BLAKE2 [17–19]. Table 4
summarizes the current state of the art in BLAKE(2) cryptanalysis.

13

Table 4: Summary of cryptanalysis on BLAKE and BLAKE2.

Primitive Type Rounds Complexity Reference

BLAKE-256 k.p. Boomerang 7 244 [6,19]
BLAKE-256 k.p. Boomerang 8 2198 [19]
BLAKE-256 k.p. Differential 4 2192 [16]
BLAKE-256 k.p. Differential 6 2456 [16]
BLAKE-256 k.p. Impossible Differential 6.5 – [18]
BLAKE-256 c.f. Boomerang 7 2242 [10]
BLAKE-256 c.f. Near collision (152/256) 4 221 [25]
BLAKE-256 c.f. Near collision (232/256) 4 256 [4]
BLAKE-256 c.f. Preimage 2.5 2241 [21]
BLAKE-256 c.f. Pseudo-preimage 6.75 2253.9 [17]

BLAKE2s k.p. Boomerang 7.5 2184 [19]
BLAKE2s k.p. Impossible Differential 6.5 – [18]
BLAKE2s k.p. Rotational 4 2489 [18,20]
BLAKE2s c.f. Boomerang 5 ≈ 286 [10,18]
BLAKE2s c.f. Pseudo-preimage 6.75 2253.8 [17]

Furthermore, our own searches for good2 differential trails, shown in Table 5, show that by
restricting input differences the initialization of BLAKE2/3 makes things harder for the attacker,
with probabilities quickly becoming very low. This was also observed in [18, §7].

The boomerang attacks of, e.g., [6, 10, 19] exploit the high probabilities on the first few
rounds to connect two trails and get through a few more rounds. This is an established
technique to get around the quick lowering of differential characteristics’ probabilities. But
such attacks do not present a threat to BLAKE3, considering its input constraints on the
compression function (that is, the IV constants), plus the 128-bit security target.

The general survey and analysis in [3] also pleads in favor of reduced round values,
arguing that BLAKE2s and BLAKE2b would be as safe with 7 and 8 rounds, respectively.

5 Implementation

5.1 Incremental Hashing

An incremental implementation of BLAKE3 has two major components: the state of the
current chunk and a stack of subtree chaining values (the “CV stack”). The chunk state is
structurally similar to an incremental implementation of BLAKE2b or BLAKE2s, and it will be
familiar to implementers of other hash functions. The CV stack is less familiar. Simplifying the
management of the CV stack is especially important for a clear and correct implementation of
BLAKE3. This section describes how this is done in the reference implementation, as an aid
to implementers.

2Optimal under certain assumptions, which are not entirely correct, cf. [23]. Nevertheless we find these results
useful as a first approximation.

14

https://github.com/BLAKE3-team/BLAKE3/blob/master/reference_impl/reference_impl.rs

Table 5: Best differential trail probabilities for increasing round numbers of the compression functions
of BLAKE-256, BLAKE2s, and BLAKE3, respecting their constraints on inputs to the keyed permutation.
Probabilities marked with ∗ indicate rotationally symmetric differences were sought exclusively.

Function 0.5 1 1.5 2 2.5 3 3.5

BLAKE-256 k.p/c.f. 2−0 2−0 2−0 2−1 2−6 2−7 2−38

BLAKE2s k.p. 2−0 2−0 2−0 2−1 2−6 2−7 2−38

BLAKE3 k.p. 2−0 2−0 2−0 2−1 2−7 2−21 2−52

BLAKE2s c.f. 2−0 2−0 2−0 2−1 2−32 [
2−88, 2−48) -

BLAKE3 c.f. 2−0 2−0 2−0 2−1 2−32 [
2−159, 2−48) -

BLAKE{-256,2s} (hash) 2−0 2−1 2−32 ≥ 2−190∗ - - -
BLAKE3 (hash) 2−0 2−1 2−29 ≥ 2−185∗ - - -
BLAKE-256 c.f. (fixed m) 2−0 2−2 2−12 2−39 - - -
BLAKE{2s,3} c.f. (fixed m) 2−0 2−7 2−32 ≥ 2−161∗ - - -

5.1.1 Chunk State

The chunk state contains the 32-byte CV of the previous block and a 64-byte input buffer for
the next block, and typically also the compression function parameters t and d. Input bytes
from the caller are copied into the buffer until it is full. Then the buffer is compressed together
with the previous CV, using the truncated compression function. The output CV overwrites
the previous CV, and the buffer is cleared. An important detail here is that the last block of
a chunk is compressed differently, setting the CHUNK_END flag and possibly the ROOT flag. In
an incremental setting, any block could potentially be the last, until the caller has supplied
enough input to place at least 1 byte in the block after. For that reason, the chunk state waits
to compress the next block until both the buffer is full and the caller has supplied more input.
Note that the CV stack takes the same approach immediately below: chunk CVs are added
only after the caller supplies at least 1 byte for the following chunk.

5.1.2 Chaining Value Stack

To help picture the role of the CV stack, Figure 6 shows a growing tree as chunk CVs are
added incrementally. As just discussed above, chunk CVs are added to this tree only after
the caller has supplied at least 1 byte for the following chunk, so we know that none of these
chunks or parent nodes is the root of the tree, and we do not need to worry about the ROOT
flag yet.

c0 c0 c1

p0

c0 c1

p0

c2 c0 c1

p0

c2 c3

p1

p2

Figure 6: An incomplete tree growing incrementally from 1 to 4 chunks. Dotted boxes represent CVs
that no longer need to be stored.

15

When the first chunk CV (c0) is added, it is alone. When the second chunk CV (c1) is
added, it completes a two-chunk subtree, and we can compute the first parent CV (p0). The
third chunk CV (c2) does not complete any subtrees. Its final position in the tree structure
will depend on whether it gets a right sibling (see Figure 1), so we cannot create any parent
nodes for it yet. The fourth chunk CV (c3) provides a right sibling for c2 and completes two
subtrees, one of two chunks and one of four chunks. First it merges with c2 to compute p1,
then p1 merges with p0 to compute p2.

Note that once a subtree is complete, none of its child CVs will be used again, and we do
not need to store them any longer. These unneeded CVs are represented by dotted boxes in
Figure 6. Solid boxes represent CVs that are still needed. These are what we store in the CV
stack, ordered based on when we computed them, with newer CVs on top.

Look through Figure 6 again, this time paying attention to the state of the CV stack at
each step. When c0 is added to the tree, it is the only entry in the stack. When c1 is added,
we pop c0 off the stack to merge it, and p0 becomes the only entry. When c2 is added, there
are two entries in the stack, with c2 on top because it is newer. When c3 is added, we perform
two merges, first popping off c2 and then popping off p0, and only p2 remains in the stack.

Note how the stack order of c2 and p0 above match the order in which we need to retrieve
them for merging. By ordering CVs in the stack from newest at the top to oldest at the bottom,
we also implicitly order them from tree-right to tree-left, and from the smallest subtree to the
largest subtree. This invariant means that the next CV we need to merge is always on top of
the stack.

The key question is then, when a new chunk CV is added to the tree, how many subtrees
does it complete? Which is to say, how many CVs should we pop off the stack and merge
with it, before pushing on the final result?

To answer this question, note another pattern. The entries in the CV stack behave like
the 1-bits in the binary representation of the total number of chunks so far. For example with
3 chunks (0b11), there are two entries in the stack, corresponding to the two 1-bits. With 4
chunks (0b100), only one entry remains, corresponding to the single 1-bit.

To see why this pattern holds, note that any completed subtree represented by a CV in
the stack contains a number of chunks that is a power of 2. Furthermore, each subtree is a
distinct power of 2, because when we have two subtrees of the same size, we always merge
them. Thus, the subtrees in the stack correspond to the distinct powers of 2 that sum up to
the current total number of chunks. This is equivalent to the 1-bits in the binary representation
of that number.

In this sense, popping a CV off the stack to merge it is like flipping a 1-bit to 0, and pushing
the final result back onto the stack is like flipping a 0-bit to 1. The fact that we do two merges
when adding the fourth chunk, corresponds to the fact that two 1-bits flip to 0 as the total
changes from 3 to 4. In other words, we do two merges when we add the fourth chunk,
because there are two trailing 1-bits in the number 3, and equivalently two trailing 0-bits in the
number 4.

This pattern leads to an algorithm for adding a new chunk CV to the tree: For each trailing
0-bit in the new total number of chunks, pop a CV off the stack, and merge it with the new CV
we were about to add. Finally, push the fully merged result onto the stack. Listing 1 shows
this algorithm as it appears in the Rust reference implementation.

Once we reach the end of the input, we can use a simpler algorithm to compute the root
hash. Finalize the CV of the current chunk, which may be incomplete or empty. Then, merge
that CV with every CV currently in the stack, regardless of the number of chunks so far. Set

16

fn add_chunk_chaining_value(&mut self, mut new_cv: [u32; 8], mut total_chunks: u64) {
// This chunk might complete some subtrees. For each completed subtree,
// its left child will be the current top entry in the CV stack, and
// its right child will be the current value of `new_cv`. Pop each left
// child off the stack, merge it with `new_cv`, and overwrite `new_cv`
// with the result. After all these merges, push the final value of
// `new_cv` onto the stack. The number of completed subtrees is given
// by the number of trailing 0-bits in the new total number of chunks.
while total_chunks & 1 == 0 {

new_cv = parent_cv(self.pop_stack(), new_cv, self.key, self.flags);
total_chunks >>= 1;

}
self.push_stack(new_cv);

}

Listing 1: The algorithm in the Rust reference implementation that manages the chaining value stack
when a new chunk CV is added.

the ROOT flag for the last parent node to be merged. Or if there are no CVs in the stack, and
thus no parents to merge, set the ROOT flag for chunk finalization instead.

5.2 Multi-threading

Most of the work of computing a BLAKE3 hash is compressing chunks. Each chunk can
be compressed independently, and one approach to multi-threading is to farm out individual
chunks or groups of chunks to tasks on a thread pool. In this approach, a leader thread owns
the chaining value stack (see §5.1.2) and awaits a CV from each task in order.

This leader-workers approach has some inefficiencies. Spawning tasks and creating
channels usually requires heap allocation, which is a performance cost that needs to be
amortized over larger groups of chunks. At high degrees of parallelism, managing the CV
stack itself can become a bottleneck.

A recursive divide-and-conquer approach can be more efficient. The input is split into left
and right parts. As per the rules in §2.1, the left part receives the largest power-of-2 number
of chunks that leaves at least 1 byte for the right part. Each part then repeats this splitting
step recursively, until the parts are chunk-sized, and each chunk is compressed into a CV.
On the way back up the call stack, each pair of left and right child CVs is compressed into a
parent CV.

This recursive approach is good fit for a fork-join concurrency model, like those provided
by OpenMP, Cilk, and Rayon (Rust). Each left and right part becomes a separate task, and a
work-stealing runtime parallelizes those tasks across however many threads are available.
This can work without heap allocation, because the runtime can make a fixed-size stack
allocation at each recursive call site.

The recursive approach is simplest when the entire input is available at once, since no CV
stack is needed in that case. In an incremental setting, a hybrid approach is also possible. A
large buffer of input can be compressed recursively into a single subtree CV, and that CV can
be pushed onto the CV stack using the same algorithm as in §5.1.2. If each incremental input
is a fixed power-of-2 number of chunks in size (for example if all input is copied into an internal
buffer before compression), the algorithm works with no modification. If each incremental input
is instead a variable size (for example if input from the caller is compressed directly without

17

copying), the implementation needs to carefully maintain the largest-to-smallest ordering
invariant of the CV stack. The size of each subtree being compressed must evenly divide
the total number of input bytes received so far, and to achieve that the implementation might
need to break up an incremental input into smaller pieces. In the non-buffering case, the
implementation must also take care not to compress a parent node that could be the root,
when it is unknown whether more input is coming.

5.3 SIMD

There are two primary approaches to using SIMD in a BLAKE3 implementation, and both are
important for high performance at different input lengths. The first approach is to use 128-bit
vectors to represent the 4-word rows of the state matrix. The second approach is to use
vectors of any size to represent words in multiple states, which are compressed in parallel.

The first approach is similar to how SIMD is used in BLAKE2b or BLAKE2s, and it is
applicable to inputs of any length, particularly short inputs where the second approach does
not apply. The state v0 ... v15 is arranged into four 128-bit vectors. The first vector contains
the state words v0 ... v3, the second vector contains the state words v4 ... v7, and so on.
Implementing the G function (see §2.2) with vector instructions thus mixes all four columns of
the state matrix in parallel. A diagonalization step then rotates the words within each row so
that each diagonal now lies along a column, and the vectorized G function is repeated to mix
diagonals. Finally the state is undiagonalized, to prepare for the column step of the following
round.

The second approach is similar to how SIMD is used in BLAKE2bp or BLAKE2sp. In this
approach, multiple chunks are compressed in parallel, and each vector contains one word
from the state matrix of each chunk. That is, the first vector contains the v0 word from each
state, the second vector contains the v1 word from each state, and so on, using 16 vectors
in total. The width of the vectors determines the number of chunks, so for example 128-bit
vectors compress 4 chunks in parallel, and 256-bit vectors compress 8 chunks in parallel.
Here the G function operates on one column or diagonal at a time, but across all of the states,
and no diagonalization step is required. When enough input is available, this approach is
much more efficient than the first approach. It also scales to wider instruction sets like AVX2
and AVX-512.

The second approach can be integrated with the CV stack algorithm from §5.1.2 by
computing multiple chunk CVs in parallel and then pushing each of them into the CV stack
one at a time. It can also be combined with either of the multi-threading strategies from §5.2.
Rather than having each task or recursive leaf compress one chunk at a time, each can
compress multiple chunks in parallel.

A third approach is also possible, though it is less widely applicable than the first two.
Entire 4-word rows can be stored together within a vector, as in the first approach, but larger
vectors can be used to store multiple such rows, each belonging to a different state matrix.
For example, 256-bit vectors can store two full rows, thus compressing two chunks in parallel.
Diagonalization and undiagonalization steps are still required in this arrangement, so the
second approach is preferable when enough input is available. However, on platforms like x86
that do not support 64-bit vectors, this approach is the only way to implement 2-way SIMD
parallelism for 2-chunk inputs. The benefit of using wider vectors may also outweigh the cost
of diagonalization, though this varies between different microarchitectures. The performance
of this approach is visible at 2 KiB and 4 KiB in Figure 3.

18

5.4 Memory Requirements

BLAKE3 has a larger memory requirement than BLAKE2, because of the chaining value stack
described in §5.1.2. An incremental implementation needs space for a 32-byte chaining value
for every level of the tree below the root. The maximum input size is 264 − 1 bytes, and the
chunk size is 210 bytes, giving a maximum tree depth of 64 − 10 = 54. The CV stack thus
requires 54 · 32 = 1728 bytes. The chunk state (cf. §5.1.1) also requires at least 104 bytes
for the chaining value, the message block, and the chunk counter. The size of the reference
implementation is 1880 bytes on the call stack.

For comparison, BLAKE2s has a memory footprint similar to the BLAKE3 chunk state
alone, at least 104 bytes. BLAKE2b has twice the chaining value size and block size, requiring
at least 200 bytes. And the parallel modes BLAKE2bp and BLAKE2sp both require at least
776 bytes.

Space-constrained implementations of BLAKE3 can save space by restricting the maxi-
mum input size. For example, the maximum size of an IPv6 “jumbogram” is 232 − 1 bytes, or
just under 4 GiB. At this size, the tree depth is 22 and the CV stack is 22 · 32 = 704 bytes.
Similarly, the maximum size of a TLS record is 214 bytes, or exactly 16 KiB. At this size, the
tree depth is 4 and the CV stack is 4 · 32 = 128 bytes.

6 Applications

As a general-purpose hash function, BLAKE3 is suitable whenever a collision-resistant or
preimage-resistant hash function is needed to map some arbitrary-size input to a fixed-length
output. BLAKE3 further supports keyed modes—in order to be used as a pseudorandom
function, MAC, or key derivation function—as well as streaming and incremental processing
features.

6.1 Pseudorandom Function and MAC

Like BLAKE2, BLAKE3 provides a keyed mode, keyed_hash. This removes the need for a
separate construction like HMAC. The keyed_hash mode is also more efficient than keyed
BLAKE2 or HMAC for short messages. BLAKE2 requires an extra compression for the key
block, and HMAC requires three extra compressions. The keyed_hash mode in BLAKE3 does
not require any extra compressions.

6.2 Key Derivation

BLAKE3 provides a key derivation mode, derive_key. This mode accepts a context string
of any length and key material of any length, and it produces a derived key of any length.
The context string should be hardcoded, globally unique, and application-specific. A good
default format for context strings is "[application] [commit timestamp] [purpose]", e.g.,
"example.com 2019-12-25 16:18:03 session tokens v1".

This mode should not be used with a dynamic context string. The context string should not
contain variable data, like salts, IDs, or the current time. (If needed, those can be part of the
key material, or mixed with the derived key afterwards.) Higher-level abstractions that wrap
derive_key should either hardcode their own context string, or impose the same requirement

19

on their caller. The purpose of this requirement is to ensure that there is no way for an attacker
in any scenario to cause two different applications or components to inadvertently use the
same context string. The safest way to guarantee this is to prevent the context string from
including input of any kind.

Given this requirement, we then make an explicit exception to an otherwise universal rule
of practical cryptography: Applications may use derive_key with key material that is already
in use with other algorithms. This includes other hash functions, ciphers, and abstractions like
HMAC and HKDF. This also includes the hash and keyed_hash modes, which are domain-
separated from derive_key. The only limitation in practice is algorithms that forbid key reuse
entirely, like a one-time pad. (For other theoretical limitations, see §7.8.)

In general, using the same key with multiple algorithms is not recommended. Some
algorithms are built from the same core components, and it can be difficult to know when
two algorithms might have related output, or when one algorithm might publish a value that
another algorithm considers secret. One especially relevant example of this problem is HMAC
and HKDF themselves. Although these algorithms have entirely different purposes, HKDF is
defined in terms of HMAC. In fact, in the “expand only” mode of HKDF, its output is equivalent
to a single call to HMAC. If an application used the same key with HMAC and with HKDF, and
an HMAC input happened to collide with an HKDF context string, this interaction could ruin
the application’s security.

The standard advice for such an application is to use its original key only with a key
derivation function, and to derive independent subkeys for other algorithms. This is good
and practical advice in many cases. But it may not be practical when an application or a
protocol evolves over time. If a key was originally used only with HMAC, for example, and
perhaps years later a second use case arises, the developers may have painted themselves
into a corner. Backwards compatibility might prevent them from using a derived subkey with
HMAC. In cases like this, the standard advice amounts to either building a time machine, or
over-engineering applications and protocols to derive subkeys at every step, in anticipation of
unknown future use cases.

This is why it is valuable for derive_key to make an exception to the rule against mixing
algorithms. It makes key derivation a practical option not only for new designs, but also for
existing applications that are adding new features. In exchange, it is the responsibility of each
caller to provide (or for higher-level abstractions, to require) a hardcoded, globally unique,
application-specific context string, which can never be made to collide with any other.

The derive_key mode is intended to replace the BLAKE2 personalization parameter for
most of its use cases. Key derivation can encourage better security than personalization with
a shared key, by cryptographically isolating different components of an application from one
another. This limits the damage that one component can cause by accidentally leaking its key.

6.3 Stateful Hash Object

To abstract away various uses of the hash function in the Noise protocol framework, the
notion of stateful hash objects (SHO) [24] has been suggested. An SHO is an interface with 4
methods:

• init(label): Initializes the internal state using a custom domain-separation label.

• absorb(data): Hashes an arbitrary number of bytes into the state.

20

• ratchet(): Updates the state to be a one-way cryptographic function of all preceding
inputs, with empty buffers.

• squeeze(length): Produces an arbitrary amount of pseudorandom output based on
the current state. The SHO is not used again after this.

Due to its zero-overhead keying and variable-length output, it is straightforward to adapt
BLAKE3 into an SHO. The internal state is an incremental implementation of keyed_hash:

• The label key is obtained as hash(label);

• The incremental hasher is initialized with the label key;

• absorb(data) updates the incremental hasher as usual;

• ratchet() finalizes the incremental hasher, extracts the first 32 bytes of output, and
then re-initializes the hasher with those 32 bytes as the key;

• squeeze(length) finalizes the incremental hasher, skips the first 64 bytes of output,
and then extracts length bytes. We only need to skip 32 bytes to conceal the ratchet
key, but skipping a full 64-byte output block is more efficient.

6.4 Verified Streaming

Because BLAKE3 is a tree hash, it supports new use cases that serial hash functions do not.
One such use case is verified streaming. Consider a video streaming application that fetches
video files from an untrusted host. The application knows the hash of the file it wants, and it
needs to verify that the video data it receives matches that hash. With a serial hash function,
nothing can be verified until the application has downloaded the entire file. But with BLAKE3,
verified streaming is possible. The application can verify and play individual chunks of video
as soon as they arrive.

To verify an individual chunk without re-hashing the entire file, we verify each parent node
on the path from the root to that chunk. For example, suppose the file is composed of four
chunks, like the four-chunk tree in Figure 1. To verify the first chunk, we start by fetching the
root node. (Specifically, we fetch its message bytes, the concatenated chaining values of its
children.) We compute the root node’s CV as per §2.5 and confirm that it matches the 32-byte
BLAKE3 hash of the entire file. Then, we fetch the root node’s left child, which is the first
chunk’s parent. We compute that node’s CV and confirm that it matches the first 32-bytes of
the root node. Finally, we fetch the first chunk itself. We compute its CV as per §2.4 and verify
that it matches the first 32-bytes of its parent. This verifies that the first chunk is authentic,
and we can pass it along to application code.

To continue streaming, we can immediately fetch the second chunk. It shares the parent
node of the first chunk, and its CV should match the second 32 bytes of that parent node. For
the third chunk, we need to fetch its parent. The CV of that parent node should match the
second 32 bytes of the root node, and then the CV of the third chunk should match the first
32 bytes of its parent. Note that whenever we fetch a parent node, we immediately use its
first 32 bytes to check its left child’s CV, and then we store its second 32 bytes to check its
right child in the future. We can represent this with a stack of expected CVs. We push CVs
onto this stack and pop them off, as we would with node pointers in a depth-first traversal of

21

a binary tree. Note that this is different from the “CV stack” used for incremental hashing in
§5.1.2; that stack holds CVs we have computed in the past, while this stack holds CVs we
expect to compute in the future, and we manage them with different algorithms.

Observe that if the application eventually verifies the entire file, it will have fetched all the
nodes of the tree in pre-order. This suggests a simple wire format for a streaming protocol:
The host can concatenate all the parent nodes and chunks together in pre-order and serve
the concatenated bytes as a single stream. If the client application knows the length of the file
in advance, it does not need any other information to parse the stream and verify each node.
In this format, the space overhead of the parent nodes approaches two CVs per chunk, or
6.25%.

If the client does not know the length of the file in advance, it may receive the length from
the host, either separately or at the front of the stream. In this case, the length is untrusted.
If the host reports an incorrect length, the effect will be that at least the final chunk will fail
verification. For this reason, if an application reads the file sequentially, it does not need to
explicitly verify the length. An important edge case is that, if the reported length is 0, the file
consists of a single empty chunk, and the implementation must not forget to verify that the file
hash matches the empty chunk’s CV. One way to make this mistake is for the implementation
to return end-of-file as soon as the current read position equals the expected length, verifying
nothing in the zero-length case.

On the other hand, if an application implements seeking, length verification is required.
Seeking past the reported end-of-file, or performing an EOF-relative seek, would mean
trusting an unverified length. In these cases, the implementation must first verify the length
by seeking to and verifying the final chunk. If that succeeds, the length is authentic, and the
implementation can proceed with the caller’s requested seek.

This verified streaming protocol has been implemented by the Bao tool. It is concep-
tually similar to the existing Tree Hash Exchange format, and to the BEP 30 extension
of the BitTorrent protocol. However, note that neither of those prevents length extension,
and the latter (if extracted from the BitTorrent protocol) does not provide second-preimage
resistance [13, §8.5].

6.5 Incremental Updates

Another new use case supported by BLAKE3 is incrementally updating the root hash when
an input is edited in place. A serial hash function can efficiently append new bytes to the end
of an input, but editing bytes at the beginning or in the middle requires re-hashing everything
to the right of the edit. With BLAKE3, an application can edit bytes anywhere in its input and
re-hash just the modified chunks and their transitive parent nodes.

For example, consider an input composed of four chunks, again like the four-chunk tree in
Figure 1. Suppose we overwrite some bytes in the second chunk. To update the root hash,
we first compute the second chunk’s new CV as per §2.4. Then we recompute the CV for the
second chunk’s parent as per §2.5. Note that because the first chunk is unchanged, the first
32 message bytes for this parent node are unchanged also, and we do not need to re-read
the first chunk. Finally, we recompute the CV of the root node, and we similarly do not need
to re-read anything from the right half of the tree.

Note that this strategy cannot efficiently insert or remove bytes from the middle of an input.
That would change the position of all the bytes to the right of the edit and force re-hashing.

22

https://github.com/oconnor663/bao
https://adc.sourceforge.io/draft-jchapweske-thex-02.html
https://www.bittorrent.org/beps/bep_0030.html

This is similar to the constraints of a typical filesystem, where appends and in-place edits are
efficient, but insertions and removals within a file are either slow or unsupported.

7 Rationales

This section goes into more detail about some of the performance tradeoffs and security
considerations in the BLAKE3 design.

7.1 Chunk Size

BLAKE3 uses 1 KiB chunks. The chunk size is a tradeoff between the peak throughput for long
inputs, which benefits from larger chunks, and the degree of parallelism for medium-length
inputs, which benefits from shorter chunks.

The benefit of a larger chunk size is that the tree contains fewer parent nodes, so the
overhead cost of compressing them is lower. The number of parent nodes is equal to the
number of chunks minus one, so doubling the chunk size cuts the number of parent nodes
in half. However, note that parent nodes at the same level of the tree can be compressed in
parallel, so having twice as many parent nodes does not necessarily mean that compressing
them takes twice as long.

The benefit of a smaller chunk size is a higher potential degree of parallelism. This is
irrelevant for very long inputs, where all the SIMD lanes and possibly CPU cores of the
machine will be occupied regardless. But at medium input lengths, this has a huge impact
on performance. Consider an 8 KiB input. With a chunk size of 1 KiB, this input can occupy
8 SIMD lanes, which lets the implementation use AVX2 vector instructions on modern x86
processors. But if we increased the chunk size to 2 KiB, the same input would only occupy 4
SIMD lanes, and the high throughput of AVX2 would be left on the table.

Thus we want to pick the smallest chunk size we can to maximize medium-length paral-
lelism, without incurring “excessive” overhead from parent nodes. The point of comparison
here is the peak throughput for a very large chunk size, like 64 KiB, where parent node
overhead becomes small enough to be negligible. In our measurements, we find that imple-
mentations with 1 KiB chunks can reach at least 90% of that peak throughput.

There are other minor performance considerations to be aware of. A larger chunk size
slightly reduces the space requirement of the CV stack as described in §5.4. Also, verified
streaming requires buffering chunks (see §6.4), and incremental updates require re-hashing
chunks (see §6.5), so both of those use cases benefit from a smaller chunk size.

7.2 Word Size

BLAKE3 uses 32-bit words. The performance tradeoffs in the choice between 32-bit and
64-bit words are complex, and they depend on both the platform and the size of the input.

It is common advice that SHA-512 (because it uses 64-bit words) is faster on 64-bit
platforms than SHA-256 (because it uses 32-bit words). A similar effect applies to BLAKE2b
and BLAKE2s. However, this effect does not apply to algorithms that incorporate more SIMD
parallelism. BLAKE2sp has a higher peak throughput than BLAKE2bp on x86-64. This
is because the SIMD instructions that operate on 8 lanes of 32-bit words have the same
throughput as those that operate on 4 lanes of 64-bit words. The key factor for exploiting

23

SIMD performance is not word size but vector size, and both of those cases occupy a 256-bit
vector. (The remaining effect making BLAKE2sp faster is that its smaller states require fewer
rounds of compression.)

For that reason, peak throughput on x86-64 is largely independent of the word size. The
performance differences that remain are restricted to shorter input lengths: 32-bit words
perform better for lengths less than one block, while 64-bit words perform better for lengths
between one block and one chunk, comparable to BLAKE2s and BLAKE2b. These effects
are minor, and in any case short input performance is often dominated by other sources of
overhead in typical applications.

Instead, the decisive advantage of 32-bit words over 64-bit words is performance on
smaller architectures and embedded systems. BLAKE3 is designed to be a single general-
purpose hash function, suitable for users of both BLAKE2b and BLAKE2s. On 32-bit platforms
like the ARM1176, where BLAKE2s does especially well, a 64-bit hash function could be a
performance regression. Choosing 32-bit words is a substantial benefit for these platforms,
with little or no downside for x86-64. Cross-platform flexibility is also important for protocol
designers, who have to consider the performance of their designs across a wide range
of hardware, and who are becoming increasingly skeptical of designs supporting multiple
algorithms [15].

7.3 Compression Function Feed Forward

The output step of the compression function (see §2.2) mixes the first and second halves of
the state, and then feeds forward the input CV into the second half. The feed-forward step
allows us to use all 16 words of the state as output, doubling the output rate of the extendable
output feature (see §2.6). If we exposed all 16 state words without the feed-forward, the
compression function would be reversible when the message bytes were known.

When the full output is used, mixing the first and second halves of the state is redundant.
However, when the truncated output is used, mixing the halves makes the output use all the
state words computed during the last round. The default 32-byte output size is a truncated
output, and truncated outputs are also used for chaining values in the interior of the tree.

Putting the feed-forward in the second half of the state allows an implementation that does
not support extendable output to skip the feed-forward entirely.

7.4 Keyed Permutation Key Schedule

One of the main historical pain points of implementing BLAKE and BLAKE2 has been the
distinct message permutation at each round. This has several effects, including forcing the
complete unrolling of the keyed permutation to maximize speed, complicated and error-prone
implementation of the permutations in the SIMD case, and complications in the analysis. (E.g.,
some attacks do not start at round 0 because the permutation is most attack-friendly at some
later point.)

To this end, we decided to replace the 10 distinct permutations with a single one, which
is applied to the message after each round. The criteria for selecting the permutation were
similar to the ones used for BLAKE3:

• For 8 rounds, no message word should be input twice at the same point;
3One of the requirements, regarding constants, was discarded since it does not apply to BLAKE3.

24

Table 6: Candidate permutations for BLAKE3’s single-permutation key schedule.

6 4 1 7 15 2 3 10 0 8 11 9 13 5 12 14

13 9 8 14 12 10 1 3 15 4 7 6 0 11 2 5

15 14 13 12 10 11 8 9 7 5 6 4 2 1 0 3

7 13 12 8 3 15 5 1 6 2 0 14 10 9 4 11

12 0 5 6 8 14 7 4 9 10 13 15 11 3 1 2

5 3 6 13 0 9 12 8 4 14 2 7 15 10 11 1

14 7 11 1 5 6 2 0 10 3 9 13 4 15 8 12

4 2 9 0 14 1 13 11 12 6 15 3 5 8 10 7

2 6 3 10 7 0 4 13 1 11 12 5 9 14 15 8

10 11 4 15 1 3 0 2 14 12 5 8 6 7 13 9

3 12 7 11 13 4 9 15 5 0 8 1 14 2 6 10

9 5 0 2 11 8 14 12 13 15 3 10 1 6 7 4

• For 8 rounds, each message word should appear exactly 4 times in a column step and
4 times in a diagonal step;

• For 8 rounds, each message word should appear exactly 4 times in the first position in
G and 4 times in the second.

For 8 rounds, there are exactly 12 permutations that satisfy these requirements, cf. Table 6.
Of these, one of them clearly stood out as having the lowest differential probability trail for the
keyed permutation after 3 rounds—2−21 compared to 2−13 for the next best permutations—
and thus was the one adopted.

7.5 Chunk Counter

The main job of the compression function’s 64-bit counter parameter, t, is to support extend-
able output. By incrementing t (see §2.6), the caller can extract as much output as needed,
without imposing any extra steps on the default-length case.

However, we also use the t parameter during the input phase, to indicate the chunk number
(see §2.4). This means that each chunk has a distinct CV with high probability, even if two
chunks have the same input bytes. This is not strictly necessary for security, but it discourages
a class of dangerous optimizations.

Consider an application that hashes sparse files, which are mostly filled with zeros. The
majority of this application’s input chunks could be the all-zero chunk. This application might
try to compute the CV of the zero chunk only once, and then check each chunk before
compressing it to see whether it can use that precomputed CV. This check is cheap, and for
this application it could be a big speedup. But this optimization is dangerous, because it is not
constant-time. The runtime of the hash function would leak information about its input.

If tricks like this were possible, an unsafe implementation would inevitably find its way

25

into some privacy-sensitive use case. By distinguishing each chunk, BLAKE3 deliberately
sabotages these tricks, in the hopes of keeping every implementation constant-time.

7.6 Tree Fanout

BLAKE3 uses a binary tree structure, which is to say a fanout of 2. A binary tree is simpler to
implement than a wider tree, and its memory requirement is also a local minimum.

The CV stack algorithm described in §5.1.2 is important for simplifying a BLAKE3 imple-
mentation. It also saves space, because the implementation does not need to store size or
level metadata along with each CV. Consider how this algorithm would change, if BLAKE3
used a fanout of 4. Instead of “count the trailing 0-bits, and pop that many CVs” it would be
“count the trailing 0-0-bit pairs, and pop that many CV triplets.” That can still be done with a bit
mask, but programmers would need to reason about quaternary numbers to understand what
was going on. Other complexities would crop up as well: parent nodes would no longer be a
fixed size, and new ambiguities in the tree layout would require a third rule in §2.1 along the
lines of “all non-rightmost sibling subtrees have the same number of chunks.”

A fanout of 4 would also would also increase the memory requirement of the CV stack.
Instead of storing one CV per level of the tree, we would need to store three. The tree would
be half as tall, but ultimately the CV stack would be larger by a factor of 3/2. In general, the
size of the CV stack for a fanout F is proportional to (F− 1)/ log2(F), which increases as F
increases.

A different approach to the CV stack is possible, which could save space at larger fanouts.
Rather than storing CV bytes directly, the implementation could store an incremental state for
each incomplete parent node, similar to the incremental chunk state. An incremental state
requires a 32-byte CV and a 64-byte buffer, so at fanout 4 it would be no better than storing
3 CVs directly. (Perhaps the 64-byte buffer could be reduced to 32 bytes in some cases,
depending on the details of parent node finalization, and at the cost of more complexity.) But
at higher fanouts, the memory requirement would be proportional to 1/ log2(F). At fanout 16
and above, this approach could save space relative to the binary tree.

However, recall from §5.4 that space-constrained implementations of BLAKE3 can reduce
the size of the CV stack by restricting their maximum input length. We expect that the majority
of space-constrained applications already have strict limits on the size of their inputs. Indeed
it is hard to imagine how an application without 2 KB of memory to spare could even get its
hands on a gigabyte of input. Realistically, a large fanout would only benefit a small fringe of
space-constrained applications, but the added complexity would hurt everyone.

As a special case, we could also have chosen an infinite fanout, a single parent node with
an unlimited number of leaves. This approach does not require a CV stack at all. Instead,
the implementation only needs to manage the incremental state of the current chunk and
the incremental state of the single parent node. Notably, this is the approach taken by
KangarooTwelve [8]. It has large benefits for simplicity and space efficiency, but also several
downsides. Parent blocks cannot be compressed in parallel, requiring a larger chunk size to
keep overhead low (see §7.1). Multi-threading is more complex and generally requires heap
allocation, because the input cannot be split in half recursively (see §5.2). And incremental
use cases like verified streaming (see §6.4) are no longer practical.

As a totally different approach, we could also have chosen a fixed-interleaved tree layout
similar to that of BLAKE2bp and BLAKE2sp. For example, BLAKE2sp divides its input into 8
interleaved pieces, with blocks 0, 8, 16... forming the first piece, blocks 1, 9, 17... forming

26

the second piece, and so on. The 8 resulting CVs are then concatenated into a single parent
node. The upsides of this approach are that full parallelism can begin at relatively short
input lengths, 512 bytes in the case of BLAKE2bp and BLAKE2sp, and that the memory
requirement is lower than that of the binary tree. The downsides of this approach are that the
degree of parallelism is fixed, and that performance is poor for shorter inputs (see Figures 3
and 5).

7.7 Domain Flags

The ROOT and CHUNK_START domain flags are strictly necessary for security. The ROOT flag
separates the root node from all other nodes, and it separates the final block from all other
blocks in a root chunk, both of which prevent length extension. The CHUNK_START flag
separates chunks from parent nodes, and it separates an IV provided by the caller (the key in
the keyed hashing mode) from block CVs computed within a chunk, both of which prevent
collisions.

The PARENT and CHUNK_END domain flags are not strictly necessary, but we include them
to be conservative. As with CHUNK_START, the PARENT flag prevents a collision when the
caller-provided IV bytes match a block CV extracted from some other input. However, the
parent’s message bytes will also be different from the block’s with high probability in that case.
The benefit of the PARENT flag is rather that we get separation without needing to reason about
the message bytes.

The CHUNK_END flag prevents length extensions for all chunks, beyond just a root chunk.
However, other chunk CVs are not usually published. In incremental use cases like verified
streaming (see §6.4), chunk CVs may be published, but only when the input is also published.
In a keyed incremental use case, the keyed parent nodes also prevent an attacker from making
any use of length-extended keyed chunk CVs. Nonetheless, we include the CHUNK_END flag,
because letting an attacker length-extend chunk CVs is an unnecessary risk that might impact
unknown future applications.

7.8 Key Derivation from Reused Key Material

As described in §6.2, the derive_key mode is intended to be safe to use even with keys
that are already in use with other algorithms. It is impossible to guarantee such a property
in general, however. As noted in that section, some algorithms explicitly forbid key reuse,
even within the same algorithm. In the case of a one-time pad, if the message happens to be
known or predictable, some or all of the key is revealed to an eavesdropper. No key derivation
function can extract useful security from key material that is not secret.

There are some algorithms that impose a one-time-use restriction on their key, but that still
keep the key secret as long as that restriction is followed. The crypto_onetimeauth function
in the NaCl and libsodium libraries is one such example. It might be safe to use the same
key with crypto_onetimeauth (once) and with derive_key (any number of times). However,
precisely because of its one-time-use restriction, crypto_onetimeauth is almost always used
with derived subkeys anyway. Furthermore, this sort of algorithm-specific reasoning is exactly
what derive_key is designed to avoid. It is simpler and safer to forbid derive_key from
sharing key material with this entire class of one-time-use algorithms.

Another limitation on key reuse is applications that violate the security requirement of
the derive_key context string, namely that it should be hardcoded, globally unique, and

27

application-specific. If one component of an application feeds arbitrary user input into the
context string, it is not safe for any other component to share key material with it. The context
string no longer provides domain separation. This is the basic problem of sharing key material,
and the reason that deriving separate subkeys is preferable wherever possible. When two
different components share a key, each has to assume that the other will not violate the
security requirements of derive_key, just as each has to assume that the other will not leak
the key.

Another more theoretical limitation for key material reuse could be future algorithms
that are internally identical to BLAKE3, but with different domain-separation conventions. A
modified algorithm might sabotage domain separation entirely, for example, by exposing the d
parameter of the compression function to arbitrary user input. We will never publish such an
algorithm. The common practice when designing a closely related algorithm is to change the
IV constants, so that the new output is independent. This was the approach used to derive
SHA-512/256 from SHA-512. The same approach could work for a hypothetical derivative of
BLAKE3 by changing the IV0 ... IV3 constants, which are used for compression function setup
in all modes.

Acknowledgments

The development of BLAKE3 was sponsored by Electric Coin Company and Teserakt. Thanks
to Liming Luo for many discussions about the tree layout.

References

[1] Kevin Atighehchi and Alexis Bonnecaze. Asymptotic analysis of plausible tree hash
modes for SHA-3. IACR Trans. Symmetric Cryptol., 2017(4):212–239, 2017. doi:
10.13154/tosc.v2017.i4.212-239.

[2] Kevin Atighehchi and Robert Rolland. Optimization of tree modes for parallel hash
functions: A case study. IEEE Trans. Computers, 66(9):1585–1598, 2017. doi:10.1109/
TC.2017.2693185.

[3] Jean-Philippe Aumasson. Too much crypto. In Real World Crypto, 2020. https:
//eprint.iacr.org/2019/1492.

[4] Jean-Philippe Aumasson, Jian Guo, Simon Knellwolf, Krystian Matusiewicz, and Willi
Meier. Differential and invertibility properties of BLAKE. In Seokhie Hong and Tetsu
Iwata, editors, Fast Software Encryption, 17th International Workshop, FSE 2010, Seoul,
Korea, February 7-10, 2010, Revised Selected Papers, volume 6147 of Lecture Notes in
Computer Science, pages 318–332. Springer, 2010. doi:10.1007/978-3-642-13858-4_
18.

[5] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Win-
nerlein. BLAKE2: simpler, smaller, fast as MD5. In Michael J. Jacobson Jr., Michael E.
Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors, Applied Cryptography
and Network Security - 11th International Conference, ACNS 2013, Banff, AB, Canada,

28

https://electriccoin.co/
https://teserakt.io
https://doi.org/10.13154/tosc.v2017.i4.212-239
https://doi.org/10.13154/tosc.v2017.i4.212-239
https://doi.org/10.1109/TC.2017.2693185
https://doi.org/10.1109/TC.2017.2693185
https://eprint.iacr.org/2019/1492
https://eprint.iacr.org/2019/1492
https://doi.org/10.1007/978-3-642-13858-4_18
https://doi.org/10.1007/978-3-642-13858-4_18

June 25-28, 2013. Proceedings, volume 7954 of Lecture Notes in Computer Science,
pages 119–135. Springer, 2013. doi:10.1007/978-3-642-38980-1_8.

[6] Dongxia Bai, Hongbo Yu, Gaoli Wang, and Xiaoyun Wang. Improved boomerang attacks
on round-reduced SM3 and keyed permutation of BLAKE-256. IET Information Security,
9(3):167–178, 2015. doi:10.1049/iet-ifs.2013.0380.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sufficient
conditions for sound tree and sequential hashing modes. Int. J. Inf. Sec., 13(4):335–353,
2014. doi:10.1007/s10207-013-0220-y.

[8] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, Ronny Van Keer,
and Benoît Viguier. KangarooTwelve: Fast hashing based on Keccak-p. In Bart Preneel
and Frederik Vercauteren, editors, Applied Cryptography and Network Security - 16th
International Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings,
volume 10892 of Lecture Notes in Computer Science, pages 400–418. Springer, 2018.
doi:10.1007/978-3-319-93387-0_21.

[9] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: New generation of
memory-hard functions for password hashing and other applications. In IEEE European
Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March
21-24, 2016, pages 292–302. IEEE, 2016. doi:10.1109/EuroSP.2016.31.

[10] Alex Biryukov, Ivica Nikolic, and Arnab Roy. Boomerang attacks on BLAKE-32. In
Antoine Joux, editor, Fast Software Encryption - 18th International Workshop, FSE
2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers, volume
6733 of Lecture Notes in Computer Science, pages 218–237. Springer, 2011. doi:
10.1007/978-3-642-21702-9_13.

[11] Wonseok Choi, ByeongHak Lee, and Jooyoung Lee. Indifferentiability of truncated
random permutations. In Steven D. Galbraith and Shiho Moriai, editors, Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019,
Proceedings, Part I, volume 11921 of Lecture Notes in Computer Science, pages 175–
195. Springer, 2019. doi:10.1007/978-3-030-34578-5_7.

[12] Joan Daemen, Tony Dusenge, and Gilles Van Assche. Sufficient conditions for sound
hashing using a truncated permutation. IACR Cryptology ePrint Archive, 2011:459, 2011.
URL: http://eprint.iacr.org/2011/459.

[13] Joan Daemen, Bart Mennink, and Gilles Van Assche. Sound hashing modes of ar-
bitrary functions, permutations, and block ciphers. IACR Trans. Symmetric Cryptol.,
2018(4):197–228, 2018. URL: https://www.cs.ru.nl/~bmennink/pubs/18fsenew.pdf.

[14] Yevgeniy Dodis, Leonid Reyzin, Ronald L. Rivest, and Emily Shen. Indifferentiability
of permutation-based compression functions and tree-based modes of operation, with
applications to MD6. In Orr Dunkelman, editor, Fast Software Encryption, 16th Interna-
tional Workshop, FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected
Papers, volume 5665 of Lecture Notes in Computer Science, pages 104–121. Springer,
2009. doi:10.1007/978-3-642-03317-9_7.

29

https://doi.org/10.1007/978-3-642-38980-1_8
https://doi.org/10.1049/iet-ifs.2013.0380
https://doi.org/10.1007/s10207-013-0220-y
https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.1109/EuroSP.2016.31
https://doi.org/10.1007/978-3-642-21702-9_13
https://doi.org/10.1007/978-3-642-21702-9_13
https://doi.org/10.1007/978-3-030-34578-5_7
http://eprint.iacr.org/2011/459
https://www.cs.ru.nl/~bmennink/pubs/18fsenew.pdf
https://doi.org/10.1007/978-3-642-03317-9_7

[15] Jason A. Donenfeld. Wireguard: Next generation kernel network tunnel. In Proceedings
of the Network and Distributed System Security Symposium, NDSS 2017, 2015. URL:
https://www.wireguard.com/papers/wireguard.pdf.

[16] Orr Dunkelman and Dmitry Khovratovich. Iterative differentials, symmetries, and mes-
sage modification in BLAKE-256. In ECRYPT2 Hash Workshop, 2011.

[17] Thomas Espitau, Pierre-Alain Fouque, and Pierre Karpman. Higher-order differential
meet-in-the-middle preimage attacks on SHA-1 and BLAKE. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I, volume 9215 of Lecture Notes in Computer Science, pages 683–701. Springer,
2015. doi:10.1007/978-3-662-47989-6_33.

[18] Jian Guo, Pierre Karpman, Ivica Nikolic, Lei Wang, and Shuang Wu. Analysis of BLAKE2.
In Josh Benaloh, editor, Topics in Cryptology - CT-RSA 2014 - The Cryptographer’s
Track at the RSA Conference 2014, San Francisco, CA, USA, February 25-28, 2014.
Proceedings, volume 8366 of Lecture Notes in Computer Science, pages 402–423.
Springer, 2014. doi:10.1007/978-3-319-04852-9_21.

[19] Yonglin Hao. The boomerang attacks on BLAKE and BLAKE2. In Dongdai Lin, Moti Yung,
and Jianying Zhou, editors, Information Security and Cryptology - 10th International
Conference, Inscrypt 2014, Beijing, China, December 13-15, 2014, Revised Selected
Papers, volume 8957 of Lecture Notes in Computer Science, pages 286–310. Springer,
2014. doi:10.1007/978-3-319-16745-9_16.

[20] Dmitry Khovratovich, Ivica Nikolic, Josef Pieprzyk, Przemyslaw Sokolowski, and Ron
Steinfeld. Rotational cryptanalysis of ARX revisited. In Gregor Leander, editor, Fast
Software Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March
8-11, 2015, Revised Selected Papers, volume 9054 of Lecture Notes in Computer
Science, pages 519–536. Springer, 2015. doi:10.1007/978-3-662-48116-5_25.

[21] Ji Li and Liangyu Xu. Attacks on round-reduced BLAKE. IACR Cryptology ePrint Archive,
2009:238, 2009. URL: http://eprint.iacr.org/2009/238.

[22] Atul Luykx, Bart Mennink, and Samuel Neves. Security analysis of BLAKE2’s modes
of operation. IACR Trans. Symmetric Cryptol., 2016(1):158–176, 2016. doi:10.13154/
tosc.v2016.i1.158-176.

[23] Nicky Mouha and Bart Preneel. Towards finding optimal differential characteristics
for ARX: Application to Salsa20. Cryptology ePrint Archive, Report 2013/328, 2013.
https://eprint.iacr.org/2013/328.

[24] Trevor Perrin. Stateful hash objects: API and constructions, 2018. URL: https://github.
com/noiseprotocol/sho_spec.

[25] Bozhan Su, Wenling Wu, Shuang Wu, and Le Dong. Near-collisions on the reduced-
round compression functions of Skein and BLAKE. In Swee-Huay Heng, Rebecca N.
Wright, and Bok-Min Goi, editors, Cryptology and Network Security - 9th International
Conference, CANS 2010, Kuala Lumpur, Malaysia, December 12-14, 2010. Proceedings,

30

https://www.wireguard.com/papers/wireguard.pdf
https://doi.org/10.1007/978-3-662-47989-6_33
https://doi.org/10.1007/978-3-319-04852-9_21
https://doi.org/10.1007/978-3-319-16745-9_16
https://doi.org/10.1007/978-3-662-48116-5_25
http://eprint.iacr.org/2009/238
https://doi.org/10.13154/tosc.v2016.i1.158-176
https://doi.org/10.13154/tosc.v2016.i1.158-176
https://eprint.iacr.org/2013/328
https://github.com/noiseprotocol/sho_spec
https://github.com/noiseprotocol/sho_spec

volume 6467 of Lecture Notes in Computer Science, pages 124–139. Springer, 2010.
doi:10.1007/978-3-642-17619-7_10.

[26] Janos Vidali, Peter Nose, and Enes Pasalic. Collisions for variants of the BLAKE hash
function. Inf. Process. Lett., 110(14-15):585–590, 2010. doi:10.1016/j.ipl.2010.05.
007.

31

https://doi.org/10.1007/978-3-642-17619-7_10
https://doi.org/10.1016/j.ipl.2010.05.007
https://doi.org/10.1016/j.ipl.2010.05.007

	Introduction
	Specification
	Tree Structure
	Compression Function
	Modes
	Chunk Chaining Values
	Parent Node Chaining Values
	Extendable Output

	Performance
	Security
	Security Goals
	Compression Function
	Mode of Operation
	Cryptanalysis

	Implementation
	Incremental Hashing
	Chunk State
	Chaining Value Stack

	Multi-threading
	SIMD
	Memory Requirements

	Applications
	Pseudorandom Function and MAC
	Key Derivation
	Stateful Hash Object
	Verified Streaming
	Incremental Updates

	Rationales
	Chunk Size
	Word Size
	Compression Function Feed Forward
	Keyed Permutation Key Schedule
	Chunk Counter
	Tree Fanout
	Domain Flags
	Key Derivation from Reused Key Material

