
QUIC J. Iyengar, Ed.
Internet-Draft Fastly
Intended status: Standards Track M. Thomson, Ed.
Expires: 12 December 2020 Mozilla
 10 June 2020

 QUIC: A UDP-Based Multiplexed and Secure Transport
 draft-ietf-quic-transport-29

Abstract

 This document defines the core of the QUIC transport protocol.
 Accompanying documents describe QUIC’s loss detection and congestion
 control and the use of TLS for key negotiation.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org (mailto:quic@ietf.org)), which is
 archived at https://mailarchive.ietf.org/arch/search/?email_list=quic

 Working Group information can be found at https://github .com/quicwg;
 source code and issues list for this draft can be found at
 https://github.com/quicwg/base-drafts/labels/-transport .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 12 December 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Iyengar & Thomson Expires 12 December 2020 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github/
https://github.com/quicwg/base-drafts/labels/-transport
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC Transport Protocol June 2020

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 6
 1.1 . Document Structure 7
 1.2 . Terms and Definitions 8
 1.3 . Notational Conventions 9
 2. Streams . 10
 2.1 . Stream Types and Identifiers 11
 2.2 . Sending and Receiving Data 12
 2.3 . Stream Prioritization 13
 2.4 . Required Operations on Streams 13
 3. Stream States . 14
 3.1 . Sending Stream States 14
 3.2 . Receiving Stream States 17
 3.3 . Permitted Frame Types 19
 3.4 . Bidirectional Stream States 20
 3.5 . Solicited State Transitions 21
 4. Flow Control . 23
 4.1 . Data Flow Control . 23
 4.2 . Flow Credit Increments 24
 4.3 . Handling Stream Cancellation 25
 4.4 . Stream Final Size . 26
 4.5 . Controlling Concurrency 27
 5. Connections . 27
 5.1 . Connection ID . 28
 5.1.1 . Issuing Connection IDs 29
 5.1.2 . Consuming and Retiring Connection IDs 30
 5.2 . Matching Packets to Connections 31
 5.2.1 . Client Packet Handling 32
 5.2.2 . Server Packet Handling 32
 5.2.3 . Considerations for Simple Load Balancers 33
 5.3 . Life of a QUIC Connection 34
 5.4 . Required Operations on Connections 35
 6. Version Negotiation . 36
 6.1 . Sending Version Negotiation Packets 36
 6.2 . Handling Version Negotiation Packets 36
 6.2.1 . Version Negotiation Between Draft Versions 37
 6.3 . Using Reserved Versions 37
 7. Cryptographic and Transport Handshake 38

Iyengar & Thomson Expires 12 December 2020 [Page 2]

https://tools.ietf.org/pdf/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft QUIC Transport Protocol June 2020

 7.1 . Example Handshake Flows 39
 7.2 . Negotiating Connection IDs 40
 7.3 . Authenticating Connection IDs 41
 7.4 . Transport Parameters 43
 7.4.1 . Values of Transport Parameters for 0-RTT 44
 7.4.2 . New Transport Parameters 46
 7.5 . Cryptographic Message Buffering 46
 8. Address Validation . 46
 8.1 . Address Validation During Connection Establishment . . . 47
 8.1.1 . Token Construction 48
 8.1.2 . Address Validation using Retry Packets 48
 8.1.3 . Address Validation for Future Connections 49
 8.1.4 . Address Validation Token Integrity 51
 8.2 . Path Validation . 52
 8.3 . Initiating Path Validation 53
 8.4 . Path Validation Responses 53
 8.5 . Successful Path Validation 54
 8.6 . Failed Path Validation 54
 9. Connection Migration . 54
 9.1 . Probing a New Path 55
 9.2 . Initiating Connection Migration 56
 9.3 . Responding to Connection Migration 56
 9.3.1 . Peer Address Spoofing 57
 9.3.2 . On-Path Address Spoofing 58
 9.3.3 . Off-Path Packet Forwarding 58
 9.4 . Loss Detection and Congestion Control 59
 9.5 . Privacy Implications of Connection Migration 60
 9.6 . Server’s Preferred Address 62
 9.6.1 . Communicating a Preferred Address 62
 9.6.2 . Responding to Connection Migration 63
 9.6.3. Interaction of Client Migration and Preferred
 Address . 63
 9.7 . Use of IPv6 Flow-Label and Migration 64
 10. Connection Termination 64
 10.1 . Closing and Draining Connection States 65
 10.2 . Idle Timeout . 66
 10.2.1 . Liveness Testing 66
 10.2.2 . Deferring Idle Timeout 67
 10.3 . Immediate Close . 67
 10.3.1 . Immediate Close During the Handshake 69
 10.4 . Stateless Reset . 70
 10.4.1 . Detecting a Stateless Reset 73
 10.4.2 . Calculating a Stateless Reset Token 74
 10.4.3 . Looping . 75
 11. Error Handling . 75
 11.1 . Connection Errors 76
 11.2 . Stream Errors . 76
 12. Packets and Frames . 77

Iyengar & Thomson Expires 12 December 2020 [Page 3]

Internet-Draft QUIC Transport Protocol June 2020

 12.1 . Protected Packets 77
 12.2 . Coalescing Packets 78
 12.3 . Packet Numbers . 79
 12.4 . Frames and Frame Types 80
 13. Packetization and Reliability 83
 13.1 . Packet Processing 84
 13.2 . Generating Acknowledgements 84
 13.2.1 . Sending ACK Frames 85
 13.2.2 . Acknowledgement Frequency 86
 13.2.3 . Managing ACK Ranges 86
 13.2.4 . Receiver Tracking of ACK Frames 87
 13.2.5 . Limiting ACK Ranges 87
 13.2.6 . Measuring and Reporting Host Delay 88
 13.2.7 . ACK Frames and Packet Protection 88
 13.2.8 . PADDING Frames Consume Congestion Window 89
 13.3 . Retransmission of Information 89
 13.4 . Explicit Congestion Notification 92
 13.4.1 . ECN Counts . 92
 13.4.2 . ECN Validation 93
 14. Packet Size . 95
 14.1 . Initial Packet Size 95
 14.2 . Path Maximum Transmission Unit (PMTU) 96
 14.2.1 . Handling of ICMP Messages by PMTUD 97
 14.3 . Datagram Packetization Layer PMTU Discovery 97
 14.3.1 . DPLPMTUD and Initial Connectivity 98
 14.3.2 . Validating the QUIC Path with DPLPMTUD 98
 14.3.3 . Handling of ICMP Messages by DPLPMTUD 98
 14.4 . Sending QUIC PMTU Probes 98
 14.4.1 . PMTU Probes Containing Source Connection ID 99
 15. Versions . 99
 16. Variable-Length Integer Encoding 100
 17. Packet Formats . 101
 17.1 . Packet Number Encoding and Decoding 101
 17.2 . Long Header Packets 102
 17.2.1 . Version Negotiation Packet 105
 17.2.2 . Initial Packet 107
 17.2.3 . 0-RTT . 109
 17.2.4 . Handshake Packet 110
 17.2.5 . Retry Packet . 111
 17.3 . Short Header Packets 113
 17.3.1 . Latency Spin Bit 115
 18. Transport Parameter Encoding 116
 18.1 . Reserved Transport Parameters 117
 18.2 . Transport Parameter Definitions 117
 19. Frame Types and Formats 121
 19.1 . PADDING Frame . 121
 19.2 . PING Frame . 122
 19.3 . ACK Frames . 122

Iyengar & Thomson Expires 12 December 2020 [Page 4]

Internet-Draft QUIC Transport Protocol June 2020

 19.3.1 . ACK Ranges . 124
 19.3.2 . ECN Counts . 125
 19.4 . RESET_STREAM Frame 126
 19.5 . STOP_SENDING Frame 127
 19.6 . CRYPTO Frame . 127
 19.7 . NEW_TOKEN Frame . 128
 19.8 . STREAM Frames . 129
 19.9 . MAX_DATA Frame . 131
 19.10 . MAX_STREAM_DATA Frame 131
 19.11 . MAX_STREAMS Frames 132
 19.12 . DATA_BLOCKED Frame 133
 19.13 . STREAM_DATA_BLOCKED Frame 134
 19.14 . STREAMS_BLOCKED Frames 134
 19.15 . NEW_CONNECTION_ID Frame 135
 19.16 . RETIRE_CONNECTION_ID Frame 136
 19.17 . PATH_CHALLENGE Frame 137
 19.18 . PATH_RESPONSE Frame 138
 19.19 . CONNECTION_CLOSE Frames 138
 19.20 . HANDSHAKE_DONE frame 139
 19.21 . Extension Frames . 140
 20. Transport Error Codes . 140
 20.1 . Application Protocol Error Codes 142
 21. Security Considerations 142
 21.1 . Handshake Denial of Service 142
 21.2 . Amplification Attack 143
 21.3 . Optimistic ACK Attack 144
 21.4 . Slowloris Attacks 144
 21.5 . Stream Fragmentation and Reassembly Attacks 144
 21.6 . Stream Commitment Attack 145
 21.7 . Peer Denial of Service 145
 21.8 . Explicit Congestion Notification Attacks 146
 21.9 . Stateless Reset Oracle 146
 21.10 . Version Downgrade 147
 21.11 . Targeted Attacks by Routing 147
 21.12 . Overview of Security Properties 147
 21.12.1 . Handshake . 148
 21.12.2 . Protected Packets 149
 21.12.3 . Connection Migration 150
 22. IANA Considerations . 154
 22.1 . Registration Policies for QUIC Registries 154
 22.1.1 . Provisional Registrations 154
 22.1.2 . Selecting Codepoints 155
 22.1.3 . Reclaiming Provisional Codepoints 156
 22.1.4 . Permanent Registrations 157
 22.2 . QUIC Transport Parameter Registry 157
 22.3 . QUIC Frame Type Registry 158
 22.4 . QUIC Transport Error Codes Registry 159
 23. References . 161

Iyengar & Thomson Expires 12 December 2020 [Page 5]

Internet-Draft QUIC Transport Protocol June 2020

 23.1 . Normative References 161
 23.2 . Informative References 162
 Appendix A . Sample Packet Number Decoding Algorithm 164
 Appendix B . Sample ECN Validation Algorithm 165
 Appendix C . Change Log . 166
 C.1 . Since draft-ietf-quic-transport-28 166
 C.2 . Since draft-ietf-quic-transport-27 166
 C.3 . Since draft-ietf-quic-transport-26 168
 C.4 . Since draft-ietf-quic-transport-25 168
 C.5 . Since draft-ietf-quic-transport-24 168
 C.6 . Since draft-ietf-quic-transport-23 169
 C.7 . Since draft-ietf-quic-transport-22 170
 C.8 . Since draft-ietf-quic-transport-21 171
 C.9 . Since draft-ietf-quic-transport-20 171
 C.10 . Since draft-ietf-quic-transport-19 172
 C.11 . Since draft-ietf-quic-transport-18 172
 C.12 . Since draft-ietf-quic-transport-17 173
 C.13 . Since draft-ietf-quic-transport-16 174
 C.14 . Since draft-ietf-quic-transport-15 175
 C.15 . Since draft-ietf-quic-transport-14 175
 C.16 . Since draft-ietf-quic-transport-13 175
 C.17 . Since draft-ietf-quic-transport-12 176
 C.18 . Since draft-ietf-quic-transport-11 177
 C.19 . Since draft-ietf-quic-transport-10 177
 C.20 . Since draft-ietf-quic-transport-09 178
 C.21 . Since draft-ietf-quic-transport-08 179
 C.22 . Since draft-ietf-quic-transport-07 179
 C.23 . Since draft-ietf-quic-transport-06 180
 C.24 . Since draft-ietf-quic-transport-05 180
 C.25 . Since draft-ietf-quic-transport-04 181
 C.26 . Since draft-ietf-quic-transport-03 181
 C.27 . Since draft-ietf-quic-transport-02 182
 C.28 . Since draft-ietf-quic-transport-01 182
 C.29 . Since draft-ietf-quic-transport-00 184
 C.30 . Since draft-hamilton-quic-transport-protocol-01 185
 Contributors . 185
 Authors’ Addresses . 186

1. Introduction

 QUIC is a multiplexed and secure general-purpose transport protocol
 that provides:

 * Stream multiplexing

 * Stream and connection-level flow control

 * Low-latency connection establishment

Iyengar & Thomson Expires 12 December 2020 [Page 6]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-28
https://tools.ietf.org/pdf/draft-ietf-quic-transport-27
https://tools.ietf.org/pdf/draft-ietf-quic-transport-26
https://tools.ietf.org/pdf/draft-ietf-quic-transport-25
https://tools.ietf.org/pdf/draft-ietf-quic-transport-24
https://tools.ietf.org/pdf/draft-ietf-quic-transport-23
https://tools.ietf.org/pdf/draft-ietf-quic-transport-22
https://tools.ietf.org/pdf/draft-ietf-quic-transport-21
https://tools.ietf.org/pdf/draft-ietf-quic-transport-20
https://tools.ietf.org/pdf/draft-ietf-quic-transport-19
https://tools.ietf.org/pdf/draft-ietf-quic-transport-18
https://tools.ietf.org/pdf/draft-ietf-quic-transport-17
https://tools.ietf.org/pdf/draft-ietf-quic-transport-16
https://tools.ietf.org/pdf/draft-ietf-quic-transport-15
https://tools.ietf.org/pdf/draft-ietf-quic-transport-14
https://tools.ietf.org/pdf/draft-ietf-quic-transport-13
https://tools.ietf.org/pdf/draft-ietf-quic-transport-12
https://tools.ietf.org/pdf/draft-ietf-quic-transport-11
https://tools.ietf.org/pdf/draft-ietf-quic-transport-10
https://tools.ietf.org/pdf/draft-ietf-quic-transport-09
https://tools.ietf.org/pdf/draft-ietf-quic-transport-08
https://tools.ietf.org/pdf/draft-ietf-quic-transport-07
https://tools.ietf.org/pdf/draft-ietf-quic-transport-06
https://tools.ietf.org/pdf/draft-ietf-quic-transport-05
https://tools.ietf.org/pdf/draft-ietf-quic-transport-04
https://tools.ietf.org/pdf/draft-ietf-quic-transport-03
https://tools.ietf.org/pdf/draft-ietf-quic-transport-02
https://tools.ietf.org/pdf/draft-ietf-quic-transport-01
https://tools.ietf.org/pdf/draft-ietf-quic-transport-00
https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol-01

Internet-Draft QUIC Transport Protocol June 2020

 * Connection migration and resilience to NAT rebinding

 * Authenticated and encrypted header and payload

 QUIC uses UDP as a substrate to avoid requiring changes to legacy
 client operating systems and middleboxes. QUIC authenticates all of
 its headers and encrypts most of the data it exchanges, including its
 signaling, to avoid incurring a dependency on middleboxes.

1.1 . Document Structure

 This document describes the core QUIC protocol and is structured as
 follows:

 * Streams are the basic service abstraction that QUIC provides.

 - Section 2 describes core concepts related to streams,

 - Section 3 provides a reference model for stream states, and

 - Section 4 outlines the operation of flow control.

 * Connections are the context in which QUIC endpoints communicate.

 - Section 5 describes core concepts related to connections,

 - Section 6 describes version negotiation,

 - Section 7 details the process for establishing connections,

 - Section 8 specifies critical denial of service mitigation
 mechanisms,

 - Section 9 describes how endpoints migrate a connection to a new
 network path,

 - Section 10 lists the options for terminating an open
 connection, and

 - Section 11 provides general guidance for error handling.

 * Packets and frames are the basic unit used by QUIC to communicate.

 - Section 12 describes concepts related to packets and frames,

 - Section 13 defines models for the transmission, retransmission,
 and acknowledgement of data, and

Iyengar & Thomson Expires 12 December 2020 [Page 7]

Internet-Draft QUIC Transport Protocol June 2020

 - Section 14 specifies rules for managing the size of packets.

 * Finally, encoding details of QUIC protocol elements are described
 in:

 - Section 15 (Versions),

 - Section 16 (Integer Encoding),

 - Section 17 (Packet Headers),

 - Section 18 (Transport Parameters),

 - Section 19 (Frames), and

 - Section 20 (Errors).

 Accompanying documents describe QUIC’s loss detection and congestion
 control [QUIC-RECOVERY], and the use of TLS for key negotiation
 [QUIC-TLS].

 This document defines QUIC version 1, which conforms to the protocol
 invariants in [QUIC-INVARIANTS].

 To refer to QUIC version 1, cite this document. References to the
 limited set of version-independent properties of QUIC can cite
 [QUIC-INVARIANTS].

1.2 . Terms and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Commonly used terms in the document are described below.

 QUIC: The transport protocol described by this document. QUIC is a
 name, not an acronym.

 QUIC packet: A complete processable unit of QUIC that can be
 encapsulated in a UDP datagram. Multiple QUIC packets can be
 encapsulated in a single UDP datagram.

 Ack-eliciting Packet: A QUIC packet that contains frames other than
 ACK, PADDING, and CONNECTION_CLOSE. These cause a recipient to
 send an acknowledgment; see Section 13.2.1 .

Iyengar & Thomson Expires 12 December 2020 [Page 8]

https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc8174

Internet-Draft QUIC Transport Protocol June 2020

 Out-of-order packet: A packet that does not increase the largest
 received packet number for its packet number space (Section 12.3)
 by exactly one. A packet can arrive out of order if it is
 delayed, if earlier packets are lost or delayed, or if the sender
 intentionally skips a packet number.

 Endpoint: An entity that can participate in a QUIC connection by
 generating, receiving, and processing QUIC packets. There are
 only two types of endpoint in QUIC: client and server.

 Client: The endpoint initiating a QUIC connection.

 Server: The endpoint accepting incoming QUIC connections.

 Address: When used without qualification, the tuple of IP version,
 IP address, UDP protocol, and UDP port number that represents one
 end of a network path.

 Connection ID: An opaque identifier that is used to identify a QUIC
 connection at an endpoint. Each endpoint sets a value for its
 peer to include in packets sent towards the endpoint.

 Stream: A unidirectional or bidirectional channel of ordered bytes
 within a QUIC connection. A QUIC connection can carry multiple
 simultaneous streams.

 Application: An entity that uses QUIC to send and receive data.

1.3 . Notational Conventions

 Packet and frame diagrams in this document use a bespoke format. The
 purpose of this format is to summarize, not define, protocol
 elements. Prose defines the complete semantics and details of
 structures.

 Complex fields are named and then followed by a list of fields
 surrounded by a pair of matching braces. Each field in this list is
 separated by commas.

 Individual fields include length information, plus indications about
 fixed value, optionality, or repetitions. Individual fields use the
 following notational conventions, with all lengths in bits:

 x (A): Indicates that x is A bits long

 x (i): Indicates that x uses the variable-length encoding in
 Section 16

Iyengar & Thomson Expires 12 December 2020 [Page 9]

Internet-Draft QUIC Transport Protocol June 2020

 x (A..B): Indicates that x can be any length from A to B; A can be
 omitted to indicate a minimum of zero bits and B can be omitted to
 indicate no set upper limit; values in this format always end on
 an octet boundary

 x (?) = C: Indicates that x has a fixed value of C

 x (?) = C..D: Indicates that x has a value in the range from C to D,
 inclusive

 [x (E)]: Indicates that x is optional (and has length of E)

 x (E) ...: Indicates that x is repeated zero or more times (and that
 each instance is length E)

 This document uses network byte order (that is, big endian) values.
 Fields are placed starting from the high-order bits of each byte.

 By convention, individual fields reference a complex field by using
 the name of the complex field.

 For example:

 Example Structure {
 One-bit Field (1),
 7-bit Field with Fixed Value (7) = 61,
 Field with Variable-Length Integer (i),
 Arbitrary-Length Field (..),
 Variable-Length Field (8..24),
 Field With Minimum Length (16..),
 Field With Maximum Length (..128),
 [Optional Field (64)],
 Repeated Field (8) ...,
 }

 Figure 1: Example Format

2. Streams

 Streams in QUIC provide a lightweight, ordered byte-stream
 abstraction to an application. Streams can be unidirectional or
 bidirectional. An alternative view of QUIC unidirectional streams is
 a "message" abstraction of practically unlimited length.

Iyengar & Thomson Expires 12 December 2020 [Page 10]

Internet-Draft QUIC Transport Protocol June 2020

 Streams can be created by sending data. Other processes associated
 with stream management - ending, cancelling, and managing flow
 control - are all designed to impose minimal overheads. For
 instance, a single STREAM frame (Section 19.8) can open, carry data
 for, and close a stream. Streams can also be long-lived and can last
 the entire duration of a connection.

 Streams can be created by either endpoint, can concurrently send data
 interleaved with other streams, and can be cancelled. QUIC does not
 provide any means of ensuring ordering between bytes on different
 streams.

 QUIC allows for an arbitrary number of streams to operate
 concurrently and for an arbitrary amount of data to be sent on any
 stream, subject to flow control constraints and stream limits; see
 Section 4 .

2.1 . Stream Types and Identifiers

 Streams can be unidirectional or bidirectional. Unidirectional
 streams carry data in one direction: from the initiator of the stream
 to its peer. Bidirectional streams allow for data to be sent in both
 directions.

 Streams are identified within a connection by a numeric value,
 referred to as the stream ID. A stream ID is a 62-bit integer (0 to
 2^62-1) that is unique for all streams on a connection. Stream IDs
 are encoded as variable-length integers; see Section 16 . A QUIC
 endpoint MUST NOT reuse a stream ID within a connection.

 The least significant bit (0x1) of the stream ID identifies the
 initiator of the stream. Client-initiated streams have even-numbered
 stream IDs (with the bit set to 0), and server-initiated streams have
 odd-numbered stream IDs (with the bit set to 1).

 The second least significant bit (0x2) of the stream ID distinguishes
 between bidirectional streams (with the bit set to 0) and
 unidirectional streams (with the bit set to 1).

 The least significant two bits from a stream ID therefore identify a
 stream as one of four types, as summarized in Table 1.

Iyengar & Thomson Expires 12 December 2020 [Page 11]

Internet-Draft QUIC Transport Protocol June 2020

 +------+----------------------------------+
 | Bits | Stream Type |
 +======+==================================+
 | 0x0 | Client-Initiated, Bidirectional |
 +------+----------------------------------+
 | 0x1 | Server-Initiated, Bidirectional |
 +------+----------------------------------+
 | 0x2 | Client-Initiated, Unidirectional |
 +------+----------------------------------+
 | 0x3 | Server-Initiated, Unidirectional |
 +------+----------------------------------+

 Table 1: Stream ID Types

 Within each type, streams are created with numerically increasing
 stream IDs. A stream ID that is used out of order results in all
 streams of that type with lower-numbered stream IDs also being
 opened.

 The first bidirectional stream opened by the client has a stream ID
 of 0.

2.2 . Sending and Receiving Data

 STREAM frames (Section 19.8) encapsulate data sent by an application.
 An endpoint uses the Stream ID and Offset fields in STREAM frames to
 place data in order.

 Endpoints MUST be able to deliver stream data to an application as an
 ordered byte-stream. Delivering an ordered byte-stream requires that
 an endpoint buffer any data that is received out of order, up to the
 advertised flow control limit.

 QUIC makes no specific allowances for delivery of stream data out of
 order. However, implementations MAY choose to offer the ability to
 deliver data out of order to a receiving application.

 An endpoint could receive data for a stream at the same stream offset
 multiple times. Data that has already been received can be
 discarded. The data at a given offset MUST NOT change if it is sent
 multiple times; an endpoint MAY treat receipt of different data at
 the same offset within a stream as a connection error of type
 PROTOCOL_VIOLATION.

 Streams are an ordered byte-stream abstraction with no other
 structure visible to QUIC. STREAM frame boundaries are not expected
 to be preserved when data is transmitted, retransmitted after packet
 loss, or delivered to the application at a receiver.

Iyengar & Thomson Expires 12 December 2020 [Page 12]

Internet-Draft QUIC Transport Protocol June 2020

 An endpoint MUST NOT send data on any stream without ensuring that it
 is within the flow control limits set by its peer. Flow control is
 described in detail in Section 4 .

2.3 . Stream Prioritization

 Stream multiplexing can have a significant effect on application
 performance if resources allocated to streams are correctly
 prioritized.

 QUIC does not provide a mechanism for exchanging prioritization
 information. Instead, it relies on receiving priority information
 from the application that uses QUIC.

 A QUIC implementation SHOULD provide ways in which an application can
 indicate the relative priority of streams. When deciding the streams
 to which resources are dedicated, the implementation SHOULD use the
 information provided by the application.

2.4 . Required Operations on Streams

 There are certain operations that an application MUST be able to
 perform when interacting with QUIC streams. This document does not
 specify an API, but any implementation of this version of QUIC MUST
 expose the ability to perform the operations described in this
 section on a QUIC stream.

 On the sending part of a stream, application protocols need to be
 able to:

 * write data, understanding when stream flow control credit
 (Section 4.1) has successfully been reserved to send the written
 data;

 * end the stream (clean termination), resulting in a STREAM frame
 (Section 19.8) with the FIN bit set; and

 * reset the stream (abrupt termination), resulting in a RESET_STREAM
 frame (Section 19.4), if the stream was not already in a terminal
 state.

 On the receiving part of a stream, application protocols need to be
 able to:

 * read data; and

 * abort reading of the stream and request closure, possibly
 resulting in a STOP_SENDING frame (Section 19.5).

Iyengar & Thomson Expires 12 December 2020 [Page 13]

Internet-Draft QUIC Transport Protocol June 2020

 Applications also need to be informed of state changes on streams,
 including when the peer has opened or reset a stream, when a peer
 aborts reading on a stream, when new data is available, and when data
 can or cannot be written to the stream due to flow control.

3. Stream States

 This section describes streams in terms of their send or receive
 components. Two state machines are described: one for the streams on
 which an endpoint transmits data (Section 3.1), and another for
 streams on which an endpoint receives data (Section 3.2).

 Unidirectional streams use the applicable state machine directly.
 Bidirectional streams use both state machines. For the most part,
 the use of these state machines is the same whether the stream is
 unidirectional or bidirectional. The conditions for opening a stream
 are slightly more complex for a bidirectional stream because the
 opening of either the send or receive side causes the stream to open
 in both directions.

 An endpoint MUST open streams of the same type in increasing order of
 stream ID.

 Note: These states are largely informative. This document uses
 stream states to describe rules for when and how different types
 of frames can be sent and the reactions that are expected when
 different types of frames are received. Though these state
 machines are intended to be useful in implementing QUIC, these
 states aren’t intended to constrain implementations. An
 implementation can define a different state machine as long as its
 behavior is consistent with an implementation that implements
 these states.

3.1 . Sending Stream States

 Figure 2 shows the states for the part of a stream that sends data to
 a peer.

Iyengar & Thomson Expires 12 December 2020 [Page 14]

Internet-Draft QUIC Transport Protocol June 2020

 o
 | Create Stream (Sending)
 | Peer Creates Bidirectional Stream
 v
 +-------+
 | Ready | Send RESET_STREAM
 | |-----------------------.
 +-------+ |
 | |
 | Send STREAM / |
 | STREAM_DATA_BLOCKED |
 | |
 | Peer Creates |
 | Bidirectional Stream |
 v |
 +-------+ |
 | Send | Send RESET_STREAM |
 | |---------------------->|
 +-------+ |
 | |
 | Send STREAM + FIN |
 v v
 +-------+ +-------+
 | Data | Send RESET_STREAM | Reset |
 | Sent |------------------>| Sent |
 +-------+ +-------+
 | |
 | Recv All ACKs | Recv ACK
 v v
 +-------+ +-------+
 | Data | | Reset |
 | Recvd | | Recvd |
 +-------+ +-------+

 Figure 2: States for Sending Parts of Streams

 The sending part of a stream that the endpoint initiates (types 0 and
 2 for clients, 1 and 3 for servers) is opened by the application.
 The "Ready" state represents a newly created stream that is able to
 accept data from the application. Stream data might be buffered in
 this state in preparation for sending.

 Sending the first STREAM or STREAM_DATA_BLOCKED frame causes a
 sending part of a stream to enter the "Send" state. An
 implementation might choose to defer allocating a stream ID to a
 stream until it sends the first STREAM frame and enters this state,
 which can allow for better stream prioritization.

Iyengar & Thomson Expires 12 December 2020 [Page 15]

Internet-Draft QUIC Transport Protocol June 2020

 The sending part of a bidirectional stream initiated by a peer (type
 0 for a server, type 1 for a client) starts in the "Ready" state when
 the receiving part is created.

 In the "Send" state, an endpoint transmits - and retransmits as
 necessary - stream data in STREAM frames. The endpoint respects the
 flow control limits set by its peer, and continues to accept and
 process MAX_STREAM_DATA frames. An endpoint in the "Send" state
 generates STREAM_DATA_BLOCKED frames if it is blocked from sending by
 stream or connection flow control limits Section 4.1 .

 After the application indicates that all stream data has been sent
 and a STREAM frame containing the FIN bit is sent, the sending part
 of the stream enters the "Data Sent" state. From this state, the
 endpoint only retransmits stream data as necessary. The endpoint
 does not need to check flow control limits or send
 STREAM_DATA_BLOCKED frames for a stream in this state.
 MAX_STREAM_DATA frames might be received until the peer receives the
 final stream offset. The endpoint can safely ignore any
 MAX_STREAM_DATA frames it receives from its peer for a stream in this
 state.

 Once all stream data has been successfully acknowledged, the sending
 part of the stream enters the "Data Recvd" state, which is a terminal
 state.

 From any of the "Ready", "Send", or "Data Sent" states, an
 application can signal that it wishes to abandon transmission of
 stream data. Alternatively, an endpoint might receive a STOP_SENDING
 frame from its peer. In either case, the endpoint sends a
 RESET_STREAM frame, which causes the stream to enter the "Reset Sent"
 state.

 An endpoint MAY send a RESET_STREAM as the first frame that mentions
 a stream; this causes the sending part of that stream to open and
 then immediately transition to the "Reset Sent" state.

 Once a packet containing a RESET_STREAM has been acknowledged, the
 sending part of the stream enters the "Reset Recvd" state, which is a
 terminal state.

Iyengar & Thomson Expires 12 December 2020 [Page 16]

Internet-Draft QUIC Transport Protocol June 2020

3.2 . Receiving Stream States

 Figure 3 shows the states for the part of a stream that receives data
 from a peer. The states for a receiving part of a stream mirror only
 some of the states of the sending part of the stream at the peer.
 The receiving part of a stream does not track states on the sending
 part that cannot be observed, such as the "Ready" state. Instead,
 the receiving part of a stream tracks the delivery of data to the
 application, some of which cannot be observed by the sender.

 o
 | Recv STREAM / STREAM_DATA_BLOCKED / RESET_STREAM
 | Create Bidirectional Stream (Sending)
 | Recv MAX_STREAM_DATA / STOP_SENDING (Bidirectional)
 | Create Higher-Numbered Stream
 v
 +-------+
 | Recv | Recv RESET_STREAM
 | |-----------------------.
 +-------+ |
 | |
 | Recv STREAM + FIN |
 v |
 +-------+ |
 | Size | Recv RESET_STREAM |
 | Known |---------------------->|
 +-------+ |
 | |
 | Recv All Data |
 v v
 +-------+ Recv RESET_STREAM +-------+
 | Data |--- (optional) --->| Reset |
 | Recvd | Recv All Data | Recvd |
 +-------+<-- (optional) ----+-------+
 | |
 | App Read All Data | App Read RST
 v v
 +-------+ +-------+
 | Data | | Reset |
 | Read | | Read |
 +-------+ +-------+

 Figure 3: States for Receiving Parts of Streams

 The receiving part of a stream initiated by a peer (types 1 and 3 for
 a client, or 0 and 2 for a server) is created when the first STREAM,
 STREAM_DATA_BLOCKED, or RESET_STREAM frame is received for that
 stream. For bidirectional streams initiated by a peer, receipt of a

Iyengar & Thomson Expires 12 December 2020 [Page 17]

Internet-Draft QUIC Transport Protocol June 2020

 MAX_STREAM_DATA or STOP_SENDING frame for the sending part of the
 stream also creates the receiving part. The initial state for the
 receiving part of stream is "Recv".

 The receiving part of a stream enters the "Recv" state when the
 sending part of a bidirectional stream initiated by the endpoint
 (type 0 for a client, type 1 for a server) enters the "Ready" state.

 An endpoint opens a bidirectional stream when a MAX_STREAM_DATA or
 STOP_SENDING frame is received from the peer for that stream.
 Receiving a MAX_STREAM_DATA frame for an unopened stream indicates
 that the remote peer has opened the stream and is providing flow
 control credit. Receiving a STOP_SENDING frame for an unopened
 stream indicates that the remote peer no longer wishes to receive
 data on this stream. Either frame might arrive before a STREAM or
 STREAM_DATA_BLOCKED frame if packets are lost or reordered.

 Before a stream is created, all streams of the same type with lower-
 numbered stream IDs MUST be created. This ensures that the creation
 order for streams is consistent on both endpoints.

 In the "Recv" state, the endpoint receives STREAM and
 STREAM_DATA_BLOCKED frames. Incoming data is buffered and can be
 reassembled into the correct order for delivery to the application.
 As data is consumed by the application and buffer space becomes
 available, the endpoint sends MAX_STREAM_DATA frames to allow the
 peer to send more data.

 When a STREAM frame with a FIN bit is received, the final size of the
 stream is known; see Section 4.4 . The receiving part of the stream
 then enters the "Size Known" state. In this state, the endpoint no
 longer needs to send MAX_STREAM_DATA frames, it only receives any
 retransmissions of stream data.

 Once all data for the stream has been received, the receiving part
 enters the "Data Recvd" state. This might happen as a result of
 receiving the same STREAM frame that causes the transition to "Size
 Known". After all data has been received, any STREAM or
 STREAM_DATA_BLOCKED frames for the stream can be discarded.

 The "Data Recvd" state persists until stream data has been delivered
 to the application. Once stream data has been delivered, the stream
 enters the "Data Read" state, which is a terminal state.

 Receiving a RESET_STREAM frame in the "Recv" or "Size Known" states
 causes the stream to enter the "Reset Recvd" state. This might cause
 the delivery of stream data to the application to be interrupted.

Iyengar & Thomson Expires 12 December 2020 [Page 18]

Internet-Draft QUIC Transport Protocol June 2020

 It is possible that all stream data is received when a RESET_STREAM
 is received (that is, from the "Data Recvd" state). Similarly, it is
 possible for remaining stream data to arrive after receiving a
 RESET_STREAM frame (the "Reset Recvd" state). An implementation is
 free to manage this situation as it chooses.

 Sending RESET_STREAM means that an endpoint cannot guarantee delivery
 of stream data; however there is no requirement that stream data not
 be delivered if a RESET_STREAM is received. An implementation MAY
 interrupt delivery of stream data, discard any data that was not
 consumed, and signal the receipt of the RESET_STREAM. A RESET_STREAM
 signal might be suppressed or withheld if stream data is completely
 received and is buffered to be read by the application. If the
 RESET_STREAM is suppressed, the receiving part of the stream remains
 in "Data Recvd".

 Once the application receives the signal indicating that the stream
 was reset, the receiving part of the stream transitions to the "Reset
 Read" state, which is a terminal state.

3.3 . Permitted Frame Types

 The sender of a stream sends just three frame types that affect the
 state of a stream at either sender or receiver: STREAM
 (Section 19.8), STREAM_DATA_BLOCKED (Section 19.13), and RESET_STREAM
 (Section 19.4).

 A sender MUST NOT send any of these frames from a terminal state
 ("Data Recvd" or "Reset Recvd"). A sender MUST NOT send a STREAM or
 STREAM_DATA_BLOCKED frame for a stream in the "Reset Sent" state or
 any terminal state, that is, after sending a RESET_STREAM frame. A
 receiver could receive any of these three frames in any state, due to
 the possibility of delayed delivery of packets carrying them.

 The receiver of a stream sends MAX_STREAM_DATA (Section 19.10) and
 STOP_SENDING frames (Section 19.5).

 The receiver only sends MAX_STREAM_DATA in the "Recv" state. A
 receiver MAY send STOP_SENDING in any state where it has not received
 a RESET_STREAM frame; that is states other than "Reset Recvd" or
 "Reset Read". However there is little value in sending a
 STOP_SENDING frame in the "Data Recvd" state, since all stream data
 has been received. A sender could receive either of these two frames
 in any state as a result of delayed delivery of packets.

Iyengar & Thomson Expires 12 December 2020 [Page 19]

Internet-Draft QUIC Transport Protocol June 2020

3.4 . Bidirectional Stream States

 A bidirectional stream is composed of sending and receiving parts.
 Implementations may represent states of the bidirectional stream as
 composites of sending and receiving stream states. The simplest
 model presents the stream as "open" when either sending or receiving
 parts are in a non-terminal state and "closed" when both sending and
 receiving streams are in terminal states.

 Table 2 shows a more complex mapping of bidirectional stream states
 that loosely correspond to the stream states in HTTP/2 [HTTP2]. This
 shows that multiple states on sending or receiving parts of streams
 are mapped to the same composite state. Note that this is just one
 possibility for such a mapping; this mapping requires that data is
 acknowledged before the transition to a "closed" or "half-closed"
 state.

Iyengar & Thomson Expires 12 December 2020 [Page 20]

Internet-Draft QUIC Transport Protocol June 2020

 +----------------------+----------------------+-----------------+
 | Sending Part | Receiving Part | Composite State |
 +======================+======================+=================+
 | No Stream/Ready | No Stream/Recv *1 | idle |
 +----------------------+----------------------+-----------------+
 | Ready/Send/Data Sent | Recv/Size Known | open |
 +----------------------+----------------------+-----------------+
 | Ready/Send/Data Sent | Data Recvd/Data Read | half-closed |
 | | | (remote) |
 +----------------------+----------------------+-----------------+
 | Ready/Send/Data Sent | Reset Recvd/Reset | half-closed |
 | | Read | (remote) |
 +----------------------+----------------------+-----------------+
 | Data Recvd | Recv/Size Known | half-closed |
 | | | (local) |
 +----------------------+----------------------+-----------------+
 | Reset Sent/Reset | Recv/Size Known | half-closed |
 | Recvd | | (local) |
 +----------------------+----------------------+-----------------+
 | Reset Sent/Reset | Data Recvd/Data Read | closed |
 | Recvd | | |
 +----------------------+----------------------+-----------------+
 | Reset Sent/Reset | Reset Recvd/Reset | closed |
 | Recvd | Read | |
 +----------------------+----------------------+-----------------+
 | Data Recvd | Data Recvd/Data Read | closed |
 +----------------------+----------------------+-----------------+
 | Data Recvd | Reset Recvd/Reset | closed |
 | | Read | |
 +----------------------+----------------------+-----------------+

 Table 2: Possible Mapping of Stream States to HTTP/2

 Note (*1): A stream is considered "idle" if it has not yet been
 created, or if the receiving part of the stream is in the "Recv"
 state without yet having received any frames.

3.5 . Solicited State Transitions

 If an application is no longer interested in the data it is receiving
 on a stream, it can abort reading the stream and specify an
 application error code.

Iyengar & Thomson Expires 12 December 2020 [Page 21]

Internet-Draft QUIC Transport Protocol June 2020

 If the stream is in the "Recv" or "Size Known" states, the transport
 SHOULD signal this by sending a STOP_SENDING frame to prompt closure
 of the stream in the opposite direction. This typically indicates
 that the receiving application is no longer reading data it receives
 from the stream, but it is not a guarantee that incoming data will be
 ignored.

 STREAM frames received after sending a STOP_SENDING frame are still
 counted toward connection and stream flow control, even though these
 frames can be discarded upon receipt.

 A STOP_SENDING frame requests that the receiving endpoint send a
 RESET_STREAM frame. An endpoint that receives a STOP_SENDING frame
 MUST send a RESET_STREAM frame if the stream is in the Ready or Send
 state. If the stream is in the Data Sent state and any outstanding
 data is declared lost, an endpoint SHOULD send a RESET_STREAM frame
 in lieu of a retransmission.

 An endpoint SHOULD copy the error code from the STOP_SENDING frame to
 the RESET_STREAM frame it sends, but MAY use any application error
 code. The endpoint that sends a STOP_SENDING frame MAY ignore the
 error code carried in any RESET_STREAM frame it receives.

 If the STOP_SENDING frame is received on a stream that is already in
 the "Data Sent" state, an endpoint that wishes to cease
 retransmission of previously-sent STREAM frames on that stream MUST
 first send a RESET_STREAM frame.

 STOP_SENDING SHOULD only be sent for a stream that has not been reset
 by the peer. STOP_SENDING is most useful for streams in the "Recv"
 or "Size Known" states.

 An endpoint is expected to send another STOP_SENDING frame if a
 packet containing a previous STOP_SENDING is lost. However, once
 either all stream data or a RESET_STREAM frame has been received for
 the stream - that is, the stream is in any state other than "Recv" or
 "Size Known" - sending a STOP_SENDING frame is unnecessary.

 An endpoint that wishes to terminate both directions of a
 bidirectional stream can terminate one direction by sending a
 RESET_STREAM frame, and it can encourage prompt termination in the
 opposite direction by sending a STOP_SENDING frame.

Iyengar & Thomson Expires 12 December 2020 [Page 22]

Internet-Draft QUIC Transport Protocol June 2020

4. Flow Control

 It is necessary to limit the amount of data that a receiver could
 buffer, to prevent a fast sender from overwhelming a slow receiver,
 or to prevent a malicious sender from consuming a large amount of
 memory at a receiver. To enable a receiver to limit memory
 commitment to a connection and to apply back pressure on the sender,
 streams are flow controlled both individually and as an aggregate. A
 QUIC receiver controls the maximum amount of data the sender can send
 on a stream at any time, as described in Section 4.1 and Section 4.2

 Similarly, to limit concurrency within a connection, a QUIC endpoint
 controls the maximum cumulative number of streams that its peer can
 initiate, as described in Section 4.5 .

 Data sent in CRYPTO frames is not flow controlled in the same way as
 stream data. QUIC relies on the cryptographic protocol
 implementation to avoid excessive buffering of data; see [QUIC-TLS].
 The implementation SHOULD provide an interface to QUIC to tell it
 about its buffering limits so that there is not excessive buffering
 at multiple layers.

4.1 . Data Flow Control

 QUIC employs a credit-based flow-control scheme similar to that in
 HTTP/2 [HTTP2], where a receiver advertises the number of bytes it is
 prepared to receive on a given stream and for the entire connection.
 This leads to two levels of data flow control in QUIC:

 * Stream flow control, which prevents a single stream from consuming
 the entire receive buffer for a connection by limiting the amount
 of data that can be sent on any stream.

 * Connection flow control, which prevents senders from exceeding a
 receiver’s buffer capacity for the connection, by limiting the
 total bytes of stream data sent in STREAM frames on all streams.

 A receiver sets initial credits for all streams by sending transport
 parameters during the handshake (Section 7.4). A receiver sends
 MAX_STREAM_DATA (Section 19.10) or MAX_DATA (Section 19.9) frames to
 the sender to advertise additional credit.

Iyengar & Thomson Expires 12 December 2020 [Page 23]

Internet-Draft QUIC Transport Protocol June 2020

 A receiver advertises credit for a stream by sending a
 MAX_STREAM_DATA frame with the Stream ID field set appropriately. A
 MAX_STREAM_DATA frame indicates the maximum absolute byte offset of a
 stream. A receiver could use the current offset of data consumed to
 determine the flow control offset to be advertised. A receiver MAY
 send MAX_STREAM_DATA frames in multiple packets in order to make sure
 that the sender receives an update before running out of flow control
 credit, even if one of the packets is lost.

 A receiver advertises credit for a connection by sending a MAX_DATA
 frame, which indicates the maximum of the sum of the absolute byte
 offsets of all streams. A receiver maintains a cumulative sum of
 bytes received on all streams, which is used to check for flow
 control violations. A receiver might use a sum of bytes consumed on
 all streams to determine the maximum data limit to be advertised.

 A receiver can advertise a larger offset by sending MAX_STREAM_DATA
 or MAX_DATA frames. Once a receiver advertises an offset, it MAY
 advertise a smaller offset, but this has no effect.

 A receiver MUST close the connection with a FLOW_CONTROL_ERROR error
 (Section 11) if the sender violates the advertised connection or
 stream data limits.

 A sender MUST ignore any MAX_STREAM_DATA or MAX_DATA frames that do
 not increase flow control limits.

 If a sender runs out of flow control credit, it will be unable to
 send new data and is considered blocked. A sender SHOULD send a
 STREAM_DATA_BLOCKED or DATA_BLOCKED frame to indicate it has data to
 write but is blocked by flow control limits. If a sender is blocked
 for a period longer than the idle timeout (Section 10.2), the
 connection might be closed even when data is available for
 transmission. To keep the connection from closing, a sender that is
 flow control limited SHOULD periodically send a STREAM_DATA_BLOCKED
 or DATA_BLOCKED frame when it has no ack-eliciting packets in flight.

4.2 . Flow Credit Increments

 Implementations decide when and how much credit to advertise in
 MAX_STREAM_DATA and MAX_DATA frames, but this section offers a few
 considerations.

 To avoid blocking a sender, a receiver can send a MAX_STREAM_DATA or
 MAX_DATA frame multiple times within a round trip or send it early
 enough to allow for recovery from loss of the frame.

Iyengar & Thomson Expires 12 December 2020 [Page 24]

Internet-Draft QUIC Transport Protocol June 2020

 Control frames contribute to connection overhead. Therefore,
 frequently sending MAX_STREAM_DATA and MAX_DATA frames with small
 changes is undesirable. On the other hand, if updates are less
 frequent, larger increments to limits are necessary to avoid blocking
 a sender, requiring larger resource commitments at the receiver.
 There is a trade-off between resource commitment and overhead when
 determining how large a limit is advertised.

 A receiver can use an autotuning mechanism to tune the frequency and
 amount of advertised additional credit based on a round-trip time
 estimate and the rate at which the receiving application consumes
 data, similar to common TCP implementations. As an optimization, an
 endpoint could send frames related to flow control only when there
 are other frames to send or when a peer is blocked, ensuring that
 flow control does not cause extra packets to be sent.

 A blocked sender is not required to send STREAM_DATA_BLOCKED or
 DATA_BLOCKED frames. Therefore, a receiver MUST NOT wait for a
 STREAM_DATA_BLOCKED or DATA_BLOCKED frame before sending a
 MAX_STREAM_DATA or MAX_DATA frame; doing so could result in the
 sender being blocked for the rest of the connection. Even if the
 sender sends these frames, waiting for them will result in the sender
 being blocked for at least an entire round trip.

 When a sender receives credit after being blocked, it might be able
 to send a large amount of data in response, resulting in short-term
 congestion; see Section 6.9 in [QUIC-RECOVERY] for a discussion of
 how a sender can avoid this congestion.

4.3 . Handling Stream Cancellation

 Endpoints need to eventually agree on the amount of flow control
 credit that has been consumed, to avoid either exceeding flow control
 limits or deadlocking.

 On receipt of a RESET_STREAM frame, an endpoint will tear down state
 for the matching stream and ignore further data arriving on that
 stream. Without the offset included in RESET_STREAM, the two
 endpoints could disagree on the number of bytes that count towards
 connection flow control.

 To remedy this issue, a RESET_STREAM frame (Section 19.4) includes
 the final size of data sent on the stream. On receiving a
 RESET_STREAM frame, a receiver definitively knows how many bytes were
 sent on that stream before the RESET_STREAM frame, and the receiver
 MUST use the final size of the stream to account for all bytes sent
 on the stream in its connection level flow controller.

Iyengar & Thomson Expires 12 December 2020 [Page 25]

Internet-Draft QUIC Transport Protocol June 2020

 RESET_STREAM terminates one direction of a stream abruptly. For a
 bidirectional stream, RESET_STREAM has no effect on data flow in the
 opposite direction. Both endpoints MUST maintain flow control state
 for the stream in the unterminated direction until that direction
 enters a terminal state, or until one of the endpoints sends
 CONNECTION_CLOSE.

4.4 . Stream Final Size

 The final size is the amount of flow control credit that is consumed
 by a stream. Assuming that every contiguous byte on the stream was
 sent once, the final size is the number of bytes sent. More
 generally, this is one higher than the offset of the byte with the
 largest offset sent on the stream, or zero if no bytes were sent.

 The final size of a stream is always signaled to the recipient. The
 final size is the sum of the Offset and Length fields of a STREAM
 frame with a FIN flag, noting that these fields might be implicit.
 Alternatively, the Final Size field of a RESET_STREAM frame carries
 this value. This ensures that all ways that a stream can be closed
 result in the number of bytes on the stream being reliably
 transmitted. This guarantees that both endpoints agree on how much
 flow control credit was consumed by the stream.

 An endpoint will know the final size for a stream when the receiving
 part of the stream enters the "Size Known" or "Reset Recvd" state
 (Section 3).

 An endpoint MUST NOT send data on a stream at or beyond the final
 size.

 Once a final size for a stream is known, it cannot change. If a
 RESET_STREAM or STREAM frame is received indicating a change in the
 final size for the stream, an endpoint SHOULD respond with a
 FINAL_SIZE_ERROR error; see Section 11 . A receiver SHOULD treat
 receipt of data at or beyond the final size as a FINAL_SIZE_ERROR
 error, even after a stream is closed. Generating these errors is not
 mandatory, but only because requiring that an endpoint generate these
 errors also means that the endpoint needs to maintain the final size
 state for closed streams, which could mean a significant state
 commitment.

Iyengar & Thomson Expires 12 December 2020 [Page 26]

Internet-Draft QUIC Transport Protocol June 2020

4.5 . Controlling Concurrency

 An endpoint limits the cumulative number of incoming streams a peer
 can open. Only streams with a stream ID less than (max_stream * 4 +
 initial_stream_id_for_type) can be opened; see Table 5. Initial
 limits are set in the transport parameters (see Section 18.2) and
 subsequently limits are advertised using MAX_STREAMS frames
 (Section 19.11). Separate limits apply to unidirectional and
 bidirectional streams.

 If a max_streams transport parameter or MAX_STREAMS frame is received
 with a value greater than 2^60, this would allow a maximum stream ID
 that cannot be expressed as a variable-length integer; see
 Section 16 . If either is received, the connection MUST be closed
 immediately with a connection error of type STREAM_LIMIT_ERROR; see
 Section 10.3 .

 Endpoints MUST NOT exceed the limit set by their peer. An endpoint
 that receives a frame with a stream ID exceeding the limit it has
 sent MUST treat this as a connection error of type STREAM_LIMIT_ERROR
 (Section 11).

 Once a receiver advertises a stream limit using the MAX_STREAMS
 frame, advertising a smaller limit has no effect. A receiver MUST
 ignore any MAX_STREAMS frame that does not increase the stream limit.

 As with stream and connection flow control, this document leaves when
 and how many streams to advertise to a peer via MAX_STREAMS to
 implementations. Implementations might choose to increase limits as
 streams close to keep the number of streams available to peers
 roughly consistent.

 An endpoint that is unable to open a new stream due to the peer’s
 limits SHOULD send a STREAMS_BLOCKED frame (Section 19.14). This
 signal is considered useful for debugging. An endpoint MUST NOT wait
 to receive this signal before advertising additional credit, since
 doing so will mean that the peer will be blocked for at least an
 entire round trip, and potentially for longer if the peer chooses to
 not send STREAMS_BLOCKED frames.

5. Connections

 QUIC’s connection establishment combines version negotiation with the
 cryptographic and transport handshakes to reduce connection
 establishment latency, as described in Section 7 . Once established,
 a connection may migrate to a different IP or port at either endpoint
 as described in Section 9 . Finally, a connection may be terminated
 by either endpoint, as described in Section 10 .

Iyengar & Thomson Expires 12 December 2020 [Page 27]

Internet-Draft QUIC Transport Protocol June 2020

5.1 . Connection ID

 Each connection possesses a set of connection identifiers, or
 connection IDs, each of which can identify the connection.
 Connection IDs are independently selected by endpoints; each endpoint
 selects the connection IDs that its peer uses.

 The primary function of a connection ID is to ensure that changes in
 addressing at lower protocol layers (UDP, IP) don’t cause packets for
 a QUIC connection to be delivered to the wrong endpoint. Each
 endpoint selects connection IDs using an implementation-specific (and
 perhaps deployment-specific) method which will allow packets with
 that connection ID to be routed back to the endpoint and to be
 identified by the endpoint upon receipt.

 Connection IDs MUST NOT contain any information that can be used by
 an external observer (that is, one that does not cooperate with the
 issuer) to correlate them with other connection IDs for the same
 connection. As a trivial example, this means the same connection ID
 MUST NOT be issued more than once on the same connection.

 Packets with long headers include Source Connection ID and
 Destination Connection ID fields. These fields are used to set the
 connection IDs for new connections; see Section 7.2 for details.

 Packets with short headers (Section 17.3) only include the
 Destination Connection ID and omit the explicit length. The length
 of the Destination Connection ID field is expected to be known to
 endpoints. Endpoints using a load balancer that routes based on
 connection ID could agree with the load balancer on a fixed length
 for connection IDs, or agree on an encoding scheme. A fixed portion
 could encode an explicit length, which allows the entire connection
 ID to vary in length and still be used by the load balancer.

 A Version Negotiation (Section 17.2.1) packet echoes the connection
 IDs selected by the client, both to ensure correct routing toward the
 client and to allow the client to validate that the packet is in
 response to an Initial packet.

 A zero-length connection ID can be used when a connection ID is not
 needed to route to the correct endpoint. However, multiplexing
 connections on the same local IP address and port while using zero-
 length connection IDs will cause failures in the presence of peer
 connection migration, NAT rebinding, and client port reuse; and
 therefore MUST NOT be done unless an endpoint is certain that those
 protocol features are not in use.

Iyengar & Thomson Expires 12 December 2020 [Page 28]

Internet-Draft QUIC Transport Protocol June 2020

 When an endpoint uses a non-zero-length connection ID, it needs to
 ensure that the peer has a supply of connection IDs from which to
 choose for packets sent to the endpoint. These connection IDs are
 supplied by the endpoint using the NEW_CONNECTION_ID frame
 (Section 19.15).

5.1.1 . Issuing Connection IDs

 Each Connection ID has an associated sequence number to assist in
 detecting when NEW_CONNECTION_ID or RETIRE_CONNECTION_ID frames refer
 to the same value. The initial connection ID issued by an endpoint
 is sent in the Source Connection ID field of the long packet header
 (Section 17.2) during the handshake. The sequence number of the
 initial connection ID is 0. If the preferred_address transport
 parameter is sent, the sequence number of the supplied connection ID
 is 1.

 Additional connection IDs are communicated to the peer using
 NEW_CONNECTION_ID frames (Section 19.15). The sequence number on
 each newly-issued connection ID MUST increase by 1. The connection
 ID randomly selected by the client in the Initial packet and any
 connection ID provided by a Retry packet are not assigned sequence
 numbers unless a server opts to retain them as its initial connection
 ID.

 When an endpoint issues a connection ID, it MUST accept packets that
 carry this connection ID for the duration of the connection or until
 its peer invalidates the connection ID via a RETIRE_CONNECTION_ID
 frame (Section 19.16). Connection IDs that are issued and not
 retired are considered active; any active connection ID is valid for
 use with the current connection at any time, in any packet type.
 This includes the connection ID issued by the server via the
 preferred_address transport parameter.

 An endpoint SHOULD ensure that its peer has a sufficient number of
 available and unused connection IDs. Endpoints advertise the number
 of active connection IDs they are willing to maintain using the
 active_connection_id_limit transport parameter. An endpoint MUST NOT
 provide more connection IDs than the peer’s limit. An endpoint MAY
 send connection IDs that temporarily exceed a peer’s limit if the
 NEW_CONNECTION_ID frame also requires the retirement of any excess,
 by including a sufficiently large value in the Retire Prior To field.

Iyengar & Thomson Expires 12 December 2020 [Page 29]

Internet-Draft QUIC Transport Protocol June 2020

 A NEW_CONNECTION_ID frame might cause an endpoint to add some active
 connection IDs and retire others based on the value of the Retire
 Prior To field. After processing a NEW_CONNECTION_ID frame and
 adding and retiring active connection IDs, if the number of active
 connection IDs exceeds the value advertised in its
 active_connection_id_limit transport parameter, an endpoint MUST
 close the connection with an error of type CONNECTION_ID_LIMIT_ERROR.

 An endpoint SHOULD supply a new connection ID when the peer retires a
 connection ID. If an endpoint provided fewer connection IDs than the
 peer’s active_connection_id_limit, it MAY supply a new connection ID
 when it receives a packet with a previously unused connection ID. An
 endpoint MAY limit the frequency or the total number of connection
 IDs issued for each connection to avoid the risk of running out of
 connection IDs; see Section 10.4.2 . An endpoint MAY also limit the
 issuance of connection IDs to reduce the amount of per-path state it
 maintains, such as path validation status, as its peer might interact
 with it over as many paths as there are issued connection IDs.

 An endpoint that initiates migration and requires non-zero-length
 connection IDs SHOULD ensure that the pool of connection IDs
 available to its peer allows the peer to use a new connection ID on
 migration, as the peer will close the connection if the pool is
 exhausted.

5.1.2 . Consuming and Retiring Connection IDs

 An endpoint can change the connection ID it uses for a peer to
 another available one at any time during the connection. An endpoint
 consumes connection IDs in response to a migrating peer; see
 Section 9.5 for more.

 An endpoint maintains a set of connection IDs received from its peer,
 any of which it can use when sending packets. When the endpoint
 wishes to remove a connection ID from use, it sends a
 RETIRE_CONNECTION_ID frame to its peer. Sending a
 RETIRE_CONNECTION_ID frame indicates that the connection ID will not
 be used again and requests that the peer replace it with a new
 connection ID using a NEW_CONNECTION_ID frame.

 As discussed in Section 9.5 , endpoints limit the use of a connection
 ID to packets sent from a single local address to a single
 destination address. Endpoints SHOULD retire connection IDs when
 they are no longer actively using either the local or destination
 address for which the connection ID was used.

Iyengar & Thomson Expires 12 December 2020 [Page 30]

Internet-Draft QUIC Transport Protocol June 2020

 An endpoint might need to stop accepting previously issued connection
 IDs in certain circumstances. Such an endpoint can cause its peer to
 retire connection IDs by sending a NEW_CONNECTION_ID frame with an
 increased Retire Prior To field. The endpoint SHOULD continue to
 accept the previously issued connection IDs until they are retired by
 the peer. If the endpoint can no longer process the indicated
 connection IDs, it MAY close the connection.

 Upon receipt of an increased Retire Prior To field, the peer MUST
 stop using the corresponding connection IDs and retire them with
 RETIRE_CONNECTION_ID frames before adding the newly provided
 connection ID to the set of active connection IDs. This ordering
 allows an endpoint to replace all active connection IDs without the
 possibility of a peer having no available connection IDs and without
 exceeding the limit the peer sets in the active_connection_id_limit
 transport parameter; see Section 18.2 . Failure to cease using the
 connection IDs when requested can result in connection failures, as
 the issuing endpoint might be unable to continue using the connection
 IDs with the active connection.

 An endpoint SHOULD limit the number of connection IDs it has retired
 locally and have not yet been acknowledged. An endpoint SHOULD allow
 for sending and tracking a number of RETIRE_CONNECTION_ID frames of
 at least twice the active_connection_id limit. An endpoint MUST NOT
 forget a connection ID without retiring it, though it MAY choose to
 treat having connection IDs in need of retirement that exceed this
 limit as a connection error of type CONNECTION_ID_LIMIT_ERROR.

 Endpoints SHOULD NOT issue updates of the Retire Prior To field
 before receiving RETIRE_CONNECTION_ID frames that retire all
 connection IDs indicated by the previous Retire Prior To value.

5.2 . Matching Packets to Connections

 Incoming packets are classified on receipt. Packets can either be
 associated with an existing connection, or - for servers -
 potentially create a new connection.

 Endpoints try to associate a packet with an existing connection. If
 the packet has a non-zero-length Destination Connection ID
 corresponding to an existing connection, QUIC processes that packet
 accordingly. Note that more than one connection ID can be associated
 with a connection; see Section 5.1 .

 If the Destination Connection ID is zero length and the addressing
 information in the packet matches the addressing information the
 endpoint uses to identify a connection with a zero-length connection
 ID, QUIC processes the packet as part of that connection. An

Iyengar & Thomson Expires 12 December 2020 [Page 31]

Internet-Draft QUIC Transport Protocol June 2020

 endpoint can use just destination IP and port or both source and
 destination addresses for identification, though this makes
 connections fragile as described in Section 5.1 .

 Endpoints can send a Stateless Reset (Section 10.4) for any packets
 that cannot be attributed to an existing connection. A stateless
 reset allows a peer to more quickly identify when a connection
 becomes unusable.

 Packets that are matched to an existing connection are discarded if
 the packets are inconsistent with the state of that connection. For
 example, packets are discarded if they indicate a different protocol
 version than that of the connection, or if the removal of packet
 protection is unsuccessful once the expected keys are available.

 Invalid packets without packet protection, such as Initial, Retry, or
 Version Negotiation, MAY be discarded. An endpoint MUST generate a
 connection error if it commits changes to state before discovering an
 error.

5.2.1 . Client Packet Handling

 Valid packets sent to clients always include a Destination Connection
 ID that matches a value the client selects. Clients that choose to
 receive zero-length connection IDs can use the local address and port
 to identify a connection. Packets that don’t match an existing
 connection are discarded.

 Due to packet reordering or loss, a client might receive packets for
 a connection that are encrypted with a key it has not yet computed.
 The client MAY drop these packets, or MAY buffer them in anticipation
 of later packets that allow it to compute the key.

 If a client receives a packet that has an unsupported version, it
 MUST discard that packet.

5.2.2 . Server Packet Handling

 If a server receives a packet that indicates an unsupported version
 but is large enough to initiate a new connection for any one
 supported version, the server SHOULD send a Version Negotiation
 packet as described in Section 6.1 . Servers MAY limit the number of
 packets that it responds to with a Version Negotiation packet.
 Servers MUST drop smaller packets that specify unsupported versions.

 The first packet for an unsupported version can use different
 semantics and encodings for any version-specific field. In
 particular, different packet protection keys might be used for

Iyengar & Thomson Expires 12 December 2020 [Page 32]

Internet-Draft QUIC Transport Protocol June 2020

 different versions. Servers that do not support a particular version
 are unlikely to be able to decrypt the payload of the packet.
 Servers SHOULD NOT attempt to decode or decrypt a packet from an
 unknown version, but instead send a Version Negotiation packet,
 provided that the packet is sufficiently long.

 Packets with a supported version, or no version field, are matched to
 a connection using the connection ID or - for packets with zero-
 length connection IDs - the local address and port. If the packet
 doesn’t match an existing connection, the server continues below.

 If the packet is an Initial packet fully conforming with the
 specification, the server proceeds with the handshake (Section 7).
 This commits the server to the version that the client selected.

 If a server refuses to accept a new connection, it SHOULD send an
 Initial packet containing a CONNECTION_CLOSE frame with error code
 CONNECTION_REFUSED.

 If the packet is a 0-RTT packet, the server MAY buffer a limited
 number of these packets in anticipation of a late-arriving Initial
 packet. Clients are not able to send Handshake packets prior to
 receiving a server response, so servers SHOULD ignore any such
 packets.

 Servers MUST drop incoming packets under all other circumstances.

5.2.3 . Considerations for Simple Load Balancers

 A server deployment could load balance among servers using only
 source and destination IP addresses and ports. Changes to the
 client’s IP address or port could result in packets being forwarded
 to the wrong server. Such a server deployment could use one of the
 following methods for connection continuity when a client’s address
 changes.

 * Servers could use an out-of-band mechanism to forward packets to
 the correct server based on Connection ID.

 * If servers can use a dedicated server IP address or port, other
 than the one that the client initially connects to, they could use
 the preferred_address transport parameter to request that clients
 move connections to that dedicated address. Note that clients
 could choose not to use the preferred address.

 A server in a deployment that does not implement a solution to
 maintain connection continuity when the client address changes SHOULD
 indicate migration is not supported using the

Iyengar & Thomson Expires 12 December 2020 [Page 33]

Internet-Draft QUIC Transport Protocol June 2020

 disable_active_migration transport parameter. The
 disable_active_migration transport parameter does not prohibit
 connection migration after a client has acted on a preferred_address
 transport parameter.

 Server deployments that use this simple form of load balancing MUST
 avoid the creation of a stateless reset oracle; see Section 21.9 .

5.3 . Life of a QUIC Connection

 A QUIC connection is a stateful interaction between a client and
 server, the primary purpose of which is to support the exchange of
 data by an application protocol. Streams (Section 2) are the primary
 means by which an application protocol exchanges information.

 Each connection starts with a handshake phase, during which client
 and server establish a shared secret using the cryptographic
 handshake protocol [QUIC-TLS] and negotiate the application protocol.
 The handshake (Section 7) confirms that both endpoints are willing to
 communicate (Section 8.1) and establishes parameters for the
 connection (Section 7.4).

 An application protocol can also operate in a limited fashion during
 the handshake phase. 0-RTT allows application data to be sent by a
 client before receiving any response from the server. However, 0-RTT
 lacks certain key security guarantees. In particular, there is no
 protection against replay attacks in 0-RTT; see [QUIC-TLS].
 Separately, a server can also send application data to a client
 before it receives the final cryptographic handshake messages that
 allow it to confirm the identity and liveness of the client. These
 capabilities allow an application protocol to offer the option to
 trade some security guarantees for reduced latency.

 The use of connection IDs (Section 5.1) allows connections to migrate
 to a new network path, both as a direct choice of an endpoint and
 when forced by a change in a middlebox. Section 9 describes
 mitigations for the security and privacy issues associated with
 migration.

 For connections that are no longer needed or desired, there are
 several ways for a client and server to terminate a connection
 (Section 10).

Iyengar & Thomson Expires 12 December 2020 [Page 34]

Internet-Draft QUIC Transport Protocol June 2020

5.4 . Required Operations on Connections

 There are certain operations that an application MUST be able to
 perform when interacting with the QUIC transport. This document does
 not specify an API, but any implementation of this version of QUIC
 MUST expose the ability to perform the operations described in this
 section on a QUIC connection.

 When implementing the client role, applications need to be able to:

 * open a connection, which begins the exchange described in
 Section 7 ;

 * enable 0-RTT when available; and

 * be informed when 0-RTT has been accepted or rejected by a server.

 When implementing the server role, applications need to be able to:

 * listen for incoming connections, which prepares for the exchange
 described in Section 7 ;

 * if Early Data is supported, embed application-controlled data in
 the TLS resumption ticket sent to the client; and

 * if Early Data is supported, retrieve application-controlled data
 from the client’s resumption ticket and enable rejecting Early
 Data based on that information.

 In either role, applications need to be able to:

 * configure minimum values for the initial number of permitted
 streams of each type, as communicated in the transport parameters
 (Section 7.4);

 * control resource allocation of various types, including flow
 control and the number of permitted streams of each type;

 * identify whether the handshake has completed successfully or is
 still ongoing;

 * keep a connection from silently closing, either by generating PING
 frames (Section 19.2) or by requesting that the transport send
 additional frames before the idle timeout expires (Section 10.2);
 and

 * immediately close (Section 10.3) the connection.

Iyengar & Thomson Expires 12 December 2020 [Page 35]

Internet-Draft QUIC Transport Protocol June 2020

6. Version Negotiation

 Version negotiation ensures that client and server agree to a QUIC
 version that is mutually supported. A server sends a Version
 Negotiation packet in response to each packet that might initiate a
 new connection; see Section 5.2 for details.

 The size of the first packet sent by a client will determine whether
 a server sends a Version Negotiation packet. Clients that support
 multiple QUIC versions SHOULD pad the first packet they send to the
 largest of the minimum packet sizes across all versions they support.
 This ensures that the server responds if there is a mutually
 supported version.

6.1 . Sending Version Negotiation Packets

 If the version selected by the client is not acceptable to the
 server, the server responds with a Version Negotiation packet; see
 Section 17.2.1 . This includes a list of versions that the server
 will accept. An endpoint MUST NOT send a Version Negotiation packet
 in response to receiving a Version Negotiation packet.

 This system allows a server to process packets with unsupported
 versions without retaining state. Though either the Initial packet
 or the Version Negotiation packet that is sent in response could be
 lost, the client will send new packets until it successfully receives
 a response or it abandons the connection attempt. As a result, the
 client discards all state for the connection and does not send any
 more packets on the connection.

 A server MAY limit the number of Version Negotiation packets it
 sends. For instance, a server that is able to recognize packets as
 0-RTT might choose not to send Version Negotiation packets in
 response to 0-RTT packets with the expectation that it will
 eventually receive an Initial packet.

6.2 . Handling Version Negotiation Packets

 Version Negotiation packets are designed to allow future versions of
 QUIC to negotiate the version in use between endpoints. Future
 versions of QUIC might change how implementations that support
 multiple versions of QUIC react to Version Negotiation packets when
 attempting to establish a connection using this version.

 A client that supports only this version of QUIC MUST abandon the
 current connection attempt if it receives a Version Negotiation
 packet, with the following two exceptions. A client MUST discard any
 Version Negotiation packet if it has received and successfully

Iyengar & Thomson Expires 12 December 2020 [Page 36]

Internet-Draft QUIC Transport Protocol June 2020

 processed any other packet, including an earlier Version Negotiation
 packet. A client MUST discard a Version Negotiation packet that
 lists the QUIC version selected by the client.

 How to perform version negotiation is left as future work defined by
 future versions of QUIC. In particular, that future work will ensure
 robustness against version downgrade attacks; see Section 21.10 .

6.2.1 . Version Negotiation Between Draft Versions

 [[RFC editor: please remove this section before publication.]]

 When a draft implementation receives a Version Negotiation packet, it
 MAY use it to attempt a new connection with one of the versions
 listed in the packet, instead of abandoning the current connection
 attempt; see Section 6.2 .

 The client MUST check that the Destination and Source Connection ID
 fields match the Source and Destination Connection ID fields in a
 packet that the client sent. If this check fails, the packet MUST be
 discarded.

 Once the Version Negotiation packet is determined to be valid, the
 client then selects an acceptable protocol version from the list
 provided by the server. The client then attempts to create a new
 connection using that version. The new connection MUST use a new
 random Destination Connection ID different from the one it had
 previously sent.

 Note that this mechanism does not protect against downgrade attacks
 and MUST NOT be used outside of draft implementations.

6.3 . Using Reserved Versions

 For a server to use a new version in the future, clients need to
 correctly handle unsupported versions. Some version numbers
 (0x?a?a?a?a as defined in Section 15) are reserved for inclusion in
 fields that contain version numbers.

 Endpoints MAY add reserved versions to any field where unknown or
 unsupported versions are ignored to test that a peer correctly
 ignores the value. For instance, an endpoint could include a
 reserved version in a Version Negotiation packet; see Section 17.2.1 .
 Endpoints MAY send packets with a reserved version to test that a
 peer correctly discards the packet.

Iyengar & Thomson Expires 12 December 2020 [Page 37]

Internet-Draft QUIC Transport Protocol June 2020

7. Cryptographic and Transport Handshake

 QUIC relies on a combined cryptographic and transport handshake to
 minimize connection establishment latency. QUIC uses the CRYPTO
 frame Section 19.6 to transmit the cryptographic handshake. Version
 0x00000001 of QUIC uses TLS as described in [QUIC-TLS]; a different
 QUIC version number could indicate that a different cryptographic
 handshake protocol is in use.

 QUIC provides reliable, ordered delivery of the cryptographic
 handshake data. QUIC packet protection is used to encrypt as much of
 the handshake protocol as possible. The cryptographic handshake MUST
 provide the following properties:

 * authenticated key exchange, where

 - a server is always authenticated,

 - a client is optionally authenticated,

 - every connection produces distinct and unrelated keys,

 - keying material is usable for packet protection for both 0-RTT
 and 1-RTT packets, and

 - 1-RTT keys have forward secrecy

 * authenticated values for transport parameters of both endpoints,
 and confidentiality protection for server transport parameters
 (see Section 7.4)

 * authenticated negotiation of an application protocol (TLS uses
 ALPN [RFC7301] for this purpose)

 An endpoint can verify support for Explicit Congestion Notification
 (ECN) in the first packets it sends, as described in Section 13.4.2 .

 The CRYPTO frame can be sent in different packet number spaces
 (Section 12.3). The offsets used by CRYPTO frames to ensure ordered
 delivery of cryptographic handshake data start from zero in each
 packet number space.

 Endpoints MUST explicitly negotiate an application protocol. This
 avoids situations where there is a disagreement about the protocol
 that is in use.

Iyengar & Thomson Expires 12 December 2020 [Page 38]

https://tools.ietf.org/pdf/rfc7301

Internet-Draft QUIC Transport Protocol June 2020

7.1 . Example Handshake Flows

 Details of how TLS is integrated with QUIC are provided in
 [QUIC-TLS], but some examples are provided here. An extension of
 this exchange to support client address validation is shown in
 Section 8.1.2 .

 Once any address validation exchanges are complete, the cryptographic
 handshake is used to agree on cryptographic keys. The cryptographic
 handshake is carried in Initial (Section 17.2.2) and Handshake
 (Section 17.2.4) packets.

 Figure 4 provides an overview of the 1-RTT handshake. Each line
 shows a QUIC packet with the packet type and packet number shown
 first, followed by the frames that are typically contained in those
 packets. So, for instance the first packet is of type Initial, with
 packet number 0, and contains a CRYPTO frame carrying the
 ClientHello.

 Multiple QUIC packets - even of different packet types - can be
 coalesced into a single UDP datagram; see Section 12.2 . As a result,
 this handshake may consist of as few as 4 UDP datagrams, or any
 number more (subject to limits inherent to the protocol, such as
 congestion control or anti-amplification). For instance, the
 server’s first flight contains Initial packets, Handshake packets,
 and "0.5-RTT data" in 1-RTT packets with a short header.

 Client Server

 Initial[0]: CRYPTO[CH] ->

 Initial[0]: CRYPTO[SH] ACK[0]
 Handshake[0]: CRYPTO[EE, CERT, CV, FIN]
 <- 1-RTT[0]: STREAM[1, "..."]

 Initial[1]: ACK[0]
 Handshake[0]: CRYPTO[FIN], ACK[0]
 1-RTT[0]: STREAM[0, "..."], ACK[0] ->

 Handshake[1]: ACK[0]
 <- 1-RTT[1]: STREAM[3, "..."], ACK[0]

 Figure 4: Example 1-RTT Handshake

 Figure 5 shows an example of a connection with a 0-RTT handshake and
 a single packet of 0-RTT data. Note that as described in
 Section 12.3 , the server acknowledges 0-RTT data in 1-RTT packets,
 and the client sends 1-RTT packets in the same packet number space.

Iyengar & Thomson Expires 12 December 2020 [Page 39]

Internet-Draft QUIC Transport Protocol June 2020

 Client Server

 Initial[0]: CRYPTO[CH]
 0-RTT[0]: STREAM[0, "..."] ->

 Initial[0]: CRYPTO[SH] ACK[0]
 Handshake[0] CRYPTO[EE, FIN]
 <- 1-RTT[0]: STREAM[1, "..."] ACK[0]

 Initial[1]: ACK[0]
 Handshake[0]: CRYPTO[FIN], ACK[0]
 1-RTT[1]: STREAM[0, "..."] ACK[0] ->

 Handshake[1]: ACK[0]
 <- 1-RTT[1]: STREAM[3, "..."], ACK[1]

 Figure 5: Example 0-RTT Handshake

7.2 . Negotiating Connection IDs

 A connection ID is used to ensure consistent routing of packets, as
 described in Section 5.1 . The long header contains two connection
 IDs: the Destination Connection ID is chosen by the recipient of the
 packet and is used to provide consistent routing; the Source
 Connection ID is used to set the Destination Connection ID used by
 the peer.

 During the handshake, packets with the long header (Section 17.2) are
 used to establish the connection IDs in each direction. Each
 endpoint uses the Source Connection ID field to specify the
 connection ID that is used in the Destination Connection ID field of
 packets being sent to them. Upon receiving a packet, each endpoint
 sets the Destination Connection ID it sends to match the value of the
 Source Connection ID that it receives.

 When an Initial packet is sent by a client that has not previously
 received an Initial or Retry packet from the server, the client
 populates the Destination Connection ID field with an unpredictable
 value. This Destination Connection ID MUST be at least 8 bytes in
 length. Until a packet is received from the server, the client MUST
 use the same Destination Connection ID value on all packets in this
 connection. This Destination Connection ID is used to determine
 packet protection keys for Initial packets.

 The client populates the Source Connection ID field with a value of
 its choosing and sets the Source Connection ID Length field to
 indicate the length.

Iyengar & Thomson Expires 12 December 2020 [Page 40]

Internet-Draft QUIC Transport Protocol June 2020

 The first flight of 0-RTT packets use the same Destination Connection
 ID and Source Connection ID values as the client’s first Initial
 packet.

 Upon first receiving an Initial or Retry packet from the server, the
 client uses the Source Connection ID supplied by the server as the
 Destination Connection ID for subsequent packets, including any 0-RTT
 packets. This means that a client might have to change the
 connection ID it sets in the Destination Connection ID field twice
 during connection establishment: once in response to a Retry, and
 once in response to an Initial packet from the server. Once a client
 has received a valid Initial packet from the server, it MUST discard
 any subsequent packet it receives with a different Source Connection
 ID.

 A client MUST change the Destination Connection ID it uses for
 sending packets in response to only the first received Initial or
 Retry packet. A server MUST set the Destination Connection ID it
 uses for sending packets based on the first received Initial packet.
 Any further changes to the Destination Connection ID are only
 permitted if the values are taken from any received NEW_CONNECTION_ID
 frames; if subsequent Initial packets include a different Source
 Connection ID, they MUST be discarded. This avoids unpredictable
 outcomes that might otherwise result from stateless processing of
 multiple Initial packets with different Source Connection IDs.

 The Destination Connection ID that an endpoint sends can change over
 the lifetime of a connection, especially in response to connection
 migration (Section 9); see Section 5.1.1 for details.

7.3 . Authenticating Connection IDs

 The choice each endpoint makes about connection IDs during the
 handshake is authenticated by including all values in transport
 parameters; see Section 7.4 . This ensures that all connection IDs
 used for the handshake are also authenticated by the cryptographic
 handshake.

 Each endpoint includes the value of the Source Connection ID field
 from the first Initial packet it sent in the
 initial_source_connection_id transport parameter; see Section 18.2 .
 A server includes the Destination Connection ID field from the first
 Initial packet it received from the client in the
 original_destination_connection_id transport parameter; if the server
 sent a Retry packet this refers to the first Initial packet received
 before sending the Retry packet. If it sends a Retry packet, a
 server also includes the Source Connection ID field from the Retry
 packet in the retry_source_connection_id transport parameter.

Iyengar & Thomson Expires 12 December 2020 [Page 41]

Internet-Draft QUIC Transport Protocol June 2020

 The values provided by a peer for these transport parameters MUST
 match the values that an endpoint used in the Destination and Source
 Connection ID fields of Initial packets that it sent. Including
 connection ID values in transport parameters and verifying them
 ensures that that an attacker cannot influence the choice of
 connection ID for a successful connection by injecting packets
 carrying attacker-chosen connection IDs during the handshake.

 An endpoint MUST treat absence of the initial_source_connection_id
 transport parameter from either endpoint or absence of the
 original_destination_connection_id transport parameter from the
 server as a connection error of type TRANSPORT_PARAMETER_ERROR.

 An endpoint MUST treat the following as a connection error of type
 TRANSPORT_PARAMETER_ERROR or PROTOCOL_VIOLATION:

 * absence of the retry_source_connection_id transport parameter from
 the server after receiving a Retry packet,

 * presence of the retry_source_connection_id transport parameter
 when no Retry packet was received, or

 * a mismatch between values received from a peer in these transport
 parameters and the value sent in the corresponding Destination or
 Source Connection ID fields of Initial packets.

 If a zero-length connection ID is selected, the corresponding
 transport parameter is included with a zero-length value.

 Figure 6 shows the connection IDs (with DCID=Destination Connection
 ID, SCID=Source Connection ID) that are used in a complete handshake.
 The exchange of Initial packets is shown, plus the later exchange of
 1-RTT packets that includes the connection ID established during the
 handshake.

 Client Server

 Initial: DCID=S1, SCID=C1 ->
 <- Initial: DCID=C1, SCID=S3
 ...
 1-RTT: DCID=S3 ->
 <- 1-RTT: DCID=C1

 Figure 6: Use of Connection IDs in a Handshake

 Figure 7 shows a similar handshake that includes a Retry packet.

Iyengar & Thomson Expires 12 December 2020 [Page 42]

Internet-Draft QUIC Transport Protocol June 2020

 Client Server

 Initial: DCID=S1, SCID=C1 ->
 <- Retry: DCID=C1, SCID=S2
 Initial: DCID=S2, SCID=C1 ->
 <- Initial: DCID=C1, SCID=S3
 ...
 1-RTT: DCID=S3 ->
 <- 1-RTT: DCID=C1

 Figure 7: Use of Connection IDs in a Handshake with Retry

 In both cases (Figure 6 and Figure 7), the client sets the value of
 the initial_source_connection_id transport parameter to "C1".

 When the handshake does not include a Retry (Figure 6), the server
 sets original_destination_connection_id to "S1" and
 initial_source_connection_id to "S3". In this case, the server does
 not include a retry_source_connection_id transport parameter.

 When the handshake includes a Retry (Figure 7), the server sets
 original_destination_connection_id to "S1",
 retry_source_connection_id to "S2", and initial_source_connection_id
 to "S3".

 Each endpoint validates transport parameters set by the peer. The
 client confirms that the retry_source_connection_id transport
 parameter is absent if it did not process a Retry packet.

7.4 . Transport Parameters

 During connection establishment, both endpoints make authenticated
 declarations of their transport parameters. Endpoints are required
 to comply with the restrictions that each parameter defines; the
 description of each parameter includes rules for its handling.

 Transport parameters are declarations that are made unilaterally by
 each endpoint. Each endpoint can choose values for transport
 parameters independent of the values chosen by its peer.

 The encoding of the transport parameters is detailed in Section 18 .

 QUIC includes the encoded transport parameters in the cryptographic
 handshake. Once the handshake completes, the transport parameters
 declared by the peer are available. Each endpoint validates the
 value provided by its peer.

Iyengar & Thomson Expires 12 December 2020 [Page 43]

Internet-Draft QUIC Transport Protocol June 2020

 Definitions for each of the defined transport parameters are included
 in Section 18.2 .

 An endpoint MUST treat receipt of a transport parameter with an
 invalid value as a connection error of type
 TRANSPORT_PARAMETER_ERROR.

 An endpoint MUST NOT send a parameter more than once in a given
 transport parameters extension. An endpoint SHOULD treat receipt of
 duplicate transport parameters as a connection error of type
 TRANSPORT_PARAMETER_ERROR.

 Endpoints use transport parameters to authenticate the negotiation of
 connection IDs during the handshake; see Section 7.3 .

7.4.1 . Values of Transport Parameters for 0-RTT

 Both endpoints store the value of the server transport parameters
 from a connection and apply them to any 0-RTT packets that are sent
 in subsequent connections to that peer, except for transport
 parameters that are explicitly excluded. Remembered transport
 parameters apply to the new connection until the handshake completes
 and the client starts sending 1-RTT packets. Once the handshake
 completes, the client uses the transport parameters established in
 the handshake.

 The definition of new transport parameters (Section 7.4.2) MUST
 specify whether they MUST, MAY, or MUST NOT be stored for 0-RTT. A
 client need not store a transport parameter it cannot process.

 A client MUST NOT use remembered values for the following parameters:
 ack_delay_exponent, max_ack_delay, initial_source_connection_id,
 original_destination_connection_id, preferred_address,
 retry_source_connection_id, and stateless_reset_token. The client
 MUST use the server’s new values in the handshake instead, and absent
 new values from the server, the default value.

 A client that attempts to send 0-RTT data MUST remember all other
 transport parameters used by the server. The server can remember
 these transport parameters, or store an integrity-protected copy of
 the values in the ticket and recover the information when accepting
 0-RTT data. A server uses the transport parameters in determining
 whether to accept 0-RTT data.

Iyengar & Thomson Expires 12 December 2020 [Page 44]

Internet-Draft QUIC Transport Protocol June 2020

 If 0-RTT data is accepted by the server, the server MUST NOT reduce
 any limits or alter any values that might be violated by the client
 with its 0-RTT data. In particular, a server that accepts 0-RTT data
 MUST NOT set values for the following parameters (Section 18.2) that
 are smaller than the remembered value of the parameters.

 * active_connection_id_limit

 * initial_max_data

 * initial_max_stream_data_bidi_local

 * initial_max_stream_data_bidi_remote

 * initial_max_stream_data_uni

 * initial_max_streams_bidi

 * initial_max_streams_uni

 Omitting or setting a zero value for certain transport parameters can
 result in 0-RTT data being enabled, but not usable. The applicable
 subset of transport parameters that permit sending of application
 data SHOULD be set to non-zero values for 0-RTT. This includes
 initial_max_data and either initial_max_streams_bidi and
 initial_max_stream_data_bidi_remote, or initial_max_streams_uni and
 initial_max_stream_data_uni.

 A server MUST either reject 0-RTT data or abort a handshake if the
 implied values for transport parameters cannot be supported.

 When sending frames in 0-RTT packets, a client MUST only use
 remembered transport parameters; importantly, it MUST NOT use updated
 values that it learns from the server’s updated transport parameters
 or from frames received in 1-RTT packets. Updated values of
 transport parameters from the handshake apply only to 1-RTT packets.
 For instance, flow control limits from remembered transport
 parameters apply to all 0-RTT packets even if those values are
 increased by the handshake or by frames sent in 1-RTT packets. A
 server MAY treat use of updated transport parameters in 0-RTT as a
 connection error of type PROTOCOL_VIOLATION.

Iyengar & Thomson Expires 12 December 2020 [Page 45]

Internet-Draft QUIC Transport Protocol June 2020

7.4.2 . New Transport Parameters

 New transport parameters can be used to negotiate new protocol
 behavior. An endpoint MUST ignore transport parameters that it does
 not support. Absence of a transport parameter therefore disables any
 optional protocol feature that is negotiated using the parameter. As
 described in Section 18.1 , some identifiers are reserved in order to
 exercise this requirement.

 New transport parameters can be registered according to the rules in
 Section 22.2 .

7.5 . Cryptographic Message Buffering

 Implementations need to maintain a buffer of CRYPTO data received out
 of order. Because there is no flow control of CRYPTO frames, an
 endpoint could potentially force its peer to buffer an unbounded
 amount of data.

 Implementations MUST support buffering at least 4096 bytes of data
 received in out of order CRYPTO frames. Endpoints MAY choose to
 allow more data to be buffered during the handshake. A larger limit
 during the handshake could allow for larger keys or credentials to be
 exchanged. An endpoint’s buffer size does not need to remain
 constant during the life of the connection.

 Being unable to buffer CRYPTO frames during the handshake can lead to
 a connection failure. If an endpoint’s buffer is exceeded during the
 handshake, it can expand its buffer temporarily to complete the
 handshake. If an endpoint does not expand its buffer, it MUST close
 the connection with a CRYPTO_BUFFER_EXCEEDED error code.

 Once the handshake completes, if an endpoint is unable to buffer all
 data in a CRYPTO frame, it MAY discard that CRYPTO frame and all
 CRYPTO frames received in the future, or it MAY close the connection
 with a CRYPTO_BUFFER_EXCEEDED error code. Packets containing
 discarded CRYPTO frames MUST be acknowledged because the packet has
 been received and processed by the transport even though the CRYPTO
 frame was discarded.

8. Address Validation

 Address validation ensures that an endpoint cannot be used for a
 traffic amplification attack. In such an attack, a packet is sent to
 a server with spoofed source address information that identifies a
 victim. If a server generates more or larger packets in response to
 that packet, the attacker can use the server to send more data toward
 the victim than it would be able to send on its own.

Iyengar & Thomson Expires 12 December 2020 [Page 46]

Internet-Draft QUIC Transport Protocol June 2020

 The primary defense against amplification attack is verifying that an
 endpoint is able to receive packets at the transport address that it
 claims. Address validation is performed both during connection
 establishment (see Section 8.1) and during connection migration (see
 Section 8.2).

8.1 . Address Validation During Connection Establishment

 Connection establishment implicitly provides address validation for
 both endpoints. In particular, receipt of a packet protected with
 Handshake keys confirms that the client received the Initial packet
 from the server. Once the server has successfully processed a
 Handshake packet from the client, it can consider the client address
 to have been validated.

 Prior to validating the client address, servers MUST NOT send more
 than three times as many bytes as the number of bytes they have
 received. This limits the magnitude of any amplification attack that
 can be mounted using spoofed source addresses. For the purposes of
 avoiding amplification prior to address validation, servers MUST
 count all of the payload bytes received in datagrams that are
 uniquely attributed to a single connection. This includes datagrams
 that contain packets that are successfully processed and datagrams
 that contain packets that are all discarded.

 Clients MUST ensure that UDP datagrams containing Initial packets
 have UDP payloads of at least 1200 bytes, adding padding to packets
 in the datagram as necessary. A client that sends padded datagrams
 allows the server to send more data prior to completing address
 validation.

 Loss of an Initial or Handshake packet from the server can cause a
 deadlock if the client does not send additional Initial or Handshake
 packets. A deadlock could occur when the server reaches its anti-
 amplification limit and the client has received acknowledgements for
 all the data it has sent. In this case, when the client has no
 reason to send additional packets, the server will be unable to send
 more data because it has not validated the client’s address. To
 prevent this deadlock, clients MUST send a packet on a probe timeout
 (PTO, see Section 6.2 of [QUIC-RECOVERY]). Specifically, the client
 MUST send an Initial packet in a UDP datagram that contains at least
 1200 bytes if it does not have Handshake keys, and otherwise send a
 Handshake packet.

Iyengar & Thomson Expires 12 December 2020 [Page 47]

Internet-Draft QUIC Transport Protocol June 2020

 A server might wish to validate the client address before starting
 the cryptographic handshake. QUIC uses a token in the Initial packet
 to provide address validation prior to completing the handshake.
 This token is delivered to the client during connection establishment
 with a Retry packet (see Section 8.1.2) or in a previous connection
 using the NEW_TOKEN frame (see Section 8.1.3).

 In addition to sending limits imposed prior to address validation,
 servers are also constrained in what they can send by the limits set
 by the congestion controller. Clients are only constrained by the
 congestion controller.

8.1.1 . Token Construction

 A token sent in a NEW_TOKEN frames or a Retry packet MUST be
 constructed in a way that allows the server to identify how it was
 provided to a client. These tokens are carried in the same field,
 but require different handling from servers.

8.1.2 . Address Validation using Retry Packets

 Upon receiving the client’s Initial packet, the server can request
 address validation by sending a Retry packet (Section 17.2.5)
 containing a token. This token MUST be repeated by the client in all
 Initial packets it sends for that connection after it receives the
 Retry packet. In response to processing an Initial containing a
 token, a server can either abort the connection or permit it to
 proceed.

 As long as it is not possible for an attacker to generate a valid
 token for its own address (see Section 8.1.4) and the client is able
 to return that token, it proves to the server that it received the
 token.

 A server can also use a Retry packet to defer the state and
 processing costs of connection establishment. Requiring the server
 to provide a different connection ID, along with the
 original_destination_connection_id transport parameter defined in
 Section 18.2 , forces the server to demonstrate that it, or an entity
 it cooperates with, received the original Initial packet from the
 client. Providing a different connection ID also grants a server
 some control over how subsequent packets are routed. This can be
 used to direct connections to a different server instance.

 If a server receives a client Initial that can be unprotected but
 contains an invalid Retry token, it knows the client will not accept
 another Retry token. The server can discard such a packet and allow
 the client to time out to detect handshake failure, but that could

Iyengar & Thomson Expires 12 December 2020 [Page 48]

Internet-Draft QUIC Transport Protocol June 2020

 impose a significant latency penalty on the client. Instead, the
 server SHOULD immediately close (Section 10.3) the connection with an
 INVALID_TOKEN error. Note that a server has not established any
 state for the connection at this point and so does not enter the
 closing period.

 A flow showing the use of a Retry packet is shown in Figure 8.

 Client Server

 Initial[0]: CRYPTO[CH] ->

 <- Retry+Token

 Initial+Token[1]: CRYPTO[CH] ->

 Initial[0]: CRYPTO[SH] ACK[1]
 Handshake[0]: CRYPTO[EE, CERT, CV, FIN]
 <- 1-RTT[0]: STREAM[1, "..."]

 Figure 8: Example Handshake with Retry

8.1.3 . Address Validation for Future Connections

 A server MAY provide clients with an address validation token during
 one connection that can be used on a subsequent connection. Address
 validation is especially important with 0-RTT because a server
 potentially sends a significant amount of data to a client in
 response to 0-RTT data.

 The server uses the NEW_TOKEN frame Section 19.7 to provide the
 client with an address validation token that can be used to validate
 future connections. The client includes this token in Initial
 packets to provide address validation in a future connection. The
 client MUST include the token in all Initial packets it sends, unless
 a Retry replaces the token with a newer one. The client MUST NOT use
 the token provided in a Retry for future connections. Servers MAY
 discard any Initial packet that does not carry the expected token.

 Unlike the token that is created for a Retry packet, which is used
 immediately, the token sent in the NEW_TOKEN frame might be used
 after some period of time has passed. Thus, a token SHOULD have an
 expiration time, which could be either an explicit expiration time or
 an issued timestamp that can be used to dynamically calculate the
 expiration time. A server can store the expiration time or include
 it in an encrypted form in the token.

Iyengar & Thomson Expires 12 December 2020 [Page 49]

Internet-Draft QUIC Transport Protocol June 2020

 A token issued with NEW_TOKEN MUST NOT include information that would
 allow values to be linked by an observer to the connection on which
 it was issued, unless the values are encrypted. For example, it
 cannot include the previous connection ID or addressing information.
 A server MUST ensure that every NEW_TOKEN frame it sends is unique
 across all clients, with the exception of those sent to repair losses
 of previously sent NEW_TOKEN frames. Information that allows the
 server to distinguish between tokens from Retry and NEW_TOKEN MAY be
 accessible to entities other than the server.

 It is unlikely that the client port number is the same on two
 different connections; validating the port is therefore unlikely to
 be successful.

 A token received in a NEW_TOKEN frame is applicable to any server
 that the connection is considered authoritative for (e.g., server
 names included in the certificate). When connecting to a server for
 which the client retains an applicable and unused token, it SHOULD
 include that token in the Token field of its Initial packet.
 Including a token might allow the server to validate the client
 address without an additional round trip. A client MUST NOT include
 a token that is not applicable to the server that it is connecting
 to, unless the client has the knowledge that the server that issued
 the token and the server the client is connecting to are jointly
 managing the tokens. A client MAY use a token from any previous
 connection to that server.

 A token allows a server to correlate activity between the connection
 where the token was issued and any connection where it is used.
 Clients that want to break continuity of identity with a server MAY
 discard tokens provided using the NEW_TOKEN frame. In comparison, a
 token obtained in a Retry packet MUST be used immediately during the
 connection attempt and cannot be used in subsequent connection
 attempts.

 A client SHOULD NOT reuse a NEW_TOKEN token for different connection
 attempts. Reusing a token allows connections to be linked by
 entities on the network path; see Section 9.5 .

 Clients might receive multiple tokens on a single connection. Aside
 from preventing linkability, any token can be used in any connection
 attempt. Servers can send additional tokens to either enable address
 validation for multiple connection attempts or to replace older
 tokens that might become invalid. For a client, this ambiguity means
 that sending the most recent unused token is most likely to be
 effective. Though saving and using older tokens has no negative
 consequences, clients can regard older tokens as being less likely be
 useful to the server for address validation.

Iyengar & Thomson Expires 12 December 2020 [Page 50]

Internet-Draft QUIC Transport Protocol June 2020

 When a server receives an Initial packet with an address validation
 token, it MUST attempt to validate the token, unless it has already
 completed address validation. If the token is invalid then the
 server SHOULD proceed as if the client did not have a validated
 address, including potentially sending a Retry. A server SHOULD
 encode tokens provided with NEW_TOKEN frames and Retry packets
 differently, and validate the latter more strictly. If the
 validation succeeds, the server SHOULD then allow the handshake to
 proceed.

 Note: The rationale for treating the client as unvalidated rather
 than discarding the packet is that the client might have received
 the token in a previous connection using the NEW_TOKEN frame, and
 if the server has lost state, it might be unable to validate the
 token at all, leading to connection failure if the packet is
 discarded.

 In a stateless design, a server can use encrypted and authenticated
 tokens to pass information to clients that the server can later
 recover and use to validate a client address. Tokens are not
 integrated into the cryptographic handshake and so they are not
 authenticated. For instance, a client might be able to reuse a
 token. To avoid attacks that exploit this property, a server can
 limit its use of tokens to only the information needed to validate
 client addresses.

 Clients MAY use tokens obtained on one connection for any connection
 attempt using the same version. When selecting a token to use,
 clients do not need to consider other properties of the connection
 that is being attempted, including the choice of possible application
 protocols, session tickets, or other connection properties.

 Attackers could replay tokens to use servers as amplifiers in DDoS
 attacks. To protect against such attacks, servers SHOULD ensure that
 tokens sent in Retry packets are only accepted for a short time.
 Tokens that are provided in NEW_TOKEN frames (Section 19.7) need to
 be valid for longer, but SHOULD NOT be accepted multiple times in a
 short period. Servers are encouraged to allow tokens to be used only
 once, if possible.

8.1.4 . Address Validation Token Integrity

 An address validation token MUST be difficult to guess. Including a
 large enough random value in the token would be sufficient, but this
 depends on the server remembering the value it sends to clients.

Iyengar & Thomson Expires 12 December 2020 [Page 51]

Internet-Draft QUIC Transport Protocol June 2020

 A token-based scheme allows the server to offload any state
 associated with validation to the client. For this design to work,
 the token MUST be covered by integrity protection against
 modification or falsification by clients. Without integrity
 protection, malicious clients could generate or guess values for
 tokens that would be accepted by the server. Only the server
 requires access to the integrity protection key for tokens.

 There is no need for a single well-defined format for the token
 because the server that generates the token also consumes it. Tokens
 sent in Retry packets SHOULD include information that allows the
 server to verify that the source IP address and port in client
 packets remain constant.

 Tokens sent in NEW_TOKEN frames MUST include information that allows
 the server to verify that the client IP address has not changed from
 when the token was issued. Servers can use tokens from NEW_TOKEN in
 deciding not to send a Retry packet, even if the client address has
 changed. If the client IP address has changed, the server MUST
 adhere to the anti-amplification limits found in Section 8.1 . Note
 that in the presence of NAT, this requirement might be insufficient
 to protect other hosts that share the NAT from amplification attack.

 Servers MUST ensure that replay of tokens is prevented or limited.
 For instance, servers might limit the time over which a token is
 accepted. Tokens provided in NEW_TOKEN frames might need to allow
 longer validity periods. Tokens MAY include additional information
 about clients to further narrow applicability or reuse.

8.2 . Path Validation

 Path validation is used during connection migration (see Section 9
 and Section 9.6) by the migrating endpoint to verify reachability of
 a peer from a new local address. In path validation, endpoints test
 reachability between a specific local address and a specific peer
 address, where an address is the two-tuple of IP address and port.

 Path validation tests that packets (PATH_CHALLENGE) can be both sent
 to and received (PATH_RESPONSE) from a peer on the path.
 Importantly, it validates that the packets received from the
 migrating endpoint do not carry a spoofed source address.

 Path validation can be used at any time by either endpoint. For
 instance, an endpoint might check that a peer is still in possession
 of its address after a period of quiescence.

Iyengar & Thomson Expires 12 December 2020 [Page 52]

Internet-Draft QUIC Transport Protocol June 2020

 Path validation is not designed as a NAT traversal mechanism. Though
 the mechanism described here might be effective for the creation of
 NAT bindings that support NAT traversal, the expectation is that one
 or other peer is able to receive packets without first having sent a
 packet on that path. Effective NAT traversal needs additional
 synchronization mechanisms that are not provided here.

 An endpoint MAY bundle PATH_CHALLENGE and PATH_RESPONSE frames that
 are used for path validation with other frames. In particular, an
 endpoint may pad a packet carrying a PATH_CHALLENGE for PMTU
 discovery, or an endpoint may bundle a PATH_RESPONSE with its own
 PATH_CHALLENGE.

 When probing a new path, an endpoint might want to ensure that its
 peer has an unused connection ID available for responses. The
 endpoint can send NEW_CONNECTION_ID and PATH_CHALLENGE frames in the
 same packet. This ensures that an unused connection ID will be
 available to the peer when sending a response.

8.3 . Initiating Path Validation

 To initiate path validation, an endpoint sends a PATH_CHALLENGE frame
 containing a random payload on the path to be validated.

 An endpoint MAY send multiple PATH_CHALLENGE frames to guard against
 packet loss. However, an endpoint SHOULD NOT send multiple
 PATH_CHALLENGE frames in a single packet. An endpoint SHOULD NOT
 send a PATH_CHALLENGE more frequently than it would an Initial
 packet, ensuring that connection migration is no more load on a new
 path than establishing a new connection.

 The endpoint MUST use unpredictable data in every PATH_CHALLENGE
 frame so that it can associate the peer’s response with the
 corresponding PATH_CHALLENGE.

8.4 . Path Validation Responses

 On receiving a PATH_CHALLENGE frame, an endpoint MUST respond
 immediately by echoing the data contained in the PATH_CHALLENGE frame
 in a PATH_RESPONSE frame.

 An endpoint MUST NOT send more than one PATH_RESPONSE frame in
 response to one PATH_CHALLENGE frame; see Section 13.3 . The peer is
 expected to send more PATH_CHALLENGE frames as necessary to evoke
 additional PATH_RESPONSE frames.

Iyengar & Thomson Expires 12 December 2020 [Page 53]

Internet-Draft QUIC Transport Protocol June 2020

8.5 . Successful Path Validation

 A new address is considered valid when a PATH_RESPONSE frame is
 received that contains the data that was sent in a previous
 PATH_CHALLENGE. Receipt of an acknowledgment for a packet containing
 a PATH_CHALLENGE frame is not adequate validation, since the
 acknowledgment can be spoofed by a malicious peer.

 Note that receipt on a different local address does not result in
 path validation failure, as it might be a result of a forwarded
 packet (see Section 9.3.3) or misrouting. It is possible that a
 valid PATH_RESPONSE might be received in the future.

8.6 . Failed Path Validation

 Path validation only fails when the endpoint attempting to validate
 the path abandons its attempt to validate the path.

 Endpoints SHOULD abandon path validation based on a timer. When
 setting this timer, implementations are cautioned that the new path
 could have a longer round-trip time than the original. A value of
 three times the larger of the current Probe Timeout (PTO) or the
 initial timeout (that is, 2*kInitialRtt) as defined in
 [QUIC-RECOVERY] is RECOMMENDED. That is:

 validation_timeout = max(3*PTO, 6*kInitialRtt)

 Note that the endpoint might receive packets containing other frames
 on the new path, but a PATH_RESPONSE frame with appropriate data is
 required for path validation to succeed.

 When an endpoint abandons path validation, it determines that the
 path is unusable. This does not necessarily imply a failure of the
 connection - endpoints can continue sending packets over other paths
 as appropriate. If no paths are available, an endpoint can wait for
 a new path to become available or close the connection.

 A path validation might be abandoned for other reasons besides
 failure. Primarily, this happens if a connection migration to a new
 path is initiated while a path validation on the old path is in
 progress.

9. Connection Migration

 The use of a connection ID allows connections to survive changes to
 endpoint addresses (IP address and port), such as those caused by an
 endpoint migrating to a new network. This section describes the
 process by which an endpoint migrates to a new address.

Iyengar & Thomson Expires 12 December 2020 [Page 54]

Internet-Draft QUIC Transport Protocol June 2020

 The design of QUIC relies on endpoints retaining a stable address for
 the duration of the handshake. An endpoint MUST NOT initiate
 connection migration before the handshake is confirmed, as defined in
 section 4.1.2 of [QUIC-TLS].

 If the peer sent the disable_active_migration transport parameter, an
 endpoint also MUST NOT send packets (including probing packets; see
 Section 9.1) from a different local address to the address the peer
 used during the handshake. An endpoint that has sent this transport
 parameter, but detects that a peer has nonetheless migrated to a
 different remote address MUST either drop the incoming packets on
 that path without generating a stateless reset or proceed with path
 validation and allow the peer to migrate. Generating a stateless
 reset or closing the connection would allow third parties in the
 network to cause connections to close by spoofing or otherwise
 manipulating observed traffic.

 Not all changes of peer address are intentional, or active,
 migrations. The peer could experience NAT rebinding: a change of
 address due to a middlebox, usually a NAT, allocating a new outgoing
 port or even a new outgoing IP address for a flow. An endpoint MUST
 perform path validation (Section 8.2) if it detects any change to a
 peer’s address, unless it has previously validated that address.

 When an endpoint has no validated path on which to send packets, it
 MAY discard connection state. An endpoint capable of connection
 migration MAY wait for a new path to become available before
 discarding connection state.

 This document limits migration of connections to new client
 addresses, except as described in Section 9.6 . Clients are
 responsible for initiating all migrations. Servers do not send non-
 probing packets (see Section 9.1) toward a client address until they
 see a non-probing packet from that address. If a client receives
 packets from an unknown server address, the client MUST discard these
 packets.

9.1 . Probing a New Path

 An endpoint MAY probe for peer reachability from a new local address
 using path validation Section 8.2 prior to migrating the connection
 to the new local address. Failure of path validation simply means
 that the new path is not usable for this connection. Failure to
 validate a path does not cause the connection to end unless there are
 no valid alternative paths available.

Iyengar & Thomson Expires 12 December 2020 [Page 55]

Internet-Draft QUIC Transport Protocol June 2020

 An endpoint uses a new connection ID for probes sent from a new local
 address; see Section 9.5 for further discussion. An endpoint that
 uses a new local address needs to ensure that at least one new
 connection ID is available at the peer. That can be achieved by
 including a NEW_CONNECTION_ID frame in the probe.

 Receiving a PATH_CHALLENGE frame from a peer indicates that the peer
 is probing for reachability on a path. An endpoint sends a
 PATH_RESPONSE in response as per Section 8.2 .

 PATH_CHALLENGE, PATH_RESPONSE, NEW_CONNECTION_ID, and PADDING frames
 are "probing frames", and all other frames are "non-probing frames".
 A packet containing only probing frames is a "probing packet", and a
 packet containing any other frame is a "non-probing packet".

9.2 . Initiating Connection Migration

 An endpoint can migrate a connection to a new local address by
 sending packets containing non-probing frames from that address.

 Each endpoint validates its peer’s address during connection
 establishment. Therefore, a migrating endpoint can send to its peer
 knowing that the peer is willing to receive at the peer’s current
 address. Thus an endpoint can migrate to a new local address without
 first validating the peer’s address.

 When migrating, the new path might not support the endpoint’s current
 sending rate. Therefore, the endpoint resets its congestion
 controller, as described in Section 9.4 .

 The new path might not have the same ECN capability. Therefore, the
 endpoint verifies ECN capability as described in Section 13.4 .

 Receiving acknowledgments for data sent on the new path serves as
 proof of the peer’s reachability from the new address. Note that
 since acknowledgments may be received on any path, return
 reachability on the new path is not established. To establish return
 reachability on the new path, an endpoint MAY concurrently initiate
 path validation Section 8.2 on the new path or it MAY choose to wait
 for the peer to send the next non-probing frame to its new address.

9.3 . Responding to Connection Migration

 Receiving a packet from a new peer address containing a non-probing
 frame indicates that the peer has migrated to that address.

Iyengar & Thomson Expires 12 December 2020 [Page 56]

Internet-Draft QUIC Transport Protocol June 2020

 In response to such a packet, an endpoint MUST start sending
 subsequent packets to the new peer address and MUST initiate path
 validation (Section 8.2) to verify the peer’s ownership of the
 unvalidated address.

 An endpoint MAY send data to an unvalidated peer address, but it MUST
 protect against potential attacks as described in Section 9.3.1 and
 Section 9.3.2 . An endpoint MAY skip validation of a peer address if
 that address has been seen recently. In particular, if an endpoint
 returns to a previously-validated path after detecting some form of
 spurious migration, skipping address validation and restoring loss
 detection and congestion state can reduce the performance impact of
 the attack.

 An endpoint only changes the address that it sends packets to in
 response to the highest-numbered non-probing packet. This ensures
 that an endpoint does not send packets to an old peer address in the
 case that it receives reordered packets.

 After changing the address to which it sends non-probing packets, an
 endpoint could abandon any path validation for other addresses.

 Receiving a packet from a new peer address might be the result of a
 NAT rebinding at the peer.

 After verifying a new client address, the server SHOULD send new
 address validation tokens (Section 8) to the client.

9.3.1 . Peer Address Spoofing

 It is possible that a peer is spoofing its source address to cause an
 endpoint to send excessive amounts of data to an unwilling host. If
 the endpoint sends significantly more data than the spoofing peer,
 connection migration might be used to amplify the volume of data that
 an attacker can generate toward a victim.

 As described in Section 9.3 , an endpoint is required to validate a
 peer’s new address to confirm the peer’s possession of the new
 address. Until a peer’s address is deemed valid, an endpoint MUST
 limit the rate at which it sends data to this address. The endpoint
 MUST NOT send more than a minimum congestion window’s worth of data
 per estimated round-trip time (kMinimumWindow, as defined in
 [QUIC-RECOVERY]). In the absence of this limit, an endpoint risks
 being used for a denial of service attack against an unsuspecting
 victim. Note that since the endpoint will not have any round-trip
 time measurements to this address, the estimate SHOULD be the default
 initial value; see [QUIC-RECOVERY].

Iyengar & Thomson Expires 12 December 2020 [Page 57]

Internet-Draft QUIC Transport Protocol June 2020

 If an endpoint skips validation of a peer address as described in
 Section 9.3 , it does not need to limit its sending rate.

9.3.2 . On-Path Address Spoofing

 An on-path attacker could cause a spurious connection migration by
 copying and forwarding a packet with a spoofed address such that it
 arrives before the original packet. The packet with the spoofed
 address will be seen to come from a migrating connection, and the
 original packet will be seen as a duplicate and dropped. After a
 spurious migration, validation of the source address will fail
 because the entity at the source address does not have the necessary
 cryptographic keys to read or respond to the PATH_CHALLENGE frame
 that is sent to it even if it wanted to.

 To protect the connection from failing due to such a spurious
 migration, an endpoint MUST revert to using the last validated peer
 address when validation of a new peer address fails.

 If an endpoint has no state about the last validated peer address, it
 MUST close the connection silently by discarding all connection
 state. This results in new packets on the connection being handled
 generically. For instance, an endpoint MAY send a stateless reset in
 response to any further incoming packets.

 Note that receipt of packets with higher packet numbers from the
 legitimate peer address will trigger another connection migration.
 This will cause the validation of the address of the spurious
 migration to be abandoned.

9.3.3 . Off-Path Packet Forwarding

 An off-path attacker that can observe packets might forward copies of
 genuine packets to endpoints. If the copied packet arrives before
 the genuine packet, this will appear as a NAT rebinding. Any genuine
 packet will be discarded as a duplicate. If the attacker is able to
 continue forwarding packets, it might be able to cause migration to a
 path via the attacker. This places the attacker on path, giving it
 the ability to observe or drop all subsequent packets.

 Unlike the attack described in Section 9.3.2 , the attacker can ensure
 that the new path is successfully validated.

 This style of attack relies on the attacker using a path that is
 approximately as fast as the direct path between endpoints. The
 attack is more reliable if relatively few packets are sent or if
 packet loss coincides with the attempted attack.

Iyengar & Thomson Expires 12 December 2020 [Page 58]

Internet-Draft QUIC Transport Protocol June 2020

 A non-probing packet received on the original path that increases the
 maximum received packet number will cause the endpoint to move back
 to that path. Eliciting packets on this path increases the
 likelihood that the attack is unsuccessful. Therefore, mitigation of
 this attack relies on triggering the exchange of packets.

 In response to an apparent migration, endpoints MUST validate the
 previously active path using a PATH_CHALLENGE frame. This induces
 the sending of new packets on that path. If the path is no longer
 viable, the validation attempt will time out and fail; if the path is
 viable, but no longer desired, the validation will succeed, but only
 results in probing packets being sent on the path.

 An endpoint that receives a PATH_CHALLENGE on an active path SHOULD
 send a non-probing packet in response. If the non-probing packet
 arrives before any copy made by an attacker, this results in the
 connection being migrated back to the original path. Any subsequent
 migration to another path restarts this entire process.

 This defense is imperfect, but this is not considered a serious
 problem. If the path via the attack is reliably faster than the
 original path despite multiple attempts to use that original path, it
 is not possible to distinguish between attack and an improvement in
 routing.

 An endpoint could also use heuristics to improve detection of this
 style of attack. For instance, NAT rebinding is improbable if
 packets were recently received on the old path, similarly rebinding
 is rare on IPv6 paths. Endpoints can also look for duplicated
 packets. Conversely, a change in connection ID is more likely to
 indicate an intentional migration rather than an attack.

9.4 . Loss Detection and Congestion Control

 The capacity available on the new path might not be the same as the
 old path. Packets sent on the old path MUST NOT contribute to
 congestion control or RTT estimation for the new path.

Iyengar & Thomson Expires 12 December 2020 [Page 59]

Internet-Draft QUIC Transport Protocol June 2020

 On confirming a peer’s ownership of its new address, an endpoint MUST
 immediately reset the congestion controller and round-trip time
 estimator for the new path to initial values (see Sections A.3 and
 B.3 in [QUIC-RECOVERY]) unless it has knowledge that a previous send
 rate or round-trip time estimate is valid for the new path. For
 instance, an endpoint might infer that a change in only the client’s
 port number is indicative of a NAT rebinding, meaning that the new
 path is likely to have similar bandwidth and round-trip time.
 However, this determination will be imperfect. If the determination
 is incorrect, the congestion controller and the RTT estimator are
 expected to adapt to the new path. Generally, implementations are
 advised to be cautious when using previous values on a new path.

 There may be apparent reordering at the receiver when an endpoint
 sends data and probes from/to multiple addresses during the migration
 period, since the two resulting paths may have different round-trip
 times. A receiver of packets on multiple paths will still send ACK
 frames covering all received packets.

 While multiple paths might be used during connection migration, a
 single congestion control context and a single loss recovery context
 (as described in [QUIC-RECOVERY]) may be adequate. For instance, an
 endpoint might delay switching to a new congestion control context
 until it is confirmed that an old path is no longer needed (such as
 the case in Section 9.3.3).

 A sender can make exceptions for probe packets so that their loss
 detection is independent and does not unduly cause the congestion
 controller to reduce its sending rate. An endpoint might set a
 separate timer when a PATH_CHALLENGE is sent, which is cancelled if
 the corresponding PATH_RESPONSE is received. If the timer fires
 before the PATH_RESPONSE is received, the endpoint might send a new
 PATH_CHALLENGE, and restart the timer for a longer period of time.
 This timer SHOULD be set as described in Section 6.2.1 of
 [QUIC-RECOVERY] and MUST NOT be more aggressive.

9.5 . Privacy Implications of Connection Migration

 Using a stable connection ID on multiple network paths allows a
 passive observer to correlate activity between those paths. An
 endpoint that moves between networks might not wish to have their
 activity correlated by any entity other than their peer, so different
 connection IDs are used when sending from different local addresses,
 as discussed in Section 5.1 . For this to be effective endpoints need
 to ensure that connection IDs they provide cannot be linked by any
 other entity.

Iyengar & Thomson Expires 12 December 2020 [Page 60]

Internet-Draft QUIC Transport Protocol June 2020

 At any time, endpoints MAY change the Destination Connection ID they
 send to a value that has not been used on another path.

 An endpoint MUST NOT reuse a connection ID when sending from more
 than one local address, for example when initiating connection
 migration as described in Section 9.2 or when probing a new network
 path as described in Section 9.1 .

 Similarly, an endpoint MUST NOT reuse a connection ID when sending to
 more than one destination address. Due to network changes outside
 the control of its peer, an endpoint might receive packets from a new
 source address with the same destination connection ID, in which case
 it MAY continue to use the current connection ID with the new remote
 address while still sending from the same local address.

 These requirements regarding connection ID reuse apply only to the
 sending of packets, as unintentional changes in path without a change
 in connection ID are possible. For example, after a period of
 network inactivity, NAT rebinding might cause packets to be sent on a
 new path when the client resumes sending. An endpoint responds to
 such an event as described in Section 9.3 .

 Using different connection IDs for packets sent in both directions on
 each new network path eliminates the use of the connection ID for
 linking packets from the same connection across different network
 paths. Header protection ensures that packet numbers cannot be used
 to correlate activity. This does not prevent other properties of
 packets, such as timing and size, from being used to correlate
 activity.

 An endpoint SHOULD NOT initiate migration with a peer that has
 requested a zero-length connection ID, because traffic over the new
 path might be trivially linkable to traffic over the old one. If the
 server is able to route packets with a zero-length connection ID to
 the right connection, it means that the server is using other
 information to demultiplex packets. For example, a server might
 provide a unique address to every client, for instance using HTTP
 alternative services [ALTSVC]. Information that might allow correct
 routing of packets across multiple network paths will also allow
 activity on those paths to be linked by entities other than the peer.

Iyengar & Thomson Expires 12 December 2020 [Page 61]

Internet-Draft QUIC Transport Protocol June 2020

 A client might wish to reduce linkability by employing a new
 connection ID and source UDP port when sending traffic after a period
 of inactivity. Changing the UDP port from which it sends packets at
 the same time might cause the packet to appear as a connection
 migration. This ensures that the mechanisms that support migration
 are exercised even for clients that don’t experience NAT rebindings
 or genuine migrations. Changing port number can cause a peer to
 reset its congestion state (see Section 9.4), so the port SHOULD only
 be changed infrequently.

 An endpoint that exhausts available connection IDs cannot probe new
 paths or initiate migration, nor can it respond to probes or attempts
 by its peer to migrate. To ensure that migration is possible and
 packets sent on different paths cannot be correlated, endpoints
 SHOULD provide new connection IDs before peers migrate; see
 Section 5.1.1 . If a peer might have exhausted available connection
 IDs, a migrating endpoint could include a NEW_CONNECTION_ID frame in
 all packets sent on a new network path.

9.6 . Server’s Preferred Address

 QUIC allows servers to accept connections on one IP address and
 attempt to transfer these connections to a more preferred address
 shortly after the handshake. This is particularly useful when
 clients initially connect to an address shared by multiple servers
 but would prefer to use a unicast address to ensure connection
 stability. This section describes the protocol for migrating a
 connection to a preferred server address.

 Migrating a connection to a new server address mid-connection is left
 for future work. If a client receives packets from a new server
 address not indicated by the preferred_address transport parameter,
 the client SHOULD discard these packets.

9.6.1 . Communicating a Preferred Address

 A server conveys a preferred address by including the
 preferred_address transport parameter in the TLS handshake.

 Servers MAY communicate a preferred address of each address family
 (IPv4 and IPv6) to allow clients to pick the one most suited to their
 network attachment.

 Once the handshake is confirmed, the client SHOULD select one of the
 two server’s preferred addresses and initiate path validation (see
 Section 8.2) of that address using any previously unused active
 connection ID, taken from either the preferred_address transport
 parameter or a NEW_CONNECTION_ID frame.

Iyengar & Thomson Expires 12 December 2020 [Page 62]

Internet-Draft QUIC Transport Protocol June 2020

 If path validation succeeds, the client SHOULD immediately begin
 sending all future packets to the new server address using the new
 connection ID and discontinue use of the old server address. If path
 validation fails, the client MUST continue sending all future packets
 to the server’s original IP address.

9.6.2 . Responding to Connection Migration

 A server might receive a packet addressed to its preferred IP address
 at any time after it accepts a connection. If this packet contains a
 PATH_CHALLENGE frame, the server sends a PATH_RESPONSE frame as per
 Section 8.2 . The server MUST send other non-probing frames from its
 original address until it receives a non-probing packet from the
 client at its preferred address and until the server has validated
 the new path.

 The server MUST probe on the path toward the client from its
 preferred address. This helps to guard against spurious migration
 initiated by an attacker.

 Once the server has completed its path validation and has received a
 non-probing packet with a new largest packet number on its preferred
 address, the server begins sending non-probing packets to the client
 exclusively from its preferred IP address. It SHOULD drop packets
 for this connection received on the old IP address, but MAY continue
 to process delayed packets.

 The addresses that a server provides in the preferred_address
 transport parameter are only valid for the connection in which they
 are provided. A client MUST NOT use these for other connections,
 including connections that are resumed from the current connection.

9.6.3 . Interaction of Client Migration and Preferred Address

 A client might need to perform a connection migration before it has
 migrated to the server’s preferred address. In this case, the client
 SHOULD perform path validation to both the original and preferred
 server address from the client’s new address concurrently.

 If path validation of the server’s preferred address succeeds, the
 client MUST abandon validation of the original address and migrate to
 using the server’s preferred address. If path validation of the
 server’s preferred address fails but validation of the server’s
 original address succeeds, the client MAY migrate to its new address
 and continue sending to the server’s original address.

Iyengar & Thomson Expires 12 December 2020 [Page 63]

Internet-Draft QUIC Transport Protocol June 2020

 If the connection to the server’s preferred address is not from the
 same client address, the server MUST protect against potential
 attacks as described in Section 9.3.1 and Section 9.3.2 . In addition
 to intentional simultaneous migration, this might also occur because
 the client’s access network used a different NAT binding for the
 server’s preferred address.

 Servers SHOULD initiate path validation to the client’s new address
 upon receiving a probe packet from a different address. Servers MUST
 NOT send more than a minimum congestion window’s worth of non-probing
 packets to the new address before path validation is complete.

 A client that migrates to a new address SHOULD use a preferred
 address from the same address family for the server.

 The connection ID provided in the preferred_address transport
 parameter is not specific to the addresses that are provided. This
 connection ID is provided to ensure that the client has a connection
 ID available for migration, but the client MAY use this connection ID
 on any path.

9.7 . Use of IPv6 Flow-Label and Migration

 Endpoints that send data using IPv6 SHOULD apply an IPv6 flow label
 in compliance with [RFC6437], unless the local API does not allow
 setting IPv6 flow labels.

 The IPv6 flow label SHOULD be a pseudo-random function of the source
 and destination addresses, source and destination UDP ports, and the
 destination CID. The flow label generation MUST be designed to
 minimize the chances of linkability with a previously used flow
 label, as this would enable correlating activity on multiple paths;
 see Section 9.5 .

 A possible implementation is to compute the flow label as a
 cryptographic hash function of the source and destination addresses,
 source and destination UDP ports, destination CID, and a local
 secret.

10. Connection Termination

 An established QUIC connection can be terminated in one of three
 ways:

 * idle timeout (Section 10.2)

 * immediate close (Section 10.3)

Iyengar & Thomson Expires 12 December 2020 [Page 64]

https://tools.ietf.org/pdf/rfc6437

Internet-Draft QUIC Transport Protocol June 2020

 * stateless reset (Section 10.4)

 An endpoint MAY discard connection state if it does not have a
 validated path on which it can send packets; see Section 8.2 .

10.1 . Closing and Draining Connection States

 The closing and draining connection states exist to ensure that
 connections close cleanly and that delayed or reordered packets are
 properly discarded. These states SHOULD persist for at least three
 times the current Probe Timeout (PTO) interval as defined in
 [QUIC-RECOVERY].

 An endpoint enters a closing period after initiating an immediate
 close; Section 10.3 . While closing, an endpoint MUST NOT send
 packets unless they contain a CONNECTION_CLOSE frame; see
 Section 10.3 for details. An endpoint retains only enough
 information to generate a packet containing a CONNECTION_CLOSE frame
 and to identify packets as belonging to the connection. The
 endpoint’s selected connection ID and the QUIC version are sufficient
 information to identify packets for a closing connection; an endpoint
 can discard all other connection state. An endpoint MAY retain
 packet protection keys for incoming packets to allow it to read and
 process a CONNECTION_CLOSE frame.

 The draining state is entered once an endpoint receives a signal that
 its peer is closing or draining. While otherwise identical to the
 closing state, an endpoint in the draining state MUST NOT send any
 packets. Retaining packet protection keys is unnecessary once a
 connection is in the draining state.

 An endpoint MAY transition from the closing period to the draining
 period if it receives a CONNECTION_CLOSE frame or stateless reset,
 both of which indicate that the peer is also closing or draining.
 The draining period SHOULD end when the closing period would have
 ended. In other words, the endpoint can use the same end time, but
 cease retransmission of the closing packet.

 Disposing of connection state prior to the end of the closing or
 draining period could cause delayed or reordered packets to generate
 an unnecessary stateless reset. Endpoints that have some alternative
 means to ensure that late-arriving packets on the connection do not
 induce a response, such as those that are able to close the UDP
 socket, MAY use an abbreviated draining period which can allow for
 faster resource recovery. Servers that retain an open socket for
 accepting new connections SHOULD NOT exit the closing or draining
 period early.

Iyengar & Thomson Expires 12 December 2020 [Page 65]

Internet-Draft QUIC Transport Protocol June 2020

 Once the closing or draining period has ended, an endpoint SHOULD
 discard all connection state. This results in new packets on the
 connection being handled generically. For instance, an endpoint MAY
 send a stateless reset in response to any further incoming packets.

 The draining and closing periods do not apply when a stateless reset
 (Section 10.4) is sent.

 An endpoint is not expected to handle key updates when it is closing
 or draining. A key update might prevent the endpoint from moving
 from the closing state to draining, but it otherwise has no impact.

 While in the closing period, an endpoint could receive packets from a
 new source address, indicating a connection migration; Section 9 . An
 endpoint in the closing state MUST strictly limit the number of
 packets it sends to this new address until the address is validated;
 see Section 8.2 . A server in the closing state MAY instead choose to
 discard packets received from a new source address.

10.2 . Idle Timeout

 If a max_idle_timeout is specified by either peer in its transport
 parameters (Section 18.2), the connection is silently closed and its
 state is discarded when it remains idle for longer than the minimum
 of both peers max_idle_timeout values and three times the current
 Probe Timeout (PTO).

 Each endpoint advertises a max_idle_timeout, but the effective value
 at an endpoint is computed as the minimum of the two advertised
 values. By announcing a max_idle_timeout, an endpoint commits to
 initiating an immediate close (Section 10.3) if it abandons the
 connection prior to the effective value.

 An endpoint restarts its idle timer when a packet from its peer is
 received and processed successfully. An endpoint also restarts its
 idle timer when sending an ack-eliciting packet if no other ack-
 eliciting packets have been sent since last receiving and processing
 a packet. Restarting this timer when sending a packet ensures that
 connections are not closed after new activity is initiated.

10.2.1 . Liveness Testing

 An endpoint that sends packets close to the effective timeout risks
 having them be discarded at the peer, since the peer might enter its
 draining state before these packets arrive.

Iyengar & Thomson Expires 12 December 2020 [Page 66]

Internet-Draft QUIC Transport Protocol June 2020

 An endpoint can send a PING or another ack-eliciting frame to test
 the connection for liveness if the peer could time out soon, such as
 within a PTO; see Section 6.2 of [QUIC-RECOVERY]. This is especially
 useful if any available application data cannot be safely retried.
 Note that the application determines what data is safe to retry.

10.2.2 . Deferring Idle Timeout

 An endpoint might need to send ack-eliciting packets to avoid an idle
 timeout if it is expecting response data, but does not have or is
 unable to send application data.

 An implementation of QUIC might provide applications with an option
 to defer an idle timeout. This facility could be used when the
 application wishes to avoid losing state that has been associated
 with an open connection, but does not expect to exchange application
 data for some time. With this option, an endpoint could send a PING
 frame periodically to defer an idle timeout; see Section 19.2 .

 Application protocols that use QUIC SHOULD provide guidance on when
 deferring an idle timeout is appropriate. Unnecessary sending of
 PING frames could have a detrimental effect on performance.

 A connection will time out if no packets are sent or received for a
 period longer than the time negotiated using the max_idle_timeout
 transport parameter; see Section 10 . However, state in middleboxes
 might time out earlier than that. Though REQ-5 in [RFC4787]
 recommends a 2 minute timeout interval, experience shows that sending
 packets every 15 to 30 seconds is necessary to prevent the majority
 of middleboxes from losing state for UDP flows.

10.3 . Immediate Close

 An endpoint sends a CONNECTION_CLOSE frame (Section 19.19) to
 terminate the connection immediately. A CONNECTION_CLOSE frame
 causes all streams to immediately become closed; open streams can be
 assumed to be implicitly reset.

 After sending a CONNECTION_CLOSE frame, an endpoint immediately
 enters the closing state.

 During the closing period, an endpoint that sends a CONNECTION_CLOSE
 frame SHOULD respond to any incoming packet that can be decrypted
 with another packet containing a CONNECTION_CLOSE frame. Such an
 endpoint SHOULD limit the number of packets it generates containing a
 CONNECTION_CLOSE frame. For instance, an endpoint could wait for a
 progressively increasing number of received packets or amount of time
 before responding to a received packet.

Iyengar & Thomson Expires 12 December 2020 [Page 67]

https://tools.ietf.org/pdf/rfc4787

Internet-Draft QUIC Transport Protocol June 2020

 An endpoint is allowed to drop the packet protection keys when
 entering the closing period (Section 10.1) and send a packet
 containing a CONNECTION_CLOSE in response to any UDP datagram that is
 received. However, an endpoint without the packet protection keys
 cannot identify and discard invalid packets. To avoid creating an
 unwitting amplification attack, such endpoints MUST reduce the
 frequency with which it sends packets containing a CONNECTION_CLOSE
 frame. To minimize the state that an endpoint maintains for a
 closing connection, endpoints MAY send the exact same packet.

 Note: Allowing retransmission of a closing packet contradicts other
 advice in this document that recommends the creation of new packet
 numbers for every packet. Sending new packet numbers is primarily
 of advantage to loss recovery and congestion control, which are
 not expected to be relevant for a closed connection.
 Retransmitting the final packet requires less state.

 New packets from unverified addresses could be used to create an
 amplification attack; see Section 8 . To avoid this, endpoints MUST
 either limit transmission of CONNECTION_CLOSE frames to validated
 addresses or drop packets without response if the response would be
 more than three times larger than the received packet.

 After receiving a CONNECTION_CLOSE frame, endpoints enter the
 draining state. An endpoint that receives a CONNECTION_CLOSE frame
 MAY send a single packet containing a CONNECTION_CLOSE frame before
 entering the draining state, using a CONNECTION_CLOSE frame and a
 NO_ERROR code if appropriate. An endpoint MUST NOT send further
 packets, which could result in a constant exchange of
 CONNECTION_CLOSE frames until the closing period on either peer
 ended.

 An immediate close can be used after an application protocol has
 arranged to close a connection. This might be after the application
 protocols negotiates a graceful shutdown. The application protocol
 exchanges whatever messages that are needed to cause both endpoints
 to agree to close the connection, after which the application
 requests that the connection be closed. The application protocol can
 use a CONNECTION_CLOSE frame with an appropriate error code to signal
 closure.

Iyengar & Thomson Expires 12 December 2020 [Page 68]

Internet-Draft QUIC Transport Protocol June 2020

10.3.1 . Immediate Close During the Handshake

 When sending CONNECTION_CLOSE, the goal is to ensure that the peer
 will process the frame. Generally, this means sending the frame in a
 packet with the highest level of packet protection to avoid the
 packet being discarded. After the handshake is confirmed (see
 Section 4.1.2 of [QUIC-TLS]), an endpoint MUST send any
 CONNECTION_CLOSE frames in a 1-RTT packet. However, prior to
 confirming the handshake, it is possible that more advanced packet
 protection keys are not available to the peer, so another
 CONNECTION_CLOSE frame MAY be sent in a packet that uses a lower
 packet protection level. More specifically:

 * A client will always know whether the server has Handshake keys
 (see Section 17.2.2.1), but it is possible that a server does not
 know whether the client has Handshake keys. Under these
 circumstances, a server SHOULD send a CONNECTION_CLOSE frame in
 both Handshake and Initial packets to ensure that at least one of
 them is processable by the client.

 * A client that sends CONNECTION_CLOSE in a 0-RTT packet cannot be
 assured of the server has accepted 0-RTT and so sending a
 CONNECTION_CLOSE frame in an Initial packet makes it more likely
 that the server can receive the close signal, even if the
 application error code might not be received.

 * Prior to confirming the handshake, a peer might be unable to
 process 1-RTT packets, so an endpoint SHOULD send CONNECTION_CLOSE
 in both Handshake and 1-RTT packets. A server SHOULD also send
 CONNECTION_CLOSE in an Initial packet.

 Sending a CONNECTION_CLOSE of type 0x1d in an Initial or Handshake
 packet could expose application state or be used to alter application
 state. A CONNECTION_CLOSE of type 0x1d MUST be replaced by a
 CONNECTION_CLOSE of type 0x1c when sending the frame in Initial or
 Handshake packets. Otherwise, information about the application
 state might be revealed. Endpoints MUST clear the value of the
 Reason Phrase field and SHOULD use the APPLICATION_ERROR code when
 converting to a CONNECTION_CLOSE of type 0x1c.

 CONNECTION_CLOSE frames sent in multiple packet types can be
 coalesced into a single UDP datagram; see Section 12.2 .

 An endpoint might send a CONNECTION_CLOSE frame in an Initial packet
 or in response to unauthenticated information received in Initial or
 Handshake packets. Such an immediate close might expose legitimate
 connections to a denial of service. QUIC does not include defensive
 measures for on-path attacks during the handshake; see Section 21.1 .

Iyengar & Thomson Expires 12 December 2020 [Page 69]

Internet-Draft QUIC Transport Protocol June 2020

 However, at the cost of reducing feedback about errors for legitimate
 peers, some forms of denial of service can be made more difficult for
 an attacker if endpoints discard illegal packets rather than
 terminating a connection with CONNECTION_CLOSE. For this reason,
 endpoints MAY discard packets rather than immediately close if errors
 are detected in packets that lack authentication.

 An endpoint that has not established state, such as a server that
 detects an error in an Initial packet, does not enter the closing
 state. An endpoint that has no state for the connection does not
 enter a closing or draining period on sending a CONNECTION_CLOSE
 frame.

10.4 . Stateless Reset

 A stateless reset is provided as an option of last resort for an
 endpoint that does not have access to the state of a connection. A
 crash or outage might result in peers continuing to send data to an
 endpoint that is unable to properly continue the connection. An
 endpoint MAY send a stateless reset in response to receiving a packet
 that it cannot associate with an active connection.

 A stateless reset is not appropriate for signaling error conditions.
 An endpoint that wishes to communicate a fatal connection error MUST
 use a CONNECTION_CLOSE frame if it has sufficient state to do so.

 To support this process, a token is sent by endpoints. The token is
 carried in the Stateless Reset Token field of a NEW_CONNECTION_ID
 frame. Servers can also specify a stateless_reset_token transport
 parameter during the handshake that applies to the connection ID that
 it selected during the handshake; clients cannot use this transport
 parameter because their transport parameters don’t have
 confidentiality protection. These tokens are protected by
 encryption, so only client and server know their value. Tokens are
 invalidated when their associated connection ID is retired via a
 RETIRE_CONNECTION_ID frame (Section 19.16).

 An endpoint that receives packets that it cannot process sends a
 packet in the following layout:

 Stateless Reset {
 Fixed Bits (2) = 1,
 Unpredictable Bits (38..),
 Stateless Reset Token (128),
 }

 Figure 9: Stateless Reset Packet

Iyengar & Thomson Expires 12 December 2020 [Page 70]

Internet-Draft QUIC Transport Protocol June 2020

 This design ensures that a stateless reset packet is - to the extent
 possible - indistinguishable from a regular packet with a short
 header.

 A stateless reset uses an entire UDP datagram, starting with the
 first two bits of the packet header. The remainder of the first byte
 and an arbitrary number of bytes following it that are set to
 unpredictable values. The last 16 bytes of the datagram contain a
 Stateless Reset Token.

 To entities other than its intended recipient, a stateless reset will
 appear to be a packet with a short header. For the stateless reset
 to appear as a valid QUIC packet, the Unpredictable Bits field needs
 to include at least 38 bits of data (or 5 bytes, less the two fixed
 bits).

 A minimum size of 21 bytes does not guarantee that a stateless reset
 is difficult to distinguish from other packets if the recipient
 requires the use of a connection ID. To prevent a resulting
 stateless reset from being trivially distinguishable from a valid
 packet, all packets sent by an endpoint SHOULD be padded to at least
 22 bytes longer than the minimum connection ID that the endpoint
 might use. An endpoint that sends a stateless reset in response to a
 packet that is 43 bytes or less in length SHOULD send a stateless
 reset that is one byte shorter than the packet it responds to.

 These values assume that the Stateless Reset Token is the same length
 as the minimum expansion of the packet protection AEAD. Additional
 unpredictable bytes are necessary if the endpoint could have
 negotiated a packet protection scheme with a larger minimum
 expansion.

 An endpoint MUST NOT send a stateless reset that is three times or
 more larger than the packet it receives to avoid being used for
 amplification. Section 10.4.3 describes additional limits on
 stateless reset size.

 Endpoints MUST discard packets that are too small to be valid QUIC
 packets. With the set of AEAD functions defined in [QUIC-TLS],
 packets that are smaller than 21 bytes are never valid.

 Endpoints MUST send stateless reset packets formatted as a packet
 with a short header. However, endpoints MUST treat any packet ending
 in a valid stateless reset token as a stateless reset, as other QUIC
 versions might allow the use of a long header.

Iyengar & Thomson Expires 12 December 2020 [Page 71]

Internet-Draft QUIC Transport Protocol June 2020

 An endpoint MAY send a stateless reset in response to a packet with a
 long header. Sending a stateless reset is not effective prior to the
 stateless reset token being available to a peer. In this QUIC
 version, packets with a long header are only used during connection
 establishment. Because the stateless reset token is not available
 until connection establishment is complete or near completion,
 ignoring an unknown packet with a long header might be as effective
 as sending a stateless reset.

 An endpoint cannot determine the Source Connection ID from a packet
 with a short header, therefore it cannot set the Destination
 Connection ID in the stateless reset packet. The Destination
 Connection ID will therefore differ from the value used in previous
 packets. A random Destination Connection ID makes the connection ID
 appear to be the result of moving to a new connection ID that was
 provided using a NEW_CONNECTION_ID frame (Section 19.15).

 Using a randomized connection ID results in two problems:

 * The packet might not reach the peer. If the Destination
 Connection ID is critical for routing toward the peer, then this
 packet could be incorrectly routed. This might also trigger
 another Stateless Reset in response; see Section 10.4.3 . A
 Stateless Reset that is not correctly routed is an ineffective
 error detection and recovery mechanism. In this case, endpoints
 will need to rely on other methods - such as timers - to detect
 that the connection has failed.

 * The randomly generated connection ID can be used by entities other
 than the peer to identify this as a potential stateless reset. An
 endpoint that occasionally uses different connection IDs might
 introduce some uncertainty about this.

 This stateless reset design is specific to QUIC version 1. An
 endpoint that supports multiple versions of QUIC needs to generate a
 stateless reset that will be accepted by peers that support any
 version that the endpoint might support (or might have supported
 prior to losing state). Designers of new versions of QUIC need to be
 aware of this and either reuse this design, or use a portion of the
 packet other than the last 16 bytes for carrying data.

Iyengar & Thomson Expires 12 December 2020 [Page 72]

Internet-Draft QUIC Transport Protocol June 2020

10.4.1 . Detecting a Stateless Reset

 An endpoint detects a potential stateless reset using the trailing 16
 bytes of the UDP datagram. An endpoint remembers all Stateless Reset
 Tokens associated with the connection IDs and remote addresses for
 datagrams it has recently sent. This includes Stateless Reset Tokens
 from NEW_CONNECTION_ID frames and the server’s transport parameters
 but excludes Stateless Reset Tokens associated with connection IDs
 that are either unused or retired. The endpoint identifies a
 received datagram as a stateless reset by comparing the last 16 bytes
 of the datagram with all Stateless Reset Tokens associated with the
 remote address on which the datagram was received.

 This comparison can be performed for every inbound datagram.
 Endpoints MAY skip this check if any packet from a datagram is
 successfully processed. However, the comparison MUST be performed
 when the first packet in an incoming datagram either cannot be
 associated with a connection, or cannot be decrypted.

 An endpoint MUST NOT check for any Stateless Reset Tokens associated
 with connection IDs it has not used or for connection IDs that have
 been retired.

 When comparing a datagram to Stateless Reset Token values, endpoints
 MUST perform the comparison without leaking information about the
 value of the token. For example, performing this comparison in
 constant time protects the value of individual Stateless Reset Tokens
 from information leakage through timing side channels. Another
 approach would be to store and compare the transformed values of
 Stateless Reset Tokens instead of the raw token values, where the
 transformation is defined as a cryptographically-secure pseudo-random
 function using a secret key (e.g., block cipher, HMAC [RFC2104]). An
 endpoint is not expected to protect information about whether a
 packet was successfully decrypted, or the number of valid Stateless
 Reset Tokens.

 If the last 16 bytes of the datagram are identical in value to a
 Stateless Reset Token, the endpoint MUST enter the draining period
 and not send any further packets on this connection.

Iyengar & Thomson Expires 12 December 2020 [Page 73]

https://tools.ietf.org/pdf/rfc2104

Internet-Draft QUIC Transport Protocol June 2020

10.4.2 . Calculating a Stateless Reset Token

 The stateless reset token MUST be difficult to guess. In order to
 create a Stateless Reset Token, an endpoint could randomly generate
 [RFC4086] a secret for every connection that it creates. However,
 this presents a coordination problem when there are multiple
 instances in a cluster or a storage problem for an endpoint that
 might lose state. Stateless reset specifically exists to handle the
 case where state is lost, so this approach is suboptimal.

 A single static key can be used across all connections to the same
 endpoint by generating the proof using a second iteration of a
 preimage-resistant function that takes a static key and the
 connection ID chosen by the endpoint (see Section 5.1) as input. An
 endpoint could use HMAC [RFC2104] (for example, HMAC(static_key,
 connection_id)) or HKDF [RFC5869] (for example, using the static key
 as input keying material, with the connection ID as salt). The
 output of this function is truncated to 16 bytes to produce the
 Stateless Reset Token for that connection.

 An endpoint that loses state can use the same method to generate a
 valid Stateless Reset Token. The connection ID comes from the packet
 that the endpoint receives.

 This design relies on the peer always sending a connection ID in its
 packets so that the endpoint can use the connection ID from a packet
 to reset the connection. An endpoint that uses this design MUST
 either use the same connection ID length for all connections or
 encode the length of the connection ID such that it can be recovered
 without state. In addition, it cannot provide a zero-length
 connection ID.

 Revealing the Stateless Reset Token allows any entity to terminate
 the connection, so a value can only be used once. This method for
 choosing the Stateless Reset Token means that the combination of
 connection ID and static key MUST NOT be used for another connection.
 A denial of service attack is possible if the same connection ID is
 used by instances that share a static key, or if an attacker can
 cause a packet to be routed to an instance that has no state but the
 same static key; see Section 21.9 . A connection ID from a connection
 that is reset by revealing the Stateless Reset Token MUST NOT be
 reused for new connections at nodes that share a static key.

 The same Stateless Reset Token MUST NOT be used for multiple
 connection IDs. Endpoints are not required to compare new values
 against all previous values, but a duplicate value MAY be treated as
 a connection error of type PROTOCOL_VIOLATION.

Iyengar & Thomson Expires 12 December 2020 [Page 74]

https://tools.ietf.org/pdf/rfc4086
https://tools.ietf.org/pdf/rfc2104
https://tools.ietf.org/pdf/rfc5869

Internet-Draft QUIC Transport Protocol June 2020

 Note that Stateless Reset packets do not have any cryptographic
 protection.

10.4.3 . Looping

 The design of a Stateless Reset is such that without knowing the
 stateless reset token it is indistinguishable from a valid packet.
 For instance, if a server sends a Stateless Reset to another server
 it might receive another Stateless Reset in response, which could
 lead to an infinite exchange.

 An endpoint MUST ensure that every Stateless Reset that it sends is
 smaller than the packet which triggered it, unless it maintains state
 sufficient to prevent looping. In the event of a loop, this results
 in packets eventually being too small to trigger a response.

 An endpoint can remember the number of Stateless Reset packets that
 it has sent and stop generating new Stateless Reset packets once a
 limit is reached. Using separate limits for different remote
 addresses will ensure that Stateless Reset packets can be used to
 close connections when other peers or connections have exhausted
 limits.

 Reducing the size of a Stateless Reset below 41 bytes means that the
 packet could reveal to an observer that it is a Stateless Reset,
 depending upon the length of the peer’s connection IDs. Conversely,
 refusing to send a Stateless Reset in response to a small packet
 might result in Stateless Reset not being useful in detecting cases
 of broken connections where only very small packets are sent; such
 failures might only be detected by other means, such as timers.

11. Error Handling

 An endpoint that detects an error SHOULD signal the existence of that
 error to its peer. Both transport-level and application-level errors
 can affect an entire connection; see Section 11.1 . Only application-
 level errors can be isolated to a single stream; see Section 11.2 .

 The most appropriate error code (Section 20) SHOULD be included in
 the frame that signals the error. Where this specification
 identifies error conditions, it also identifies the error code that
 is used; though these are worded as requirements, different
 implementation strategies might lead to different errors being
 reported. In particular, an endpoint MAY use any applicable error
 code when it detects an error condition; a generic error code (such
 as PROTOCOL_VIOLATION or INTERNAL_ERROR) can always be used in place
 of specific error codes.

Iyengar & Thomson Expires 12 December 2020 [Page 75]

Internet-Draft QUIC Transport Protocol June 2020

 A stateless reset (Section 10.4) is not suitable for any error that
 can be signaled with a CONNECTION_CLOSE or RESET_STREAM frame. A
 stateless reset MUST NOT be used by an endpoint that has the state
 necessary to send a frame on the connection.

11.1 . Connection Errors

 Errors that result in the connection being unusable, such as an
 obvious violation of protocol semantics or corruption of state that
 affects an entire connection, MUST be signaled using a
 CONNECTION_CLOSE frame (Section 19.19). An endpoint MAY close the
 connection in this manner even if the error only affects a single
 stream.

 Application protocols can signal application-specific protocol errors
 using the application-specific variant of the CONNECTION_CLOSE frame.
 Errors that are specific to the transport, including all those
 described in this document, are carried in the QUIC-specific variant
 of the CONNECTION_CLOSE frame.

 A CONNECTION_CLOSE frame could be sent in a packet that is lost. An
 endpoint SHOULD be prepared to retransmit a packet containing a
 CONNECTION_CLOSE frame if it receives more packets on a terminated
 connection. Limiting the number of retransmissions and the time over
 which this final packet is sent limits the effort expended on
 terminated connections.

 An endpoint that chooses not to retransmit packets containing a
 CONNECTION_CLOSE frame risks a peer missing the first such packet.
 The only mechanism available to an endpoint that continues to receive
 data for a terminated connection is to use the stateless reset
 process (Section 10.4).

11.2 . Stream Errors

 If an application-level error affects a single stream, but otherwise
 leaves the connection in a recoverable state, the endpoint can send a
 RESET_STREAM frame (Section 19.4) with an appropriate error code to
 terminate just the affected stream.

 Resetting a stream without the involvement of the application
 protocol could cause the application protocol to enter an
 unrecoverable state. RESET_STREAM MUST only be instigated by the
 application protocol that uses QUIC.

 The semantics of the application error code carried in RESET_STREAM
 are defined by the application protocol. Only the application
 protocol is able to cause a stream to be terminated. A local

Iyengar & Thomson Expires 12 December 2020 [Page 76]

Internet-Draft QUIC Transport Protocol June 2020

 instance of the application protocol uses a direct API call and a
 remote instance uses the STOP_SENDING frame, which triggers an
 automatic RESET_STREAM.

 Application protocols SHOULD define rules for handling streams that
 are prematurely cancelled by either endpoint.

12. Packets and Frames

 QUIC endpoints communicate by exchanging packets. Packets have
 confidentiality and integrity protection; see Section 12.1 . Packets
 are carried in UDP datagrams; see Section 12.2 .

 This version of QUIC uses the long packet header during connection
 establishment; see Section 17.2 . Packets with the long header are
 Initial (Section 17.2.2), 0-RTT (Section 17.2.3), Handshake
 (Section 17.2.4), and Retry (Section 17.2.5). Version negotiation
 uses a version-independent packet with a long header; see
 Section 17.2.1 .

 Packets with the short header are designed for minimal overhead and
 are used after a connection is established and 1-RTT keys are
 available; see Section 17.3 .

12.1 . Protected Packets

 All QUIC packets except Version Negotiation packets use authenticated
 encryption with additional data (AEAD) [RFC5116] to provide
 confidentiality and integrity protection. Retry packets use AEAD to
 provide integrity protection. Details of packet protection are found
 in [QUIC-TLS]; this section includes an overview of the process.

 Initial packets are protected using keys that are statically derived.
 This packet protection is not effective confidentiality protection.
 Initial protection only exists to ensure that the sender of the
 packet is on the network path. Any entity that receives the Initial
 packet from a client can recover the keys necessary to remove packet
 protection or to generate packets that will be successfully
 authenticated.

 All other packets are protected with keys derived from the
 cryptographic handshake. The type of the packet from the long header
 or key phase from the short header are used to identify which
 encryption keys are used. Packets protected with 0-RTT and 1-RTT
 keys are expected to have confidentiality and data origin
 authentication; the cryptographic handshake ensures that only the
 communicating endpoints receive the corresponding keys.

Iyengar & Thomson Expires 12 December 2020 [Page 77]

https://tools.ietf.org/pdf/rfc5116

Internet-Draft QUIC Transport Protocol June 2020

 The packet number field contains a packet number, which has
 additional confidentiality protection that is applied after packet
 protection is applied; see [QUIC-TLS] for details. The underlying
 packet number increases with each packet sent in a given packet
 number space; see Section 12.3 for details.

12.2 . Coalescing Packets

 Initial (Section 17.2.2), 0-RTT (Section 17.2.3), and Handshake
 (Section 17.2.4) packets contain a Length field, which determines the
 end of the packet. The length includes both the Packet Number and
 Payload fields, both of which are confidentiality protected and
 initially of unknown length. The length of the Payload field is
 learned once header protection is removed.

 Using the Length field, a sender can coalesce multiple QUIC packets
 into one UDP datagram. This can reduce the number of UDP datagrams
 needed to complete the cryptographic handshake and start sending
 data. This can also be used to construct PMTU probes; see
 Section 14.4.1 . Receivers MUST be able to process coalesced packets.

 Coalescing packets in order of increasing encryption levels (Initial,
 0-RTT, Handshake, 1-RTT; see Section 4.1.4 of [QUIC-TLS]) makes it
 more likely the receiver will be able to process all the packets in a
 single pass. A packet with a short header does not include a length,
 so it can only be the last packet included in a UDP datagram. An
 endpoint SHOULD NOT coalesce multiple packets at the same encryption
 level.

 Senders MUST NOT coalesce QUIC packets for different connections into
 a single UDP datagram. Receivers SHOULD ignore any subsequent
 packets with a different Destination Connection ID than the first
 packet in the datagram.

 Every QUIC packet that is coalesced into a single UDP datagram is
 separate and complete. The receiver of coalesced QUIC packets MUST
 individually process each QUIC packet and separately acknowledge
 them, as if they were received as the payload of different UDP
 datagrams. For example, if decryption fails (because the keys are
 not available or any other reason), the receiver MAY either discard
 or buffer the packet for later processing and MUST attempt to process
 the remaining packets.

Iyengar & Thomson Expires 12 December 2020 [Page 78]

Internet-Draft QUIC Transport Protocol June 2020

 Retry packets (Section 17.2.5), Version Negotiation packets
 (Section 17.2.1), and packets with a short header (Section 17.3) do
 not contain a Length field and so cannot be followed by other packets
 in the same UDP datagram. Note also that there is no situation where
 a Retry or Version Negotiation packet is coalesced with another
 packet.

12.3 . Packet Numbers

 The packet number is an integer in the range 0 to 2^62-1. This
 number is used in determining the cryptographic nonce for packet
 protection. Each endpoint maintains a separate packet number for
 sending and receiving.

 Packet numbers are limited to this range because they need to be
 representable in whole in the Largest Acknowledged field of an ACK
 frame (Section 19.3). When present in a long or short header
 however, packet numbers are reduced and encoded in 1 to 4 bytes; see
 Section 17.1 .

 Version Negotiation (Section 17.2.1) and Retry (Section 17.2.5)
 packets do not include a packet number.

 Packet numbers are divided into 3 spaces in QUIC:

 * Initial space: All Initial packets (Section 17.2.2) are in this
 space.

 * Handshake space: All Handshake packets (Section 17.2.4) are in
 this space.

 * Application data space: All 0-RTT and 1-RTT encrypted packets
 (Section 12.1) are in this space.

 As described in [QUIC-TLS], each packet type uses different
 protection keys.

 Conceptually, a packet number space is the context in which a packet
 can be processed and acknowledged. Initial packets can only be sent
 with Initial packet protection keys and acknowledged in packets which
 are also Initial packets. Similarly, Handshake packets are sent at
 the Handshake encryption level and can only be acknowledged in
 Handshake packets.

 This enforces cryptographic separation between the data sent in the
 different packet number spaces. Packet numbers in each space start
 at packet number 0. Subsequent packets sent in the same packet
 number space MUST increase the packet number by at least one.

Iyengar & Thomson Expires 12 December 2020 [Page 79]

Internet-Draft QUIC Transport Protocol June 2020

 0-RTT and 1-RTT data exist in the same packet number space to make
 loss recovery algorithms easier to implement between the two packet
 types.

 A QUIC endpoint MUST NOT reuse a packet number within the same packet
 number space in one connection. If the packet number for sending
 reaches 2^62 - 1, the sender MUST close the connection without
 sending a CONNECTION_CLOSE frame or any further packets; an endpoint
 MAY send a Stateless Reset (Section 10.4) in response to further
 packets that it receives.

 A receiver MUST discard a newly unprotected packet unless it is
 certain that it has not processed another packet with the same packet
 number from the same packet number space. Duplicate suppression MUST
 happen after removing packet protection for the reasons described in
 Section 9.3 of [QUIC-TLS].

 Endpoints that track all individual packets for the purposes of
 detecting duplicates are at risk of accumulating excessive state.
 The data required for detecting duplicates can be limited by
 maintaining a minimum packet number below which all packets are
 immediately dropped. Any minimum needs to account for large
 variations in round trip time, which includes the possibility that a
 peer might probe network paths with a much larger round trip times;
 see Section 9 .

 Packet number encoding at a sender and decoding at a receiver are
 described in Section 17.1 .

12.4 . Frames and Frame Types

 The payload of QUIC packets, after removing packet protection,
 consists of a sequence of complete frames, as shown in Figure 10.
 Version Negotiation, Stateless Reset, and Retry packets do not
 contain frames.

 Packet Payload {
 Frame (..) ...,
 }

 Figure 10: QUIC Payload

 The payload of a packet that contains frames MUST contain at least
 one frame, and MAY contain multiple frames and multiple frame types.
 Frames always fit within a single QUIC packet and cannot span
 multiple packets.

Iyengar & Thomson Expires 12 December 2020 [Page 80]

Internet-Draft QUIC Transport Protocol June 2020

 Each frame begins with a Frame Type, indicating its type, followed by
 additional type-dependent fields:

 Frame {
 Frame Type (i),
 Type-Dependent Fields (..),
 }

 Figure 11: Generic Frame Layout

 The frame types defined in this specification are listed in Table 3.
 The Frame Type in ACK, STREAM, MAX_STREAMS, STREAMS_BLOCKED, and
 CONNECTION_CLOSE frames is used to carry other frame-specific flags.
 For all other frames, the Frame Type field simply identifies the
 frame. These frames are explained in more detail in Section 19 .

Iyengar & Thomson Expires 12 December 2020 [Page 81]

Internet-Draft QUIC Transport Protocol June 2020

 +-------------+----------------------+---------------+---------+
 | Type Value | Frame Type Name | Definition | Packets |
 +=============+======================+===============+=========+
 | 0x00 | PADDING | Section 19.1 | IH01 |
 +-------------+----------------------+---------------+---------+
 | 0x01 | PING | Section 19.2 | IH01 |
 +-------------+----------------------+---------------+---------+
 | 0x02 - 0x03 | ACK | Section 19.3 | IH_1 |
 +-------------+----------------------+---------------+---------+
 | 0x04 | RESET_STREAM | Section 19.4 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x05 | STOP_SENDING | Section 19.5 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x06 | CRYPTO | Section 19.6 | IH_1 |
 +-------------+----------------------+---------------+---------+
 | 0x07 | NEW_TOKEN | Section 19.7 | ___1 |
 +-------------+----------------------+---------------+---------+
 | 0x08 - 0x0f | STREAM | Section 19.8 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x10 | MAX_DATA | Section 19.9 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x11 | MAX_STREAM_DATA | Section 19.10 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x12 - 0x13 | MAX_STREAMS | Section 19.11 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x14 | DATA_BLOCKED | Section 19.12 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x15 | STREAM_DATA_BLOCKED | Section 19.13 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x16 - 0x17 | STREAMS_BLOCKED | Section 19.14 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x18 | NEW_CONNECTION_ID | Section 19.15 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x19 | RETIRE_CONNECTION_ID | Section 19.16 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x1a | PATH_CHALLENGE | Section 19.17 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x1b | PATH_RESPONSE | Section 19.18 | __01 |
 +-------------+----------------------+---------------+---------+
 | 0x1c - 0x1d | CONNECTION_CLOSE | Section 19.19 | ih01 |
 +-------------+----------------------+---------------+---------+
 | 0x1e | HANDSHAKE_DONE | Section 19.20 | ___1 |
 +-------------+----------------------+---------------+---------+

 Table 3: Frame Types

Iyengar & Thomson Expires 12 December 2020 [Page 82]

Internet-Draft QUIC Transport Protocol June 2020

 The "Packets" column in Table 3 does not form part of the IANA
 registry; see Section 22.3 . This column lists the types of packets
 that each frame type could appear in, indicated by the following
 characters:

 I: Initial (Section 17.2.2)

 H: Handshake (Section 17.2.4)

 0: 0-RTT (Section 17.2.3)

 1: 1-RTT (Section 17.3)

 ih: A CONNECTION_CLOSE frame of type 0x1d cannot appear in Initial
 or Handshake packets.

 Section 4 of [QUIC-TLS] provides more detail about these
 restrictions. Note that all frames can appear in 1-RTT packets.

 An endpoint MUST treat the receipt of a frame of unknown type as a
 connection error of type FRAME_ENCODING_ERROR.

 All QUIC frames are idempotent in this version of QUIC. That is, a
 valid frame does not cause undesirable side effects or errors when
 received more than once.

 The Frame Type field uses a variable length integer encoding (see
 Section 16) with one exception. To ensure simple and efficient
 implementations of frame parsing, a frame type MUST use the shortest
 possible encoding. For frame types defined in this document, this
 means a single-byte encoding, even though it is possible to encode
 these values as a two-, four- or eight-byte variable length integer.
 For instance, though 0x4001 is a legitimate two-byte encoding for a
 variable-length integer with a value of 1, PING frames are always
 encoded as a single byte with the value 0x01. This rule applies to
 all current and future QUIC frame types. An endpoint MAY treat the
 receipt of a frame type that uses a longer encoding than necessary as
 a connection error of type PROTOCOL_VIOLATION.

13. Packetization and Reliability

 A sender bundles one or more frames in a QUIC packet; see
 Section 12.4 .

 A sender can minimize per-packet bandwidth and computational costs by
 including as many frames as possible in each QUIC packet. A sender
 MAY wait for a short period of time to collect multiple frames before
 sending a packet that is not maximally packed, to avoid sending out

Iyengar & Thomson Expires 12 December 2020 [Page 83]

Internet-Draft QUIC Transport Protocol June 2020

 large numbers of small packets. An implementation MAY use knowledge
 about application sending behavior or heuristics to determine whether
 and for how long to wait. This waiting period is an implementation
 decision, and an implementation should be careful to delay
 conservatively, since any delay is likely to increase application-
 visible latency.

 Stream multiplexing is achieved by interleaving STREAM frames from
 multiple streams into one or more QUIC packets. A single QUIC packet
 can include multiple STREAM frames from one or more streams.

 One of the benefits of QUIC is avoidance of head-of-line blocking
 across multiple streams. When a packet loss occurs, only streams
 with data in that packet are blocked waiting for a retransmission to
 be received, while other streams can continue making progress. Note
 that when data from multiple streams is included in a single QUIC
 packet, loss of that packet blocks all those streams from making
 progress. Implementations are advised to include as few streams as
 necessary in outgoing packets without losing transmission efficiency
 to underfilled packets.

13.1 . Packet Processing

 A packet MUST NOT be acknowledged until packet protection has been
 successfully removed and all frames contained in the packet have been
 processed. For STREAM frames, this means the data has been enqueued
 in preparation to be received by the application protocol, but it
 does not require that data is delivered and consumed.

 Once the packet has been fully processed, a receiver acknowledges
 receipt by sending one or more ACK frames containing the packet
 number of the received packet.

 An endpoint SHOULD treat receipt of an acknowledgment for a packet it
 did not send as a connection error of type PROTOCOL_VIOLATION, if it
 is able to detect the condition.

13.2 . Generating Acknowledgements

 Endpoints acknowledge all packets they receive and process. However,
 only ack-eliciting packets cause an ACK frame to be sent within the
 maximum ack delay. Packets that are not ack-eliciting are only
 acknowledged when an ACK frame is sent for other reasons.

 When sending a packet for any reason, an endpoint SHOULD attempt to
 bundle an ACK frame if one has not been sent recently. Doing so
 helps with timely loss detection at the peer.

Iyengar & Thomson Expires 12 December 2020 [Page 84]

Internet-Draft QUIC Transport Protocol June 2020

 In general, frequent feedback from a receiver improves loss and
 congestion response, but this has to be balanced against excessive
 load generated by a receiver that sends an ACK frame in response to
 every ack-eliciting packet. The guidance offered below seeks to
 strike this balance.

13.2.1 . Sending ACK Frames

 Every packet SHOULD be acknowledged at least once, and ack-eliciting
 packets MUST be acknowledged at least once within the maximum ack
 delay. An endpoint communicates its maximum delay using the
 max_ack_delay transport parameter; see Section 18.2 . max_ack_delay
 declares an explicit contract: an endpoint promises to never
 intentionally delay acknowledgments of an ack-eliciting packet by
 more than the indicated value. If it does, any excess accrues to the
 RTT estimate and could result in spurious or delayed retransmissions
 from the peer. For Initial and Handshake packets, a max_ack_delay of
 0 is used. The sender uses the receiver’s max_ack_delay value in
 determining timeouts for timer-based retransmission, as detailed in
 Section 6.2 of [QUIC-RECOVERY].

 Since packets containing only ACK frames are not congestion
 controlled, an endpoint MUST NOT send more than one such packet in
 response to receiving an ack-eliciting packet.

 An endpoint MUST NOT send a non-ack-eliciting packet in response to a
 non-ack-eliciting packet, even if there are packet gaps which precede
 the received packet. This avoids an infinite feedback loop of
 acknowledgements, which could prevent the connection from ever
 becoming idle. Non-ack-eliciting packets are eventually acknowledged
 when the endpoint sends an ACK frame in response to other events.

 In order to assist loss detection at the sender, an endpoint SHOULD
 send an ACK frame immediately on receiving an ack-eliciting packet
 that is out of order. The endpoint SHOULD NOT continue sending ACK
 frames immediately unless more ack-eliciting packets are received out
 of order. If every subsequent ack-eliciting packet arrives out of
 order, then an ACK frame SHOULD be sent immediately for every
 received ack-eliciting packet.

 Similarly, packets marked with the ECN Congestion Experienced (CE)
 codepoint in the IP header SHOULD be acknowledged immediately, to
 reduce the peer’s response time to congestion events.

 The algorithms in [QUIC-RECOVERY] are expected to be resilient to
 receivers that do not follow guidance offered above. However, an
 implementer should only deviate from these requirements after careful
 consideration of the performance implications of doing so.

Iyengar & Thomson Expires 12 December 2020 [Page 85]

Internet-Draft QUIC Transport Protocol June 2020

 An endpoint that is only sending ACK frames will not receive
 acknowledgments from its peer unless those acknowledgements are
 included in packets with ack-eliciting frames. An endpoint SHOULD
 bundle ACK frames with other frames when there are new ack-eliciting
 packets to acknowledge. When only non-ack-eliciting packets need to
 be acknowledged, an endpoint MAY wait until an ack-eliciting packet
 has been received to bundle an ACK frame with outgoing frames.

13.2.2 . Acknowledgement Frequency

 A receiver determines how frequently to send acknowledgements in
 response to ack-eliciting packets. This determination involves a
 tradeoff.

 Endpoints rely on timely acknowledgment to detect loss; see Section 6
 of [QUIC-RECOVERY]. Window-based congestion controllers, such as the
 one in Section 7 of [QUIC-RECOVERY], rely on acknowledgments to
 manage their congestion window. In both cases, delaying
 acknowledgments can adversely affect performance.

 On the other hand, reducing the frequency of packets that carry only
 acknowledgements reduces packet transmission and processing cost at
 both endpoints. It can also improve connection throughput on
 severely asymmetric links; see Section 3 of [RFC3449] .

 A receiver SHOULD send an ACK frame after receiving at least two ack-
 eliciting packets. This recommendation is general in nature and
 consistent with recommendations for TCP endpoint behavior [RFC5681].
 Knowledge of network conditions, knowledge of the peer’s congestion
 controller, or further research and experimentation might suggest
 alternative acknowledgment strategies with better performance
 characteristics.

 A receiver MAY process multiple available packets before determining
 whether to send an ACK frame in response.

13.2.3 . Managing ACK Ranges

 When an ACK frame is sent, one or more ranges of acknowledged packets
 are included. Including older packets reduces the chance of spurious
 retransmits caused by losing previously sent ACK frames, at the cost
 of larger ACK frames.

Iyengar & Thomson Expires 12 December 2020 [Page 86]

https://tools.ietf.org/pdf/rfc3449#section-3
https://tools.ietf.org/pdf/rfc5681

Internet-Draft QUIC Transport Protocol June 2020

 ACK frames SHOULD always acknowledge the most recently received
 packets, and the more out-of-order the packets are, the more
 important it is to send an updated ACK frame quickly, to prevent the
 peer from declaring a packet as lost and spuriously retransmitting
 the frames it contains. An ACK frame is expected to fit within a
 single QUIC packet. If it does not, then older ranges (those with
 the smallest packet numbers) are omitted.

 Section 13.2.4 and Section 13.2.5 describe an exemplary approach for
 determining what packets to acknowledge in each ACK frame. Though
 the goal of these algorithms is to generate an acknowledgment for
 every packet that is processed, it is still possible for
 acknowledgments to be lost. A sender cannot expect to receive an
 acknowledgment for every packet that the receiver processes.

13.2.4 . Receiver Tracking of ACK Frames

 When a packet containing an ACK frame is sent, the largest
 acknowledged in that frame may be saved. When a packet containing an
 ACK frame is acknowledged, the receiver can stop acknowledging
 packets less than or equal to the largest acknowledged in the sent
 ACK frame.

 In cases without ACK frame loss, this algorithm allows for a minimum
 of 1 RTT of reordering. In cases with ACK frame loss and reordering,
 this approach does not guarantee that every acknowledgement is seen
 by the sender before it is no longer included in the ACK frame.
 Packets could be received out of order and all subsequent ACK frames
 containing them could be lost. In this case, the loss recovery
 algorithm could cause spurious retransmits, but the sender will
 continue making forward progress.

13.2.5 . Limiting ACK Ranges

 A receiver limits the number of ACK Ranges (Section 19.3.1) it
 remembers and sends in ACK frames, both to limit the size of ACK
 frames and to avoid resource exhaustion. After receiving
 acknowledgments for an ACK frame, the receiver SHOULD stop tracking
 those acknowledged ACK Ranges.

 It is possible that retaining many ACK Ranges could cause an ACK
 frame to become too large. A receiver can discard unacknowledged ACK
 Ranges to limit ACK frame size, at the cost of increased
 retransmissions from the sender. This is necessary if an ACK frame
 would be too large to fit in a packet, however receivers MAY also
 limit ACK frame size further to preserve space for other frames.

Iyengar & Thomson Expires 12 December 2020 [Page 87]

Internet-Draft QUIC Transport Protocol June 2020

 A receiver MUST retain an ACK Range unless it can ensure that it will
 not subsequently accept packets with numbers in that range.
 Maintaining a minimum packet number that increases as ranges are
 discarded is one way to achieve this with minimal state.

 Receivers can discard all ACK Ranges, but they MUST retain the
 largest packet number that has been successfully processed as that is
 used to recover packet numbers from subsequent packets; see
 Section 17.1 .

 A receiver SHOULD include an ACK Range containing the largest
 received packet number in every ACK frame. The Largest Acknowledged
 field is used in ECN validation at a sender and including a lower
 value than what was included in a previous ACK frame could cause ECN
 to be unnecessarily disabled; see Section 13.4.2 .

 A receiver that sends only non-ack-eliciting packets, such as ACK
 frames, might not receive an acknowledgement for a long period of
 time. This could cause the receiver to maintain state for a large
 number of ACK frames for a long period of time, and ACK frames it
 sends could be unnecessarily large. In such a case, a receiver could
 bundle a PING or other small ack-eliciting frame occasionally, such
 as once per round trip, to elicit an ACK from the peer.

 A receiver MUST NOT bundle an ack-eliciting frame with all packets
 that would otherwise be non-ack-eliciting, to avoid an infinite
 feedback loop of acknowledgements.

13.2.6 . Measuring and Reporting Host Delay

 An endpoint measures the delays intentionally introduced between the
 time the packet with the largest packet number is received and the
 time an acknowledgment is sent. The endpoint encodes this delay in
 the Ack Delay field of an ACK frame; see Section 19.3 . This allows
 the receiver of the ACK to adjust for any intentional delays, which
 is important for getting a better estimate of the path RTT when
 acknowledgments are delayed. A packet might be held in the OS kernel
 or elsewhere on the host before being processed. An endpoint MUST
 NOT include delays that it does not control when populating the Ack
 Delay field in an ACK frame.

13.2.7 . ACK Frames and Packet Protection

 ACK frames MUST only be carried in a packet that has the same packet
 number space as the packet being ACKed; see Section 12.1 . For
 instance, packets that are protected with 1-RTT keys MUST be
 acknowledged in packets that are also protected with 1-RTT keys.

Iyengar & Thomson Expires 12 December 2020 [Page 88]

Internet-Draft QUIC Transport Protocol June 2020

 Packets that a client sends with 0-RTT packet protection MUST be
 acknowledged by the server in packets protected by 1-RTT keys. This
 can mean that the client is unable to use these acknowledgments if
 the server cryptographic handshake messages are delayed or lost.
 Note that the same limitation applies to other data sent by the
 server protected by the 1-RTT keys.

13.2.8 . PADDING Frames Consume Congestion Window

 Packets containing PADDING frames are considered to be in flight for
 congestion control purposes [QUIC-RECOVERY]. Packets containing only
 PADDING frames therefore consume congestion window but do not
 generate acknowledgments that will open the congestion window. To
 avoid a deadlock, a sender SHOULD ensure that other frames are sent
 periodically in addition to PADDING frames to elicit acknowledgments
 from the receiver.

13.3 . Retransmission of Information

 QUIC packets that are determined to be lost are not retransmitted
 whole. The same applies to the frames that are contained within lost
 packets. Instead, the information that might be carried in frames is
 sent again in new frames as needed.

 New frames and packets are used to carry information that is
 determined to have been lost. In general, information is sent again
 when a packet containing that information is determined to be lost
 and sending ceases when a packet containing that information is
 acknowledged.

 * Data sent in CRYPTO frames is retransmitted according to the rules
 in [QUIC-RECOVERY], until all data has been acknowledged. Data in
 CRYPTO frames for Initial and Handshake packets is discarded when
 keys for the corresponding packet number space are discarded.

 * Application data sent in STREAM frames is retransmitted in new
 STREAM frames unless the endpoint has sent a RESET_STREAM for that
 stream. Once an endpoint sends a RESET_STREAM frame, no further
 STREAM frames are needed.

 * ACK frames carry the most recent set of acknowledgements and the
 Ack Delay from the largest acknowledged packet, as described in
 Section 13.2.1 . Delaying the transmission of packets containing
 ACK frames or sending old ACK frames can cause the peer to
 generate an inflated RTT sample or unnecessarily disable ECN.

Iyengar & Thomson Expires 12 December 2020 [Page 89]

Internet-Draft QUIC Transport Protocol June 2020

 * Cancellation of stream transmission, as carried in a RESET_STREAM
 frame, is sent until acknowledged or until all stream data is
 acknowledged by the peer (that is, either the "Reset Recvd" or
 "Data Recvd" state is reached on the sending part of the stream).
 The content of a RESET_STREAM frame MUST NOT change when it is
 sent again.

 * Similarly, a request to cancel stream transmission, as encoded in
 a STOP_SENDING frame, is sent until the receiving part of the
 stream enters either a "Data Recvd" or "Reset Recvd" state; see
 Section 3.5 .

 * Connection close signals, including packets that contain
 CONNECTION_CLOSE frames, are not sent again when packet loss is
 detected, but as described in Section 10 .

 * The current connection maximum data is sent in MAX_DATA frames.
 An updated value is sent in a MAX_DATA frame if the packet
 containing the most recently sent MAX_DATA frame is declared lost,
 or when the endpoint decides to update the limit. Care is
 necessary to avoid sending this frame too often as the limit can
 increase frequently and cause an unnecessarily large number of
 MAX_DATA frames to be sent.

 * The current maximum stream data offset is sent in MAX_STREAM_DATA
 frames. Like MAX_DATA, an updated value is sent when the packet
 containing the most recent MAX_STREAM_DATA frame for a stream is
 lost or when the limit is updated, with care taken to prevent the
 frame from being sent too often. An endpoint SHOULD stop sending
 MAX_STREAM_DATA frames when the receiving part of the stream
 enters a "Size Known" state.

 * The limit on streams of a given type is sent in MAX_STREAMS
 frames. Like MAX_DATA, an updated value is sent when a packet
 containing the most recent MAX_STREAMS for a stream type frame is
 declared lost or when the limit is updated, with care taken to
 prevent the frame from being sent too often.

 * Blocked signals are carried in DATA_BLOCKED, STREAM_DATA_BLOCKED,
 and STREAMS_BLOCKED frames. DATA_BLOCKED frames have connection
 scope, STREAM_DATA_BLOCKED frames have stream scope, and
 STREAMS_BLOCKED frames are scoped to a specific stream type. New
 frames are sent if packets containing the most recent frame for a
 scope is lost, but only while the endpoint is blocked on the
 corresponding limit. These frames always include the limit that
 is causing blocking at the time that they are transmitted.

Iyengar & Thomson Expires 12 December 2020 [Page 90]

Internet-Draft QUIC Transport Protocol June 2020

 * A liveness or path validation check using PATH_CHALLENGE frames is
 sent periodically until a matching PATH_RESPONSE frame is received
 or until there is no remaining need for liveness or path
 validation checking. PATH_CHALLENGE frames include a different
 payload each time they are sent.

 * Responses to path validation using PATH_RESPONSE frames are sent
 just once. The peer is expected to send more PATH_CHALLENGE
 frames as necessary to evoke additional PATH_RESPONSE frames.

 * New connection IDs are sent in NEW_CONNECTION_ID frames and
 retransmitted if the packet containing them is lost.
 Retransmissions of this frame carry the same sequence number
 value. Likewise, retired connection IDs are sent in
 RETIRE_CONNECTION_ID frames and retransmitted if the packet
 containing them is lost.

 * NEW_TOKEN frames are retransmitted if the packet containing them
 is lost. No special support is made for detecting reordered and
 duplicated NEW_TOKEN frames other than a direct comparison of the
 frame contents.

 * PING and PADDING frames contain no information, so lost PING or
 PADDING frames do not require repair.

 * The HANDSHAKE_DONE frame MUST be retransmitted until it is
 acknowledged.

 Endpoints SHOULD prioritize retransmission of data over sending new
 data, unless priorities specified by the application indicate
 otherwise; see Section 2.3 .

 Even though a sender is encouraged to assemble frames containing up-
 to-date information every time it sends a packet, it is not forbidden
 to retransmit copies of frames from lost packets. A sender that
 retransmits copies of frames needs to handle decreases in available
 payload size due to change in packet number length, connection ID
 length, and path MTU. A receiver MUST accept packets containing an
 outdated frame, such as a MAX_DATA frame carrying a smaller maximum
 data than one found in an older packet.

 Upon detecting losses, a sender MUST take appropriate congestion
 control action. The details of loss detection and congestion control
 are described in [QUIC-RECOVERY].

Iyengar & Thomson Expires 12 December 2020 [Page 91]

Internet-Draft QUIC Transport Protocol June 2020

13.4 . Explicit Congestion Notification

 QUIC endpoints can use Explicit Congestion Notification (ECN)
 [RFC3168] to detect and respond to network congestion. ECN allows a
 network node to indicate congestion in the network by setting a
 codepoint in the IP header of a packet instead of dropping it.
 Endpoints react to congestion by reducing their sending rate in
 response, as described in [QUIC-RECOVERY].

 To use ECN, QUIC endpoints first determine whether a path supports
 ECN marking and the peer is able to access the ECN codepoint in the
 IP header. A network path does not support ECN if ECN marked packets
 get dropped or ECN markings are rewritten on the path. An endpoint
 validates the use of ECN on the path, both during connection
 establishment and when migrating to a new path (Section 9).

13.4.1 . ECN Counts

 On receiving a QUIC packet with an ECT or CE codepoint, an ECN-
 enabled endpoint that can access the ECN codepoints from the
 enclosing IP packet increases the corresponding ECT(0), ECT(1), or CE
 count, and includes these counts in subsequent ACK frames; see
 Section 13.2 and Section 19.3 . Note that this requires being able to
 read the ECN codepoints from the enclosing IP packet, which is not
 possible on all platforms.

 An IP packet that results in no QUIC packets being processed does not
 increase ECN counts. A QUIC packet detected by a receiver as a
 duplicate does not affect the receiver’s local ECN codepoint counts;
 see Section 21.8 for relevant security concerns.

 If an endpoint receives a QUIC packet without an ECT or CE codepoint
 in the IP packet header, it responds per Section 13.2 with an ACK
 frame without increasing any ECN counts. If an endpoint does not
 implement ECN support or does not have access to received ECN
 codepoints, it does not increase ECN counts.

 Coalesced packets (see Section 12.2) mean that several packets can
 share the same IP header. The ECN counts for the ECN codepoint
 received in the associated IP header are incremented once for each
 QUIC packet, not per enclosing IP packet or UDP datagram.

 Each packet number space maintains separate acknowledgement state and
 separate ECN counts. For example, if one each of an Initial, 0-RTT,
 Handshake, and 1-RTT QUIC packet are coalesced, the corresponding
 counts for the Initial and Handshake packet number space will be
 incremented by one and the counts for the 1-RTT packet number space
 will be increased by two.

Iyengar & Thomson Expires 12 December 2020 [Page 92]

https://tools.ietf.org/pdf/rfc3168

Internet-Draft QUIC Transport Protocol June 2020

13.4.2 . ECN Validation

 It is possible for faulty network devices to corrupt or erroneously
 drop packets with ECN markings. To provide robust connectivity in
 the presence of such devices, each endpoint independently validates
 ECN counts and disables ECN if errors are detected.

 Endpoints validate ECN for packets sent on each network path
 independently. An endpoint thus validates ECN on new connection
 establishment, when switching to a new server preferred address, and
 on active connection migration to a new path. Appendix B describes
 one possible algorithm for testing paths for ECN support.

 Even if an endpoint does not use ECN markings on packets it
 transmits, the endpoint MUST provide feedback about ECN markings
 received from the peer if they are accessible. Failing to report ECN
 counts will cause the peer to disable ECN marking.

13.4.2.1 . Sending ECN Markings

 To start ECN validation, an endpoint SHOULD do the following when
 sending packets on a new path to a peer:

 * Set the ECT(0) codepoint in the IP header of early outgoing
 packets sent on a new path to the peer [RFC8311].

 * If all packets that were sent with the ECT(0) codepoint are
 eventually deemed lost [QUIC-RECOVERY], validation is deemed to
 have failed.

 To reduce the chances of misinterpreting congestive loss as packets
 dropped by a faulty network element, an endpoint could set the ECT(0)
 codepoint for only the first ten outgoing packets on a path, or for a
 period of three RTTs, whichever occurs first.

 Other methods of probing paths for ECN support are possible, as are
 different marking strategies. Implementations MAY use other methods
 defined in RFCs; see [RFC8311]. Implementations that use the ECT(1)
 codepoint need to perform ECN validation using ECT(1) counts.

13.4.2.2 . Receiving ACK Frames

 An endpoint that sets ECT(0) or ECT(1) codepoints on packets it
 transmits MUST use the following steps on receiving an ACK frame to
 validate ECN.

Iyengar & Thomson Expires 12 December 2020 [Page 93]

https://tools.ietf.org/pdf/rfc8311
https://tools.ietf.org/pdf/rfc8311

Internet-Draft QUIC Transport Protocol June 2020

 * If this ACK frame newly acknowledges a packet that the endpoint
 sent with either ECT(0) or ECT(1) codepoints set, and if no ECN
 feedback is present in the ACK frame, validation fails. This step
 protects against both a network element that zeroes out ECN bits
 and a peer that is unable to access ECN markings, since the peer
 could respond without ECN feedback in these cases.

 * For validation to succeed, the total increase in ECT(0), ECT(1),
 and CE counts MUST be no smaller than the total number of QUIC
 packets sent with an ECT codepoint that are newly acknowledged in
 this ACK frame. This step detects any network remarking from
 ECT(0), ECT(1), or CE codepoints to Not-ECT.

 * Any increase in either ECT(0) or ECT(1) counts, plus any increase
 in the CE count, MUST be no smaller than the number of packets
 sent with the corresponding ECT codepoint that are newly
 acknowledged in this ACK frame. This step detects any erroneous
 network remarking from ECT(0) to ECT(1) (or vice versa).

 Processing ECN counts out of order can result in validation failure.
 An endpoint SHOULD NOT perform this validation if this ACK frame does
 not advance the largest packet number acknowledged in this
 connection.

 An endpoint could miss acknowledgements for a packet when ACK frames
 are lost. It is therefore possible for the total increase in ECT(0),
 ECT(1), and CE counts to be greater than the number of packets
 acknowledged in an ACK frame. When this happens, and if validation
 succeeds, the local reference counts MUST be increased to match the
 counts in the ACK frame.

13.4.2.3 . Validation Outcomes

 If validation fails, then the endpoint stops sending ECN markings in
 subsequent IP packets with the expectation that either the network
 path or the peer does not support ECN.

 Upon successful validation, an endpoint can continue to set ECT
 codepoints in subsequent packets with the expectation that the path
 is ECN-capable. Network routing and path elements can change mid-
 connection however; an endpoint MUST disable ECN if validation fails
 at any point in the connection.

 Even if validation fails, an endpoint MAY revalidate ECN on the same
 path at any later time in the connection.

Iyengar & Thomson Expires 12 December 2020 [Page 94]

Internet-Draft QUIC Transport Protocol June 2020

14. Packet Size

 The QUIC packet size includes the QUIC header and protected payload,
 but not the UDP or IP headers.

 QUIC depends upon a minimum IP packet size of at least 1280 bytes.
 This is the IPv6 minimum size [RFC8200] and is also supported by most
 modern IPv4 networks. Assuming the minimum IP header size, this
 results in a QUIC maximum packet size of 1232 bytes for IPv6 and 1252
 bytes for IPv4.

 The QUIC maximum packet size is the largest size of QUIC packet that
 can be sent across a network path using a single packet. Any maximum
 packet size larger than 1200 bytes can be discovered using Path
 Maximum Transmission Unit Discovery (PMTUD; see Section 14.2.1) or
 Datagram Packetization Layer PMTU Discovery (DPLPMTUD; see
 Section 14.3).

 Enforcement of the max_udp_payload_size transport parameter
 (Section 18.2) might act as an additional limit on the maximum packet
 size. A sender can avoid exceeding this limit, once the value is
 known. However, prior to learning the value of the transport
 parameter, endpoints risk datagrams being lost if they send packets
 larger than the smallest allowed maximum packet size of 1200 bytes.

 UDP datagrams MUST NOT be fragmented at the IP layer. In IPv4
 [IPv4], the DF bit MUST be set to prevent fragmentation on the path.

14.1 . Initial Packet Size

 A client MUST expand the payload of all UDP datagrams carrying
 Initial packets to at least the smallest allowed maximum packet size
 (1200 bytes) by adding PADDING frames to the Initial packet or by
 coalescing the Initial packet; see Section 12.2 . Sending a UDP
 datagram of this size ensures that the network path from the client
 to the server supports a reasonable Path Maximum Transmission Unit
 (PMTU). This also helps reduce the amplitude of amplification
 attacks caused by server responses toward an unverified client
 address; see Section 8 .

 Datagrams containing Initial packets MAY exceed 1200 bytes if the
 client believes that the network path and peer both support the size
 that it chooses.

Iyengar & Thomson Expires 12 December 2020 [Page 95]

https://tools.ietf.org/pdf/rfc8200

Internet-Draft QUIC Transport Protocol June 2020

 A server MUST discard an Initial packet that is carried in a UDP
 datagram with a payload that is less than the smallest allowed
 maximum packet size of 1200 bytes. A server MAY also immediately
 close the connection by sending a CONNECTION_CLOSE frame with an
 error code of PROTOCOL_VIOLATION; see Section 10.3.1 .

 The server MUST also limit the number of bytes it sends before
 validating the address of the client; see Section 8 .

14.2 . Path Maximum Transmission Unit (PMTU)

 The Path Maximum Transmission Unit (PMTU) is the maximum size of the
 entire IP packet including the IP header, UDP header, and UDP
 payload. The UDP payload includes the QUIC packet header, protected
 payload, and any authentication fields. The PMTU can depend on path
 characteristics, and can therefore change over time. The largest UDP
 payload an endpoint sends at any given time is referred to as the
 endpoint’s maximum packet size.

 An endpoint SHOULD use DPLPMTUD (Section 14.3) or PMTUD
 (Section 14.2.1) to determine whether the path to a destination will
 support a desired maximum packet size without fragmentation. In the
 absence of these mechanisms, QUIC endpoints SHOULD NOT send IP
 packets larger than the smallest allowed maximum packet size.

 Both DPLPMTUD and PMTUD send IP packets that are larger than the
 current maximum packet size. We refer to these as PMTU probes. All
 QUIC packets that are not sent in a PMTU probe SHOULD be sized to fit
 within the maximum packet size to avoid the packet being fragmented
 or dropped [RFC8085].

 If a QUIC endpoint determines that the PMTU between any pair of local
 and remote IP addresses has fallen below the smallest allowed maximum
 packet size of 1200 bytes, it MUST immediately cease sending QUIC
 packets, except for those in PMTU probes or those containing
 CONNECTION_CLOSE frames, on the affected path. An endpoint MAY
 terminate the connection if an alternative path cannot be found.

 Each pair of local and remote addresses could have a different PMTU.
 QUIC implementations that implement any kind of PMTU discovery
 therefore SHOULD maintain a maximum packet size for each combination
 of local and remote IP addresses.

 A QUIC implementation MAY be more conservative in computing the
 maximum packet size to allow for unknown tunnel overheads or IP
 header options/extensions.

Iyengar & Thomson Expires 12 December 2020 [Page 96]

https://tools.ietf.org/pdf/rfc8085

Internet-Draft QUIC Transport Protocol June 2020

14.2.1 . Handling of ICMP Messages by PMTUD

 Path Maximum Transmission Unit Discovery (PMTUD; [RFC1191],
 [RFC8201]) relies on reception of ICMP messages (e.g., IPv6 Packet
 Too Big messages) that indicate when a packet is dropped because it
 is larger than the local router MTU. DPLPMTUD can also optionally
 use these messages. This use of ICMP messages is potentially
 vulnerable to off-path attacks that successfully guess the addresses
 used on the path and reduce the PMTU to a bandwidth-inefficient
 value.

 An endpoint MUST ignore an ICMP message that claims the PMTU has
 decreased below the minimum QUIC packet size.

 The requirements for generating ICMP ([RFC1812], [RFC4443]) state
 that the quoted packet should contain as much of the original packet
 as possible without exceeding the minimum MTU for the IP version.
 The size of the quoted packet can actually be smaller, or the
 information unintelligible, as described in Section 1.1 of
 [DPLPMTUD].

 QUIC endpoints using PMTUD SHOULD validate ICMP messages to protect
 from off-path injection as specified in [RFC8201] and Section 5.2 of
 [RFC8085] . This validation SHOULD use the quoted packet supplied in
 the payload of an ICMP message to associate the message with a
 corresponding transport connection (see Section 4.6.1 of [DPLPMTUD]).
 ICMP message validation MUST include matching IP addresses and UDP
 ports [RFC8085] and, when possible, connection IDs to an active QUIC
 session. The endpoint SHOULD ignore all ICMP messages that fail
 validation.

 An endpoint MUST NOT increase PMTU based on ICMP messages; see
 Section 3 , clause 6 of [DPLPMTUD]. Any reduction in the QUIC maximum
 packet size in response to ICMP messages MAY be provisional until
 QUIC’s loss detection algorithm determines that the quoted packet has
 actually been lost.

14.3 . Datagram Packetization Layer PMTU Discovery

 Datagram Packetization Layer PMTU Discovery (DPLPMTUD; [DPLPMTUD])
 relies on tracking loss or acknowledgment of QUIC packets that are
 carried in PMTU probes. PMTU probes for DPLPMTUD that use the
 PADDING frame implement "Probing using padding data", as defined in
 Section 4.1 of [DPLPMTUD].

 Endpoints SHOULD set the initial value of BASE_PMTU (see Section 5.1
 of [DPLPMTUD]) to be consistent with the minimum QUIC packet size.
 The MIN_PLPMTU is the same as the BASE_PMTU.

Iyengar & Thomson Expires 12 December 2020 [Page 97]

https://tools.ietf.org/pdf/rfc1191
https://tools.ietf.org/pdf/rfc8201
https://tools.ietf.org/pdf/rfc1812
https://tools.ietf.org/pdf/rfc4443
https://tools.ietf.org/pdf/rfc8201
https://tools.ietf.org/pdf/rfc8085#section-5.2
https://tools.ietf.org/pdf/rfc8085#section-5.2
https://tools.ietf.org/pdf/rfc8085

Internet-Draft QUIC Transport Protocol June 2020

 QUIC endpoints implementing DPLPMTUD maintain a maximum packet size
 (DPLPMTUD MPS) for each combination of local and remote IP addresses.

14.3.1 . DPLPMTUD and Initial Connectivity

 From the perspective of DPLPMTUD, QUIC transport is an acknowledged
 packetization layer (PL). A sender can therefore enter the DPLPMTUD
 BASE state when the QUIC connection handshake has been completed.

14.3.2 . Validating the QUIC Path with DPLPMTUD

 QUIC provides an acknowledged PL, therefore a sender does not
 implement the DPLPMTUD CONFIRMATION_TIMER while in the
 SEARCH_COMPLETE state; see Section 5.2 of [DPLPMTUD].

14.3.3 . Handling of ICMP Messages by DPLPMTUD

 An endpoint using DPLPMTUD requires the validation of any received
 ICMP Packet Too Big (PTB) message before using the PTB information,
 as defined in Section 4.6 of [DPLPMTUD]. In addition to UDP port
 validation, QUIC validates an ICMP message by using other PL
 information (e.g., validation of connection IDs in the quoted packet
 of any received ICMP message).

 The considerations for processing ICMP messages described in
 Section 14.2.1 also apply if these messages are used by DPLPMTUD.

14.4 . Sending QUIC PMTU Probes

 PMTU probes are ack-eliciting packets.

 Endpoints could limit the content of PMTU probes to PING and PADDING
 frames as packets that are larger than the current maximum packet
 size are more likely to be dropped by the network. Loss of a QUIC
 packet that is carried in a PMTU probe is therefore not a reliable
 indication of congestion and SHOULD NOT trigger a congestion control
 reaction; see Section 3 , Bullet 7 of [DPLPMTUD]. However, PMTU
 probes consume congestion window, which could delay subsequent
 transmission by an application.

Iyengar & Thomson Expires 12 December 2020 [Page 98]

Internet-Draft QUIC Transport Protocol June 2020

14.4.1 . PMTU Probes Containing Source Connection ID

 Endpoints that rely on the destination connection ID for routing
 incoming QUIC packets are likely to require that the connection ID be
 included in PMTU probes to route any resulting ICMP messages
 (Section 14.2.1) back to the correct endpoint. However, only long
 header packets (Section 17.2) contain the Source Connection ID field,
 and long header packets are not decrypted or acknowledged by the peer
 once the handshake is complete.

 One way to construct a PMTU probe is to coalesce (see Section 12.2) a
 packet with a long header, such as a Handshake or 0-RTT packet
 (Section 17.2), with a short header packet in a single UDP datagram.
 If the resulting PMTU probe reaches the endpoint, the packet with the
 long header will be ignored, but the short header packet will be
 acknowledged. If the PMTU probe causes an ICMP message to be sent,
 the first part of the probe will be quoted in that message. If the
 Source Connection ID field is within the quoted portion of the probe,
 that could be used for routing or validation of the ICMP message.

 Note: The purpose of using a packet with a long header is only to
 ensure that the quoted packet contained in the ICMP message
 contains a Source Connection ID field. This packet does not need
 to be a valid packet and it can be sent even if there is no
 current use for packets of that type.

15. Versions

 QUIC versions are identified using a 32-bit unsigned number.

 The version 0x00000000 is reserved to represent version negotiation.
 This version of the specification is identified by the number
 0x00000001.

 Other versions of QUIC might have different properties to this
 version. The properties of QUIC that are guaranteed to be consistent
 across all versions of the protocol are described in
 [QUIC-INVARIANTS].

 Version 0x00000001 of QUIC uses TLS as a cryptographic handshake
 protocol, as described in [QUIC-TLS].

 Versions with the most significant 16 bits of the version number
 cleared are reserved for use in future IETF consensus documents.

Iyengar & Thomson Expires 12 December 2020 [Page 99]

Internet-Draft QUIC Transport Protocol June 2020

 Versions that follow the pattern 0x?a?a?a?a are reserved for use in
 forcing version negotiation to be exercised. That is, any version
 number where the low four bits of all bytes is 1010 (in binary). A
 client or server MAY advertise support for any of these reserved
 versions.

 Reserved version numbers will never represent a real protocol; a
 client MAY use one of these version numbers with the expectation that
 the server will initiate version negotiation; a server MAY advertise
 support for one of these versions and can expect that clients ignore
 the value.

 [[RFC editor: please remove the remainder of this section before
 publication.]]

 The version number for the final version of this specification
 (0x00000001), is reserved for the version of the protocol that is
 published as an RFC.

 Version numbers used to identify IETF drafts are created by adding
 the draft number to 0xff000000. For example, draft-ietf-quic-
 transport-13 would be identified as 0xff00000D.

 Implementors are encouraged to register version numbers of QUIC that
 they are using for private experimentation on the GitHub wiki at
 https://github.com/quicwg/base-drafts/wiki/QUIC-Versions .

16. Variable-Length Integer Encoding

 QUIC packets and frames commonly use a variable-length encoding for
 non-negative integer values. This encoding ensures that smaller
 integer values need fewer bytes to encode.

 The QUIC variable-length integer encoding reserves the two most
 significant bits of the first byte to encode the base 2 logarithm of
 the integer encoding length in bytes. The integer value is encoded
 on the remaining bits, in network byte order.

 This means that integers are encoded on 1, 2, 4, or 8 bytes and can
 encode 6, 14, 30, or 62 bit values respectively. Table 4 summarizes
 the encoding properties.

Iyengar & Thomson Expires 12 December 2020 [Page 100]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-13
https://tools.ietf.org/pdf/draft-ietf-quic-transport-13
https://github.com/quicwg/base-drafts/wiki/QUIC-Versions

Internet-Draft QUIC Transport Protocol June 2020

 +------+--------+-------------+-----------------------+
 | 2Bit | Length | Usable Bits | Range |
 +======+========+=============+=======================+
 | 00 | 1 | 6 | 0-63 |
 +------+--------+-------------+-----------------------+
 | 01 | 2 | 14 | 0-16383 |
 +------+--------+-------------+-----------------------+
 | 10 | 4 | 30 | 0-1073741823 |
 +------+--------+-------------+-----------------------+
 | 11 | 8 | 62 | 0-4611686018427387903 |
 +------+--------+-------------+-----------------------+

 Table 4: Summary of Integer Encodings

 For example, the eight byte sequence c2 19 7c 5e ff 14 e8 8c (in
 hexadecimal) decodes to the decimal value 151288809941952652; the
 four byte sequence 9d 7f 3e 7d decodes to 494878333; the two byte
 sequence 7b bd decodes to 15293; and the single byte 25 decodes to 37
 (as does the two byte sequence 40 25).

 Error codes (Section 20) and versions (Section 15) are described
 using integers, but do not use this encoding.

17. Packet Formats

 All numeric values are encoded in network byte order (that is, big-
 endian) and all field sizes are in bits. Hexadecimal notation is
 used for describing the value of fields.

17.1 . Packet Number Encoding and Decoding

 Packet numbers are integers in the range 0 to 2^62-1 (Section 12.3).
 When present in long or short packet headers, they are encoded in 1
 to 4 bytes. The number of bits required to represent the packet
 number is reduced by including the least significant bits of the
 packet number.

 The encoded packet number is protected as described in Section 5.4 of
 [QUIC-TLS].

Iyengar & Thomson Expires 12 December 2020 [Page 101]

Internet-Draft QUIC Transport Protocol June 2020

 The sender MUST use a packet number size able to represent more than
 twice as large a range than the difference between the largest
 acknowledged packet and packet number being sent. A peer receiving
 the packet will then correctly decode the packet number, unless the
 packet is delayed in transit such that it arrives after many higher-
 numbered packets have been received. An endpoint SHOULD use a large
 enough packet number encoding to allow the packet number to be
 recovered even if the packet arrives after packets that are sent
 afterwards.

 As a result, the size of the packet number encoding is at least one
 bit more than the base-2 logarithm of the number of contiguous
 unacknowledged packet numbers, including the new packet.

 For example, if an endpoint has received an acknowledgment for packet
 0xabe8bc, sending a packet with a number of 0xac5c02 requires a
 packet number encoding with 16 bits or more; whereas the 24-bit
 packet number encoding is needed to send a packet with a number of
 0xace8fe.

 At a receiver, protection of the packet number is removed prior to
 recovering the full packet number. The full packet number is then
 reconstructed based on the number of significant bits present, the
 value of those bits, and the largest packet number received on a
 successfully authenticated packet. Recovering the full packet number
 is necessary to successfully remove packet protection.

 Once header protection is removed, the packet number is decoded by
 finding the packet number value that is closest to the next expected
 packet. The next expected packet is the highest received packet
 number plus one. For example, if the highest successfully
 authenticated packet had a packet number of 0xa82f30ea, then a packet
 containing a 16-bit value of 0x9b32 will be decoded as 0xa82f9b32.
 Example pseudo-code for packet number decoding can be found in
 Appendix A .

17.2 . Long Header Packets

Iyengar & Thomson Expires 12 December 2020 [Page 102]

Internet-Draft QUIC Transport Protocol June 2020

 Long Header Packet {
 Header Form (1) = 1,
 Fixed Bit (1) = 1,
 Long Packet Type (2),
 Type-Specific Bits (4),
 Version (32),
 Destination Connection ID Length (8),
 Destination Connection ID (0..160),
 Source Connection ID Length (8),
 Source Connection ID (0..160),
 }

 Figure 12: Long Header Packet Format

 Long headers are used for packets that are sent prior to the
 establishment of 1-RTT keys. Once 1-RTT keys are available, a sender
 switches to sending packets using the short header (Section 17.3).
 The long form allows for special packets - such as the Version
 Negotiation packet - to be represented in this uniform fixed-length
 packet format. Packets that use the long header contain the
 following fields:

 Header Form: The most significant bit (0x80) of byte 0 (the first
 byte) is set to 1 for long headers.

 Fixed Bit: The next bit (0x40) of byte 0 is set to 1. Packets
 containing a zero value for this bit are not valid packets in this
 version and MUST be discarded.

 Long Packet Type: The next two bits (those with a mask of 0x30) of
 byte 0 contain a packet type. Packet types are listed in Table 5.

 Type-Specific Bits: The lower four bits (those with a mask of 0x0f)
 of byte 0 are type-specific.

 Version: The QUIC Version is a 32-bit field that follows the first
 byte. This field indicates which version of QUIC is in use and
 determines how the rest of the protocol fields are interpreted.

 Destination Connection ID Length: The byte following the version
 contains the length in bytes of the Destination Connection ID
 field that follows it. This length is encoded as an 8-bit
 unsigned integer. In QUIC version 1, this value MUST NOT exceed
 20. Endpoints that receive a version 1 long header with a value
 larger than 20 MUST drop the packet. Servers SHOULD be able to
 read longer connection IDs from other QUIC versions in order to
 properly form a version negotiation packet.

Iyengar & Thomson Expires 12 December 2020 [Page 103]

Internet-Draft QUIC Transport Protocol June 2020

 Destination Connection ID: The Destination Connection ID field
 follows the Destination Connection ID Length field and is between
 0 and 20 bytes in length. Section 7.2 describes the use of this
 field in more detail.

 Source Connection ID Length: The byte following the Destination
 Connection ID contains the length in bytes of the Source
 Connection ID field that follows it. This length is encoded as a
 8-bit unsigned integer. In QUIC version 1, this value MUST NOT
 exceed 20 bytes. Endpoints that receive a version 1 long header
 with a value larger than 20 MUST drop the packet. Servers SHOULD
 be able to read longer connection IDs from other QUIC versions in
 order to properly form a version negotiation packet.

 Source Connection ID: The Source Connection ID field follows the
 Source Connection ID Length field and is between 0 and 20 bytes in
 length. Section 7.2 describes the use of this field in more
 detail.

 In this version of QUIC, the following packet types with the long
 header are defined:

 +------+-----------+----------------+
 | Type | Name | Section |
 +======+===========+================+
 | 0x0 | Initial | Section 17.2.2 |
 +------+-----------+----------------+
 | 0x1 | 0-RTT | Section 17.2.3 |
 +------+-----------+----------------+
 | 0x2 | Handshake | Section 17.2.4 |
 +------+-----------+----------------+
 | 0x3 | Retry | Section 17.2.5 |
 +------+-----------+----------------+

 Table 5: Long Header Packet Types

 The header form bit, connection ID lengths byte, Destination and
 Source Connection ID fields, and Version fields of a long header
 packet are version-independent. The other fields in the first byte
 are version-specific. See [QUIC-INVARIANTS] for details on how
 packets from different versions of QUIC are interpreted.

 The interpretation of the fields and the payload are specific to a
 version and packet type. While type-specific semantics for this
 version are described in the following sections, several long-header
 packets in this version of QUIC contain these additional fields:

 Reserved Bits: Two bits (those with a mask of 0x0c) of byte 0 are

Iyengar & Thomson Expires 12 December 2020 [Page 104]

Internet-Draft QUIC Transport Protocol June 2020

 reserved across multiple packet types. These bits are protected
 using header protection; see Section 5.4 of [QUIC-TLS]. The value
 included prior to protection MUST be set to 0. An endpoint MUST
 treat receipt of a packet that has a non-zero value for these
 bits, after removing both packet and header protection, as a
 connection error of type PROTOCOL_VIOLATION. Discarding such a
 packet after only removing header protection can expose the
 endpoint to attacks; see Section 9.3 of [QUIC-TLS].

 Packet Number Length: In packet types which contain a Packet Number
 field, the least significant two bits (those with a mask of 0x03)
 of byte 0 contain the length of the packet number, encoded as an
 unsigned, two-bit integer that is one less than the length of the
 packet number field in bytes. That is, the length of the packet
 number field is the value of this field, plus one. These bits are
 protected using header protection; see Section 5.4 of [QUIC-TLS].

 Length: The length of the remainder of the packet (that is, the
 Packet Number and Payload fields) in bytes, encoded as a variable-
 length integer (Section 16).

 Packet Number: The packet number field is 1 to 4 bytes long. The
 packet number has confidentiality protection separate from packet
 protection, as described in Section 5.4 of [QUIC-TLS]. The length
 of the packet number field is encoded in the Packet Number Length
 bits of byte 0; see above.

17.2.1 . Version Negotiation Packet

 A Version Negotiation packet is inherently not version-specific.
 Upon receipt by a client, it will be identified as a Version
 Negotiation packet based on the Version field having a value of 0.

 The Version Negotiation packet is a response to a client packet that
 contains a version that is not supported by the server, and is only
 sent by servers.

 The layout of a Version Negotiation packet is:

Iyengar & Thomson Expires 12 December 2020 [Page 105]

Internet-Draft QUIC Transport Protocol June 2020

 Version Negotiation Packet {
 Header Form (1) = 1,
 Unused (7),
 Version (32) = 0,
 Destination Connection ID Length (8),
 Destination Connection ID (0..2040),
 Source Connection ID Length (8),
 Source Connection ID (0..2040),
 Supported Version (32) ...,
 }

 Figure 13: Version Negotiation Packet

 The value in the Unused field is selected randomly by the server.
 Clients MUST ignore the value of this field. Servers SHOULD set the
 most significant bit of this field (0x40) to 1 so that Version
 Negotiation packets appear to have the Fixed Bit field.

 The Version field of a Version Negotiation packet MUST be set to
 0x00000000.

 The server MUST include the value from the Source Connection ID field
 of the packet it receives in the Destination Connection ID field.
 The value for Source Connection ID MUST be copied from the
 Destination Connection ID of the received packet, which is initially
 randomly selected by a client. Echoing both connection IDs gives
 clients some assurance that the server received the packet and that
 the Version Negotiation packet was not generated by an off-path
 attacker.

 As future versions of QUIC may support Connection IDs larger than the
 version 1 limit, Version Negotiation packets could carry Connection
 IDs that are longer than 20 bytes.

 The remainder of the Version Negotiation packet is a list of 32-bit
 versions which the server supports.

 A Version Negotiation packet cannot be explicitly acknowledged in an
 ACK frame by a client. Receiving another Initial packet implicitly
 acknowledges a Version Negotiation packet.

 The Version Negotiation packet does not include the Packet Number and
 Length fields present in other packets that use the long header form.
 Consequently, a Version Negotiation packet consumes an entire UDP
 datagram.

 A server MUST NOT send more than one Version Negotiation packet in
 response to a single UDP datagram.

Iyengar & Thomson Expires 12 December 2020 [Page 106]

Internet-Draft QUIC Transport Protocol June 2020

 See Section 6 for a description of the version negotiation process.

17.2.2 . Initial Packet

 An Initial packet uses long headers with a type value of 0x0. It
 carries the first CRYPTO frames sent by the client and server to
 perform key exchange, and carries ACKs in either direction.

 Initial Packet {
 Header Form (1) = 1,
 Fixed Bit (1) = 1,
 Long Packet Type (2) = 0,
 Reserved Bits (2),
 Packet Number Length (2),
 Version (32),
 Destination Connection ID Length (8),
 Destination Connection ID (0..160),
 Source Connection ID Length (8),
 Source Connection ID (0..160),
 Token Length (i),
 Token (..),
 Length (i),
 Packet Number (8..32),
 Packet Payload (..),
 }

 Figure 14: Initial Packet

 The Initial packet contains a long header as well as the Length and
 Packet Number fields. The first byte contains the Reserved and
 Packet Number Length bits. Between the Source Connection ID and
 Length fields, there are two additional fields specific to the
 Initial packet.

 Token Length: A variable-length integer specifying the length of the
 Token field, in bytes. This value is zero if no token is present.
 Initial packets sent by the server MUST set the Token Length field
 to zero; clients that receive an Initial packet with a non-zero
 Token Length field MUST either discard the packet or generate a
 connection error of type PROTOCOL_VIOLATION.

 Token: The value of the token that was previously provided in a
 Retry packet or NEW_TOKEN frame.

 Packet Payload: The payload of the packet.

Iyengar & Thomson Expires 12 December 2020 [Page 107]

Internet-Draft QUIC Transport Protocol June 2020

 In order to prevent tampering by version-unaware middleboxes, Initial
 packets are protected with connection- and version-specific keys
 (Initial keys) as described in [QUIC-TLS]. This protection does not
 provide confidentiality or integrity against on-path attackers, but
 provides some level of protection against off-path attackers.

 The client and server use the Initial packet type for any packet that
 contains an initial cryptographic handshake message. This includes
 all cases where a new packet containing the initial cryptographic
 message needs to be created, such as the packets sent after receiving
 a Retry packet (Section 17.2.5).

 A server sends its first Initial packet in response to a client
 Initial. A server may send multiple Initial packets. The
 cryptographic key exchange could require multiple round trips or
 retransmissions of this data.

 The payload of an Initial packet includes a CRYPTO frame (or frames)
 containing a cryptographic handshake message, ACK frames, or both.
 PING, PADDING, and CONNECTION_CLOSE frames of type 0x1c are also
 permitted. An endpoint that receives an Initial packet containing
 other frames can either discard the packet as spurious or treat it as
 a connection error.

 The first packet sent by a client always includes a CRYPTO frame that
 contains the start or all of the first cryptographic handshake
 message. The first CRYPTO frame sent always begins at an offset of
 0; see Section 7 .

 Note that if the server sends a HelloRetryRequest, the client will
 send another series of Initial packets. These Initial packets will
 continue the cryptographic handshake and will contain CRYPTO frames
 starting at an offset matching the size of the CRYPTO frames sent in
 the first flight of Initial packets.

17.2.2.1 . Abandoning Initial Packets

 A client stops both sending and processing Initial packets when it
 sends its first Handshake packet. A server stops sending and
 processing Initial packets when it receives its first Handshake
 packet. Though packets might still be in flight or awaiting
 acknowledgment, no further Initial packets need to be exchanged
 beyond this point. Initial packet protection keys are discarded (see
 Section 4.11.1 of [QUIC-TLS]) along with any loss recovery and
 congestion control state; see Section 6.4 of [QUIC-RECOVERY].

 Any data in CRYPTO frames is discarded - and no longer retransmitted
 - when Initial keys are discarded.

Iyengar & Thomson Expires 12 December 2020 [Page 108]

Internet-Draft QUIC Transport Protocol June 2020

17.2.3 . 0-RTT

 A 0-RTT packet uses long headers with a type value of 0x1, followed
 by the Length and Packet Number fields. The first byte contains the
 Reserved and Packet Number Length bits. It is used to carry "early"
 data from the client to the server as part of the first flight, prior
 to handshake completion. As part of the TLS handshake, the server
 can accept or reject this early data.

 See Section 2.3 of [TLS13] for a discussion of 0-RTT data and its
 limitations.

 0-RTT Packet {
 Header Form (1) = 1,
 Fixed Bit (1) = 1,
 Long Packet Type (2) = 1,
 Reserved Bits (2),
 Packet Number Length (2),
 Version (32),
 Destination Connection ID Length (8),
 Destination Connection ID (0..160),
 Source Connection ID Length (8),
 Source Connection ID (0..160),
 Length (i),
 Packet Number (8..32),
 Packet Payload (..),
 }

 Figure 15: 0-RTT Packet

 Packet numbers for 0-RTT protected packets use the same space as
 1-RTT protected packets.

 After a client receives a Retry packet, 0-RTT packets are likely to
 have been lost or discarded by the server. A client SHOULD attempt
 to resend data in 0-RTT packets after it sends a new Initial packet.

 A client MUST NOT reset the packet number it uses for 0-RTT packets,
 since the keys used to protect 0-RTT packets will not change as a
 result of responding to a Retry packet. Sending packets with the
 same packet number in that case is likely to compromise the packet
 protection for all 0-RTT packets because the same key and nonce could
 be used to protect different content.

 A client only receives acknowledgments for its 0-RTT packets once the
 handshake is complete. Consequently, a server might expect 0-RTT
 packets to start with a packet number of 0. Therefore, in
 determining the length of the packet number encoding for 0-RTT

Iyengar & Thomson Expires 12 December 2020 [Page 109]

Internet-Draft QUIC Transport Protocol June 2020

 packets, a client MUST assume that all packets up to the current
 packet number are in flight, starting from a packet number of 0.
 Thus, 0-RTT packets could need to use a longer packet number
 encoding.

 A client MUST NOT send 0-RTT packets once it starts processing 1-RTT
 packets from the server. This means that 0-RTT packets cannot
 contain any response to frames from 1-RTT packets. For instance, a
 client cannot send an ACK frame in a 0-RTT packet, because that can
 only acknowledge a 1-RTT packet. An acknowledgment for a 1-RTT
 packet MUST be carried in a 1-RTT packet.

 A server SHOULD treat a violation of remembered limits as a
 connection error of an appropriate type (for instance, a
 FLOW_CONTROL_ERROR for exceeding stream data limits).

17.2.4 . Handshake Packet

 A Handshake packet uses long headers with a type value of 0x2,
 followed by the Length and Packet Number fields. The first byte
 contains the Reserved and Packet Number Length bits. It is used to
 carry acknowledgments and cryptographic handshake messages from the
 server and client.

 Handshake Packet {
 Header Form (1) = 1,
 Fixed Bit (1) = 1,
 Long Packet Type (2) = 2,
 Reserved Bits (2),
 Packet Number Length (2),
 Version (32),
 Destination Connection ID Length (8),
 Destination Connection ID (0..160),
 Source Connection ID Length (8),
 Source Connection ID (0..160),
 Length (i),
 Packet Number (8..32),
 Packet Payload (..),
 }

 Figure 16: Handshake Protected Packet

 Once a client has received a Handshake packet from a server, it uses
 Handshake packets to send subsequent cryptographic handshake messages
 and acknowledgments to the server.

Iyengar & Thomson Expires 12 December 2020 [Page 110]

Internet-Draft QUIC Transport Protocol June 2020

 The Destination Connection ID field in a Handshake packet contains a
 connection ID that is chosen by the recipient of the packet; the
 Source Connection ID includes the connection ID that the sender of
 the packet wishes to use; see Section 7.2 .

 Handshake packets are their own packet number space, and thus the
 first Handshake packet sent by a server contains a packet number of
 0.

 The payload of this packet contains CRYPTO frames and could contain
 PING, PADDING, or ACK frames. Handshake packets MAY contain
 CONNECTION_CLOSE frames of type 0x1c. Endpoints MUST treat receipt
 of Handshake packets with other frames as a connection error.

 Like Initial packets (see Section 17.2.2.1), data in CRYPTO frames
 for Handshake packets is discarded - and no longer retransmitted -
 when Handshake protection keys are discarded.

17.2.5 . Retry Packet

 A Retry packet uses a long packet header with a type value of 0x3.
 It carries an address validation token created by the server. It is
 used by a server that wishes to perform a retry; see Section 8.1 .

 Retry Packet {
 Header Form (1) = 1,
 Fixed Bit (1) = 1,
 Long Packet Type (2) = 3,
 Unused (4),
 Version (32),
 Destination Connection ID Length (8),
 Destination Connection ID (0..160),
 Source Connection ID Length (8),
 Source Connection ID (0..160),
 Retry Token (..),
 Retry Integrity Tag (128),
 }

 Figure 17: Retry Packet

 A Retry packet (shown in Figure 17) does not contain any protected
 fields. The value in the Unused field is selected randomly by the
 server. In addition to the fields from the long header, it contains
 these additional fields:

 Retry Token: An opaque token that the server can use to validate the
 client’s address.

Iyengar & Thomson Expires 12 December 2020 [Page 111]

Internet-Draft QUIC Transport Protocol June 2020

 Retry Integrity Tag: See the Retry Packet Integrity section of
 [QUIC-TLS].

17.2.5.1 . Sending a Retry Packet

 The server populates the Destination Connection ID with the
 connection ID that the client included in the Source Connection ID of
 the Initial packet.

 The server includes a connection ID of its choice in the Source
 Connection ID field. This value MUST NOT be equal to the Destination
 Connection ID field of the packet sent by the client. A client MUST
 discard a Retry packet that contains a Source Connection ID field
 that is identical to the Destination Connection ID field of its
 Initial packet. The client MUST use the value from the Source
 Connection ID field of the Retry packet in the Destination Connection
 ID field of subsequent packets that it sends.

 A server MAY send Retry packets in response to Initial and 0-RTT
 packets. A server can either discard or buffer 0-RTT packets that it
 receives. A server can send multiple Retry packets as it receives
 Initial or 0-RTT packets. A server MUST NOT send more than one Retry
 packet in response to a single UDP datagram.

17.2.5.2 . Handling a Retry Packet

 A client MUST accept and process at most one Retry packet for each
 connection attempt. After the client has received and processed an
 Initial or Retry packet from the server, it MUST discard any
 subsequent Retry packets that it receives.

 Clients MUST discard Retry packets that have a Retry Integrity Tag
 that cannot be validated, see the Retry Packet Integrity section of
 [QUIC-TLS]. This diminishes an off-path attacker’s ability to inject
 a Retry packet and protects against accidental corruption of Retry
 packets. A client MUST discard a Retry packet with a zero-length
 Retry Token field.

 The client responds to a Retry packet with an Initial packet that
 includes the provided Retry Token to continue connection
 establishment.

Iyengar & Thomson Expires 12 December 2020 [Page 112]

Internet-Draft QUIC Transport Protocol June 2020

 A client sets the Destination Connection ID field of this Initial
 packet to the value from the Source Connection ID in the Retry
 packet. Changing Destination Connection ID also results in a change
 to the keys used to protect the Initial packet. It also sets the
 Token field to the token provided in the Retry. The client MUST NOT
 change the Source Connection ID because the server could include the
 connection ID as part of its token validation logic; see
 Section 8.1.4 .

 A Retry packet does not include a packet number and cannot be
 explicitly acknowledged by a client.

17.2.5.3 . Continuing a Handshake After Retry

 The next Initial packet from the client uses the connection ID and
 token values from the Retry packet; see Section 7.2 . Aside from
 this, the Initial packet sent by the client is subject to the same
 restrictions as the first Initial packet. A client MUST use the same
 cryptographic handshake message it includes in this packet. A server
 MAY treat a packet that contains a different cryptographic handshake
 message as a connection error or discard it.

 A client MAY attempt 0-RTT after receiving a Retry packet by sending
 0-RTT packets to the connection ID provided by the server. A client
 MUST NOT change the cryptographic handshake message it sends in
 response to receiving a Retry.

 A client MUST NOT reset the packet number for any packet number space
 after processing a Retry packet; Section 17.2.3 contains more
 information on this.

 A server acknowledges the use of a Retry packet for a connection
 using the retry_source_connection_id transport parameter; see
 Section 18.2 . If the server sends a Retry packet, it also
 subsequently includes the value of the Source Connection ID field
 from the Retry packet in its retry_source_connection_id transport
 parameter.

 If the client received and processed a Retry packet, it MUST validate
 that the retry_source_connection_id transport parameter is present
 and correct; otherwise, it MUST validate that the transport parameter
 is absent. A client MUST treat a failed validation as a connection
 error of type PROTOCOL_VIOLATION.

17.3 . Short Header Packets

 This version of QUIC defines a single packet type which uses the
 short packet header.

Iyengar & Thomson Expires 12 December 2020 [Page 113]

Internet-Draft QUIC Transport Protocol June 2020

 Short Header Packet {
 Header Form (1) = 0,
 Fixed Bit (1) = 1,
 Spin Bit (1),
 Reserved Bits (2),
 Key Phase (1),
 Packet Number Length (2),
 Destination Connection ID (0..160),
 Packet Number (8..32),
 Packet Payload (..),
 }

 Figure 18: Short Header Packet Format

 The short header can be used after the version and 1-RTT keys are
 negotiated. Packets that use the short header contain the following
 fields:

 Header Form: The most significant bit (0x80) of byte 0 is set to 0
 for the short header.

 Fixed Bit: The next bit (0x40) of byte 0 is set to 1. Packets
 containing a zero value for this bit are not valid packets in this
 version and MUST be discarded.

 Spin Bit: The third most significant bit (0x20) of byte 0 is the
 latency spin bit, set as described in Section 17.3.1 .

 Reserved Bits: The next two bits (those with a mask of 0x18) of byte
 0 are reserved. These bits are protected using header protection;
 see Section 5.4 of [QUIC-TLS]. The value included prior to
 protection MUST be set to 0. An endpoint MUST treat receipt of a
 packet that has a non-zero value for these bits, after removing
 both packet and header protection, as a connection error of type
 PROTOCOL_VIOLATION. Discarding such a packet after only removing
 header protection can expose the endpoint to attacks; see
 Section 9.3 of [QUIC-TLS].

 Key Phase: The next bit (0x04) of byte 0 indicates the key phase,
 which allows a recipient of a packet to identify the packet
 protection keys that are used to protect the packet. See
 [QUIC-TLS] for details. This bit is protected using header
 protection; see Section 5.4 of [QUIC-TLS].

 Packet Number Length: The least significant two bits (those with a
 mask of 0x03) of byte 0 contain the length of the packet number,
 encoded as an unsigned, two-bit integer that is one less than the
 length of the packet number field in bytes. That is, the length

Iyengar & Thomson Expires 12 December 2020 [Page 114]

Internet-Draft QUIC Transport Protocol June 2020

 of the packet number field is the value of this field, plus one.
 These bits are protected using header protection; see Section 5.4
 of [QUIC-TLS].

 Destination Connection ID: The Destination Connection ID is a
 connection ID that is chosen by the intended recipient of the
 packet. See Section 5.1 for more details.

 Packet Number: The packet number field is 1 to 4 bytes long. The
 packet number has confidentiality protection separate from packet
 protection, as described in Section 5.4 of [QUIC-TLS]. The length
 of the packet number field is encoded in Packet Number Length
 field. See Section 17.1 for details.

 Packet Payload: Packets with a short header always include a 1-RTT
 protected payload.

 The header form bit and the connection ID field of a short header
 packet are version-independent. The remaining fields are specific to
 the selected QUIC version. See [QUIC-INVARIANTS] for details on how
 packets from different versions of QUIC are interpreted.

17.3.1 . Latency Spin Bit

 The latency spin bit enables passive latency monitoring from
 observation points on the network path throughout the duration of a
 connection. The spin bit is only present in the short packet header,
 since it is possible to measure the initial RTT of a connection by
 observing the handshake. Therefore, the spin bit is available after
 version negotiation and connection establishment are completed. On-
 path measurement and use of the latency spin bit is further discussed
 in [QUIC-MANAGEABILITY].

 The spin bit is an OPTIONAL feature of QUIC. A QUIC stack that
 chooses to support the spin bit MUST implement it as specified in
 this section.

 Each endpoint unilaterally decides if the spin bit is enabled or
 disabled for a connection. Implementations MUST allow administrators
 of clients and servers to disable the spin bit either globally or on
 a per-connection basis. Even when the spin bit is not disabled by
 the administrator, endpoints MUST disable their use of the spin bit
 for a random selection of at least one in every 16 network paths, or
 for one in every 16 connection IDs. As each endpoint disables the
 spin bit independently, this ensures that the spin bit signal is
 disabled on approximately one in eight network paths.

Iyengar & Thomson Expires 12 December 2020 [Page 115]

Internet-Draft QUIC Transport Protocol June 2020

 When the spin bit is disabled, endpoints MAY set the spin bit to any
 value, and MUST ignore any incoming value. It is RECOMMENDED that
 endpoints set the spin bit to a random value either chosen
 independently for each packet or chosen independently for each
 connection ID.

 If the spin bit is enabled for the connection, the endpoint maintains
 a spin value and sets the spin bit in the short header to the
 currently stored value when a packet with a short header is sent out.
 The spin value is initialized to 0 in the endpoint at connection
 start. Each endpoint also remembers the highest packet number seen
 from its peer on the connection.

 When a server receives a short header packet that increments the
 highest packet number seen by the server from the client, it sets the
 spin value to be equal to the spin bit in the received packet.

 When a client receives a short header packet that increments the
 highest packet number seen by the client from the server, it sets the
 spin value to the inverse of the spin bit in the received packet.

 An endpoint resets its spin value to zero when sending the first
 packet of a given connection with a new connection ID. This reduces
 the risk that transient spin bit state can be used to link flows
 across connection migration or ID change.

 With this mechanism, the server reflects the spin value received,
 while the client ’spins’ it after one RTT. On-path observers can
 measure the time between two spin bit toggle events to estimate the
 end-to-end RTT of a connection.

18. Transport Parameter Encoding

 The extension_data field of the quic_transport_parameters extension
 defined in [QUIC-TLS] contains the QUIC transport parameters. They
 are encoded as a sequence of transport parameters, as shown in
 Figure 19:

 Transport Parameters {
 Transport Parameter (..) ...,
 }

 Figure 19: Sequence of Transport Parameters

 Each transport parameter is encoded as an (identifier, length, value)
 tuple, as shown in Figure 20:

Iyengar & Thomson Expires 12 December 2020 [Page 116]

Internet-Draft QUIC Transport Protocol June 2020

 Transport Parameter {
 Transport Parameter ID (i),
 Transport Parameter Length (i),
 Transport Parameter Value (..),
 }

 Figure 20: Transport Parameter Encoding

 The Transport Parameter Length field contains the length of the
 Transport Parameter Value field.

 QUIC encodes transport parameters into a sequence of bytes, which are
 then included in the cryptographic handshake.

18.1 . Reserved Transport Parameters

 Transport parameters with an identifier of the form "31 * N + 27" for
 integer values of N are reserved to exercise the requirement that
 unknown transport parameters be ignored. These transport parameters
 have no semantics, and may carry arbitrary values.

18.2 . Transport Parameter Definitions

 This section details the transport parameters defined in this
 document.

 Many transport parameters listed here have integer values. Those
 transport parameters that are identified as integers use a variable-
 length integer encoding; see Section 16 . Transport parameters have a
 default value of 0 if the transport parameter is absent unless
 otherwise stated.

 The following transport parameters are defined:

 original_destination_connection_id (0x00): The value of the
 Destination Connection ID field from the first Initial packet sent
 by the client; see Section 7.3 . This transport parameter is only
 sent by a server.

 max_idle_timeout (0x01): The max idle timeout is a value in
 milliseconds that is encoded as an integer; see (Section 10.2).
 Idle timeout is disabled when both endpoints omit this transport
 parameter or specify a value of 0.

 stateless_reset_token (0x02): A stateless reset token is used in
 verifying a stateless reset; see Section 10.4 . This parameter is
 a sequence of 16 bytes. This transport parameter MUST NOT be sent
 by a client, but MAY be sent by a server. A server that does not

Iyengar & Thomson Expires 12 December 2020 [Page 117]

Internet-Draft QUIC Transport Protocol June 2020

 send this transport parameter cannot use stateless reset
 (Section 10.4) for the connection ID negotiated during the
 handshake.

 max_udp_payload_size (0x03): The maximum UDP payload size parameter
 is an integer value that limits the size of UDP payloads that the
 endpoint is willing to receive. UDP packets with payloads larger
 than this limit are not likely to be processed by the receiver.

 The default for this parameter is the maximum permitted UDP
 payload of 65527. Values below 1200 are invalid.

 This limit does act as an additional constraint on datagram size
 in the same way as the path MTU, but it is a property of the
 endpoint and not the path; see Section 14 . It is expected that
 this is the space an endpoint dedicates to holding incoming
 packets.

 initial_max_data (0x04): The initial maximum data parameter is an
 integer value that contains the initial value for the maximum
 amount of data that can be sent on the connection. This is
 equivalent to sending a MAX_DATA (Section 19.9) for the connection
 immediately after completing the handshake.

 initial_max_stream_data_bidi_local (0x05): This parameter is an
 integer value specifying the initial flow control limit for
 locally-initiated bidirectional streams. This limit applies to
 newly created bidirectional streams opened by the endpoint that
 sends the transport parameter. In client transport parameters,
 this applies to streams with an identifier with the least
 significant two bits set to 0x0; in server transport parameters,
 this applies to streams with the least significant two bits set to
 0x1.

 initial_max_stream_data_bidi_remote (0x06): This parameter is an
 integer value specifying the initial flow control limit for peer-
 initiated bidirectional streams. This limit applies to newly
 created bidirectional streams opened by the endpoint that receives
 the transport parameter. In client transport parameters, this
 applies to streams with an identifier with the least significant
 two bits set to 0x1; in server transport parameters, this applies
 to streams with the least significant two bits set to 0x0.

 initial_max_stream_data_uni (0x07): This parameter is an integer
 value specifying the initial flow control limit for unidirectional
 streams. This limit applies to newly created unidirectional
 streams opened by the endpoint that receives the transport
 parameter. In client transport parameters, this applies to

Iyengar & Thomson Expires 12 December 2020 [Page 118]

Internet-Draft QUIC Transport Protocol June 2020

 streams with an identifier with the least significant two bits set
 to 0x3; in server transport parameters, this applies to streams
 with the least significant two bits set to 0x2.

 initial_max_streams_bidi (0x08): The initial maximum bidirectional
 streams parameter is an integer value that contains the initial
 maximum number of bidirectional streams the peer may initiate. If
 this parameter is absent or zero, the peer cannot open
 bidirectional streams until a MAX_STREAMS frame is sent. Setting
 this parameter is equivalent to sending a MAX_STREAMS
 (Section 19.11) of the corresponding type with the same value.

 initial_max_streams_uni (0x09): The initial maximum unidirectional
 streams parameter is an integer value that contains the initial
 maximum number of unidirectional streams the peer may initiate.
 If this parameter is absent or zero, the peer cannot open
 unidirectional streams until a MAX_STREAMS frame is sent. Setting
 this parameter is equivalent to sending a MAX_STREAMS
 (Section 19.11) of the corresponding type with the same value.

 ack_delay_exponent (0x0a): The ACK delay exponent is an integer
 value indicating an exponent used to decode the ACK Delay field in
 the ACK frame (Section 19.3). If this value is absent, a default
 value of 3 is assumed (indicating a multiplier of 8). Values
 above 20 are invalid.

 max_ack_delay (0x0b): The maximum ACK delay is an integer value
 indicating the maximum amount of time in milliseconds by which the
 endpoint will delay sending acknowledgments. This value SHOULD
 include the receiver’s expected delays in alarms firing. For
 example, if a receiver sets a timer for 5ms and alarms commonly
 fire up to 1ms late, then it should send a max_ack_delay of 6ms.
 If this value is absent, a default of 25 milliseconds is assumed.
 Values of 2^14 or greater are invalid.

 disable_active_migration (0x0c): The disable active migration
 transport parameter is included if the endpoint does not support
 active connection migration (Section 9) on the address being used
 during the handshake. When a peer sets this transport parameter,
 an endpoint MUST NOT use a new local address when sending to the
 address that the peer used during the handshake. This transport
 parameter does not prohibit connection migration after a client
 has acted on a preferred_address transport parameter. This
 parameter is a zero-length value.

 preferred_address (0x0d): The server’s preferred address is used to

Iyengar & Thomson Expires 12 December 2020 [Page 119]

Internet-Draft QUIC Transport Protocol June 2020

 effect a change in server address at the end of the handshake, as
 described in Section 9.6 . The format of this transport parameter
 is shown in Figure 21. This transport parameter is only sent by a
 server. Servers MAY choose to only send a preferred address of
 one address family by sending an all-zero address and port
 (0.0.0.0:0 or ::.0) for the other family. IP addresses are
 encoded in network byte order.

 The Connection ID field and the Stateless Reset Token field
 contain an alternative connection ID that has a sequence number of
 1; see Section 5.1.1 . Having these values bundled with the
 preferred address ensures that there will be at least one unused
 active connection ID when the client initiates migration to the
 preferred address.

 The Connection ID and Stateless Reset Token fields of a preferred
 address are identical in syntax and semantics to the corresponding
 fields of a NEW_CONNECTION_ID frame (Section 19.15). A server
 that chooses a zero-length connection ID MUST NOT provide a
 preferred address. Similarly, a server MUST NOT include a zero-
 length connection ID in this transport parameter. A client MUST
 treat violation of these requirements as a connection error of
 type TRANSPORT_PARAMETER_ERROR.

 Preferred Address {
 IPv4 Address (32),
 IPv4 Port (16),
 IPv6 Address (128),
 IPv6 Port (16),
 CID Length (8),
 Connection ID (..),
 Stateless Reset Token (128),
 }

 Figure 21: Preferred Address format

 active_connection_id_limit (0x0e): The active connection ID limit is

Iyengar & Thomson Expires 12 December 2020 [Page 120]

Internet-Draft QUIC Transport Protocol June 2020

 an integer value specifying the maximum number of connection IDs
 from the peer that an endpoint is willing to store. This value
 includes the connection ID received during the handshake, that
 received in the preferred_address transport parameter, and those
 received in NEW_CONNECTION_ID frames. The value of the
 active_connection_id_limit parameter MUST be at least 2. An
 endpoint that receives a value less than 2 MUST close the
 connection with an error of type TRANSPORT_PARAMETER_ERROR. If
 this transport parameter is absent, a default of 2 is assumed. If
 an endpoint issues a zero-length connection ID, it will never send
 a NEW_CONNECTION_ID frame and therefore ignores the
 active_connection_id_limit value received from its peer.

 initial_source_connection_id (0x0f): The value that the endpoint
 included in the Source Connection ID field of the first Initial
 packet it sends for the connection; see Section 7.3 .

 retry_source_connection_id (0x10): The value that the server
 included in the Source Connection ID field of a Retry packet; see
 Section 7.3 . This transport parameter is only sent by a server.

 If present, transport parameters that set initial flow control limits
 (initial_max_stream_data_bidi_local,
 initial_max_stream_data_bidi_remote, and initial_max_stream_data_uni)
 are equivalent to sending a MAX_STREAM_DATA frame (Section 19.10) on
 every stream of the corresponding type immediately after opening. If
 the transport parameter is absent, streams of that type start with a
 flow control limit of 0.

 A client MUST NOT include any server-only transport parameter:
 original_destination_connection_id, preferred_address,
 retry_source_connection_id, or stateless_reset_token. A server MUST
 treat receipt of any of these transport parameters as a connection
 error of type TRANSPORT_PARAMETER_ERROR.

19. Frame Types and Formats

 As described in Section 12.4 , packets contain one or more frames.
 This section describes the format and semantics of the core QUIC
 frame types.

19.1 . PADDING Frame

 The PADDING frame (type=0x00) has no semantic value. PADDING frames
 can be used to increase the size of a packet. Padding can be used to
 increase an initial client packet to the minimum required size, or to
 provide protection against traffic analysis for protected packets.

Iyengar & Thomson Expires 12 December 2020 [Page 121]

Internet-Draft QUIC Transport Protocol June 2020

 As shown in Figure 22, a PADDING frame has no content. That is, a
 PADDING frame consists of the single byte that identifies the frame
 as a PADDING frame.

 PADDING Frame {
 Type (i) = 0x00,
 }

 Figure 22: PADDING Frame Format

19.2 . PING Frame

 Endpoints can use PING frames (type=0x01) to verify that their peers
 are still alive or to check reachability to the peer. As shown in
 Figure 23 a PING frame contains no content.

 PING Frame {
 Type (i) = 0x01,
 }

 Figure 23: PING Frame Format

 The receiver of a PING frame simply needs to acknowledge the packet
 containing this frame.

 The PING frame can be used to keep a connection alive when an
 application or application protocol wishes to prevent the connection
 from timing out; see Section 10.2.2 .

19.3 . ACK Frames

 Receivers send ACK frames (types 0x02 and 0x03) to inform senders of
 packets they have received and processed. The ACK frame contains one
 or more ACK Ranges. ACK Ranges identify acknowledged packets. If
 the frame type is 0x03, ACK frames also contain the sum of QUIC
 packets with associated ECN marks received on the connection up until
 this point. QUIC implementations MUST properly handle both types
 and, if they have enabled ECN for packets they send, they SHOULD use
 the information in the ECN section to manage their congestion state.

 QUIC acknowledgements are irrevocable. Once acknowledged, a packet
 remains acknowledged, even if it does not appear in a future ACK
 frame. This is unlike TCP SACKs ([RFC2018]).

Iyengar & Thomson Expires 12 December 2020 [Page 122]

https://tools.ietf.org/pdf/rfc2018

Internet-Draft QUIC Transport Protocol June 2020

 Packets from different packet number spaces can be identified using
 the same numeric value. An acknowledgment for a packet needs to
 indicate both a packet number and a packet number space. This is
 accomplished by having each ACK frame only acknowledge packet numbers
 in the same space as the packet in which the ACK frame is contained.

 Version Negotiation and Retry packets cannot be acknowledged because
 they do not contain a packet number. Rather than relying on ACK
 frames, these packets are implicitly acknowledged by the next Initial
 packet sent by the client.

 An ACK frame is shown in Figure 24.

 ACK Frame {
 Type (i) = 0x02..0x03,
 Largest Acknowledged (i),
 ACK Delay (i),
 ACK Range Count (i),
 First ACK Range (i),
 ACK Range (..) ...,
 [ECN Counts (..)],
 }

 Figure 24: ACK Frame Format

 ACK frames contain the following fields:

 Largest Acknowledged: A variable-length integer representing the
 largest packet number the peer is acknowledging; this is usually
 the largest packet number that the peer has received prior to
 generating the ACK frame. Unlike the packet number in the QUIC
 long or short header, the value in an ACK frame is not truncated.

 ACK Delay: A variable-length integer representing the time delta in
 microseconds between when this ACK was sent and when the largest
 acknowledged packet, as indicated in the Largest Acknowledged
 field, was received by this peer. The value of the ACK Delay
 field is scaled by multiplying the encoded value by 2 to the power
 of the value of the ack_delay_exponent transport parameter set by
 the sender of the ACK frame; see Section 18.2 . Scaling in this
 fashion allows for a larger range of values with a shorter
 encoding at the cost of lower resolution. Because the receiver
 doesn’t use the ACK Delay for Initial and Handshake packets, a
 sender SHOULD send a value of 0.

 ACK Range Count: A variable-length integer specifying the number of
 Gap and ACK Range fields in the frame.

Iyengar & Thomson Expires 12 December 2020 [Page 123]

Internet-Draft QUIC Transport Protocol June 2020

 First ACK Range: A variable-length integer indicating the number of
 contiguous packets preceding the Largest Acknowledged that are
 being acknowledged. The First ACK Range is encoded as an ACK
 Range; see Section 19.3.1 starting from the Largest Acknowledged.
 That is, the smallest packet acknowledged in the range is
 determined by subtracting the First ACK Range value from the
 Largest Acknowledged.

 ACK Ranges: Contains additional ranges of packets which are
 alternately not acknowledged (Gap) and acknowledged (ACK Range);
 see Section 19.3.1 .

 ECN Counts: The three ECN Counts; see Section 19.3.2 .

19.3.1 . ACK Ranges

 Each ACK Range consists of alternating Gap and ACK Range values in
 descending packet number order. ACK Ranges can be repeated. The
 number of Gap and ACK Range values is determined by the ACK Range
 Count field; one of each value is present for each value in the ACK
 Range Count field.

 ACK Ranges are structured as shown in Figure 25.

 ACK Range {
 Gap (i),
 ACK Range Length (i),
 }

 Figure 25: ACK Ranges

 The fields that form each ACK Range are:

 Gap: A variable-length integer indicating the number of contiguous
 unacknowledged packets preceding the packet number one lower than
 the smallest in the preceding ACK Range.

 ACK Range Length: A variable-length integer indicating the number of
 contiguous acknowledged packets preceding the largest packet
 number, as determined by the preceding Gap.

 Gap and ACK Range value use a relative integer encoding for
 efficiency. Though each encoded value is positive, the values are
 subtracted, so that each ACK Range describes progressively lower-
 numbered packets.

Iyengar & Thomson Expires 12 December 2020 [Page 124]

Internet-Draft QUIC Transport Protocol June 2020

 Each ACK Range acknowledges a contiguous range of packets by
 indicating the number of acknowledged packets that precede the
 largest packet number in that range. A value of zero indicates that
 only the largest packet number is acknowledged. Larger ACK Range
 values indicate a larger range, with corresponding lower values for
 the smallest packet number in the range. Thus, given a largest
 packet number for the range, the smallest value is determined by the
 formula:

 smallest = largest - ack_range

 An ACK Range acknowledges all packets between the smallest packet
 number and the largest, inclusive.

 The largest value for an ACK Range is determined by cumulatively
 subtracting the size of all preceding ACK Ranges and Gaps.

 Each Gap indicates a range of packets that are not being
 acknowledged. The number of packets in the gap is one higher than
 the encoded value of the Gap field.

 The value of the Gap field establishes the largest packet number
 value for the subsequent ACK Range using the following formula:

 largest = previous_smallest - gap - 2

 If any computed packet number is negative, an endpoint MUST generate
 a connection error of type FRAME_ENCODING_ERROR.

19.3.2 . ECN Counts

 The ACK frame uses the least significant bit (that is, type 0x03) to
 indicate ECN feedback and report receipt of QUIC packets with
 associated ECN codepoints of ECT(0), ECT(1), or CE in the packet’s IP
 header. ECN Counts are only present when the ACK frame type is 0x03.

 ECN Counts are only parsed when the ACK frame type is 0x03. There
 are 3 ECN counts, as shown in Figure 26.

 ECN Counts {
 ECT0 Count (i),
 ECT1 Count (i),
 ECN-CE Count (i),
 }

 Figure 26: ECN Count Format

 The three ECN Counts are:

Iyengar & Thomson Expires 12 December 2020 [Page 125]

Internet-Draft QUIC Transport Protocol June 2020

 ECT0 Count: A variable-length integer representing the total number
 of packets received with the ECT(0) codepoint in the packet number
 space of the ACK frame.

 ECT1 Count: A variable-length integer representing the total number
 of packets received with the ECT(1) codepoint in the packet number
 space of the ACK frame.

 CE Count: A variable-length integer representing the total number of
 packets received with the CE codepoint in the packet number space
 of the ACK frame.

 ECN counts are maintained separately for each packet number space.

19.4 . RESET_STREAM Frame

 An endpoint uses a RESET_STREAM frame (type=0x04) to abruptly
 terminate the sending part of a stream.

 After sending a RESET_STREAM, an endpoint ceases transmission and
 retransmission of STREAM frames on the identified stream. A receiver
 of RESET_STREAM can discard any data that it already received on that
 stream.

 An endpoint that receives a RESET_STREAM frame for a send-only stream
 MUST terminate the connection with error STREAM_STATE_ERROR.

 The RESET_STREAM frame is shown in Figure 27.

 RESET_STREAM Frame {
 Type (i) = 0x04,
 Stream ID (i),
 Application Protocol Error Code (i),
 Final Size (i),
 }

 Figure 27: RESET_STREAM Frame Format

 RESET_STREAM frames contain the following fields:

 Stream ID: A variable-length integer encoding of the Stream ID of
 the stream being terminated.

 Application Protocol Error Code: A variable-length integer
 containing the application protocol error code (see Section 20.1)
 which indicates why the stream is being closed.

 Final Size: A variable-length integer indicating the final size of

Iyengar & Thomson Expires 12 December 2020 [Page 126]

Internet-Draft QUIC Transport Protocol June 2020

 the stream by the RESET_STREAM sender, in unit of bytes.

19.5 . STOP_SENDING Frame

 An endpoint uses a STOP_SENDING frame (type=0x05) to communicate that
 incoming data is being discarded on receipt at application request.
 STOP_SENDING requests that a peer cease transmission on a stream.

 A STOP_SENDING frame can be sent for streams in the Recv or Size
 Known states; see Section 3.1 . Receiving a STOP_SENDING frame for a
 locally-initiated stream that has not yet been created MUST be
 treated as a connection error of type STREAM_STATE_ERROR. An
 endpoint that receives a STOP_SENDING frame for a receive-only stream
 MUST terminate the connection with error STREAM_STATE_ERROR.

 The STOP_SENDING frame is shown in Figure 28.

 STOP_SENDING Frame {
 Type (i) = 0x05,
 Stream ID (i),
 Application Protocol Error Code (i),
 }

 Figure 28: STOP_SENDING Frame Format

 STOP_SENDING frames contain the following fields:

 Stream ID: A variable-length integer carrying the Stream ID of the
 stream being ignored.

 Application Protocol Error Code: A variable-length integer
 containing the application-specified reason the sender is ignoring
 the stream; see Section 20.1 .

19.6 . CRYPTO Frame

 The CRYPTO frame (type=0x06) is used to transmit cryptographic
 handshake messages. It can be sent in all packet types except 0-RTT.
 The CRYPTO frame offers the cryptographic protocol an in-order stream
 of bytes. CRYPTO frames are functionally identical to STREAM frames,
 except that they do not bear a stream identifier; they are not flow
 controlled; and they do not carry markers for optional offset,
 optional length, and the end of the stream.

 The CRYPTO frame is shown in Figure 29.

Iyengar & Thomson Expires 12 December 2020 [Page 127]

Internet-Draft QUIC Transport Protocol June 2020

 CRYPTO Frame {
 Type (i) = 0x06,
 Offset (i),
 Length (i),
 Crypto Data (..),
 }

 Figure 29: CRYPTO Frame Format

 CRYPTO frames contain the following fields:

 Offset: A variable-length integer specifying the byte offset in the
 stream for the data in this CRYPTO frame.

 Length: A variable-length integer specifying the length of the
 Crypto Data field in this CRYPTO frame.

 Crypto Data: The cryptographic message data.

 There is a separate flow of cryptographic handshake data in each
 encryption level, each of which starts at an offset of 0. This
 implies that each encryption level is treated as a separate CRYPTO
 stream of data.

 The largest offset delivered on a stream - the sum of the offset and
 data length - cannot exceed 2^62-1. Receipt of a frame that exceeds
 this limit MUST be treated as a connection error of type
 FRAME_ENCODING_ERROR or CRYPTO_BUFFER_EXCEEDED.

 Unlike STREAM frames, which include a Stream ID indicating to which
 stream the data belongs, the CRYPTO frame carries data for a single
 stream per encryption level. The stream does not have an explicit
 end, so CRYPTO frames do not have a FIN bit.

19.7 . NEW_TOKEN Frame

 A server sends a NEW_TOKEN frame (type=0x07) to provide the client
 with a token to send in the header of an Initial packet for a future
 connection.

 The NEW_TOKEN frame is shown in Figure 30.

 NEW_TOKEN Frame {
 Type (i) = 0x07,
 Token Length (i),
 Token (..),
 }

Iyengar & Thomson Expires 12 December 2020 [Page 128]

Internet-Draft QUIC Transport Protocol June 2020

 Figure 30: NEW_TOKEN Frame Format

 NEW_TOKEN frames contain the following fields:

 Token Length: A variable-length integer specifying the length of the
 token in bytes.

 Token: An opaque blob that the client may use with a future Initial
 packet. The token MUST NOT be empty. An endpoint MUST treat
 receipt of a NEW_TOKEN frame with an empty Token field as a
 connection error of type FRAME_ENCODING_ERROR.

 An endpoint might receive multiple NEW_TOKEN frames that contain the
 same token value if packets containing the frame are incorrectly
 determined to be lost. Endpoints are responsible for discarding
 duplicate values, which might be used to link connection attempts;
 see Section 8.1.3 .

 Clients MUST NOT send NEW_TOKEN frames. Servers MUST treat receipt
 of a NEW_TOKEN frame as a connection error of type
 PROTOCOL_VIOLATION.

19.8 . STREAM Frames

 STREAM frames implicitly create a stream and carry stream data. The
 STREAM frame takes the form 0b00001XXX (or the set of values from
 0x08 to 0x0f). The value of the three low-order bits of the frame
 type determines the fields that are present in the frame.

 * The OFF bit (0x04) in the frame type is set to indicate that there
 is an Offset field present. When set to 1, the Offset field is
 present. When set to 0, the Offset field is absent and the Stream
 Data starts at an offset of 0 (that is, the frame contains the
 first bytes of the stream, or the end of a stream that includes no
 data).

 * The LEN bit (0x02) in the frame type is set to indicate that there
 is a Length field present. If this bit is set to 0, the Length
 field is absent and the Stream Data field extends to the end of
 the packet. If this bit is set to 1, the Length field is present.

 * The FIN bit (0x01) of the frame type is set only on frames that
 contain the final size of the stream. Setting this bit indicates
 that the frame marks the end of the stream.

Iyengar & Thomson Expires 12 December 2020 [Page 129]

Internet-Draft QUIC Transport Protocol June 2020

 An endpoint MUST terminate the connection with error
 STREAM_STATE_ERROR if it receives a STREAM frame for a locally-
 initiated stream that has not yet been created, or for a send-only
 stream.

 The STREAM frames are shown in Figure 31.

 STREAM Frame {
 Type (i) = 0x08..0x0f,
 Stream ID (i),
 [Offset (i)],
 [Length (i)],
 Stream Data (..),
 }

 Figure 31: STREAM Frame Format

 STREAM frames contain the following fields:

 Stream ID: A variable-length integer indicating the stream ID of the
 stream; see Section 2.1 .

 Offset: A variable-length integer specifying the byte offset in the
 stream for the data in this STREAM frame. This field is present
 when the OFF bit is set to 1. When the Offset field is absent,
 the offset is 0.

 Length: A variable-length integer specifying the length of the
 Stream Data field in this STREAM frame. This field is present
 when the LEN bit is set to 1. When the LEN bit is set to 0, the
 Stream Data field consumes all the remaining bytes in the packet.

 Stream Data: The bytes from the designated stream to be delivered.

 When a Stream Data field has a length of 0, the offset in the STREAM
 frame is the offset of the next byte that would be sent.

 The first byte in the stream has an offset of 0. The largest offset
 delivered on a stream - the sum of the offset and data length -
 cannot exceed 2^62-1, as it is not possible to provide flow control
 credit for that data. Receipt of a frame that exceeds this limit
 MUST be treated as a connection error of type FRAME_ENCODING_ERROR or
 FLOW_CONTROL_ERROR.

Iyengar & Thomson Expires 12 December 2020 [Page 130]

Internet-Draft QUIC Transport Protocol June 2020

19.9 . MAX_DATA Frame

 The MAX_DATA frame (type=0x10) is used in flow control to inform the
 peer of the maximum amount of data that can be sent on the connection
 as a whole.

 The MAX_DATA frame is shown in Figure 32.

 MAX_DATA Frame {
 Type (i) = 0x10,
 Maximum Data (i),
 }

 Figure 32: MAX_DATA Frame Format

 MAX_DATA frames contain the following fields:

 Maximum Data: A variable-length integer indicating the maximum
 amount of data that can be sent on the entire connection, in units
 of bytes.

 All data sent in STREAM frames counts toward this limit. The sum of
 the largest received offsets on all streams - including streams in
 terminal states - MUST NOT exceed the value advertised by a receiver.
 An endpoint MUST terminate a connection with a FLOW_CONTROL_ERROR
 error if it receives more data than the maximum data value that it
 has sent, unless this is a result of a change in the initial limits;
 see Section 7.4.1 .

19.10 . MAX_STREAM_DATA Frame

 The MAX_STREAM_DATA frame (type=0x11) is used in flow control to
 inform a peer of the maximum amount of data that can be sent on a
 stream.

 A MAX_STREAM_DATA frame can be sent for streams in the Recv state;
 see Section 3.1 . Receiving a MAX_STREAM_DATA frame for a locally-
 initiated stream that has not yet been created MUST be treated as a
 connection error of type STREAM_STATE_ERROR. An endpoint that
 receives a MAX_STREAM_DATA frame for a receive-only stream MUST
 terminate the connection with error STREAM_STATE_ERROR.

 The MAX_STREAM_DATA frame is shown in Figure 33.

Iyengar & Thomson Expires 12 December 2020 [Page 131]

Internet-Draft QUIC Transport Protocol June 2020

 MAX_STREAM_DATA Frame {
 Type (i) = 0x11,
 Stream ID (i),
 Maximum Stream Data (i),
 }

 Figure 33: MAX_STREAM_DATA Frame Format

 MAX_STREAM_DATA frames contain the following fields:

 Stream ID: The stream ID of the stream that is affected encoded as a
 variable-length integer.

 Maximum Stream Data: A variable-length integer indicating the
 maximum amount of data that can be sent on the identified stream,
 in units of bytes.

 When counting data toward this limit, an endpoint accounts for the
 largest received offset of data that is sent or received on the
 stream. Loss or reordering can mean that the largest received offset
 on a stream can be greater than the total size of data received on
 that stream. Receiving STREAM frames might not increase the largest
 received offset.

 The data sent on a stream MUST NOT exceed the largest maximum stream
 data value advertised by the receiver. An endpoint MUST terminate a
 connection with a FLOW_CONTROL_ERROR error if it receives more data
 than the largest maximum stream data that it has sent for the
 affected stream, unless this is a result of a change in the initial
 limits; see Section 7.4.1 .

19.11 . MAX_STREAMS Frames

 The MAX_STREAMS frames (type=0x12 and 0x13) inform the peer of the
 cumulative number of streams of a given type it is permitted to open.
 A MAX_STREAMS frame with a type of 0x12 applies to bidirectional
 streams, and a MAX_STREAMS frame with a type of 0x13 applies to
 unidirectional streams.

 The MAX_STREAMS frames are shown in Figure 34;

 MAX_STREAMS Frame {
 Type (i) = 0x12..0x13,
 Maximum Streams (i),
 }

 Figure 34: MAX_STREAMS Frame Format

Iyengar & Thomson Expires 12 December 2020 [Page 132]

Internet-Draft QUIC Transport Protocol June 2020

 MAX_STREAMS frames contain the following fields:

 Maximum Streams: A count of the cumulative number of streams of the
 corresponding type that can be opened over the lifetime of the
 connection. This value cannot exceed 2^60, as it is not possible
 to encode stream IDs larger than 2^62-1. Receipt of a frame that
 permits opening of a stream larger than this limit MUST be treated
 as a FRAME_ENCODING_ERROR.

 Loss or reordering can cause a MAX_STREAMS frame to be received which
 states a lower stream limit than an endpoint has previously received.
 MAX_STREAMS frames which do not increase the stream limit MUST be
 ignored.

 An endpoint MUST NOT open more streams than permitted by the current
 stream limit set by its peer. For instance, a server that receives a
 unidirectional stream limit of 3 is permitted to open stream 3, 7,
 and 11, but not stream 15. An endpoint MUST terminate a connection
 with a STREAM_LIMIT_ERROR error if a peer opens more streams than was
 permitted.

 Note that these frames (and the corresponding transport parameters)
 do not describe the number of streams that can be opened
 concurrently. The limit includes streams that have been closed as
 well as those that are open.

19.12 . DATA_BLOCKED Frame

 A sender SHOULD send a DATA_BLOCKED frame (type=0x14) when it wishes
 to send data, but is unable to due to connection-level flow control;
 see Section 4 . DATA_BLOCKED frames can be used as input to tuning of
 flow control algorithms; see Section 4.2 .

 The DATA_BLOCKED frame is shown in Figure 35.

 DATA_BLOCKED Frame {
 Type (i) = 0x14,
 Maximum Data (i),
 }

 Figure 35: DATA_BLOCKED Frame Format

 DATA_BLOCKED frames contain the following fields:

 Maximum Data: A variable-length integer indicating the connection-
 level limit at which blocking occurred.

Iyengar & Thomson Expires 12 December 2020 [Page 133]

Internet-Draft QUIC Transport Protocol June 2020

19.13 . STREAM_DATA_BLOCKED Frame

 A sender SHOULD send a STREAM_DATA_BLOCKED frame (type=0x15) when it
 wishes to send data, but is unable to due to stream-level flow
 control. This frame is analogous to DATA_BLOCKED (Section 19.12).

 An endpoint that receives a STREAM_DATA_BLOCKED frame for a send-only
 stream MUST terminate the connection with error STREAM_STATE_ERROR.

 The STREAM_DATA_BLOCKED frame is shown in Figure 36.

 STREAM_DATA_BLOCKED Frame {
 Type (i) = 0x15,
 Stream ID (i),
 Maximum Stream Data (i),
 }

 Figure 36: STREAM_DATA_BLOCKED Frame Format

 STREAM_DATA_BLOCKED frames contain the following fields:

 Stream ID: A variable-length integer indicating the stream which is
 flow control blocked.

 Maximum Stream Data: A variable-length integer indicating the offset
 of the stream at which the blocking occurred.

19.14 . STREAMS_BLOCKED Frames

 A sender SHOULD send a STREAMS_BLOCKED frame (type=0x16 or 0x17) when
 it wishes to open a stream, but is unable to due to the maximum
 stream limit set by its peer; see Section 19.11 . A STREAMS_BLOCKED
 frame of type 0x16 is used to indicate reaching the bidirectional
 stream limit, and a STREAMS_BLOCKED frame of type 0x17 indicates
 reaching the unidirectional stream limit.

 A STREAMS_BLOCKED frame does not open the stream, but informs the
 peer that a new stream was needed and the stream limit prevented the
 creation of the stream.

 The STREAMS_BLOCKED frames are shown in Figure 37.

 STREAMS_BLOCKED Frame {
 Type (i) = 0x16..0x17,
 Maximum Streams (i),
 }

 Figure 37: STREAMS_BLOCKED Frame Format

Iyengar & Thomson Expires 12 December 2020 [Page 134]

Internet-Draft QUIC Transport Protocol June 2020

 STREAMS_BLOCKED frames contain the following fields:

 Maximum Streams: A variable-length integer indicating the maximum
 number of streams allowed at the time the frame was sent. This
 value cannot exceed 2^60, as it is not possible to encode stream
 IDs larger than 2^62-1. Receipt of a frame that encodes a larger
 stream ID MUST be treated as a STREAM_LIMIT_ERROR or a
 FRAME_ENCODING_ERROR.

19.15 . NEW_CONNECTION_ID Frame

 An endpoint sends a NEW_CONNECTION_ID frame (type=0x18) to provide
 its peer with alternative connection IDs that can be used to break
 linkability when migrating connections; see Section 9.5 .

 The NEW_CONNECTION_ID frame is shown in Figure 38.

 NEW_CONNECTION_ID Frame {
 Type (i) = 0x18,
 Sequence Number (i),
 Retire Prior To (i),
 Length (8),
 Connection ID (8..160),
 Stateless Reset Token (128),
 }

 Figure 38: NEW_CONNECTION_ID Frame Format

 NEW_CONNECTION_ID frames contain the following fields:

 Sequence Number: The sequence number assigned to the connection ID
 by the sender. See Section 5.1.1 .

 Retire Prior To: A variable-length integer indicating which
 connection IDs should be retired; see Section 5.1.2 .

 Length: An 8-bit unsigned integer containing the length of the
 connection ID. Values less than 1 and greater than 20 are invalid
 and MUST be treated as a connection error of type
 FRAME_ENCODING_ERROR.

 Connection ID: A connection ID of the specified length.

 Stateless Reset Token: A 128-bit value that will be used for a
 stateless reset when the associated connection ID is used; see
 Section 10.4 .

Iyengar & Thomson Expires 12 December 2020 [Page 135]

Internet-Draft QUIC Transport Protocol June 2020

 An endpoint MUST NOT send this frame if it currently requires that
 its peer send packets with a zero-length Destination Connection ID.
 Changing the length of a connection ID to or from zero-length makes
 it difficult to identify when the value of the connection ID changed.
 An endpoint that is sending packets with a zero-length Destination
 Connection ID MUST treat receipt of a NEW_CONNECTION_ID frame as a
 connection error of type PROTOCOL_VIOLATION.

 Transmission errors, timeouts and retransmissions might cause the
 same NEW_CONNECTION_ID frame to be received multiple times. Receipt
 of the same frame multiple times MUST NOT be treated as a connection
 error. A receiver can use the sequence number supplied in the
 NEW_CONNECTION_ID frame to identify new connection IDs from old ones.

 If an endpoint receives a NEW_CONNECTION_ID frame that repeats a
 previously issued connection ID with a different Stateless Reset
 Token or a different sequence number, or if a sequence number is used
 for different connection IDs, the endpoint MAY treat that receipt as
 a connection error of type PROTOCOL_VIOLATION.

 The Retire Prior To field counts connection IDs established during
 connection setup and the preferred_address transport parameter; see
 Section 5.1.2 . The Retire Prior To field MUST be less than or equal
 to the Sequence Number field. Receiving a value greater than the
 Sequence Number MUST be treated as a connection error of type
 FRAME_ENCODING_ERROR.

 Once a sender indicates a Retire Prior To value, smaller values sent
 in subsequent NEW_CONNECTION_ID frames have no effect. A receiver
 MUST ignore any Retire Prior To fields that do not increase the
 largest received Retire Prior To value.

 An endpoint that receives a NEW_CONNECTION_ID frame with a sequence
 number smaller than the Retire Prior To field of a previously
 received NEW_CONNECTION_ID frame MUST send a corresponding
 RETIRE_CONNECTION_ID frame that retires the newly received connection
 ID, unless it has already done so for that sequence number.

19.16 . RETIRE_CONNECTION_ID Frame

 An endpoint sends a RETIRE_CONNECTION_ID frame (type=0x19) to
 indicate that it will no longer use a connection ID that was issued
 by its peer. This may include the connection ID provided during the
 handshake. Sending a RETIRE_CONNECTION_ID frame also serves as a
 request to the peer to send additional connection IDs for future use;
 see Section 5.1 . New connection IDs can be delivered to a peer using
 the NEW_CONNECTION_ID frame (Section 19.15).

Iyengar & Thomson Expires 12 December 2020 [Page 136]

Internet-Draft QUIC Transport Protocol June 2020

 Retiring a connection ID invalidates the stateless reset token
 associated with that connection ID.

 The RETIRE_CONNECTION_ID frame is shown in Figure 39.

 RETIRE_CONNECTION_ID Frame {
 Type (i) = 0x19,
 Sequence Number (i),
 }

 Figure 39: RETIRE_CONNECTION_ID Frame Format

 RETIRE_CONNECTION_ID frames contain the following fields:

 Sequence Number: The sequence number of the connection ID being
 retired; see Section 5.1.2 .

 Receipt of a RETIRE_CONNECTION_ID frame containing a sequence number
 greater than any previously sent to the peer MUST be treated as a
 connection error of type PROTOCOL_VIOLATION.

 The sequence number specified in a RETIRE_CONNECTION_ID frame MUST
 NOT refer to the Destination Connection ID field of the packet in
 which the frame is contained. The peer MAY treat this as a
 connection error of type FRAME_ENCODING_ERROR.

 An endpoint cannot send this frame if it was provided with a zero-
 length connection ID by its peer. An endpoint that provides a zero-
 length connection ID MUST treat receipt of a RETIRE_CONNECTION_ID
 frame as a connection error of type PROTOCOL_VIOLATION.

19.17 . PATH_CHALLENGE Frame

 Endpoints can use PATH_CHALLENGE frames (type=0x1a) to check
 reachability to the peer and for path validation during connection
 migration.

 The PATH_CHALLENGE frame is shown in Figure 40.

 PATH_CHALLENGE Frame {
 Type (i) = 0x1a,
 Data (64),
 }

 Figure 40: PATH_CHALLENGE Frame Format

 PATH_CHALLENGE frames contain the following fields:

Iyengar & Thomson Expires 12 December 2020 [Page 137]

Internet-Draft QUIC Transport Protocol June 2020

 Data: This 8-byte field contains arbitrary data.

 A PATH_CHALLENGE frame containing 8 bytes that are hard to guess is
 sufficient to ensure that it is easier to receive the packet than it
 is to guess the value correctly.

 The recipient of this frame MUST generate a PATH_RESPONSE frame
 (Section 19.18) containing the same Data.

19.18 . PATH_RESPONSE Frame

 The PATH_RESPONSE frame (type=0x1b) is sent in response to a
 PATH_CHALLENGE frame. Its format, shown in Figure 41 is identical to
 the PATH_CHALLENGE frame (Section 19.17).

 PATH_RESPONSE Frame {
 Type (i) = 0x1b,
 Data (64),
 }

 Figure 41: PATH_RESPONSE Frame Format

 If the content of a PATH_RESPONSE frame does not match the content of
 a PATH_CHALLENGE frame previously sent by the endpoint, the endpoint
 MAY generate a connection error of type PROTOCOL_VIOLATION.

19.19 . CONNECTION_CLOSE Frames

 An endpoint sends a CONNECTION_CLOSE frame (type=0x1c or 0x1d) to
 notify its peer that the connection is being closed. The
 CONNECTION_CLOSE with a frame type of 0x1c is used to signal errors
 at only the QUIC layer, or the absence of errors (with the NO_ERROR
 code). The CONNECTION_CLOSE frame with a type of 0x1d is used to
 signal an error with the application that uses QUIC.

 If there are open streams that haven’t been explicitly closed, they
 are implicitly closed when the connection is closed.

 The CONNECTION_CLOSE frames are shown in Figure 42.

 CONNECTION_CLOSE Frame {
 Type (i) = 0x1c..0x1d,
 Error Code (i),
 [Frame Type (i)],
 Reason Phrase Length (i),
 Reason Phrase (..),
 }

Iyengar & Thomson Expires 12 December 2020 [Page 138]

Internet-Draft QUIC Transport Protocol June 2020

 Figure 42: CONNECTION_CLOSE Frame Format

 CONNECTION_CLOSE frames contain the following fields:

 Error Code: A variable length integer error code which indicates the
 reason for closing this connection. A CONNECTION_CLOSE frame of
 type 0x1c uses codes from the space defined in Section 20 . A
 CONNECTION_CLOSE frame of type 0x1d uses codes from the
 application protocol error code space; see Section 20.1 .

 Frame Type: A variable-length integer encoding the type of frame
 that triggered the error. A value of 0 (equivalent to the mention
 of the PADDING frame) is used when the frame type is unknown. The
 application-specific variant of CONNECTION_CLOSE (type 0x1d) does
 not include this field.

 Reason Phrase Length: A variable-length integer specifying the
 length of the reason phrase in bytes. Because a CONNECTION_CLOSE
 frame cannot be split between packets, any limits on packet size
 will also limit the space available for a reason phrase.

 Reason Phrase: A human-readable explanation for why the connection
 was closed. This can be zero length if the sender chooses to not
 give details beyond the Error Code. This SHOULD be a UTF-8
 encoded string [RFC3629].

 The application-specific variant of CONNECTION_CLOSE (type 0x1d) can
 only be sent using 0-RTT or 1-RTT packets; see Section 4 of
 [QUIC-TLS]. When an application wishes to abandon a connection
 during the handshake, an endpoint can send a CONNECTION_CLOSE frame
 (type 0x1c) with an error code of APPLICATION_ERROR in an Initial or
 a Handshake packet.

19.20 . HANDSHAKE_DONE frame

 The server uses the HANDSHAKE_DONE frame (type=0x1e) to signal
 confirmation of the handshake to the client. As shown in Figure 43,
 a HANDSHAKE_DONE frame has no content.

 HANDSHAKE_DONE Frame {
 Type (i) = 0x1e,
 }

 Figure 43: HANDSHAKE_DONE Frame Format

Iyengar & Thomson Expires 12 December 2020 [Page 139]

https://tools.ietf.org/pdf/rfc3629

Internet-Draft QUIC Transport Protocol June 2020

 A HANDSHAKE_DONE frame can only be sent by the server. Servers MUST
 NOT send a HANDSHAKE_DONE frame before completing the handshake. A
 server MUST treat receipt of a HANDSHAKE_DONE frame as a connection
 error of type PROTOCOL_VIOLATION.

19.21 . Extension Frames

 QUIC frames do not use a self-describing encoding. An endpoint
 therefore needs to understand the syntax of all frames before it can
 successfully process a packet. This allows for efficient encoding of
 frames, but it means that an endpoint cannot send a frame of a type
 that is unknown to its peer.

 An extension to QUIC that wishes to use a new type of frame MUST
 first ensure that a peer is able to understand the frame. An
 endpoint can use a transport parameter to signal its willingness to
 receive one or more extension frame types with the one transport
 parameter.

 Extensions that modify or replace core protocol functionality
 (including frame types) will be difficult to combine with other
 extensions which modify or replace the same functionality unless the
 behavior of the combination is explicitly defined. Such extensions
 SHOULD define their interaction with previously-defined extensions
 modifying the same protocol components.

 Extension frames MUST be congestion controlled and MUST cause an ACK
 frame to be sent. The exception is extension frames that replace or
 supplement the ACK frame. Extension frames are not included in flow
 control unless specified in the extension.

 An IANA registry is used to manage the assignment of frame types; see
 Section 22.3 .

20. Transport Error Codes

 QUIC error codes are 62-bit unsigned integers.

 This section lists the defined QUIC transport error codes that may be
 used in a CONNECTION_CLOSE frame. These errors apply to the entire
 connection.

 NO_ERROR (0x0): An endpoint uses this with CONNECTION_CLOSE to
 signal that the connection is being closed abruptly in the absence
 of any error.

 INTERNAL_ERROR (0x1): The endpoint encountered an internal error and
 cannot continue with the connection.

Iyengar & Thomson Expires 12 December 2020 [Page 140]

Internet-Draft QUIC Transport Protocol June 2020

 CONNECTION_REFUSED (0x2): The server refused to accept a new
 connection.

 FLOW_CONTROL_ERROR (0x3): An endpoint received more data than it
 permitted in its advertised data limits; see Section 4 .

 STREAM_LIMIT_ERROR (0x4): An endpoint received a frame for a stream
 identifier that exceeded its advertised stream limit for the
 corresponding stream type.

 STREAM_STATE_ERROR (0x5): An endpoint received a frame for a stream
 that was not in a state that permitted that frame; see Section 3 .

 FINAL_SIZE_ERROR (0x6): An endpoint received a STREAM frame
 containing data that exceeded the previously established final
 size. Or an endpoint received a STREAM frame or a RESET_STREAM
 frame containing a final size that was lower than the size of
 stream data that was already received. Or an endpoint received a
 STREAM frame or a RESET_STREAM frame containing a different final
 size to the one already established.

 FRAME_ENCODING_ERROR (0x7): An endpoint received a frame that was
 badly formatted. For instance, a frame of an unknown type, or an
 ACK frame that has more acknowledgment ranges than the remainder
 of the packet could carry.

 TRANSPORT_PARAMETER_ERROR (0x8): An endpoint received transport
 parameters that were badly formatted, included an invalid value,
 was absent even though it is mandatory, was present though it is
 forbidden, or is otherwise in error.

 CONNECTION_ID_LIMIT_ERROR (0x9): The number of connection IDs
 provided by the peer exceeds the advertised
 active_connection_id_limit.

 PROTOCOL_VIOLATION (0xA): An endpoint detected an error with
 protocol compliance that was not covered by more specific error
 codes.

 INVALID_TOKEN (0xB): A server received a Retry Token in a client
 Initial that is invalid.

 APPLICATION_ERROR (0xC): The application or application protocol
 caused the connection to be closed.

 CRYPTO_BUFFER_EXCEEDED (0xD): An endpoint has received more data in
 CRYPTO frames than it can buffer.

Iyengar & Thomson Expires 12 December 2020 [Page 141]

Internet-Draft QUIC Transport Protocol June 2020

 CRYPTO_ERROR (0x1XX): The cryptographic handshake failed. A range
 of 256 values is reserved for carrying error codes specific to the
 cryptographic handshake that is used. Codes for errors occurring
 when TLS is used for the crypto handshake are described in
 Section 4.8 of [QUIC-TLS].

 See Section 22.4 for details of registering new error codes.

 In defining these error codes, several principles are applied. Error
 conditions that might require specific action on the part of a
 recipient are given unique codes. Errors that represent common
 conditions are given specific codes. Absent either of these
 conditions, error codes are used to identify a general function of
 the stack, like flow control or transport parameter handling.
 Finally, generic errors are provided for conditions where
 implementations are unable or unwilling to use more specific codes.

20.1 . Application Protocol Error Codes

 Application protocol error codes are 62-bit unsigned integers, but
 the management of application error codes is left to application
 protocols. Application protocol error codes are used for the
 RESET_STREAM frame (Section 19.4), the STOP_SENDING frame
 (Section 19.5), and the CONNECTION_CLOSE frame with a type of 0x1d
 (Section 19.19).

21. Security Considerations

21.1 . Handshake Denial of Service

 As an encrypted and authenticated transport QUIC provides a range of
 protections against denial of service. Once the cryptographic
 handshake is complete, QUIC endpoints discard most packets that are
 not authenticated, greatly limiting the ability of an attacker to
 interfere with existing connections.

 Once a connection is established QUIC endpoints might accept some
 unauthenticated ICMP packets (see Section 14.2.1), but the use of
 these packets is extremely limited. The only other type of packet
 that an endpoint might accept is a stateless reset (Section 10.4)
 which relies on the token being kept secret until it is used.

 During the creation of a connection, QUIC only provides protection
 against attack from off the network path. All QUIC packets contain
 proof that the recipient saw a preceding packet from its peer.

 Addresses cannot change during the handshake, so endpoints can
 discard packets that are received on a different network path.

Iyengar & Thomson Expires 12 December 2020 [Page 142]

Internet-Draft QUIC Transport Protocol June 2020

 The Source and Destination Connection ID fields are the primary means
 of protection against off-path attack during the handshake. These
 are required to match those set by a peer. Except for an Initial and
 stateless reset packets, an endpoint only accepts packets that
 include a Destination Connection ID field that matches a value the
 endpoint previously chose. This is the only protection offered for
 Version Negotiation packets.

 The Destination Connection ID field in an Initial packet is selected
 by a client to be unpredictable, which serves an additional purpose.
 The packets that carry the cryptographic handshake are protected with
 a key that is derived from this connection ID and salt specific to
 the QUIC version. This allows endpoints to use the same process for
 authenticating packets that they receive as they use after the
 cryptographic handshake completes. Packets that cannot be
 authenticated are discarded. Protecting packets in this fashion
 provides a strong assurance that the sender of the packet saw the
 Initial packet and understood it.

 These protections are not intended to be effective against an
 attacker that is able to receive QUIC packets prior to the connection
 being established. Such an attacker can potentially send packets
 that will be accepted by QUIC endpoints. This version of QUIC
 attempts to detect this sort of attack, but it expects that endpoints
 will fail to establish a connection rather than recovering. For the
 most part, the cryptographic handshake protocol [QUIC-TLS] is
 responsible for detecting tampering during the handshake.

 Endpoints are permitted to use other methods to detect and attempt to
 recover from interference with the handshake. Invalid packets may be
 identified and discarded using other methods, but no specific method
 is mandated in this document.

21.2 . Amplification Attack

 An attacker might be able to receive an address validation token
 (Section 8) from a server and then release the IP address it used to
 acquire that token. At a later time, the attacker may initiate a
 0-RTT connection with a server by spoofing this same address, which
 might now address a different (victim) endpoint. The attacker can
 thus potentially cause the server to send an initial congestion
 window’s worth of data towards the victim.

 Servers SHOULD provide mitigations for this attack by limiting the
 usage and lifetime of address validation tokens; see Section 8.1.3 .

Iyengar & Thomson Expires 12 December 2020 [Page 143]

Internet-Draft QUIC Transport Protocol June 2020

21.3 . Optimistic ACK Attack

 An endpoint that acknowledges packets it has not received might cause
 a congestion controller to permit sending at rates beyond what the
 network supports. An endpoint MAY skip packet numbers when sending
 packets to detect this behavior. An endpoint can then immediately
 close the connection with a connection error of type
 PROTOCOL_VIOLATION; see Section 10.3 .

21.4 . Slowloris Attacks

 The attacks commonly known as Slowloris [SLOWLORIS] try to keep many
 connections to the target endpoint open and hold them open as long as
 possible. These attacks can be executed against a QUIC endpoint by
 generating the minimum amount of activity necessary to avoid being
 closed for inactivity. This might involve sending small amounts of
 data, gradually opening flow control windows in order to control the
 sender rate, or manufacturing ACK frames that simulate a high loss
 rate.

 QUIC deployments SHOULD provide mitigations for the Slowloris
 attacks, such as increasing the maximum number of clients the server
 will allow, limiting the number of connections a single IP address is
 allowed to make, imposing restrictions on the minimum transfer speed
 a connection is allowed to have, and restricting the length of time
 an endpoint is allowed to stay connected.

21.5 . Stream Fragmentation and Reassembly Attacks

 An adversarial sender might intentionally send fragments of stream
 data in order to cause disproportionate receive buffer memory
 commitment and/or creation of a large and inefficient data structure.

 An adversarial receiver might intentionally not acknowledge packets
 containing stream data in order to force the sender to store the
 unacknowledged stream data for retransmission.

 The attack on receivers is mitigated if flow control windows
 correspond to available memory. However, some receivers will over-
 commit memory and advertise flow control offsets in the aggregate
 that exceed actual available memory. The over-commitment strategy
 can lead to better performance when endpoints are well behaved, but
 renders endpoints vulnerable to the stream fragmentation attack.

Iyengar & Thomson Expires 12 December 2020 [Page 144]

Internet-Draft QUIC Transport Protocol June 2020

 QUIC deployments SHOULD provide mitigations against stream
 fragmentation attacks. Mitigations could consist of avoiding over-
 committing memory, limiting the size of tracking data structures,
 delaying reassembly of STREAM frames, implementing heuristics based
 on the age and duration of reassembly holes, or some combination.

21.6 . Stream Commitment Attack

 An adversarial endpoint can open lots of streams, exhausting state on
 an endpoint. The adversarial endpoint could repeat the process on a
 large number of connections, in a manner similar to SYN flooding
 attacks in TCP.

 Normally, clients will open streams sequentially, as explained in
 Section 2.1 . However, when several streams are initiated at short
 intervals, loss or reordering may cause STREAM frames that open
 streams to be received out of sequence. On receiving a higher-
 numbered stream ID, a receiver is required to open all intervening
 streams of the same type; see Section 3.2 . Thus, on a new
 connection, opening stream 4000000 opens 1 million and 1 client-
 initiated bidirectional streams.

 The number of active streams is limited by the
 initial_max_streams_bidi and initial_max_streams_uni transport
 parameters, as explained in Section 4.5 . If chosen judiciously,
 these limits mitigate the effect of the stream commitment attack.
 However, setting the limit too low could affect performance when
 applications expect to open large number of streams.

21.7 . Peer Denial of Service

 QUIC and TLS both contain frames or messages that have legitimate
 uses in some contexts, but that can be abused to cause a peer to
 expend processing resources without having any observable impact on
 the state of the connection.

 Messages can also be used to change and revert state in small or
 inconsequential ways, such as by sending small increments to flow
 control limits.

 If processing costs are disproportionately large in comparison to
 bandwidth consumption or effect on state, then this could allow a
 malicious peer to exhaust processing capacity.

Iyengar & Thomson Expires 12 December 2020 [Page 145]

Internet-Draft QUIC Transport Protocol June 2020

 While there are legitimate uses for all messages, implementations
 SHOULD track cost of processing relative to progress and treat
 excessive quantities of any non-productive packets as indicative of
 an attack. Endpoints MAY respond to this condition with a connection
 error, or by dropping packets.

21.8 . Explicit Congestion Notification Attacks

 An on-path attacker could manipulate the value of ECN codepoints in
 the IP header to influence the sender’s rate. [RFC3168] discusses
 manipulations and their effects in more detail.

 An on-the-side attacker can duplicate and send packets with modified
 ECN codepoints to affect the sender’s rate. If duplicate packets are
 discarded by a receiver, an off-path attacker will need to race the
 duplicate packet against the original to be successful in this
 attack. Therefore, QUIC endpoints ignore the ECN codepoint field on
 an IP packet unless at least one QUIC packet in that IP packet is
 successfully processed; see Section 13.4 .

21.9 . Stateless Reset Oracle

 Stateless resets create a possible denial of service attack analogous
 to a TCP reset injection. This attack is possible if an attacker is
 able to cause a stateless reset token to be generated for a
 connection with a selected connection ID. An attacker that can cause
 this token to be generated can reset an active connection with the
 same connection ID.

 If a packet can be routed to different instances that share a static
 key, for example by changing an IP address or port, then an attacker
 can cause the server to send a stateless reset. To defend against
 this style of denial service, endpoints that share a static key for
 stateless reset (see Section 10.4.2) MUST be arranged so that packets
 with a given connection ID always arrive at an instance that has
 connection state, unless that connection is no longer active.

 In the case of a cluster that uses dynamic load balancing, it’s
 possible that a change in load balancer configuration could happen
 while an active instance retains connection state; even if an
 instance retains connection state, the change in routing and
 resulting stateless reset will result in the connection being
 terminated. If there is no chance in the packet being routed to the
 correct instance, it is better to send a stateless reset than wait
 for connections to time out. However, this is acceptable only if the
 routing cannot be influenced by an attacker.

Iyengar & Thomson Expires 12 December 2020 [Page 146]

https://tools.ietf.org/pdf/rfc3168

Internet-Draft QUIC Transport Protocol June 2020

21.10 . Version Downgrade

 This document defines QUIC Version Negotiation packets in Section 6 ,
 which can be used to negotiate the QUIC version used between two
 endpoints. However, this document does not specify how this
 negotiation will be performed between this version and subsequent
 future versions. In particular, Version Negotiation packets do not
 contain any mechanism to prevent version downgrade attacks. Future
 versions of QUIC that use Version Negotiation packets MUST define a
 mechanism that is robust against version downgrade attacks.

21.11 . Targeted Attacks by Routing

 Deployments should limit the ability of an attacker to target a new
 connection to a particular server instance. This means that client-
 controlled fields, such as the initial Destination Connection ID used
 on Initial and 0-RTT packets SHOULD NOT be used by themselves to make
 routing decisions. Ideally, routing decisions are made independently
 of client-selected values; a Source Connection ID can be selected to
 route later packets to the same server.

21.12 . Overview of Security Properties

 A complete security analysis of QUIC is outside the scope of this
 document. This section provides an informal description of the
 desired security properties as an aid to implementors and to help
 guide protocol analysis.

 QUIC assumes the threat model described in [SEC-CONS] and provides
 protections against many of the attacks that arise from that model.

 For this purpose, attacks are divided into passive and active
 attacks. Passive attackers have the capability to read packets from
 the network, while active attackers also have the capability to write
 packets into the network. However, a passive attack may involve an
 attacker with the ability to cause a routing change or other
 modification in the path taken by packets that comprise a connection.

 Attackers are additionally categorized as either on-path attackers or
 off-path attackers; see Section 3.5 of [SEC-CONS]. An on-path
 attacker can read, modify, or remove any packet it observes such that
 it no longer reaches its destination, while an off-path attacker
 observes the packets, but cannot prevent the original packet from
 reaching its intended destination. An off-path attacker can also
 transmit arbitrary packets.

 Properties of the handshake, protected packets, and connection
 migration are considered separately.

Iyengar & Thomson Expires 12 December 2020 [Page 147]

Internet-Draft QUIC Transport Protocol June 2020

21.12.1 . Handshake

 The QUIC handshake incorporates the TLS 1.3 handshake and inherits
 the cryptographic properties described in Appendix E.1 of [TLS13].
 Many of the security properties of QUIC depend on the TLS handshake
 providing these properties. Any attack on the TLS handshake could
 affect QUIC.

 Any attack on the TLS handshake that compromises the secrecy or
 uniqueness of session keys affects other security guarantees provided
 by QUIC that depends on these keys. For instance, migration
 (Section 9) depends on the efficacy of confidentiality protections,
 both for the negotiation of keys using the TLS handshake and for QUIC
 packet protection, to avoid linkability across network paths.

 An attack on the integrity of the TLS handshake might allow an
 attacker to affect the selection of application protocol or QUIC
 version.

 In addition to the properties provided by TLS, the QUIC handshake
 provides some defense against DoS attacks on the handshake.

21.12.1.1 . Anti-Amplification

 Address validation (Section 8) is used to verify that an entity that
 claims a given address is able to receive packets at that address.
 Address validation limits amplification attack targets to addresses
 for which an attacker is either on-path or off-path.

 Prior to validation, endpoints are limited in what they are able to
 send. During the handshake, a server cannot send more than three
 times the data it receives; clients that initiate new connections or
 migrate to a new network path are limited.

21.12.1.2 . Server-Side DoS

 Computing the server’s first flight for a full handshake is
 potentially expensive, requiring both a signature and a key exchange
 computation. In order to prevent computational DoS attacks, the
 Retry packet provides a cheap token exchange mechanism which allows
 servers to validate a client’s IP address prior to doing any
 expensive computations at the cost of a single round trip. After a
 successful handshake, servers can issue new tokens to a client which
 will allow new connection establishment without incurring this cost.

Iyengar & Thomson Expires 12 December 2020 [Page 148]

Internet-Draft QUIC Transport Protocol June 2020

21.12.1.3 . On-Path Handshake Termination

 An on-path or off-path attacker can force a handshake to fail by
 replacing or racing Initial packets. Once valid Initial packets have
 been exchanged, subsequent Handshake packets are protected with the
 handshake keys and an on-path attacker cannot force handshake failure
 other than by dropping packets to cause endpoints to abandon the
 attempt.

 An on-path attacker can also replace the addresses of packets on
 either side and therefore cause the client or server to have an
 incorrect view of the remote addresses. Such an attack is
 indistinguishable from the functions performed by a NAT.

21.12.1.4 . Parameter Negotiation

 The entire handshake is cryptographically protected, with the Initial
 packets being encrypted with per-version keys and the Handshake and
 later packets being encrypted with keys derived from the TLS key
 exchange. Further, parameter negotiation is folded into the TLS
 transcript and thus provides the same integrity guarantees as
 ordinary TLS negotiation. An attacker can observe the client’s
 transport parameters (as long as it knows the version-specific keys)
 but cannot observe the server’s transport parameters and cannot
 influence parameter negotiation.

 Connection IDs are unencrypted but integrity protected in all
 packets.

 This version of QUIC does not incorporate a version negotiation
 mechanism; implementations of incompatible versions will simply fail
 to establish a connection.

21.12.2 . Protected Packets

 Packet protection (Section 12.1) provides authentication and
 encryption of all packets except Version Negotiation packets, though
 Initial and Retry packets have limited encryption and authentication
 based on version-specific keys; see [QUIC-TLS] for more details.
 This section considers passive and active attacks against protected
 packets.

 Both on-path and off-path attackers can mount a passive attack in
 which they save observed packets for an offline attack against packet
 protection at a future time; this is true for any observer of any
 packet on any network.

Iyengar & Thomson Expires 12 December 2020 [Page 149]

Internet-Draft QUIC Transport Protocol June 2020

 A blind attacker, one who injects packets without being able to
 observe valid packets for a connection, is unlikely to be successful,
 since packet protection ensures that valid packets are only generated
 by endpoints which possess the key material established during the
 handshake; see Section 7 and Section 21.12.1 . Similarly, any active
 attacker that observes packets and attempts to insert new data or
 modify existing data in those packets should not be able to generate
 packets deemed valid by the receiving endpoint.

 A spoofing attack, in which an active attacker rewrites unprotected
 parts of a packet that it forwards or injects, such as the source or
 destination address, is only effective if the attacker can forward
 packets to the original endpoint. Packet protection ensures that the
 packet payloads can only be processed by the endpoints that completed
 the handshake, and invalid packets are ignored by those endpoints.

 An attacker can also modify the boundaries between packets and UDP
 datagrams, causing multiple packets to be coalesced into a single
 datagram, or splitting coalesced packets into multiple datagrams.
 Aside from datagrams containing Initial packets, which require
 padding, modification of how packets are arranged in datagrams has no
 functional effect on a connection, although it might change some
 performance characteristics.

21.12.3 . Connection Migration

 Connection Migration (Section 9) provides endpoints with the ability
 to transition between IP addresses and ports on multiple paths, using
 one path at a time for transmission and receipt of non-probing
 frames. Path validation (Section 8.2) establishes that a peer is
 both willing and able to receive packets sent on a particular path.
 This helps reduce the effects of address spoofing by limiting the
 number of packets sent to a spoofed address.

 This section describes the intended security properties of connection
 migration when under various types of DoS attacks.

21.12.3.1 . On-Path Active Attacks

 An attacker that can cause a packet it observes to no longer reach
 its intended destination is considered an on-path attacker. When an
 attacker is present between a client and server, endpoints are
 required to send packets through the attacker to establish
 connectivity on a given path.

 An on-path attacker can:

 * Inspect packets

Iyengar & Thomson Expires 12 December 2020 [Page 150]

Internet-Draft QUIC Transport Protocol June 2020

 * Modify IP and UDP packet headers

 * Inject new packets

 * Delay packets

 * Reorder packets

 * Drop packets

 * Split and merge datagrams along packet boundaries

 An on-path attacker cannot:

 * Modify an authenticated portion of a packet and cause the
 recipient to accept that packet

 An on-path attacker has the opportunity to modify the packets that it
 observes, however any modifications to an authenticated portion of a
 packet will cause it to be dropped by the receiving endpoint as
 invalid, as packet payloads are both authenticated and encrypted.

 In the presence of an on-path attacker, QUIC aims to provide the
 following properties:

 1. An on-path attacker can prevent use of a path for a connection,
 causing it to fail if it cannot use a different path that does
 not contain the attacker. This can be achieved by dropping all
 packets, modifying them so that they fail to decrypt, or other
 methods.

 2. An on-path attacker can prevent migration to a new path for which
 the attacker is also on-path by causing path validation to fail
 on the new path.

 3. An on-path attacker cannot prevent a client from migrating to a
 path for which the attacker is not on-path.

 4. An on-path attacker can reduce the throughput of a connection by
 delaying packets or dropping them.

 5. An on-path attacker cannot cause an endpoint to accept a packet
 for which it has modified an authenticated portion of that
 packet.

Iyengar & Thomson Expires 12 December 2020 [Page 151]

Internet-Draft QUIC Transport Protocol June 2020

21.12.3.2 . Off-Path Active Attacks

 An off-path attacker is not directly on the path between a client and
 server, but could be able to obtain copies of some or all packets
 sent between the client and the server. It is also able to send
 copies of those packets to either endpoint.

 An off-path attacker can:

 * Inspect packets

 * Inject new packets

 * Reorder injected packets

 An off-path attacker cannot:

 * Modify any part of a packet

 * Delay packets

 * Drop packets

 * Reorder original packets

 An off-path attacker can modify packets that it has observed and
 inject them back into the network, potentially with spoofed source
 and destination addresses.

 For the purposes of this discussion, it is assumed that an off-path
 attacker has the ability to observe, modify, and re-inject a packet
 into the network that will reach the destination endpoint prior to
 the arrival of the original packet observed by the attacker. In
 other words, an attacker has the ability to consistently "win" a race
 with the legitimate packets between the endpoints, potentially
 causing the original packet to be ignored by the recipient.

 It is also assumed that an attacker has the resources necessary to
 affect NAT state, potentially both causing an endpoint to lose its
 NAT binding, and an attacker to obtain the same port for use with its
 traffic.

 In the presence of an off-path attacker, QUIC aims to provide the
 following properties:

 1. An off-path attacker can race packets and attempt to become a
 "limited" on-path attacker.

Iyengar & Thomson Expires 12 December 2020 [Page 152]

Internet-Draft QUIC Transport Protocol June 2020

 2. An off-path attacker can cause path validation to succeed for
 forwarded packets with the source address listed as the off-path
 attacker as long as it can provide improved connectivity between
 the client and the server.

 3. An off-path attacker cannot cause a connection to close once the
 handshake has completed.

 4. An off-path attacker cannot cause migration to a new path to fail
 if it cannot observe the new path.

 5. An off-path attacker can become a limited on-path attacker during
 migration to a new path for which it is also an off-path
 attacker.

 6. An off-path attacker can become a limited on-path attacker by
 affecting shared NAT state such that it sends packets to the
 server from the same IP address and port that the client
 originally used.

21.12.3.3 . Limited On-Path Active Attacks

 A limited on-path attacker is an off-path attacker that has offered
 improved routing of packets by duplicating and forwarding original
 packets between the server and the client, causing those packets to
 arrive before the original copies such that the original packets are
 dropped by the destination endpoint.

 A limited on-path attacker differs from an on-path attacker in that
 it is not on the original path between endpoints, and therefore the
 original packets sent by an endpoint are still reaching their
 destination. This means that a future failure to route copied
 packets to the destination faster than their original path will not
 prevent the original packets from reaching the destination.

 A limited on-path attacker can:

 * Inspect packets

 * Inject new packets

 * Modify unencrypted packet headers

 * Reorder packets

 A limited on-path attacker cannot:

Iyengar & Thomson Expires 12 December 2020 [Page 153]

Internet-Draft QUIC Transport Protocol June 2020

 * Delay packets so that they arrive later than packets sent on the
 original path

 * Drop packets

 * Modify the authenticated and encrypted portion of a packet and
 cause the recipient to accept that packet

 A limited on-path attacker can only delay packets up to the point
 that the original packets arrive before the duplicate packets,
 meaning that it cannot offer routing with worse latency than the
 original path. If a limited on-path attacker drops packets, the
 original copy will still arrive at the destination endpoint.

 In the presence of a limited on-path attacker, QUIC aims to provide
 the following properties:

 1. A limited on-path attacker cannot cause a connection to close
 once the handshake has completed.

 2. A limited on-path attacker cannot cause an idle connection to
 close if the client is first to resume activity.

 3. A limited on-path attacker can cause an idle connection to be
 deemed lost if the server is the first to resume activity.

 Note that these guarantees are the same guarantees provided for any
 NAT, for the same reasons.

22. IANA Considerations

 This document establishes several registries for the management of
 codepoints in QUIC. These registries operate on a common set of
 policies as defined in Section 22.1 .

22.1 . Registration Policies for QUIC Registries

 All QUIC registries allow for both provisional and permanent
 registration of codepoints. This section documents policies that are
 common to these registries.

22.1.1 . Provisional Registrations

 Provisional registration of codepoints are intended to allow for
 private use and experimentation with extensions to QUIC. Provisional
 registrations only require the inclusion of the codepoint value and
 contact information. However, provisional registrations could be
 reclaimed and reassigned for another purpose.

Iyengar & Thomson Expires 12 December 2020 [Page 154]

Internet-Draft QUIC Transport Protocol June 2020

 Provisional registrations require Expert Review, as defined in
 Section 4.5 of [RFC8126] . Designated expert(s) are advised that only
 registrations for an excessive proportion of remaining codepoint
 space or the very first unassigned value (see Section 22.1.2) can be
 rejected.

 Provisional registrations will include a date field that indicates
 when the registration was last updated. A request to update the date
 on any provisional registration can be made without review from the
 designated expert(s).

 All QUIC registries include the following fields to support
 provisional registration:

 Value: The assigned codepoint.

 Status: "Permanent" or "Provisional".

 Specification: A reference to a publicly available specification for
 the value.

 Date: The date of last update to the registration.

 Contact: Contact details for the registrant.

 Notes: Supplementary notes about the registration.

 Provisional registrations MAY omit the Specification and Notes
 fields, plus any additional fields that might be required for a
 permanent registration. The Date field is not required as part of
 requesting a registration as it is set to the date the registration
 is created or updated.

22.1.2 . Selecting Codepoints

 New uses of codepoints from QUIC registries SHOULD use a randomly
 selected codepoint that excludes both existing allocations and the
 first unallocated codepoint in the selected space. Requests for
 multiple codepoints MAY use a contiguous range. This minimizes the
 risk that differing semantics are attributed to the same codepoint by
 different implementations. Use of the first codepoint in a range is
 intended for use by specifications that are developed through the
 standards process [STD] and its allocation MUST be negotiated with
 IANA before use.

Iyengar & Thomson Expires 12 December 2020 [Page 155]

https://tools.ietf.org/pdf/rfc8126#section-4.5

Internet-Draft QUIC Transport Protocol June 2020

 For codepoints that are encoded in variable-length integers
 (Section 16), such as frame types, codepoints that encode to four or
 eight bytes (that is, values 2^14 and above) SHOULD be used unless
 the usage is especially sensitive to having a longer encoding.

 Applications to register codepoints in QUIC registries MAY include a
 codepoint as part of the registration. IANA MUST allocate the
 selected codepoint unless that codepoint is already assigned or the
 codepoint is the first unallocated codepoint in the registry.

22.1.3 . Reclaiming Provisional Codepoints

 A request might be made to remove an unused provisional registration
 from the registry to reclaim space in a registry, or portion of the
 registry (such as the 64-16383 range for codepoints that use
 variable-length encodings). This SHOULD be done only for the
 codepoints with the earliest recorded date and entries that have been
 updated less than a year prior SHOULD NOT be reclaimed.

 A request to remove a codepoint MUST be reviewed by the designated
 expert(s). The expert(s) MUST attempt to determine whether the
 codepoint is still in use. Experts are advised to contact the listed
 contacts for the registration, plus as wide a set of protocol
 implementers as possible in order to determine whether any use of the
 codepoint is known. The expert(s) are advised to allow at least four
 weeks for responses.

 If any use of the codepoints is identified by this search or a
 request to update the registration is made, the codepoint MUST NOT be
 reclaimed. Instead, the date on the registration is updated. A note
 might be added for the registration recording relevant information
 that was learned.

 If no use of the codepoint was identified and no request was made to
 update the registration, the codepoint MAY be removed from the
 registry.

 This process also applies to requests to change a provisional
 registration into a permanent registration, except that the goal is
 not to determine whether there is no use of the codepoint, but to
 determine that the registration is an accurate representation of any
 deployed usage.

Iyengar & Thomson Expires 12 December 2020 [Page 156]

Internet-Draft QUIC Transport Protocol June 2020

22.1.4 . Permanent Registrations

 Permanent registrations in QUIC registries use the Specification
 Required policy [RFC8126], unless otherwise specified. The
 designated expert(s) verify that a specification exists and is
 readily accessible. Expert(s) are encouraged to be biased towards
 approving registrations unless they are abusive, frivolous, or
 actively harmful (not merely aesthetically displeasing, or
 architecturally dubious). The creation of a registry MAY specify
 additional constraints on permanent registrations.

 The creation of a registries MAY identify a range of codepoints where
 registrations are governed by a different registration policy. For
 instance, the registries for 62-bit codepoints in this document have
 stricter policies for codepoints in the range from 0 to 63.

 Any stricter requirements for permanent registrations do not prevent
 provisional registrations for affected codepoints. For instance, a
 provisional registration for a frame type Section 22.3 of 61 could be
 requested.

 All registrations made by Standards Track publications MUST be
 permanent.

 All registrations in this document are assigned a permanent status
 and list as contact both the IESG (ietf@ietf.org) and the QUIC
 working group (quic@ietf.org (mailto:quic@ietf.org)).

22.2 . QUIC Transport Parameter Registry

 IANA [SHALL add/has added] a registry for "QUIC Transport Parameters"
 under a "QUIC" heading.

 The "QUIC Transport Parameters" registry governs a 62-bit space.
 This registry follows the registration policy from Section 22.1 .
 Permanent registrations in this registry are assigned using the
 Specification Required policy [RFC8126].

 In addition to the fields in Section 22.1.1 , permanent registrations
 in this registry MUST include the following fields:

 Parameter Name: A short mnemonic for the parameter.

 The initial contents of this registry are shown in Table 6.

Iyengar & Thomson Expires 12 December 2020 [Page 157]

https://tools.ietf.org/pdf/rfc8126
https://tools.ietf.org/pdf/rfc8126

Internet-Draft QUIC Transport Protocol June 2020

 +-------+-------------------------------------+---------------+
 | Value | Parameter Name | Specification |
 +=======+=====================================+===============+
 | 0x00 | original_destination_connection_id | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x01 | max_idle_timeout | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x02 | stateless_reset_token | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x03 | max_udp_payload_size | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x04 | initial_max_data | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x05 | initial_max_stream_data_bidi_local | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x06 | initial_max_stream_data_bidi_remote | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x07 | initial_max_stream_data_uni | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x08 | initial_max_streams_bidi | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x09 | initial_max_streams_uni | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x0a | ack_delay_exponent | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x0b | max_ack_delay | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x0c | disable_active_migration | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x0d | preferred_address | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x0e | active_connection_id_limit | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x0f | initial_source_connection_id | Section 18.2 |
 +-------+-------------------------------------+---------------+
 | 0x10 | retry_source_connection_id | Section 18.2 |
 +-------+-------------------------------------+---------------+

 Table 6: Initial QUIC Transport Parameters Entries

 Additionally, each value of the format "31 * N + 27" for integer
 values of N (that is, 27, 58, 89, ...) are reserved and MUST NOT be
 assigned by IANA.

22.3 . QUIC Frame Type Registry

 IANA [SHALL add/has added] a registry for "QUIC Frame Types" under a
 "QUIC" heading.

Iyengar & Thomson Expires 12 December 2020 [Page 158]

Internet-Draft QUIC Transport Protocol June 2020

 The "QUIC Frame Types" registry governs a 62-bit space. This
 registry follows the registration policy from Section 22.1 .
 Permanent registrations in this registry are assigned using the
 Specification Required policy [RFC8126], except for values between
 0x00 and 0x3f (in hexadecimal; inclusive), which are assigned using
 Standards Action or IESG Approval as defined in Section 4.9 and 4.10
 of [RFC8126].

 In addition to the fields in Section 22.1.1 , permanent registrations
 in this registry MUST include the following fields:

 Frame Name: A short mnemonic for the frame type.

 In addition to the advice in Section 22.1 , specifications for new
 permanent registrations SHOULD describe the means by which an
 endpoint might determine that it can send the identified type of
 frame. An accompanying transport parameter registration is expected
 for most registrations; see Section 22.2 . Specifications for
 permanent registrations also needs to describe the format and
 assigned semantics of any fields in the frame.

 The initial contents of this registry are tabulated in Table 3.

22.4 . QUIC Transport Error Codes Registry

 IANA [SHALL add/has added] a registry for "QUIC Transport Error
 Codes" under a "QUIC" heading.

 The "QUIC Transport Error Codes" registry governs a 62-bit space.
 This space is split into three spaces that are governed by different
 policies. Permanent registrations in this registry are assigned
 using the Specification Required policy [RFC8126], except for values
 between 0x00 and 0x3f (in hexadecimal; inclusive), which are assigned
 using Standards Action or IESG Approval as defined in Section 4.9 and
 4.10 of [RFC8126].

 In addition to the fields in Section 22.1.1 , permanent registrations
 in this registry MUST include the following fields:

 Code: A short mnemonic for the parameter.

 Description: A brief description of the error code semantics, which
 MAY be a summary if a specification reference is provided.

 The initial contents of this registry are shown in Table 7.

Iyengar & Thomson Expires 12 December 2020 [Page 159]

https://tools.ietf.org/pdf/rfc8126
https://tools.ietf.org/pdf/rfc8126
https://tools.ietf.org/pdf/rfc8126
https://tools.ietf.org/pdf/rfc8126

Internet-Draft QUIC Transport Protocol June 2020

 +------+---------------------------+----------------+---------------+
 |Value | Error | Description | Specification |
 +======+===========================+================+===============+
 | 0x0 | NO_ERROR | No error | Section 20 |
 +------+---------------------------+----------------+---------------+
 | 0x1 | INTERNAL_ERROR | Implementation | Section 20 |
 | | | error | |
 +------+---------------------------+----------------+---------------+
 | 0x2 | CONNECTION_REFUSED_ERROR |Server refuses a| Section 20 |
 | | | connection | |
 +------+---------------------------+----------------+---------------+
 | 0x3 | FLOW_CONTROL_ERROR | Flow control | Section 20 |
 | | | error | |
 +------+---------------------------+----------------+---------------+
 | 0x4 | STREAM_LIMIT_ERROR |Too many streams| Section 20 |
 | | | opened | |
 +------+---------------------------+----------------+---------------+
0x5	STREAM_STATE_ERROR	Frame received	Section 20
		in invalid	
		stream state	
+------+---------------------------+----------------+---------------+			
0x6	FINAL_SIZE_ERROR	Change to final	Section 20
		size	
+------+---------------------------+----------------+---------------+			
0x7	FRAME_ENCODING_ERROR	Frame encoding	Section 20
		error	
+------+---------------------------+----------------+---------------+			
0x8	TRANSPORT_PARAMETER_ERROR	Error in	Section 20
		transport	
		parameters	
+------+---------------------------+----------------+---------------+			
0x9	CONNECTION_ID_LIMIT_ERROR	Too many	Section 20
		connection IDs	
		received	
+------+---------------------------+----------------+---------------+			
0xA	PROTOCOL_VIOLATION	Generic protocol	Section 20
		violation	
+------+---------------------------+----------------+---------------+			
0xB	INVALID_TOKEN	Invalid Token	Section 20
		Received	
+------+---------------------------+----------------+---------------+			
0xC	APPLICATION_ERROR	Application	Section 20
		error	
+------+---------------------------+----------------+---------------+			
0xD	CRYPTO_BUFFER_EXCEEDED	CRYPTO data	Section 20
		buffer	
		overflowed	
 +------+---------------------------+----------------+---------------+

Iyengar & Thomson Expires 12 December 2020 [Page 160]

Internet-Draft QUIC Transport Protocol June 2020

 Table 7: Initial QUIC Transport Error Codes Entries

23. References

23.1 . Normative References

 [DPLPMTUD] Fairhurst, G., Jones, T., Tuexen, M., Ruengeler, I., and
 T. Voelker, "Packetization Layer Path MTU Discovery for
 Datagram Transports", Work in Progress, Internet-Draft,
 draft-ietf-tsvwg-datagram-plpmtud-21 , 12 May 2020,
 < http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-
 datagram-plpmtud-21.txt >.

 [IPv4] Postel, J., "Internet Protocol", STD 5, RFC 791 ,
 DOI 10.17487/RFC0791, September 1981,
 < https://www.rfc-editor.org/info/rfc791 >.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", Work in Progress, Internet-Draft,
 draft-ietf-quic-recovery-29 , 10 June 2020,
 < https://tools.ietf.org/html/draft-ietf-quic-recovery-29 >.

 [QUIC-TLS] Thomson, M., Ed. and S. Turner, Ed., "Using Transport
 Layer Security (TLS) to Secure QUIC", Work in Progress,
 Internet-Draft, draft-ietf-quic-tls-29 , 10 June 2020,
 < https://tools.ietf.org/html/draft-ietf-quic-tls-29 >.

 [RFC1191] Mogul, J.C. and S.E. Deering, "Path MTU discovery",
 RFC 1191 , DOI 10.17487/RFC1191, November 1990,
 < https://www.rfc-editor.org/info/rfc1191 >.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 ,
 DOI 10.17487/RFC2119, March 1997,
 < https://www.rfc-editor.org/info/rfc2119 >.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",
 RFC 3168 , DOI 10.17487/RFC3168, September 2001,
 < https://www.rfc-editor.org/info/rfc3168 >.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629 , DOI 10.17487/RFC3629, November
 2003, < https://www.rfc-editor.org/info/rfc3629 >.

Iyengar & Thomson Expires 12 December 2020 [Page 161]

https://tools.ietf.org/pdf/draft-ietf-tsvwg-datagram-plpmtud-21
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-datagram-plpmtud-21.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-datagram-plpmtud-21.txt
https://tools.ietf.org/pdf/rfc791
https://www.rfc-editor.org/info/rfc791
https://tools.ietf.org/pdf/draft-ietf-quic-recovery-29
https://tools.ietf.org/html/draft-ietf-quic-recovery-29
https://tools.ietf.org/pdf/draft-ietf-quic-tls-29
https://tools.ietf.org/html/draft-ietf-quic-tls-29
https://tools.ietf.org/pdf/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/pdf/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://tools.ietf.org/pdf/rfc3629
https://www.rfc-editor.org/info/rfc3629

Internet-Draft QUIC Transport Protocol June 2020

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106 , RFC 4086 ,
 DOI 10.17487/RFC4086, June 2005,
 < https://www.rfc-editor.org/info/rfc4086 >.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116 , DOI 10.17487/RFC5116, January 2008,
 < https://www.rfc-editor.org/info/rfc5116 >.

 [RFC6437] Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme,
 "IPv6 Flow Label Specification", RFC 6437 ,
 DOI 10.17487/RFC6437, November 2011,
 < https://www.rfc-editor.org/info/rfc6437 >.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145 , RFC 8085 , DOI 10.17487/RFC8085,
 March 2017, < https://www.rfc-editor.org/info/rfc8085 >.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26 ,
 RFC 8126 , DOI 10.17487/RFC8126, June 2017,
 < https://www.rfc-editor.org/info/rfc8126 >.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14 , RFC 8174 , DOI 10.17487/RFC8174,
 May 2017, < https://www.rfc-editor.org/info/rfc8174 >.

 [RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
 "Path MTU Discovery for IP version 6", STD 87, RFC 8201 ,
 DOI 10.17487/RFC8201, July 2017,
 < https://www.rfc-editor.org/info/rfc8201 >.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311 ,
 DOI 10.17487/RFC8311, January 2018,
 < https://www.rfc-editor.org/info/rfc8311 >.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446 , DOI 10.17487/RFC8446, August 2018,
 < https://www.rfc-editor.org/info/rfc8446 >.

23.2 . Informative References

 [ALTSVC] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838 , DOI 10.17487/RFC7838,
 April 2016, < https://www.rfc-editor.org/info/rfc7838 >.

Iyengar & Thomson Expires 12 December 2020 [Page 162]

https://tools.ietf.org/pdf/bcp106
https://tools.ietf.org/pdf/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://tools.ietf.org/pdf/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://tools.ietf.org/pdf/rfc6437
https://www.rfc-editor.org/info/rfc6437
https://tools.ietf.org/pdf/bcp145
https://tools.ietf.org/pdf/rfc8085
https://www.rfc-editor.org/info/rfc8085
https://tools.ietf.org/pdf/bcp26
https://tools.ietf.org/pdf/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://tools.ietf.org/pdf/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://tools.ietf.org/pdf/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://tools.ietf.org/pdf/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://tools.ietf.org/pdf/rfc7838
https://www.rfc-editor.org/info/rfc7838

Internet-Draft QUIC Transport Protocol June 2020

 [EARLY-DESIGN]
 Roskind, J., "QUIC: Multiplexed Transport Over UDP", 2
 December 2013, < https://goo.gl/dMVtFi >.

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540 ,
 DOI 10.17487/RFC7540, May 2015,
 < https://www.rfc-editor.org/info/rfc7540 >.

 [QUIC-INVARIANTS]
 Thomson, M., "Version-Independent Properties of QUIC" ,
 Work in Progress, Internet-Draft, draft-ietf-quic-
 invariants-09 , 10 June 2020, < https://tools.ietf.org/html/
 draft-ietf-quic-invariants-09 >.

 [QUIC-MANAGEABILITY]
 Kuehlewind, M. and B. Trammell, "Manageability of the QUIC
 Transport Protocol", Work in Progress, Internet-Draft,
 draft-ietf-quic-manageability-06 , 6 January 2020,
 < http://www.ietf.org/internet-drafts/draft-ietf-quic-
 manageability-06.txt >.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
 RFC 1812 , DOI 10.17487/RFC1812, June 1995,
 < https://www.rfc-editor.org/info/rfc1812 >.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018 ,
 DOI 10.17487/RFC2018, October 1996,
 < https://www.rfc-editor.org/info/rfc2018 >.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104 ,
 DOI 10.17487/RFC2104, February 1997,
 < https://www.rfc-editor.org/info/rfc2104 >.

 [RFC3449] Balakrishnan, H., Padmanabhan, V., Fairhurst, G., and M.
 Sooriyabandara, "TCP Performance Implications of Network
 Path Asymmetry", BCP 69 , RFC 3449 , DOI 10.17487/RFC3449,
 December 2002, < https://www.rfc-editor.org/info/rfc3449 >.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,
 RFC 4443 , DOI 10.17487/RFC4443, March 2006,
 < https://www.rfc-editor.org/info/rfc4443 >.

Iyengar & Thomson Expires 12 December 2020 [Page 163]

https://goo.gl/dMVtFi
https://tools.ietf.org/pdf/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.google.com/search?sitesearch=tools.ietf.org%2Fhtml%2F&q=inurl:draft-+%22Version-Independent+Properties+of+QUIC%22
https://tools.ietf.org/pdf/draft-ietf-quic-invariants-09
https://tools.ietf.org/pdf/draft-ietf-quic-invariants-09
https://tools.ietf.org/html/draft-ietf-quic-invariants-09
https://tools.ietf.org/html/draft-ietf-quic-invariants-09
https://tools.ietf.org/pdf/draft-ietf-quic-manageability-06
http://www.ietf.org/internet-drafts/draft-ietf-quic-manageability-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-manageability-06.txt
https://tools.ietf.org/pdf/rfc1812
https://www.rfc-editor.org/info/rfc1812
https://tools.ietf.org/pdf/rfc2018
https://www.rfc-editor.org/info/rfc2018
https://tools.ietf.org/pdf/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://tools.ietf.org/pdf/bcp69
https://tools.ietf.org/pdf/rfc3449
https://www.rfc-editor.org/info/rfc3449
https://tools.ietf.org/pdf/rfc4443
https://www.rfc-editor.org/info/rfc4443

Internet-Draft QUIC Transport Protocol June 2020

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127 , RFC 4787 , DOI 10.17487/RFC4787, January
 2007, < https://www.rfc-editor.org/info/rfc4787 >.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681 , DOI 10.17487/RFC5681, September 2009,
 < https://www.rfc-editor.org/info/rfc5681 >.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869 ,
 DOI 10.17487/RFC5869, May 2010,
 < https://www.rfc-editor.org/info/rfc5869 >.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301 , DOI 10.17487/RFC7301,
 July 2014, < https://www.rfc-editor.org/info/rfc7301 >.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200 ,
 DOI 10.17487/RFC8200, July 2017,
 < https://www.rfc-editor.org/info/rfc8200 >.

 [SEC-CONS] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72 , RFC 3552 ,
 DOI 10.17487/RFC3552, July 2003,
 < https://www.rfc-editor.org/info/rfc3552 >.

 [SLOWLORIS]
 RSnake Hansen, R., "Welcome to Slowloris...", June 2009,
 < https://web.archive.org/web/20150315054838/
 http://ha.ckers.org/slowloris/ >.

 [STD] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026 , DOI 10.17487/RFC2026, October 1996,
 < https://www.rfc-editor.org/info/rfc2026 >.

Appendix A . Sample Packet Number Decoding Algorithm

 The pseudo-code in Figure 44 shows how an implementation can decode
 packet numbers after header protection has been removed.

Iyengar & Thomson Expires 12 December 2020 [Page 164]

https://tools.ietf.org/pdf/bcp127
https://tools.ietf.org/pdf/rfc4787
https://www.rfc-editor.org/info/rfc4787
https://tools.ietf.org/pdf/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://tools.ietf.org/pdf/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://tools.ietf.org/pdf/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://tools.ietf.org/pdf/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://tools.ietf.org/pdf/bcp72
https://tools.ietf.org/pdf/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://web.archive.org/web/20150315054838/
http://ha.ckers.org/slowloris/
https://tools.ietf.org/pdf/bcp9
https://tools.ietf.org/pdf/rfc2026
https://www.rfc-editor.org/info/rfc2026

Internet-Draft QUIC Transport Protocol June 2020

 DecodePacketNumber(largest_pn, truncated_pn, pn_nbits):
 expected_pn = largest_pn + 1
 pn_win = 1 << pn_nbits
 pn_hwin = pn_win / 2
 pn_mask = pn_win - 1
 // The incoming packet number should be greater than
 // expected_pn - pn_hwin and less than or equal to
 // expected_pn + pn_hwin
 //
 // This means we can’t just strip the trailing bits from
 // expected_pn and add the truncated_pn because that might
 // yield a value outside the window.
 //
 // The following code calculates a candidate value and
 // makes sure it’s within the packet number window.
 // Note the extra checks to prevent overflow and underflow.
 candidate_pn = (expected_pn & ~pn_mask) | truncated_pn
 if candidate_pn <= expected_pn - pn_hwin and
 candidate_pn < (1 << 62) - pn_win:
 return candidate_pn + pn_win
 if candidate_pn > expected_pn + pn_hwin and
 candidate_pn >= pn_win:
 return candidate_pn - pn_win
 return candidate_pn

 Figure 44: Sample Packet Number Decoding Algorithm

Appendix B . Sample ECN Validation Algorithm

 Each time an endpoint commences sending on a new network path, it
 determines whether the path supports ECN; see Section 13.4 . If the
 path supports ECN, the goal is to use ECN. Endpoints might also
 periodically reassess a path that was determined to not support ECN.

 This section describes one method for testing new paths. This
 algorithm is intended to show how a path might be tested for ECN
 support. Endpoints can implement different methods.

 The path is assigned an ECN state that is one of "testing",
 "unknown", "failed", or "capable". On paths with a "testing" or
 "capable" state the endpoint sends packets with an ECT marking, by
 default ECT(0); otherwise, the endpoint sends unmarked packets.

 To start testing a path, the ECN state is set to "testing" and
 existing ECN counts are remembered as a baseline.

Iyengar & Thomson Expires 12 December 2020 [Page 165]

Internet-Draft QUIC Transport Protocol June 2020

 The testing period runs for a number of packets or round-trip times,
 as determined by the endpoint. The goal is not to limit the duration
 of the testing period, but to ensure that enough marked packets are
 sent for received ECN counts to provide a clear indication of how the
 path treats marked packets. Section 13.4.2.2 suggests limiting this
 to 10 packets or 3 round-trip times.

 After the testing period ends, the ECN state for the path becomes
 "unknown". From the "unknown" state, successful validation of the
 ECN counts an ACK frame (see Section 13.4.2.2) causes the ECN state
 for the path to become "capable", unless no marked packet has been
 acknowledged.

 If validation of ECN counts fails at any time, the ECN state for the
 affected path becomes "failed". An endpoint can also mark the ECN
 state for a path as "failed" if marked packets are all declared lost
 or if they are all CE marked.

 Following this algorithm ensures that ECN is rarely disabled for
 paths that properly support ECN. Any path that incorrectly modifies
 markings will cause ECN to be disabled. For those rare cases where
 marked packets are discarded by the path, the short duration of the
 testing period limits the number of losses incurred.

Appendix C . Change Log

 RFC Editor’s Note: Please remove this section prior to
 publication of a final version of this document.

 Issue and pull request numbers are listed with a leading octothorp.

C.1 . Since draft-ietf-quic-transport-28

 * Made SERVER_BUSY error (0x2) more generic, now CONNECTION_REFUSED
 (#3709, #3690, #3694)

 * Allow TRANSPORT_PARAMETER_ERROR when validating connection IDs
 (#3703, #3691)

 * Integrate QUIC-specific language from draft-ietf-tsvwg-datagram-
 plpmtud (#3695, #3702)

 * disable_active_migration does not apply to the addresses offered
 in server_preferred_address (#3608, #3670)

C.2 . Since draft-ietf-quic-transport-27

Iyengar & Thomson Expires 12 December 2020 [Page 166]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-28
https://tools.ietf.org/pdf/draft-ietf-tsvwg-datagram-plpmtud
https://tools.ietf.org/pdf/draft-ietf-tsvwg-datagram-plpmtud
https://tools.ietf.org/pdf/draft-ietf-quic-transport-27

Internet-Draft QUIC Transport Protocol June 2020

 * Allowed CONNECTION_CLOSE in any packet number space, with a
 requirement to use a new transport-level error for application-
 specific errors in Initial and Handshake packets (#3430, #3435,
 #3440)

 * Clearer requirements for address validation (#2125, #3327)

 * Security analysis of handshake and migration (#2143, #2387, #2925)

 * The entire payload of a datagram is used when counting bytes for
 mitigating amplification attacks (#3333, #3470)

 * Connection IDs can be used at any time, including in the handshake
 (#3348, #3560, #3438, #3565)

 * Only one ACK should be sent for each instance of reordering
 (#3357, #3361)

 * Remove text allowing a server to proceed with a bad Retry token
 (#3396, #3398)

 * Ignore active_connection_id_limit with a zero-length connection ID
 (#3427, #3426)

 * Require active_connection_id_limit be remembered for 0-RTT (#3423,
 #3425)

 * Require ack_delay not be remembered for 0-RTT (#3433, #3545)

 * Redefined max_packet_size to max_udp_datagram_size (#3471, #3473)

 * Guidance on limiting outstanding attempts to retire connection IDs
 (#3489, #3509, #3557, #3547)

 * Restored text on dropping bogus Version Negotiation packets
 (#3532, #3533)

 * Clarified that largest acknowledged needs to be saved, but not
 necessarily signaled in all cases (#3541, #3581)

 * Addressed linkability risk with the use of preferred_address
 (#3559, #3563)

 * Added authentication of handshake connection IDs (#3439, #3499)

 * Opening a stream in the wrong direction is an error (#3527)

Iyengar & Thomson Expires 12 December 2020 [Page 167]

Internet-Draft QUIC Transport Protocol June 2020

C.3 . Since draft-ietf-quic-transport-26

 * Change format of transport parameters to use varints (#3294,
 #3169)

C.4 . Since draft-ietf-quic-transport-25

 * Define the use of CONNECTION_CLOSE prior to establishing
 connection state (#3269, #3297, #3292)

 * Allow use of address validation tokens after client address
 changes (#3307, #3308)

 * Define the timer for address validation (#2910, #3339)

C.5 . Since draft-ietf-quic-transport-24

 * Added HANDSHAKE_DONE to signal handshake confirmation (#2863,
 #3142, #3145)

 * Add integrity check to Retry packets (#3014, #3274, #3120)

 * Specify handling of reordered NEW_CONNECTION_ID frames (#3194,
 #3202)

 * Require checking of sequence numbers in RETIRE_CONNECTION_ID
 (#3037, #3036)

 * active_connection_id_limit is enforced (#3193, #3197, #3200,
 #3201)

 * Correct overflow in packet number decode algorithm (#3187, #3188)

 * Allow use of CRYPTO_BUFFER_EXCEEDED for CRYPTO frame errors
 (#3258, #3186)

 * Define applicability and scope of NEW_TOKEN (#3150, #3152, #3155,
 #3156)

 * Tokens from Retry and NEW_TOKEN must be differentiated (#3127,
 #3128)

 * Allow CONNECTION_CLOSE in response to invalid token (#3168, #3107)

 * Treat an invalid CONNECTION_CLOSE as an invalid frame (#2475,
 #3230, #3231)

Iyengar & Thomson Expires 12 December 2020 [Page 168]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-26
https://tools.ietf.org/pdf/draft-ietf-quic-transport-25
https://tools.ietf.org/pdf/draft-ietf-quic-transport-24

Internet-Draft QUIC Transport Protocol June 2020

 * Throttle when sending CONNECTION_CLOSE after discarding state
 (#3095, #3157)

 * Application-variant of CONNECTION_CLOSE can only be sent in 0-RTT
 or 1-RTT packets (#3158, #3164)

 * Advise sending while blocked to avoid idle timeout (#2744, #3266)

 * Define error codes for invalid frames (#3027, #3042)

 * Idle timeout is symmetric (#2602, #3099)

 * Prohibit IP fragmentation (#3243, #3280)

 * Define the use of provisional registration for all registries
 (#3109, #3020, #3102, #3170)

 * Packets on one path must not adjust values for a different path
 (#2909, #3139)

C.6 . Since draft-ietf-quic-transport-23

 * Allow ClientHello to span multiple packets (#2928, #3045)

 * Client Initial size constraints apply to UDP datagram payload
 (#3053, #3051)

 * Stateless reset changes (#2152, #2993)

 - tokens need to be compared in constant time

 - detection uses UDP datagrams, not packets

 - tokens cannot be reused (#2785, #2968)

 * Clearer rules for sharing of UDP ports and use of connection IDs
 when doing so (#2844, #2851)

 * A new connection ID is necessary when responding to migration
 (#2778, #2969)

 * Stronger requirements for connection ID retirement (#3046, #3096)

 * NEW_TOKEN cannot be empty (#2978, #2977)

 * PING can be sent at any encryption level (#3034, #3035)

 * CONNECTION_CLOSE is not ack-eliciting (#3097, #3098)

Iyengar & Thomson Expires 12 December 2020 [Page 169]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-23

Internet-Draft QUIC Transport Protocol June 2020

 * Frame encoding error conditions updated (#3027, #3042)

 * Non-ack-eliciting packets cannot be sent in response to non-ack-
 eliciting packets (#3100, #3104)

 * Servers have to change connection IDs in Retry (#2837, #3147)

C.7 . Since draft-ietf-quic-transport-22

 * Rules for preventing correlation by connection ID tightened
 (#2084, #2929)

 * Clarified use of CONNECTION_CLOSE in Handshake packets (#2151,
 #2541, #2688)

 * Discourage regressions of largest acknowledged in ACK (#2205,
 #2752)

 * Improved robustness of validation process for ECN counts (#2534,
 #2752)

 * Require endpoints to ignore spurious migration attempts (#2342,
 #2893)

 * Transport parameter for disabling migration clarified to allow NAT
 rebinding (#2389, #2893)

 * Document principles for defining new error codes (#2388, #2880)

 * Reserve transport parameters for greasing (#2550, #2873)

 * A maximum ACK delay of 0 is used for handshake packet number
 spaces (#2646, #2638)

 * Improved rules for use of congestion control state on new paths
 (#2685, #2918)

 * Removed recommendation to coordinate spin for multiple connections
 that share a path (#2763, #2882)

 * Allow smaller stateless resets and recommend a smaller minimum on
 packets that might trigger a stateless reset (#2770, #2869, #2927,
 #3007).

 * Provide guidance around the interface to QUIC as used by
 application protocols (#2805, #2857)

Iyengar & Thomson Expires 12 December 2020 [Page 170]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-22

Internet-Draft QUIC Transport Protocol June 2020

 * Frames other than STREAM can cause STREAM_LIMIT_ERROR (#2825,
 #2826)

 * Tighter rules about processing of rejected 0-RTT packets (#2829,
 #2840, #2841)

 * Explanation of the effect of Retry on 0-RTT packets (#2842, #2852)

 * Cryptographic handshake needs to provide server transport
 parameter encryption (#2920, #2921)

 * Moved ACK generation guidance from recovery draft to transport
 draft (#1860, #2916).

C.8 . Since draft-ietf-quic-transport-21

 * Connection ID lengths are now one octet, but limited in version 1
 to 20 octets of length (#2736, #2749)

C.9 . Since draft-ietf-quic-transport-20

 * Error codes are encoded as variable-length integers (#2672, #2680)

 * NEW_CONNECTION_ID includes a request to retire old connection IDs
 (#2645, #2769)

 * Tighter rules for generating and explicitly eliciting ACK frames
 (#2546, #2794)

 * Recommend having only one packet per encryption level in a
 datagram (#2308, #2747)

 * More normative language about use of stateless reset (#2471,
 #2574)

 * Allow reuse of stateless reset tokens (#2732, #2733)

 * Allow, but not require, enforcing non-duplicate transport
 parameters (#2689, #2691)

 * Added an active_connection_id_limit transport parameter (#1994,
 #1998)

 * max_ack_delay transport parameter defaults to 0 (#2638, #2646)

 * When sending 0-RTT, only remembered transport parameters apply
 (#2458, #2360, #2466, #2461)

Iyengar & Thomson Expires 12 December 2020 [Page 171]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-21
https://tools.ietf.org/pdf/draft-ietf-quic-transport-20

Internet-Draft QUIC Transport Protocol June 2020

 * Define handshake completion and confirmation; define clearer rules
 when it encryption keys should be discarded (#2214, #2267, #2673)

 * Prohibit path migration prior to handshake confirmation (#2309,
 #2370)

 * PATH_RESPONSE no longer needs to be received on the validated path
 (#2582, #2580, #2579, #2637)

 * PATH_RESPONSE frames are not stored and retransmitted (#2724,
 #2729)

 * Document hack for enabling routing of ICMP when doing PMTU probing
 (#1243, #2402)

C.10 . Since draft-ietf-quic-transport-19

 * Refine discussion of 0-RTT transport parameters (#2467, #2464)

 * Fewer transport parameters need to be remembered for 0-RTT (#2624,
 #2467)

 * Spin bit text incorporated (#2564)

 * Close the connection when maximum stream ID in MAX_STREAMS exceeds
 2^62 - 1 (#2499, #2487)

 * New connection ID required for intentional migration (#2414,
 #2413)

 * Connection ID issuance can be rate-limited (#2436, #2428)

 * The "QUIC bit" is ignored in Version Negotiation (#2400, #2561)

 * Initial packets from clients need to be padded to 1200 unless a
 Handshake packet is sent as well (#2522, #2523)

 * CRYPTO frames can be discarded if too much data is buffered
 (#1834, #2524)

 * Stateless reset uses a short header packet (#2599, #2600)

C.11 . Since draft-ietf-quic-transport-18

 * Removed version negotiation; version negotiation, including
 authentication of the result, will be addressed in the next
 version of QUIC (#1773, #2313)

Iyengar & Thomson Expires 12 December 2020 [Page 172]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-19
https://tools.ietf.org/pdf/draft-ietf-quic-transport-18

Internet-Draft QUIC Transport Protocol June 2020

 * Added discussion of the use of IPv6 flow labels (#2348, #2399)

 * A connection ID can’t be retired in a packet that uses that
 connection ID (#2101, #2420)

 * Idle timeout transport parameter is in milliseconds (from seconds)
 (#2453, #2454)

 * Endpoints are required to use new connection IDs when they use new
 network paths (#2413, #2414)

 * Increased the set of permissible frames in 0-RTT (#2344, #2355)

C.12 . Since draft-ietf-quic-transport-17

 * Stream-related errors now use STREAM_STATE_ERROR (#2305)

 * Endpoints discard initial keys as soon as handshake keys are
 available (#1951, #2045)

 * Expanded conditions for ignoring ICMP packet too big messages
 (#2108, #2161)

 * Remove rate control from PATH_CHALLENGE/PATH_RESPONSE (#2129,
 #2241)

 * Endpoints are permitted to discard malformed initial packets
 (#2141)

 * Clarified ECN implementation and usage requirements (#2156, #2201)

 * Disable ECN count verification for packets that arrive out of
 order (#2198, #2215)

 * Use Probe Timeout (PTO) instead of RTO (#2206, #2238)

 * Loosen constraints on retransmission of ACK ranges (#2199, #2245)

 * Limit Retry and Version Negotiation to once per datagram (#2259,
 #2303)

 * Set a maximum value for max_ack_delay transport parameter (#2282,
 #2301)

 * Allow server preferred address for both IPv4 and IPv6 (#2122,
 #2296)

Iyengar & Thomson Expires 12 December 2020 [Page 173]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-17

Internet-Draft QUIC Transport Protocol June 2020

 * Corrected requirements for migration to a preferred address
 (#2146, #2349)

 * ACK of non-existent packet is illegal (#2298, #2302)

C.13 . Since draft-ietf-quic-transport-16

 * Stream limits are defined as counts, not maximums (#1850, #1906)

 * Require amplification attack defense after closing (#1905, #1911)

 * Remove reservation of application error code 0 for STOPPING
 (#1804, #1922)

 * Renumbered frames (#1945)

 * Renumbered transport parameters (#1946)

 * Numeric transport parameters are expressed as varints (#1608,
 #1947, #1955)

 * Reorder the NEW_CONNECTION_ID frame (#1952, #1963)

 * Rework the first byte (#2006)

 - Fix the 0x40 bit

 - Change type values for long header

 - Add spin bit to short header (#631, #1988)

 - Encrypt the remainder of the first byte (#1322)

 - Move packet number length to first byte

 - Move ODCIL to first byte of retry packets

 - Simplify packet number protection (#1575)

 * Allow STOP_SENDING to open a remote bidirectional stream (#1797,
 #2013)

 * Added mitigation for off-path migration attacks (#1278, #1749,
 #2033)

 * Don’t let the PMTU to drop below 1280 (#2063, #2069)

 * Require peers to replace retired connection IDs (#2085)

Iyengar & Thomson Expires 12 December 2020 [Page 174]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-16

Internet-Draft QUIC Transport Protocol June 2020

 * Servers are required to ignore Version Negotiation packets (#2088)

 * Tokens are repeated in all Initial packets (#2089)

 * Clarified how PING frames are sent after loss (#2094)

 * Initial keys are discarded once Handshake are available (#1951,
 #2045)

 * ICMP PTB validation clarifications (#2161, #2109, #2108)

C.14 . Since draft-ietf-quic-transport-15

 Substantial editorial reorganization; no technical changes.

C.15 . Since draft-ietf-quic-transport-14

 * Merge ACK and ACK_ECN (#1778, #1801)

 * Explicitly communicate max_ack_delay (#981, #1781)

 * Validate original connection ID after Retry packets (#1710, #1486,
 #1793)

 * Idle timeout is optional and has no specified maximum (#1765)

 * Update connection ID handling; add RETIRE_CONNECTION_ID type
 (#1464, #1468, #1483, #1484, #1486, #1495, #1729, #1742, #1799,
 #1821)

 * Include a Token in all Initial packets (#1649, #1794)

 * Prevent handshake deadlock (#1764, #1824)

C.16 . Since draft-ietf-quic-transport-13

 * Streams open when higher-numbered streams of the same type open
 (#1342, #1549)

 * Split initial stream flow control limit into 3 transport
 parameters (#1016, #1542)

 * All flow control transport parameters are optional (#1610)

 * Removed UNSOLICITED_PATH_RESPONSE error code (#1265, #1539)

 * Permit stateless reset in response to any packet (#1348, #1553)

Iyengar & Thomson Expires 12 December 2020 [Page 175]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-15
https://tools.ietf.org/pdf/draft-ietf-quic-transport-14
https://tools.ietf.org/pdf/draft-ietf-quic-transport-13

Internet-Draft QUIC Transport Protocol June 2020

 * Recommended defense against stateless reset spoofing (#1386,
 #1554)

 * Prevent infinite stateless reset exchanges (#1443, #1627)

 * Forbid processing of the same packet number twice (#1405, #1624)

 * Added a packet number decoding example (#1493)

 * More precisely define idle timeout (#1429, #1614, #1652)

 * Corrected format of Retry packet and prevented looping (#1492,
 #1451, #1448, #1498)

 * Permit 0-RTT after receiving Version Negotiation or Retry (#1507,
 #1514, #1621)

 * Permit Retry in response to 0-RTT (#1547, #1552)

 * Looser verification of ECN counters to account for ACK loss
 (#1555, #1481, #1565)

 * Remove frame type field from APPLICATION_CLOSE (#1508, #1528)

C.17 . Since draft-ietf-quic-transport-12

 * Changes to integration of the TLS handshake (#829, #1018, #1094,
 #1165, #1190, #1233, #1242, #1252, #1450, #1458)

 - The cryptographic handshake uses CRYPTO frames, not stream 0

 - QUIC packet protection is used in place of TLS record
 protection

 - Separate QUIC packet number spaces are used for the handshake

 - Changed Retry to be independent of the cryptographic handshake

 - Added NEW_TOKEN frame and Token fields to Initial packet

 - Limit the use of HelloRetryRequest to address TLS needs (like
 key shares)

 * Enable server to transition connections to a preferred address
 (#560, #1251, #1373)

 * Added ECN feedback mechanisms and handling; new ACK_ECN frame
 (#804, #805, #1372)

Iyengar & Thomson Expires 12 December 2020 [Page 176]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-12

Internet-Draft QUIC Transport Protocol June 2020

 * Changed rules and recommendations for use of new connection IDs
 (#1258, #1264, #1276, #1280, #1419, #1452, #1453, #1465)

 * Added a transport parameter to disable intentional connection
 migration (#1271, #1447)

 * Packets from different connection ID can’t be coalesced (#1287,
 #1423)

 * Fixed sampling method for packet number encryption; the length
 field in long headers includes the packet number field in addition
 to the packet payload (#1387, #1389)

 * Stateless Reset is now symmetric and subject to size constraints
 (#466, #1346)

 * Added frame type extension mechanism (#58, #1473)

C.18 . Since draft-ietf-quic-transport-11

 * Enable server to transition connections to a preferred address
 (#560, #1251)

 * Packet numbers are encrypted (#1174, #1043, #1048, #1034, #850,
 #990, #734, #1317, #1267, #1079)

 * Packet numbers use a variable-length encoding (#989, #1334)

 * STREAM frames can now be empty (#1350)

C.19 . Since draft-ietf-quic-transport-10

 * Swap payload length and packed number fields in long header
 (#1294)

 * Clarified that CONNECTION_CLOSE is allowed in Handshake packet
 (#1274)

 * Spin bit reserved (#1283)

 * Coalescing multiple QUIC packets in a UDP datagram (#1262, #1285)

 * A more complete connection migration (#1249)

 * Refine opportunistic ACK defense text (#305, #1030, #1185)

 * A Stateless Reset Token isn’t mandatory (#818, #1191)

Iyengar & Thomson Expires 12 December 2020 [Page 177]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-11
https://tools.ietf.org/pdf/draft-ietf-quic-transport-10

Internet-Draft QUIC Transport Protocol June 2020

 * Removed implicit stream opening (#896, #1193)

 * An empty STREAM frame can be used to open a stream without sending
 data (#901, #1194)

 * Define stream counts in transport parameters rather than a maximum
 stream ID (#1023, #1065)

 * STOP_SENDING is now prohibited before streams are used (#1050)

 * Recommend including ACK in Retry packets and allow PADDING (#1067,
 #882)

 * Endpoints now become closing after an idle timeout (#1178, #1179)

 * Remove implication that Version Negotiation is sent when a packet
 of the wrong version is received (#1197)

C.20 . Since draft-ietf-quic-transport-09

 * Added PATH_CHALLENGE and PATH_RESPONSE frames to replace PING with
 Data and PONG frame. Changed ACK frame type from 0x0e to 0x0d.
 (#1091, #725, #1086)

 * A server can now only send 3 packets without validating the client
 address (#38, #1090)

 * Delivery order of stream data is no longer strongly specified
 (#252, #1070)

 * Rework of packet handling and version negotiation (#1038)

 * Stream 0 is now exempt from flow control until the handshake
 completes (#1074, #725, #825, #1082)

 * Improved retransmission rules for all frame types: information is
 retransmitted, not packets or frames (#463, #765, #1095, #1053)

 * Added an error code for server busy signals (#1137)

 * Endpoints now set the connection ID that their peer uses.
 Connection IDs are variable length. Removed the
 omit_connection_id transport parameter and the corresponding short
 header flag. (#1089, #1052, #1146, #821, #745, #821, #1166, #1151)

Iyengar & Thomson Expires 12 December 2020 [Page 178]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-09

Internet-Draft QUIC Transport Protocol June 2020

C.21 . Since draft-ietf-quic-transport-08

 * Clarified requirements for BLOCKED usage (#65, #924)

 * BLOCKED frame now includes reason for blocking (#452, #924, #927,
 #928)

 * GAP limitation in ACK Frame (#613)

 * Improved PMTUD description (#614, #1036)

 * Clarified stream state machine (#634, #662, #743, #894)

 * Reserved versions don’t need to be generated deterministically
 (#831, #931)

 * You don’t always need the draining period (#871)

 * Stateless reset clarified as version-specific (#930, #986)

 * initial_max_stream_id_x transport parameters are optional (#970,
 #971)

 * Ack Delay assumes a default value during the handshake (#1007,
 #1009)

 * Removed transport parameters from NewSessionTicket (#1015)

C.22 . Since draft-ietf-quic-transport-07

 * The long header now has version before packet number (#926, #939)

 * Rename and consolidate packet types (#846, #822, #847)

 * Packet types are assigned new codepoints and the Connection ID
 Flag is inverted (#426, #956)

 * Removed type for Version Negotiation and use Version 0 (#963,
 #968)

 * Streams are split into unidirectional and bidirectional (#643,
 #656, #720, #872, #175, #885)

 - Stream limits now have separate uni- and bi-directional
 transport parameters (#909, #958)

 - Stream limit transport parameters are now optional and default
 to 0 (#970, #971)

Iyengar & Thomson Expires 12 December 2020 [Page 179]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-08
https://tools.ietf.org/pdf/draft-ietf-quic-transport-07

Internet-Draft QUIC Transport Protocol June 2020

 * The stream state machine has been split into read and write (#634,
 #894)

 * Employ variable-length integer encodings throughout (#595)

 * Improvements to connection close

 - Added distinct closing and draining states (#899, #871)

 - Draining period can terminate early (#869, #870)

 - Clarifications about stateless reset (#889, #890)

 * Address validation for connection migration (#161, #732, #878)

 * Clearly defined retransmission rules for BLOCKED (#452, #65, #924)

 * negotiated_version is sent in server transport parameters (#710,
 #959)

 * Increased the range over which packet numbers are randomized
 (#864, #850, #964)

C.23 . Since draft-ietf-quic-transport-06

 * Replaced FNV-1a with AES-GCM for all "Cleartext" packets (#554)

 * Split error code space between application and transport (#485)

 * Stateless reset token moved to end (#820)

 * 1-RTT-protected long header types removed (#848)

 * No acknowledgments during draining period (#852)

 * Remove "application close" as a separate close type (#854)

 * Remove timestamps from the ACK frame (#841)

 * Require transport parameters to only appear once (#792)

C.24 . Since draft-ietf-quic-transport-05

 * Stateless token is server-only (#726)

 * Refactor section on connection termination (#733, #748, #328,
 #177)

Iyengar & Thomson Expires 12 December 2020 [Page 180]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-06
https://tools.ietf.org/pdf/draft-ietf-quic-transport-05

Internet-Draft QUIC Transport Protocol June 2020

 * Limit size of Version Negotiation packet (#585)

 * Clarify when and what to ack (#736)

 * Renamed STREAM_ID_NEEDED to STREAM_ID_BLOCKED

 * Clarify Keep-alive requirements (#729)

C.25 . Since draft-ietf-quic-transport-04

 * Introduce STOP_SENDING frame, RESET_STREAM only resets in one
 direction (#165)

 * Removed GOAWAY; application protocols are responsible for graceful
 shutdown (#696)

 * Reduced the number of error codes (#96, #177, #184, #211)

 * Version validation fields can’t move or change (#121)

 * Removed versions from the transport parameters in a
 NewSessionTicket message (#547)

 * Clarify the meaning of "bytes in flight" (#550)

 * Public reset is now stateless reset and not visible to the path
 (#215)

 * Reordered bits and fields in STREAM frame (#620)

 * Clarifications to the stream state machine (#572, #571)

 * Increased the maximum length of the Largest Acknowledged field in
 ACK frames to 64 bits (#629)

 * truncate_connection_id is renamed to omit_connection_id (#659)

 * CONNECTION_CLOSE terminates the connection like TCP RST (#330,
 #328)

 * Update labels used in HKDF-Expand-Label to match TLS 1.3 (#642)

C.26 . Since draft-ietf-quic-transport-03

 * Change STREAM and RESET_STREAM layout

 * Add MAX_STREAM_ID settings

Iyengar & Thomson Expires 12 December 2020 [Page 181]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-04
https://tools.ietf.org/pdf/draft-ietf-quic-transport-03

Internet-Draft QUIC Transport Protocol June 2020

C.27 . Since draft-ietf-quic-transport-02

 * The size of the initial packet payload has a fixed minimum (#267,
 #472)

 * Define when Version Negotiation packets are ignored (#284, #294,
 #241, #143, #474)

 * The 64-bit FNV-1a algorithm is used for integrity protection of
 unprotected packets (#167, #480, #481, #517)

 * Rework initial packet types to change how the connection ID is
 chosen (#482, #442, #493)

 * No timestamps are forbidden in unprotected packets (#542, #429)

 * Cryptographic handshake is now on stream 0 (#456)

 * Remove congestion control exemption for cryptographic handshake
 (#248, #476)

 * Version 1 of QUIC uses TLS; a new version is needed to use a
 different handshake protocol (#516)

 * STREAM frames have a reduced number of offset lengths (#543, #430)

 * Split some frames into separate connection- and stream- level
 frames (#443)

 - WINDOW_UPDATE split into MAX_DATA and MAX_STREAM_DATA (#450)

 - BLOCKED split to match WINDOW_UPDATE split (#454)

 - Define STREAM_ID_NEEDED frame (#455)

 * A NEW_CONNECTION_ID frame supports connection migration without
 linkability (#232, #491, #496)

 * Transport parameters for 0-RTT are retained from a previous
 connection (#405, #513, #512)

 - A client in 0-RTT no longer required to reset excess streams
 (#425, #479)

 * Expanded security considerations (#440, #444, #445, #448)

C.28 . Since draft-ietf-quic-transport-01

Iyengar & Thomson Expires 12 December 2020 [Page 182]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-02
https://tools.ietf.org/pdf/draft-ietf-quic-transport-01

Internet-Draft QUIC Transport Protocol June 2020

 * Defined short and long packet headers (#40, #148, #361)

 * Defined a versioning scheme and stable fields (#51, #361)

 * Define reserved version values for "greasing" negotiation (#112,
 #278)

 * The initial packet number is randomized (#35, #283)

 * Narrow the packet number encoding range requirement (#67, #286,
 #299, #323, #356)

 * Defined client address validation (#52, #118, #120, #275)

 * Define transport parameters as a TLS extension (#49, #122)

 * SCUP and COPT parameters are no longer valid (#116, #117)

 * Transport parameters for 0-RTT are either remembered from before,
 or assume default values (#126)

 * The server chooses connection IDs in its final flight (#119, #349,
 #361)

 * The server echoes the Connection ID and packet number fields when
 sending a Version Negotiation packet (#133, #295, #244)

 * Defined a minimum packet size for the initial handshake packet
 from the client (#69, #136, #139, #164)

 * Path MTU Discovery (#64, #106)

 * The initial handshake packet from the client needs to fit in a
 single packet (#338)

 * Forbid acknowledgment of packets containing only ACK and PADDING
 (#291)

 * Require that frames are processed when packets are acknowledged
 (#381, #341)

 * Removed the STOP_WAITING frame (#66)

 * Don’t require retransmission of old timestamps for lost ACK frames
 (#308)

 * Clarified that frames are not retransmitted, but the information
 in them can be (#157, #298)

Iyengar & Thomson Expires 12 December 2020 [Page 183]

Internet-Draft QUIC Transport Protocol June 2020

 * Error handling definitions (#335)

 * Split error codes into four sections (#74)

 * Forbid the use of Public Reset where CONNECTION_CLOSE is possible
 (#289)

 * Define packet protection rules (#336)

 * Require that stream be entirely delivered or reset, including
 acknowledgment of all STREAM frames or the RESET_STREAM, before it
 closes (#381)

 * Remove stream reservation from state machine (#174, #280)

 * Only stream 1 does not contribute to connection-level flow control
 (#204)

 * Stream 1 counts towards the maximum concurrent stream limit (#201,
 #282)

 * Remove connection-level flow control exclusion for some streams
 (except 1) (#246)

 * RESET_STREAM affects connection-level flow control (#162, #163)

 * Flow control accounting uses the maximum data offset on each
 stream, rather than bytes received (#378)

 * Moved length-determining fields to the start of STREAM and ACK
 (#168, #277)

 * Added the ability to pad between frames (#158, #276)

 * Remove error code and reason phrase from GOAWAY (#352, #355)

 * GOAWAY includes a final stream number for both directions (#347)

 * Error codes for RESET_STREAM and CONNECTION_CLOSE are now at a
 consistent offset (#249)

 * Defined priority as the responsibility of the application protocol
 (#104, #303)

C.29 . Since draft-ietf-quic-transport-00

 * Replaced DIVERSIFICATION_NONCE flag with KEY_PHASE flag

Iyengar & Thomson Expires 12 December 2020 [Page 184]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-00

Internet-Draft QUIC Transport Protocol June 2020

 * Defined versioning

 * Reworked description of packet and frame layout

 * Error code space is divided into regions for each component

 * Use big endian for all numeric values

C.30 . Since draft-hamilton-quic-transport-protocol-01

 * Adopted as base for draft-ietf-quic-tls

 * Updated authors/editors list

 * Added IANA Considerations section

 * Moved Contributors and Acknowledgments to appendices

Contributors

 The original design and rationale behind this protocol draw
 significantly from work by Jim Roskind [EARLY-DESIGN].

 The IETF QUIC Working Group received an enormous amount of support
 from many people. The following people provided substantive
 contributions to this document:

 * Alessandro Ghedini

 * Alyssa Wilk

 * Antoine Delignat-Lavaud

 * Brian Trammell

 * Christian Huitema

 * Colin Perkins

 * David Schinazi

 * Dmitri Tikhonov

 * Eric Kinnear

 * Eric Rescorla

 * Gorry Fairhurst

Iyengar & Thomson Expires 12 December 2020 [Page 185]

https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol-01
https://tools.ietf.org/pdf/draft-ietf-quic-tls

Internet-Draft QUIC Transport Protocol June 2020

 * Ian Swett

 * Igor Lubashev

 * å¥¥ ä¸ç© (Kazuho Oku)

 * Lucas Pardue

 * Magnus Westerlund

 * Marten Seemann

 * Martin Duke

 * Mike Bishop

 * Mikkel FahnÃ¸e JÃ¸rgensen

 * Mirja KÃ¼hlewind

 * Nick Banks

 * Nick Harper

 * Patrick McManus

 * Roberto Peon

 * Ryan Hamilton

 * Subodh Iyengar

 * Tatsuhiro Tsujikawa

 * Ted Hardie

 * Tom Jones

 * Victor Vasiliev

Authors’ Addresses

 Jana Iyengar (editor)
 Fastly

 Email: jri.ietf@gmail.com

Iyengar & Thomson Expires 12 December 2020 [Page 186]

Internet-Draft QUIC Transport Protocol June 2020

 Martin Thomson (editor)
 Mozilla

 Email: mt@lowentropy.net

Iyengar & Thomson Expires 12 December 2020 [Page 187]

