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Abstract

   This document defines the core of the QUIC transport protocol.
   Accompanying documents describe QUIC’s loss detection and congestion
   control and the use of TLS for key negotiation.

Note to Readers

   Discussion of this draft takes place on the QUIC working group
   mailing list (quic@ietf.org (mailto:quic@ietf.org)), which is
   archived at https://mailarchive.ietf.org/arch/search/?email_list=quic

   Working Group information can be found at https://github .com/quicwg;
   source code and issues list for this draft can be found at
   https://github.com/quicwg/base-drafts/labels/-transport .

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78  and BCP 79 .

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/ .

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 12 December 2020.

Copyright Notice
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   document authors.  All rights reserved.
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1.  Introduction

   QUIC is a multiplexed and secure general-purpose transport protocol
   that provides:

   *  Stream multiplexing

   *  Stream and connection-level flow control

   *  Low-latency connection establishment
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   *  Connection migration and resilience to NAT rebinding

   *  Authenticated and encrypted header and payload

   QUIC uses UDP as a substrate to avoid requiring changes to legacy
   client operating systems and middleboxes.  QUIC authenticates all of
   its headers and encrypts most of the data it exchanges, including its
   signaling, to avoid incurring a dependency on middleboxes.

1.1 .  Document Structure

   This document describes the core QUIC protocol and is structured as
   follows:

   *  Streams are the basic service abstraction that QUIC provides.

      -  Section 2  describes core concepts related to streams,

      -  Section 3  provides a reference model for stream states, and

      -  Section 4  outlines the operation of flow control.

   *  Connections are the context in which QUIC endpoints communicate.

      -  Section 5  describes core concepts related to connections,

      -  Section 6  describes version negotiation,

      -  Section 7  details the process for establishing connections,

      -  Section 8  specifies critical denial of service mitigation
         mechanisms,

      -  Section 9  describes how endpoints migrate a connection to a new
         network path,

      -  Section 10  lists the options for terminating an open
         connection, and

      -  Section 11  provides general guidance for error handling.

   *  Packets and frames are the basic unit used by QUIC to communicate.

      -  Section 12  describes concepts related to packets and frames,

      -  Section 13  defines models for the transmission, retransmission,
         and acknowledgement of data, and
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      -  Section 14  specifies rules for managing the size of packets.

   *  Finally, encoding details of QUIC protocol elements are described
      in:

      -  Section 15  (Versions),

      -  Section 16  (Integer Encoding),

      -  Section 17  (Packet Headers),

      -  Section 18  (Transport Parameters),

      -  Section 19  (Frames), and

      -  Section 20  (Errors).

   Accompanying documents describe QUIC’s loss detection and congestion
   control [ QUIC-RECOVERY], and the use of TLS for key negotiation
   [ QUIC-TLS ].

   This document defines QUIC version 1, which conforms to the protocol
   invariants in [ QUIC-INVARIANTS ].

   To refer to QUIC version 1, cite this document.  References to the
   limited set of version-independent properties of QUIC can cite
   [ QUIC-INVARIANTS ].

1.2 .  Terms and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14  [ RFC2119] [ RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   Commonly used terms in the document are described below.

   QUIC:  The transport protocol described by this document.  QUIC is a
      name, not an acronym.

   QUIC packet:  A complete processable unit of QUIC that can be
      encapsulated in a UDP datagram.  Multiple QUIC packets can be
      encapsulated in a single UDP datagram.

   Ack-eliciting Packet:  A QUIC packet that contains frames other than
      ACK, PADDING, and CONNECTION_CLOSE.  These cause a recipient to
      send an acknowledgment; see Section 13.2.1 .
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   Out-of-order packet:  A packet that does not increase the largest
      received packet number for its packet number space ( Section 12.3 )
      by exactly one.  A packet can arrive out of order if it is
      delayed, if earlier packets are lost or delayed, or if the sender
      intentionally skips a packet number.

   Endpoint:  An entity that can participate in a QUIC connection by
      generating, receiving, and processing QUIC packets.  There are
      only two types of endpoint in QUIC: client and server.

   Client:  The endpoint initiating a QUIC connection.

   Server:  The endpoint accepting incoming QUIC connections.

   Address:  When used without qualification, the tuple of IP version,
      IP address, UDP protocol, and UDP port number that represents one
      end of a network path.

   Connection ID:  An opaque identifier that is used to identify a QUIC
      connection at an endpoint.  Each endpoint sets a value for its
      peer to include in packets sent towards the endpoint.

   Stream:  A unidirectional or bidirectional channel of ordered bytes
      within a QUIC connection.  A QUIC connection can carry multiple
      simultaneous streams.

   Application:  An entity that uses QUIC to send and receive data.

1.3 .  Notational Conventions

   Packet and frame diagrams in this document use a bespoke format.  The
   purpose of this format is to summarize, not define, protocol
   elements.  Prose defines the complete semantics and details of
   structures.

   Complex fields are named and then followed by a list of fields
   surrounded by a pair of matching braces.  Each field in this list is
   separated by commas.

   Individual fields include length information, plus indications about
   fixed value, optionality, or repetitions.  Individual fields use the
   following notational conventions, with all lengths in bits:

   x (A):  Indicates that x is A bits long

   x (i):  Indicates that x uses the variable-length encoding in
      Section 16
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   x (A..B):  Indicates that x can be any length from A to B; A can be
      omitted to indicate a minimum of zero bits and B can be omitted to
      indicate no set upper limit; values in this format always end on
      an octet boundary

   x (?) = C:  Indicates that x has a fixed value of C

   x (?) = C..D:  Indicates that x has a value in the range from C to D,
      inclusive

   [x (E)]:  Indicates that x is optional (and has length of E)

   x (E) ...:  Indicates that x is repeated zero or more times (and that
      each instance is length E)

   This document uses network byte order (that is, big endian) values.
   Fields are placed starting from the high-order bits of each byte.

   By convention, individual fields reference a complex field by using
   the name of the complex field.

   For example:

   Example Structure {
     One-bit Field (1),
     7-bit Field with Fixed Value (7) = 61,
     Field with Variable-Length Integer (i),
     Arbitrary-Length Field (..),
     Variable-Length Field (8..24),
     Field With Minimum Length (16..),
     Field With Maximum Length (..128),
     [Optional Field (64)],
     Repeated Field (8) ...,
   }

                          Figure 1: Example Format

2.  Streams

   Streams in QUIC provide a lightweight, ordered byte-stream
   abstraction to an application.  Streams can be unidirectional or
   bidirectional.  An alternative view of QUIC unidirectional streams is
   a "message" abstraction of practically unlimited length.

Iyengar & Thomson       Expires 12 December 2020               [Page 10]



 
Internet-Draft           QUIC Transport Protocol               June 2020

   Streams can be created by sending data.  Other processes associated
   with stream management - ending, cancelling, and managing flow
   control - are all designed to impose minimal overheads.  For
   instance, a single STREAM frame ( Section 19.8 ) can open, carry data
   for, and close a stream.  Streams can also be long-lived and can last
   the entire duration of a connection.

   Streams can be created by either endpoint, can concurrently send data
   interleaved with other streams, and can be cancelled.  QUIC does not
   provide any means of ensuring ordering between bytes on different
   streams.

   QUIC allows for an arbitrary number of streams to operate
   concurrently and for an arbitrary amount of data to be sent on any
   stream, subject to flow control constraints and stream limits; see
   Section 4 .

2.1 .  Stream Types and Identifiers

   Streams can be unidirectional or bidirectional.  Unidirectional
   streams carry data in one direction: from the initiator of the stream
   to its peer.  Bidirectional streams allow for data to be sent in both
   directions.

   Streams are identified within a connection by a numeric value,
   referred to as the stream ID.  A stream ID is a 62-bit integer (0 to
   2^62-1) that is unique for all streams on a connection.  Stream IDs
   are encoded as variable-length integers; see Section 16 .  A QUIC
   endpoint MUST NOT reuse a stream ID within a connection.

   The least significant bit (0x1) of the stream ID identifies the
   initiator of the stream.  Client-initiated streams have even-numbered
   stream IDs (with the bit set to 0), and server-initiated streams have
   odd-numbered stream IDs (with the bit set to 1).

   The second least significant bit (0x2) of the stream ID distinguishes
   between bidirectional streams (with the bit set to 0) and
   unidirectional streams (with the bit set to 1).

   The least significant two bits from a stream ID therefore identify a
   stream as one of four types, as summarized in Table 1.
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                +------+----------------------------------+
                | Bits | Stream Type                      |
                +======+==================================+
                | 0x0  | Client-Initiated, Bidirectional  |
                +------+----------------------------------+
                | 0x1  | Server-Initiated, Bidirectional  |
                +------+----------------------------------+
                | 0x2  | Client-Initiated, Unidirectional |
                +------+----------------------------------+
                | 0x3  | Server-Initiated, Unidirectional |
                +------+----------------------------------+

                          Table 1: Stream ID Types

   Within each type, streams are created with numerically increasing
   stream IDs.  A stream ID that is used out of order results in all
   streams of that type with lower-numbered stream IDs also being
   opened.

   The first bidirectional stream opened by the client has a stream ID
   of 0.

2.2 .  Sending and Receiving Data

   STREAM frames ( Section 19.8 ) encapsulate data sent by an application.
   An endpoint uses the Stream ID and Offset fields in STREAM frames to
   place data in order.

   Endpoints MUST be able to deliver stream data to an application as an
   ordered byte-stream.  Delivering an ordered byte-stream requires that
   an endpoint buffer any data that is received out of order, up to the
   advertised flow control limit.

   QUIC makes no specific allowances for delivery of stream data out of
   order.  However, implementations MAY choose to offer the ability to
   deliver data out of order to a receiving application.

   An endpoint could receive data for a stream at the same stream offset
   multiple times.  Data that has already been received can be
   discarded.  The data at a given offset MUST NOT change if it is sent
   multiple times; an endpoint MAY treat receipt of different data at
   the same offset within a stream as a connection error of type
   PROTOCOL_VIOLATION.

   Streams are an ordered byte-stream abstraction with no other
   structure visible to QUIC.  STREAM frame boundaries are not expected
   to be preserved when data is transmitted, retransmitted after packet
   loss, or delivered to the application at a receiver.
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   An endpoint MUST NOT send data on any stream without ensuring that it
   is within the flow control limits set by its peer.  Flow control is
   described in detail in Section 4 .

2.3 .  Stream Prioritization

   Stream multiplexing can have a significant effect on application
   performance if resources allocated to streams are correctly
   prioritized.

   QUIC does not provide a mechanism for exchanging prioritization
   information.  Instead, it relies on receiving priority information
   from the application that uses QUIC.

   A QUIC implementation SHOULD provide ways in which an application can
   indicate the relative priority of streams.  When deciding the streams
   to which resources are dedicated, the implementation SHOULD use the
   information provided by the application.

2.4 .  Required Operations on Streams

   There are certain operations that an application MUST be able to
   perform when interacting with QUIC streams.  This document does not
   specify an API, but any implementation of this version of QUIC MUST
   expose the ability to perform the operations described in this
   section on a QUIC stream.

   On the sending part of a stream, application protocols need to be
   able to:

   *  write data, understanding when stream flow control credit
      ( Section 4.1 ) has successfully been reserved to send the written
      data;

   *  end the stream (clean termination), resulting in a STREAM frame
      ( Section 19.8 ) with the FIN bit set; and

   *  reset the stream (abrupt termination), resulting in a RESET_STREAM
      frame ( Section 19.4 ), if the stream was not already in a terminal
      state.

   On the receiving part of a stream, application protocols need to be
   able to:

   *  read data; and

   *  abort reading of the stream and request closure, possibly
      resulting in a STOP_SENDING frame ( Section 19.5 ).
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   Applications also need to be informed of state changes on streams,
   including when the peer has opened or reset a stream, when a peer
   aborts reading on a stream, when new data is available, and when data
   can or cannot be written to the stream due to flow control.

3.  Stream States

   This section describes streams in terms of their send or receive
   components.  Two state machines are described: one for the streams on
   which an endpoint transmits data ( Section 3.1 ), and another for
   streams on which an endpoint receives data ( Section 3.2 ).

   Unidirectional streams use the applicable state machine directly.
   Bidirectional streams use both state machines.  For the most part,
   the use of these state machines is the same whether the stream is
   unidirectional or bidirectional.  The conditions for opening a stream
   are slightly more complex for a bidirectional stream because the
   opening of either the send or receive side causes the stream to open
   in both directions.

   An endpoint MUST open streams of the same type in increasing order of
   stream ID.

   Note:  These states are largely informative.  This document uses
      stream states to describe rules for when and how different types
      of frames can be sent and the reactions that are expected when
      different types of frames are received.  Though these state
      machines are intended to be useful in implementing QUIC, these
      states aren’t intended to constrain implementations.  An
      implementation can define a different state machine as long as its
      behavior is consistent with an implementation that implements
      these states.

3.1 .  Sending Stream States

   Figure 2 shows the states for the part of a stream that sends data to
   a peer.
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          o
          | Create Stream (Sending)
          | Peer Creates Bidirectional Stream
          v
      +-------+
      | Ready | Send RESET_STREAM
      |       |-----------------------.
      +-------+                       |
          |                           |
          | Send STREAM /             |
          |      STREAM_DATA_BLOCKED  |
          |                           |
          | Peer Creates              |
          |      Bidirectional Stream |
          v                           |
      +-------+                       |
      | Send  | Send RESET_STREAM     |
      |       |---------------------->|
      +-------+                       |
          |                           |
          | Send STREAM + FIN         |
          v                           v
      +-------+                   +-------+
      | Data  | Send RESET_STREAM | Reset |
      | Sent  |------------------>| Sent  |
      +-------+                   +-------+
          |                           |
          | Recv All ACKs             | Recv ACK
          v                           v
      +-------+                   +-------+
      | Data  |                   | Reset |
      | Recvd |                   | Recvd |
      +-------+                   +-------+

               Figure 2: States for Sending Parts of Streams

   The sending part of a stream that the endpoint initiates (types 0 and
   2 for clients, 1 and 3 for servers) is opened by the application.
   The "Ready" state represents a newly created stream that is able to
   accept data from the application.  Stream data might be buffered in
   this state in preparation for sending.

   Sending the first STREAM or STREAM_DATA_BLOCKED frame causes a
   sending part of a stream to enter the "Send" state.  An
   implementation might choose to defer allocating a stream ID to a
   stream until it sends the first STREAM frame and enters this state,
   which can allow for better stream prioritization.
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   The sending part of a bidirectional stream initiated by a peer (type
   0 for a server, type 1 for a client) starts in the "Ready" state when
   the receiving part is created.

   In the "Send" state, an endpoint transmits - and retransmits as
   necessary - stream data in STREAM frames.  The endpoint respects the
   flow control limits set by its peer, and continues to accept and
   process MAX_STREAM_DATA frames.  An endpoint in the "Send" state
   generates STREAM_DATA_BLOCKED frames if it is blocked from sending by
   stream or connection flow control limits Section 4.1 .

   After the application indicates that all stream data has been sent
   and a STREAM frame containing the FIN bit is sent, the sending part
   of the stream enters the "Data Sent" state.  From this state, the
   endpoint only retransmits stream data as necessary.  The endpoint
   does not need to check flow control limits or send
   STREAM_DATA_BLOCKED frames for a stream in this state.
   MAX_STREAM_DATA frames might be received until the peer receives the
   final stream offset.  The endpoint can safely ignore any
   MAX_STREAM_DATA frames it receives from its peer for a stream in this
   state.

   Once all stream data has been successfully acknowledged, the sending
   part of the stream enters the "Data Recvd" state, which is a terminal
   state.

   From any of the "Ready", "Send", or "Data Sent" states, an
   application can signal that it wishes to abandon transmission of
   stream data.  Alternatively, an endpoint might receive a STOP_SENDING
   frame from its peer.  In either case, the endpoint sends a
   RESET_STREAM frame, which causes the stream to enter the "Reset Sent"
   state.

   An endpoint MAY send a RESET_STREAM as the first frame that mentions
   a stream; this causes the sending part of that stream to open and
   then immediately transition to the "Reset Sent" state.

   Once a packet containing a RESET_STREAM has been acknowledged, the
   sending part of the stream enters the "Reset Recvd" state, which is a
   terminal state.
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3.2 .  Receiving Stream States

   Figure 3 shows the states for the part of a stream that receives data
   from a peer.  The states for a receiving part of a stream mirror only
   some of the states of the sending part of the stream at the peer.
   The receiving part of a stream does not track states on the sending
   part that cannot be observed, such as the "Ready" state.  Instead,
   the receiving part of a stream tracks the delivery of data to the
   application, some of which cannot be observed by the sender.

          o
          | Recv STREAM / STREAM_DATA_BLOCKED / RESET_STREAM
          | Create Bidirectional Stream (Sending)
          | Recv MAX_STREAM_DATA / STOP_SENDING (Bidirectional)
          | Create Higher-Numbered Stream
          v
      +-------+
      | Recv  | Recv RESET_STREAM
      |       |-----------------------.
      +-------+                       |
          |                           |
          | Recv STREAM + FIN         |
          v                           |
      +-------+                       |
      | Size  | Recv RESET_STREAM     |
      | Known |---------------------->|
      +-------+                       |
          |                           |
          | Recv All Data             |
          v                           v
      +-------+ Recv RESET_STREAM +-------+
      | Data  |--- (optional) --->| Reset |
      | Recvd |  Recv All Data    | Recvd |
      +-------+<-- (optional) ----+-------+
          |                           |
          | App Read All Data         | App Read RST
          v                           v
      +-------+                   +-------+
      | Data  |                   | Reset |
      | Read  |                   | Read  |
      +-------+                   +-------+

              Figure 3: States for Receiving Parts of Streams

   The receiving part of a stream initiated by a peer (types 1 and 3 for
   a client, or 0 and 2 for a server) is created when the first STREAM,
   STREAM_DATA_BLOCKED, or RESET_STREAM frame is received for that
   stream.  For bidirectional streams initiated by a peer, receipt of a
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   MAX_STREAM_DATA or STOP_SENDING frame for the sending part of the
   stream also creates the receiving part.  The initial state for the
   receiving part of stream is "Recv".

   The receiving part of a stream enters the "Recv" state when the
   sending part of a bidirectional stream initiated by the endpoint
   (type 0 for a client, type 1 for a server) enters the "Ready" state.

   An endpoint opens a bidirectional stream when a MAX_STREAM_DATA or
   STOP_SENDING frame is received from the peer for that stream.
   Receiving a MAX_STREAM_DATA frame for an unopened stream indicates
   that the remote peer has opened the stream and is providing flow
   control credit.  Receiving a STOP_SENDING frame for an unopened
   stream indicates that the remote peer no longer wishes to receive
   data on this stream.  Either frame might arrive before a STREAM or
   STREAM_DATA_BLOCKED frame if packets are lost or reordered.

   Before a stream is created, all streams of the same type with lower-
   numbered stream IDs MUST be created.  This ensures that the creation
   order for streams is consistent on both endpoints.

   In the "Recv" state, the endpoint receives STREAM and
   STREAM_DATA_BLOCKED frames.  Incoming data is buffered and can be
   reassembled into the correct order for delivery to the application.
   As data is consumed by the application and buffer space becomes
   available, the endpoint sends MAX_STREAM_DATA frames to allow the
   peer to send more data.

   When a STREAM frame with a FIN bit is received, the final size of the
   stream is known; see Section 4.4 .  The receiving part of the stream
   then enters the "Size Known" state.  In this state, the endpoint no
   longer needs to send MAX_STREAM_DATA frames, it only receives any
   retransmissions of stream data.

   Once all data for the stream has been received, the receiving part
   enters the "Data Recvd" state.  This might happen as a result of
   receiving the same STREAM frame that causes the transition to "Size
   Known".  After all data has been received, any STREAM or
   STREAM_DATA_BLOCKED frames for the stream can be discarded.

   The "Data Recvd" state persists until stream data has been delivered
   to the application.  Once stream data has been delivered, the stream
   enters the "Data Read" state, which is a terminal state.

   Receiving a RESET_STREAM frame in the "Recv" or "Size Known" states
   causes the stream to enter the "Reset Recvd" state.  This might cause
   the delivery of stream data to the application to be interrupted.
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   It is possible that all stream data is received when a RESET_STREAM
   is received (that is, from the "Data Recvd" state).  Similarly, it is
   possible for remaining stream data to arrive after receiving a
   RESET_STREAM frame (the "Reset Recvd" state).  An implementation is
   free to manage this situation as it chooses.

   Sending RESET_STREAM means that an endpoint cannot guarantee delivery
   of stream data; however there is no requirement that stream data not
   be delivered if a RESET_STREAM is received.  An implementation MAY
   interrupt delivery of stream data, discard any data that was not
   consumed, and signal the receipt of the RESET_STREAM.  A RESET_STREAM
   signal might be suppressed or withheld if stream data is completely
   received and is buffered to be read by the application.  If the
   RESET_STREAM is suppressed, the receiving part of the stream remains
   in "Data Recvd".

   Once the application receives the signal indicating that the stream
   was reset, the receiving part of the stream transitions to the "Reset
   Read" state, which is a terminal state.

3.3 .  Permitted Frame Types

   The sender of a stream sends just three frame types that affect the
   state of a stream at either sender or receiver: STREAM
   ( Section 19.8 ), STREAM_DATA_BLOCKED ( Section 19.13 ), and RESET_STREAM
   ( Section 19.4 ).

   A sender MUST NOT send any of these frames from a terminal state
   ("Data Recvd" or "Reset Recvd").  A sender MUST NOT send a STREAM or
   STREAM_DATA_BLOCKED frame for a stream in the "Reset Sent" state or
   any terminal state, that is, after sending a RESET_STREAM frame.  A
   receiver could receive any of these three frames in any state, due to
   the possibility of delayed delivery of packets carrying them.

   The receiver of a stream sends MAX_STREAM_DATA ( Section 19.10 ) and
   STOP_SENDING frames ( Section 19.5 ).

   The receiver only sends MAX_STREAM_DATA in the "Recv" state.  A
   receiver MAY send STOP_SENDING in any state where it has not received
   a RESET_STREAM frame; that is states other than "Reset Recvd" or
   "Reset Read".  However there is little value in sending a
   STOP_SENDING frame in the "Data Recvd" state, since all stream data
   has been received.  A sender could receive either of these two frames
   in any state as a result of delayed delivery of packets.
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3.4 .  Bidirectional Stream States

   A bidirectional stream is composed of sending and receiving parts.
   Implementations may represent states of the bidirectional stream as
   composites of sending and receiving stream states.  The simplest
   model presents the stream as "open" when either sending or receiving
   parts are in a non-terminal state and "closed" when both sending and
   receiving streams are in terminal states.

   Table 2 shows a more complex mapping of bidirectional stream states
   that loosely correspond to the stream states in HTTP/2 [ HTTP2].  This
   shows that multiple states on sending or receiving parts of streams
   are mapped to the same composite state.  Note that this is just one
   possibility for such a mapping; this mapping requires that data is
   acknowledged before the transition to a "closed" or "half-closed"
   state.
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     +----------------------+----------------------+-----------------+
     | Sending Part         | Receiving Part       | Composite State |
     +======================+======================+=================+
     | No Stream/Ready      | No Stream/Recv *1    | idle            |
     +----------------------+----------------------+-----------------+
     | Ready/Send/Data Sent | Recv/Size Known      | open            |
     +----------------------+----------------------+-----------------+
     | Ready/Send/Data Sent | Data Recvd/Data Read | half-closed     |
     |                      |                      | (remote)        |
     +----------------------+----------------------+-----------------+
     | Ready/Send/Data Sent | Reset Recvd/Reset    | half-closed     |
     |                      | Read                 | (remote)        |
     +----------------------+----------------------+-----------------+
     | Data Recvd           | Recv/Size Known      | half-closed     |
     |                      |                      | (local)         |
     +----------------------+----------------------+-----------------+
     | Reset Sent/Reset     | Recv/Size Known      | half-closed     |
     | Recvd                |                      | (local)         |
     +----------------------+----------------------+-----------------+
     | Reset Sent/Reset     | Data Recvd/Data Read | closed          |
     | Recvd                |                      |                 |
     +----------------------+----------------------+-----------------+
     | Reset Sent/Reset     | Reset Recvd/Reset    | closed          |
     | Recvd                | Read                 |                 |
     +----------------------+----------------------+-----------------+
     | Data Recvd           | Data Recvd/Data Read | closed          |
     +----------------------+----------------------+-----------------+
     | Data Recvd           | Reset Recvd/Reset    | closed          |
     |                      | Read                 |                 |
     +----------------------+----------------------+-----------------+

            Table 2: Possible Mapping of Stream States to HTTP/2

   Note (*1):  A stream is considered "idle" if it has not yet been
      created, or if the receiving part of the stream is in the "Recv"
      state without yet having received any frames.

3.5 .  Solicited State Transitions

   If an application is no longer interested in the data it is receiving
   on a stream, it can abort reading the stream and specify an
   application error code.
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   If the stream is in the "Recv" or "Size Known" states, the transport
   SHOULD signal this by sending a STOP_SENDING frame to prompt closure
   of the stream in the opposite direction.  This typically indicates
   that the receiving application is no longer reading data it receives
   from the stream, but it is not a guarantee that incoming data will be
   ignored.

   STREAM frames received after sending a STOP_SENDING frame are still
   counted toward connection and stream flow control, even though these
   frames can be discarded upon receipt.

   A STOP_SENDING frame requests that the receiving endpoint send a
   RESET_STREAM frame.  An endpoint that receives a STOP_SENDING frame
   MUST send a RESET_STREAM frame if the stream is in the Ready or Send
   state.  If the stream is in the Data Sent state and any outstanding
   data is declared lost, an endpoint SHOULD send a RESET_STREAM frame
   in lieu of a retransmission.

   An endpoint SHOULD copy the error code from the STOP_SENDING frame to
   the RESET_STREAM frame it sends, but MAY use any application error
   code.  The endpoint that sends a STOP_SENDING frame MAY ignore the
   error code carried in any RESET_STREAM frame it receives.

   If the STOP_SENDING frame is received on a stream that is already in
   the "Data Sent" state, an endpoint that wishes to cease
   retransmission of previously-sent STREAM frames on that stream MUST
   first send a RESET_STREAM frame.

   STOP_SENDING SHOULD only be sent for a stream that has not been reset
   by the peer.  STOP_SENDING is most useful for streams in the "Recv"
   or "Size Known" states.

   An endpoint is expected to send another STOP_SENDING frame if a
   packet containing a previous STOP_SENDING is lost.  However, once
   either all stream data or a RESET_STREAM frame has been received for
   the stream - that is, the stream is in any state other than "Recv" or
   "Size Known" - sending a STOP_SENDING frame is unnecessary.

   An endpoint that wishes to terminate both directions of a
   bidirectional stream can terminate one direction by sending a
   RESET_STREAM frame, and it can encourage prompt termination in the
   opposite direction by sending a STOP_SENDING frame.
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4.  Flow Control

   It is necessary to limit the amount of data that a receiver could
   buffer, to prevent a fast sender from overwhelming a slow receiver,
   or to prevent a malicious sender from consuming a large amount of
   memory at a receiver.  To enable a receiver to limit memory
   commitment to a connection and to apply back pressure on the sender,
   streams are flow controlled both individually and as an aggregate.  A
   QUIC receiver controls the maximum amount of data the sender can send
   on a stream at any time, as described in Section 4.1  and Section 4.2

   Similarly, to limit concurrency within a connection, a QUIC endpoint
   controls the maximum cumulative number of streams that its peer can
   initiate, as described in Section 4.5 .

   Data sent in CRYPTO frames is not flow controlled in the same way as
   stream data.  QUIC relies on the cryptographic protocol
   implementation to avoid excessive buffering of data; see [ QUIC-TLS ].
   The implementation SHOULD provide an interface to QUIC to tell it
   about its buffering limits so that there is not excessive buffering
   at multiple layers.

4.1 .  Data Flow Control

   QUIC employs a credit-based flow-control scheme similar to that in
   HTTP/2 [ HTTP2], where a receiver advertises the number of bytes it is
   prepared to receive on a given stream and for the entire connection.
   This leads to two levels of data flow control in QUIC:

   *  Stream flow control, which prevents a single stream from consuming
      the entire receive buffer for a connection by limiting the amount
      of data that can be sent on any stream.

   *  Connection flow control, which prevents senders from exceeding a
      receiver’s buffer capacity for the connection, by limiting the
      total bytes of stream data sent in STREAM frames on all streams.

   A receiver sets initial credits for all streams by sending transport
   parameters during the handshake ( Section 7.4 ).  A receiver sends
   MAX_STREAM_DATA ( Section 19.10 ) or MAX_DATA ( Section 19.9 ) frames to
   the sender to advertise additional credit.
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   A receiver advertises credit for a stream by sending a
   MAX_STREAM_DATA frame with the Stream ID field set appropriately.  A
   MAX_STREAM_DATA frame indicates the maximum absolute byte offset of a
   stream.  A receiver could use the current offset of data consumed to
   determine the flow control offset to be advertised.  A receiver MAY
   send MAX_STREAM_DATA frames in multiple packets in order to make sure
   that the sender receives an update before running out of flow control
   credit, even if one of the packets is lost.

   A receiver advertises credit for a connection by sending a MAX_DATA
   frame, which indicates the maximum of the sum of the absolute byte
   offsets of all streams.  A receiver maintains a cumulative sum of
   bytes received on all streams, which is used to check for flow
   control violations.  A receiver might use a sum of bytes consumed on
   all streams to determine the maximum data limit to be advertised.

   A receiver can advertise a larger offset by sending MAX_STREAM_DATA
   or MAX_DATA frames.  Once a receiver advertises an offset, it MAY
   advertise a smaller offset, but this has no effect.

   A receiver MUST close the connection with a FLOW_CONTROL_ERROR error
   ( Section 11 ) if the sender violates the advertised connection or
   stream data limits.

   A sender MUST ignore any MAX_STREAM_DATA or MAX_DATA frames that do
   not increase flow control limits.

   If a sender runs out of flow control credit, it will be unable to
   send new data and is considered blocked.  A sender SHOULD send a
   STREAM_DATA_BLOCKED or DATA_BLOCKED frame to indicate it has data to
   write but is blocked by flow control limits.  If a sender is blocked
   for a period longer than the idle timeout ( Section 10.2 ), the
   connection might be closed even when data is available for
   transmission.  To keep the connection from closing, a sender that is
   flow control limited SHOULD periodically send a STREAM_DATA_BLOCKED
   or DATA_BLOCKED frame when it has no ack-eliciting packets in flight.

4.2 .  Flow Credit Increments

   Implementations decide when and how much credit to advertise in
   MAX_STREAM_DATA and MAX_DATA frames, but this section offers a few
   considerations.

   To avoid blocking a sender, a receiver can send a MAX_STREAM_DATA or
   MAX_DATA frame multiple times within a round trip or send it early
   enough to allow for recovery from loss of the frame.
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   Control frames contribute to connection overhead.  Therefore,
   frequently sending MAX_STREAM_DATA and MAX_DATA frames with small
   changes is undesirable.  On the other hand, if updates are less
   frequent, larger increments to limits are necessary to avoid blocking
   a sender, requiring larger resource commitments at the receiver.
   There is a trade-off between resource commitment and overhead when
   determining how large a limit is advertised.

   A receiver can use an autotuning mechanism to tune the frequency and
   amount of advertised additional credit based on a round-trip time
   estimate and the rate at which the receiving application consumes
   data, similar to common TCP implementations.  As an optimization, an
   endpoint could send frames related to flow control only when there
   are other frames to send or when a peer is blocked, ensuring that
   flow control does not cause extra packets to be sent.

   A blocked sender is not required to send STREAM_DATA_BLOCKED or
   DATA_BLOCKED frames.  Therefore, a receiver MUST NOT wait for a
   STREAM_DATA_BLOCKED or DATA_BLOCKED frame before sending a
   MAX_STREAM_DATA or MAX_DATA frame; doing so could result in the
   sender being blocked for the rest of the connection.  Even if the
   sender sends these frames, waiting for them will result in the sender
   being blocked for at least an entire round trip.

   When a sender receives credit after being blocked, it might be able
   to send a large amount of data in response, resulting in short-term
   congestion; see Section 6.9 in [ QUIC-RECOVERY] for a discussion of
   how a sender can avoid this congestion.

4.3 .  Handling Stream Cancellation

   Endpoints need to eventually agree on the amount of flow control
   credit that has been consumed, to avoid either exceeding flow control
   limits or deadlocking.

   On receipt of a RESET_STREAM frame, an endpoint will tear down state
   for the matching stream and ignore further data arriving on that
   stream.  Without the offset included in RESET_STREAM, the two
   endpoints could disagree on the number of bytes that count towards
   connection flow control.

   To remedy this issue, a RESET_STREAM frame ( Section 19.4 ) includes
   the final size of data sent on the stream.  On receiving a
   RESET_STREAM frame, a receiver definitively knows how many bytes were
   sent on that stream before the RESET_STREAM frame, and the receiver
   MUST use the final size of the stream to account for all bytes sent
   on the stream in its connection level flow controller.
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   RESET_STREAM terminates one direction of a stream abruptly.  For a
   bidirectional stream, RESET_STREAM has no effect on data flow in the
   opposite direction.  Both endpoints MUST maintain flow control state
   for the stream in the unterminated direction until that direction
   enters a terminal state, or until one of the endpoints sends
   CONNECTION_CLOSE.

4.4 .  Stream Final Size

   The final size is the amount of flow control credit that is consumed
   by a stream.  Assuming that every contiguous byte on the stream was
   sent once, the final size is the number of bytes sent.  More
   generally, this is one higher than the offset of the byte with the
   largest offset sent on the stream, or zero if no bytes were sent.

   The final size of a stream is always signaled to the recipient.  The
   final size is the sum of the Offset and Length fields of a STREAM
   frame with a FIN flag, noting that these fields might be implicit.
   Alternatively, the Final Size field of a RESET_STREAM frame carries
   this value.  This ensures that all ways that a stream can be closed
   result in the number of bytes on the stream being reliably
   transmitted.  This guarantees that both endpoints agree on how much
   flow control credit was consumed by the stream.

   An endpoint will know the final size for a stream when the receiving
   part of the stream enters the "Size Known" or "Reset Recvd" state
   ( Section 3 ).

   An endpoint MUST NOT send data on a stream at or beyond the final
   size.

   Once a final size for a stream is known, it cannot change.  If a
   RESET_STREAM or STREAM frame is received indicating a change in the
   final size for the stream, an endpoint SHOULD respond with a
   FINAL_SIZE_ERROR error; see Section 11 .  A receiver SHOULD treat
   receipt of data at or beyond the final size as a FINAL_SIZE_ERROR
   error, even after a stream is closed.  Generating these errors is not
   mandatory, but only because requiring that an endpoint generate these
   errors also means that the endpoint needs to maintain the final size
   state for closed streams, which could mean a significant state
   commitment.
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4.5 .  Controlling Concurrency

   An endpoint limits the cumulative number of incoming streams a peer
   can open.  Only streams with a stream ID less than (max_stream * 4 +
   initial_stream_id_for_type) can be opened; see Table 5.  Initial
   limits are set in the transport parameters (see Section 18.2 ) and
   subsequently limits are advertised using MAX_STREAMS frames
   ( Section 19.11 ).  Separate limits apply to unidirectional and
   bidirectional streams.

   If a max_streams transport parameter or MAX_STREAMS frame is received
   with a value greater than 2^60, this would allow a maximum stream ID
   that cannot be expressed as a variable-length integer; see
   Section 16 .  If either is received, the connection MUST be closed
   immediately with a connection error of type STREAM_LIMIT_ERROR; see
   Section 10.3 .

   Endpoints MUST NOT exceed the limit set by their peer.  An endpoint
   that receives a frame with a stream ID exceeding the limit it has
   sent MUST treat this as a connection error of type STREAM_LIMIT_ERROR
   ( Section 11 ).

   Once a receiver advertises a stream limit using the MAX_STREAMS
   frame, advertising a smaller limit has no effect.  A receiver MUST
   ignore any MAX_STREAMS frame that does not increase the stream limit.

   As with stream and connection flow control, this document leaves when
   and how many streams to advertise to a peer via MAX_STREAMS to
   implementations.  Implementations might choose to increase limits as
   streams close to keep the number of streams available to peers
   roughly consistent.

   An endpoint that is unable to open a new stream due to the peer’s
   limits SHOULD send a STREAMS_BLOCKED frame ( Section 19.14 ).  This
   signal is considered useful for debugging.  An endpoint MUST NOT wait
   to receive this signal before advertising additional credit, since
   doing so will mean that the peer will be blocked for at least an
   entire round trip, and potentially for longer if the peer chooses to
   not send STREAMS_BLOCKED frames.

5.  Connections

   QUIC’s connection establishment combines version negotiation with the
   cryptographic and transport handshakes to reduce connection
   establishment latency, as described in Section 7 .  Once established,
   a connection may migrate to a different IP or port at either endpoint
   as described in Section 9 .  Finally, a connection may be terminated
   by either endpoint, as described in Section 10 .
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5.1 .  Connection ID

   Each connection possesses a set of connection identifiers, or
   connection IDs, each of which can identify the connection.
   Connection IDs are independently selected by endpoints; each endpoint
   selects the connection IDs that its peer uses.

   The primary function of a connection ID is to ensure that changes in
   addressing at lower protocol layers (UDP, IP) don’t cause packets for
   a QUIC connection to be delivered to the wrong endpoint.  Each
   endpoint selects connection IDs using an implementation-specific (and
   perhaps deployment-specific) method which will allow packets with
   that connection ID to be routed back to the endpoint and to be
   identified by the endpoint upon receipt.

   Connection IDs MUST NOT contain any information that can be used by
   an external observer (that is, one that does not cooperate with the
   issuer) to correlate them with other connection IDs for the same
   connection.  As a trivial example, this means the same connection ID
   MUST NOT be issued more than once on the same connection.

   Packets with long headers include Source Connection ID and
   Destination Connection ID fields.  These fields are used to set the
   connection IDs for new connections; see Section 7.2  for details.

   Packets with short headers ( Section 17.3 ) only include the
   Destination Connection ID and omit the explicit length.  The length
   of the Destination Connection ID field is expected to be known to
   endpoints.  Endpoints using a load balancer that routes based on
   connection ID could agree with the load balancer on a fixed length
   for connection IDs, or agree on an encoding scheme.  A fixed portion
   could encode an explicit length, which allows the entire connection
   ID to vary in length and still be used by the load balancer.

   A Version Negotiation ( Section 17.2.1 ) packet echoes the connection
   IDs selected by the client, both to ensure correct routing toward the
   client and to allow the client to validate that the packet is in
   response to an Initial packet.

   A zero-length connection ID can be used when a connection ID is not
   needed to route to the correct endpoint.  However, multiplexing
   connections on the same local IP address and port while using zero-
   length connection IDs will cause failures in the presence of peer
   connection migration, NAT rebinding, and client port reuse; and
   therefore MUST NOT be done unless an endpoint is certain that those
   protocol features are not in use.
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   When an endpoint uses a non-zero-length connection ID, it needs to
   ensure that the peer has a supply of connection IDs from which to
   choose for packets sent to the endpoint.  These connection IDs are
   supplied by the endpoint using the NEW_CONNECTION_ID frame
   ( Section 19.15 ).

5.1.1 .  Issuing Connection IDs

   Each Connection ID has an associated sequence number to assist in
   detecting when NEW_CONNECTION_ID or RETIRE_CONNECTION_ID frames refer
   to the same value.  The initial connection ID issued by an endpoint
   is sent in the Source Connection ID field of the long packet header
   ( Section 17.2 ) during the handshake.  The sequence number of the
   initial connection ID is 0.  If the preferred_address transport
   parameter is sent, the sequence number of the supplied connection ID
   is 1.

   Additional connection IDs are communicated to the peer using
   NEW_CONNECTION_ID frames ( Section 19.15 ).  The sequence number on
   each newly-issued connection ID MUST increase by 1.  The connection
   ID randomly selected by the client in the Initial packet and any
   connection ID provided by a Retry packet are not assigned sequence
   numbers unless a server opts to retain them as its initial connection
   ID.

   When an endpoint issues a connection ID, it MUST accept packets that
   carry this connection ID for the duration of the connection or until
   its peer invalidates the connection ID via a RETIRE_CONNECTION_ID
   frame ( Section 19.16 ).  Connection IDs that are issued and not
   retired are considered active; any active connection ID is valid for
   use with the current connection at any time, in any packet type.
   This includes the connection ID issued by the server via the
   preferred_address transport parameter.

   An endpoint SHOULD ensure that its peer has a sufficient number of
   available and unused connection IDs.  Endpoints advertise the number
   of active connection IDs they are willing to maintain using the
   active_connection_id_limit transport parameter.  An endpoint MUST NOT
   provide more connection IDs than the peer’s limit.  An endpoint MAY
   send connection IDs that temporarily exceed a peer’s limit if the
   NEW_CONNECTION_ID frame also requires the retirement of any excess,
   by including a sufficiently large value in the Retire Prior To field.
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   A NEW_CONNECTION_ID frame might cause an endpoint to add some active
   connection IDs and retire others based on the value of the Retire
   Prior To field.  After processing a NEW_CONNECTION_ID frame and
   adding and retiring active connection IDs, if the number of active
   connection IDs exceeds the value advertised in its
   active_connection_id_limit transport parameter, an endpoint MUST
   close the connection with an error of type CONNECTION_ID_LIMIT_ERROR.

   An endpoint SHOULD supply a new connection ID when the peer retires a
   connection ID.  If an endpoint provided fewer connection IDs than the
   peer’s active_connection_id_limit, it MAY supply a new connection ID
   when it receives a packet with a previously unused connection ID.  An
   endpoint MAY limit the frequency or the total number of connection
   IDs issued for each connection to avoid the risk of running out of
   connection IDs; see Section 10.4.2 .  An endpoint MAY also limit the
   issuance of connection IDs to reduce the amount of per-path state it
   maintains, such as path validation status, as its peer might interact
   with it over as many paths as there are issued connection IDs.

   An endpoint that initiates migration and requires non-zero-length
   connection IDs SHOULD ensure that the pool of connection IDs
   available to its peer allows the peer to use a new connection ID on
   migration, as the peer will close the connection if the pool is
   exhausted.

5.1.2 .  Consuming and Retiring Connection IDs

   An endpoint can change the connection ID it uses for a peer to
   another available one at any time during the connection.  An endpoint
   consumes connection IDs in response to a migrating peer; see
   Section 9.5  for more.

   An endpoint maintains a set of connection IDs received from its peer,
   any of which it can use when sending packets.  When the endpoint
   wishes to remove a connection ID from use, it sends a
   RETIRE_CONNECTION_ID frame to its peer.  Sending a
   RETIRE_CONNECTION_ID frame indicates that the connection ID will not
   be used again and requests that the peer replace it with a new
   connection ID using a NEW_CONNECTION_ID frame.

   As discussed in Section 9.5 , endpoints limit the use of a connection
   ID to packets sent from a single local address to a single
   destination address.  Endpoints SHOULD retire connection IDs when
   they are no longer actively using either the local or destination
   address for which the connection ID was used.
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   An endpoint might need to stop accepting previously issued connection
   IDs in certain circumstances.  Such an endpoint can cause its peer to
   retire connection IDs by sending a NEW_CONNECTION_ID frame with an
   increased Retire Prior To field.  The endpoint SHOULD continue to
   accept the previously issued connection IDs until they are retired by
   the peer.  If the endpoint can no longer process the indicated
   connection IDs, it MAY close the connection.

   Upon receipt of an increased Retire Prior To field, the peer MUST
   stop using the corresponding connection IDs and retire them with
   RETIRE_CONNECTION_ID frames before adding the newly provided
   connection ID to the set of active connection IDs.  This ordering
   allows an endpoint to replace all active connection IDs without the
   possibility of a peer having no available connection IDs and without
   exceeding the limit the peer sets in the active_connection_id_limit
   transport parameter; see Section 18.2 .  Failure to cease using the
   connection IDs when requested can result in connection failures, as
   the issuing endpoint might be unable to continue using the connection
   IDs with the active connection.

   An endpoint SHOULD limit the number of connection IDs it has retired
   locally and have not yet been acknowledged.  An endpoint SHOULD allow
   for sending and tracking a number of RETIRE_CONNECTION_ID frames of
   at least twice the active_connection_id limit.  An endpoint MUST NOT
   forget a connection ID without retiring it, though it MAY choose to
   treat having connection IDs in need of retirement that exceed this
   limit as a connection error of type CONNECTION_ID_LIMIT_ERROR.

   Endpoints SHOULD NOT issue updates of the Retire Prior To field
   before receiving RETIRE_CONNECTION_ID frames that retire all
   connection IDs indicated by the previous Retire Prior To value.

5.2 .  Matching Packets to Connections

   Incoming packets are classified on receipt.  Packets can either be
   associated with an existing connection, or - for servers -
   potentially create a new connection.

   Endpoints try to associate a packet with an existing connection.  If
   the packet has a non-zero-length Destination Connection ID
   corresponding to an existing connection, QUIC processes that packet
   accordingly.  Note that more than one connection ID can be associated
   with a connection; see Section 5.1 .

   If the Destination Connection ID is zero length and the addressing
   information in the packet matches the addressing information the
   endpoint uses to identify a connection with a zero-length connection
   ID, QUIC processes the packet as part of that connection.  An
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   endpoint can use just destination IP and port or both source and
   destination addresses for identification, though this makes
   connections fragile as described in Section 5.1 .

   Endpoints can send a Stateless Reset ( Section 10.4 ) for any packets
   that cannot be attributed to an existing connection.  A stateless
   reset allows a peer to more quickly identify when a connection
   becomes unusable.

   Packets that are matched to an existing connection are discarded if
   the packets are inconsistent with the state of that connection.  For
   example, packets are discarded if they indicate a different protocol
   version than that of the connection, or if the removal of packet
   protection is unsuccessful once the expected keys are available.

   Invalid packets without packet protection, such as Initial, Retry, or
   Version Negotiation, MAY be discarded.  An endpoint MUST generate a
   connection error if it commits changes to state before discovering an
   error.

5.2.1 .  Client Packet Handling

   Valid packets sent to clients always include a Destination Connection
   ID that matches a value the client selects.  Clients that choose to
   receive zero-length connection IDs can use the local address and port
   to identify a connection.  Packets that don’t match an existing
   connection are discarded.

   Due to packet reordering or loss, a client might receive packets for
   a connection that are encrypted with a key it has not yet computed.
   The client MAY drop these packets, or MAY buffer them in anticipation
   of later packets that allow it to compute the key.

   If a client receives a packet that has an unsupported version, it
   MUST discard that packet.

5.2.2 .  Server Packet Handling

   If a server receives a packet that indicates an unsupported version
   but is large enough to initiate a new connection for any one
   supported version, the server SHOULD send a Version Negotiation
   packet as described in Section 6.1 .  Servers MAY limit the number of
   packets that it responds to with a Version Negotiation packet.
   Servers MUST drop smaller packets that specify unsupported versions.

   The first packet for an unsupported version can use different
   semantics and encodings for any version-specific field.  In
   particular, different packet protection keys might be used for
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   different versions.  Servers that do not support a particular version
   are unlikely to be able to decrypt the payload of the packet.
   Servers SHOULD NOT attempt to decode or decrypt a packet from an
   unknown version, but instead send a Version Negotiation packet,
   provided that the packet is sufficiently long.

   Packets with a supported version, or no version field, are matched to
   a connection using the connection ID or - for packets with zero-
   length connection IDs - the local address and port.  If the packet
   doesn’t match an existing connection, the server continues below.

   If the packet is an Initial packet fully conforming with the
   specification, the server proceeds with the handshake ( Section 7 ).
   This commits the server to the version that the client selected.

   If a server refuses to accept a new connection, it SHOULD send an
   Initial packet containing a CONNECTION_CLOSE frame with error code
   CONNECTION_REFUSED.

   If the packet is a 0-RTT packet, the server MAY buffer a limited
   number of these packets in anticipation of a late-arriving Initial
   packet.  Clients are not able to send Handshake packets prior to
   receiving a server response, so servers SHOULD ignore any such
   packets.

   Servers MUST drop incoming packets under all other circumstances.

5.2.3 .  Considerations for Simple Load Balancers

   A server deployment could load balance among servers using only
   source and destination IP addresses and ports.  Changes to the
   client’s IP address or port could result in packets being forwarded
   to the wrong server.  Such a server deployment could use one of the
   following methods for connection continuity when a client’s address
   changes.

   *  Servers could use an out-of-band mechanism to forward packets to
      the correct server based on Connection ID.

   *  If servers can use a dedicated server IP address or port, other
      than the one that the client initially connects to, they could use
      the preferred_address transport parameter to request that clients
      move connections to that dedicated address.  Note that clients
      could choose not to use the preferred address.

   A server in a deployment that does not implement a solution to
   maintain connection continuity when the client address changes SHOULD
   indicate migration is not supported using the
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   disable_active_migration transport parameter.  The
   disable_active_migration transport parameter does not prohibit
   connection migration after a client has acted on a preferred_address
   transport parameter.

   Server deployments that use this simple form of load balancing MUST
   avoid the creation of a stateless reset oracle; see Section 21.9 .

5.3 .  Life of a QUIC Connection

   A QUIC connection is a stateful interaction between a client and
   server, the primary purpose of which is to support the exchange of
   data by an application protocol.  Streams ( Section 2 ) are the primary
   means by which an application protocol exchanges information.

   Each connection starts with a handshake phase, during which client
   and server establish a shared secret using the cryptographic
   handshake protocol [ QUIC-TLS ] and negotiate the application protocol.
   The handshake ( Section 7 ) confirms that both endpoints are willing to
   communicate ( Section 8.1 ) and establishes parameters for the
   connection ( Section 7.4 ).

   An application protocol can also operate in a limited fashion during
   the handshake phase.  0-RTT allows application data to be sent by a
   client before receiving any response from the server.  However, 0-RTT
   lacks certain key security guarantees.  In particular, there is no
   protection against replay attacks in 0-RTT; see [ QUIC-TLS ].
   Separately, a server can also send application data to a client
   before it receives the final cryptographic handshake messages that
   allow it to confirm the identity and liveness of the client.  These
   capabilities allow an application protocol to offer the option to
   trade some security guarantees for reduced latency.

   The use of connection IDs ( Section 5.1 ) allows connections to migrate
   to a new network path, both as a direct choice of an endpoint and
   when forced by a change in a middlebox.  Section 9  describes
   mitigations for the security and privacy issues associated with
   migration.

   For connections that are no longer needed or desired, there are
   several ways for a client and server to terminate a connection
   ( Section 10 ).
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5.4 .  Required Operations on Connections

   There are certain operations that an application MUST be able to
   perform when interacting with the QUIC transport.  This document does
   not specify an API, but any implementation of this version of QUIC
   MUST expose the ability to perform the operations described in this
   section on a QUIC connection.

   When implementing the client role, applications need to be able to:

   *  open a connection, which begins the exchange described in
      Section 7 ;

   *  enable 0-RTT when available; and

   *  be informed when 0-RTT has been accepted or rejected by a server.

   When implementing the server role, applications need to be able to:

   *  listen for incoming connections, which prepares for the exchange
      described in Section 7 ;

   *  if Early Data is supported, embed application-controlled data in
      the TLS resumption ticket sent to the client; and

   *  if Early Data is supported, retrieve application-controlled data
      from the client’s resumption ticket and enable rejecting Early
      Data based on that information.

   In either role, applications need to be able to:

   *  configure minimum values for the initial number of permitted
      streams of each type, as communicated in the transport parameters
      ( Section 7.4 );

   *  control resource allocation of various types, including flow
      control and the number of permitted streams of each type;

   *  identify whether the handshake has completed successfully or is
      still ongoing;

   *  keep a connection from silently closing, either by generating PING
      frames ( Section 19.2 ) or by requesting that the transport send
      additional frames before the idle timeout expires ( Section 10.2 );
      and

   *  immediately close ( Section 10.3 ) the connection.
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6.  Version Negotiation

   Version negotiation ensures that client and server agree to a QUIC
   version that is mutually supported.  A server sends a Version
   Negotiation packet in response to each packet that might initiate a
   new connection; see Section 5.2  for details.

   The size of the first packet sent by a client will determine whether
   a server sends a Version Negotiation packet.  Clients that support
   multiple QUIC versions SHOULD pad the first packet they send to the
   largest of the minimum packet sizes across all versions they support.
   This ensures that the server responds if there is a mutually
   supported version.

6.1 .  Sending Version Negotiation Packets

   If the version selected by the client is not acceptable to the
   server, the server responds with a Version Negotiation packet; see
   Section 17.2.1 .  This includes a list of versions that the server
   will accept.  An endpoint MUST NOT send a Version Negotiation packet
   in response to receiving a Version Negotiation packet.

   This system allows a server to process packets with unsupported
   versions without retaining state.  Though either the Initial packet
   or the Version Negotiation packet that is sent in response could be
   lost, the client will send new packets until it successfully receives
   a response or it abandons the connection attempt.  As a result, the
   client discards all state for the connection and does not send any
   more packets on the connection.

   A server MAY limit the number of Version Negotiation packets it
   sends.  For instance, a server that is able to recognize packets as
   0-RTT might choose not to send Version Negotiation packets in
   response to 0-RTT packets with the expectation that it will
   eventually receive an Initial packet.

6.2 .  Handling Version Negotiation Packets

   Version Negotiation packets are designed to allow future versions of
   QUIC to negotiate the version in use between endpoints.  Future
   versions of QUIC might change how implementations that support
   multiple versions of QUIC react to Version Negotiation packets when
   attempting to establish a connection using this version.

   A client that supports only this version of QUIC MUST abandon the
   current connection attempt if it receives a Version Negotiation
   packet, with the following two exceptions.  A client MUST discard any
   Version Negotiation packet if it has received and successfully
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   processed any other packet, including an earlier Version Negotiation
   packet.  A client MUST discard a Version Negotiation packet that
   lists the QUIC version selected by the client.

   How to perform version negotiation is left as future work defined by
   future versions of QUIC.  In particular, that future work will ensure
   robustness against version downgrade attacks; see Section 21.10 .

6.2.1 .  Version Negotiation Between Draft Versions

   [[RFC editor: please remove this section before publication.]]

   When a draft implementation receives a Version Negotiation packet, it
   MAY use it to attempt a new connection with one of the versions
   listed in the packet, instead of abandoning the current connection
   attempt; see Section 6.2 .

   The client MUST check that the Destination and Source Connection ID
   fields match the Source and Destination Connection ID fields in a
   packet that the client sent.  If this check fails, the packet MUST be
   discarded.

   Once the Version Negotiation packet is determined to be valid, the
   client then selects an acceptable protocol version from the list
   provided by the server.  The client then attempts to create a new
   connection using that version.  The new connection MUST use a new
   random Destination Connection ID different from the one it had
   previously sent.

   Note that this mechanism does not protect against downgrade attacks
   and MUST NOT be used outside of draft implementations.

6.3 .  Using Reserved Versions

   For a server to use a new version in the future, clients need to
   correctly handle unsupported versions.  Some version numbers
   (0x?a?a?a?a as defined in Section 15 ) are reserved for inclusion in
   fields that contain version numbers.

   Endpoints MAY add reserved versions to any field where unknown or
   unsupported versions are ignored to test that a peer correctly
   ignores the value.  For instance, an endpoint could include a
   reserved version in a Version Negotiation packet; see Section 17.2.1 .
   Endpoints MAY send packets with a reserved version to test that a
   peer correctly discards the packet.
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7.  Cryptographic and Transport Handshake

   QUIC relies on a combined cryptographic and transport handshake to
   minimize connection establishment latency.  QUIC uses the CRYPTO
   frame Section 19.6  to transmit the cryptographic handshake.  Version
   0x00000001 of QUIC uses TLS as described in [ QUIC-TLS ]; a different
   QUIC version number could indicate that a different cryptographic
   handshake protocol is in use.

   QUIC provides reliable, ordered delivery of the cryptographic
   handshake data.  QUIC packet protection is used to encrypt as much of
   the handshake protocol as possible.  The cryptographic handshake MUST
   provide the following properties:

   *  authenticated key exchange, where

      -  a server is always authenticated,

      -  a client is optionally authenticated,

      -  every connection produces distinct and unrelated keys,

      -  keying material is usable for packet protection for both 0-RTT
         and 1-RTT packets, and

      -  1-RTT keys have forward secrecy

   *  authenticated values for transport parameters of both endpoints,
      and confidentiality protection for server transport parameters
      (see Section 7.4 )

   *  authenticated negotiation of an application protocol (TLS uses
      ALPN [ RFC7301] for this purpose)

   An endpoint can verify support for Explicit Congestion Notification
   (ECN) in the first packets it sends, as described in Section 13.4.2 .

   The CRYPTO frame can be sent in different packet number spaces
   ( Section 12.3 ).  The offsets used by CRYPTO frames to ensure ordered
   delivery of cryptographic handshake data start from zero in each
   packet number space.

   Endpoints MUST explicitly negotiate an application protocol.  This
   avoids situations where there is a disagreement about the protocol
   that is in use.
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7.1 .  Example Handshake Flows

   Details of how TLS is integrated with QUIC are provided in
   [ QUIC-TLS ], but some examples are provided here.  An extension of
   this exchange to support client address validation is shown in
   Section 8.1.2 .

   Once any address validation exchanges are complete, the cryptographic
   handshake is used to agree on cryptographic keys.  The cryptographic
   handshake is carried in Initial ( Section 17.2.2 ) and Handshake
   ( Section 17.2.4 ) packets.

   Figure 4 provides an overview of the 1-RTT handshake.  Each line
   shows a QUIC packet with the packet type and packet number shown
   first, followed by the frames that are typically contained in those
   packets.  So, for instance the first packet is of type Initial, with
   packet number 0, and contains a CRYPTO frame carrying the
   ClientHello.

   Multiple QUIC packets - even of different packet types - can be
   coalesced into a single UDP datagram; see Section 12.2 .  As a result,
   this handshake may consist of as few as 4 UDP datagrams, or any
   number more (subject to limits inherent to the protocol, such as
   congestion control or anti-amplification).  For instance, the
   server’s first flight contains Initial packets, Handshake packets,
   and "0.5-RTT data" in 1-RTT packets with a short header.

   Client                                                  Server

   Initial[0]: CRYPTO[CH] ->

                                    Initial[0]: CRYPTO[SH] ACK[0]
                          Handshake[0]: CRYPTO[EE, CERT, CV, FIN]
                                    <- 1-RTT[0]: STREAM[1, "..."]

   Initial[1]: ACK[0]
   Handshake[0]: CRYPTO[FIN], ACK[0]
   1-RTT[0]: STREAM[0, "..."], ACK[0] ->

                                             Handshake[1]: ACK[0]
                            <- 1-RTT[1]: STREAM[3, "..."], ACK[0]

                     Figure 4: Example 1-RTT Handshake

   Figure 5 shows an example of a connection with a 0-RTT handshake and
   a single packet of 0-RTT data.  Note that as described in
   Section 12.3 , the server acknowledges 0-RTT data in 1-RTT packets,
   and the client sends 1-RTT packets in the same packet number space.
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   Client                                                  Server

   Initial[0]: CRYPTO[CH]
   0-RTT[0]: STREAM[0, "..."] ->

                                    Initial[0]: CRYPTO[SH] ACK[0]
                                     Handshake[0] CRYPTO[EE, FIN]
                             <- 1-RTT[0]: STREAM[1, "..."] ACK[0]

   Initial[1]: ACK[0]
   Handshake[0]: CRYPTO[FIN], ACK[0]
   1-RTT[1]: STREAM[0, "..."] ACK[0] ->

                                             Handshake[1]: ACK[0]
                            <- 1-RTT[1]: STREAM[3, "..."], ACK[1]

                     Figure 5: Example 0-RTT Handshake

7.2 .  Negotiating Connection IDs

   A connection ID is used to ensure consistent routing of packets, as
   described in Section 5.1 .  The long header contains two connection
   IDs: the Destination Connection ID is chosen by the recipient of the
   packet and is used to provide consistent routing; the Source
   Connection ID is used to set the Destination Connection ID used by
   the peer.

   During the handshake, packets with the long header ( Section 17.2 ) are
   used to establish the connection IDs in each direction.  Each
   endpoint uses the Source Connection ID field to specify the
   connection ID that is used in the Destination Connection ID field of
   packets being sent to them.  Upon receiving a packet, each endpoint
   sets the Destination Connection ID it sends to match the value of the
   Source Connection ID that it receives.

   When an Initial packet is sent by a client that has not previously
   received an Initial or Retry packet from the server, the client
   populates the Destination Connection ID field with an unpredictable
   value.  This Destination Connection ID MUST be at least 8 bytes in
   length.  Until a packet is received from the server, the client MUST
   use the same Destination Connection ID value on all packets in this
   connection.  This Destination Connection ID is used to determine
   packet protection keys for Initial packets.

   The client populates the Source Connection ID field with a value of
   its choosing and sets the Source Connection ID Length field to
   indicate the length.
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   The first flight of 0-RTT packets use the same Destination Connection
   ID and Source Connection ID values as the client’s first Initial
   packet.

   Upon first receiving an Initial or Retry packet from the server, the
   client uses the Source Connection ID supplied by the server as the
   Destination Connection ID for subsequent packets, including any 0-RTT
   packets.  This means that a client might have to change the
   connection ID it sets in the Destination Connection ID field twice
   during connection establishment: once in response to a Retry, and
   once in response to an Initial packet from the server.  Once a client
   has received a valid Initial packet from the server, it MUST discard
   any subsequent packet it receives with a different Source Connection
   ID.

   A client MUST change the Destination Connection ID it uses for
   sending packets in response to only the first received Initial or
   Retry packet.  A server MUST set the Destination Connection ID it
   uses for sending packets based on the first received Initial packet.
   Any further changes to the Destination Connection ID are only
   permitted if the values are taken from any received NEW_CONNECTION_ID
   frames; if subsequent Initial packets include a different Source
   Connection ID, they MUST be discarded.  This avoids unpredictable
   outcomes that might otherwise result from stateless processing of
   multiple Initial packets with different Source Connection IDs.

   The Destination Connection ID that an endpoint sends can change over
   the lifetime of a connection, especially in response to connection
   migration ( Section 9 ); see Section 5.1.1  for details.

7.3 .  Authenticating Connection IDs

   The choice each endpoint makes about connection IDs during the
   handshake is authenticated by including all values in transport
   parameters; see Section 7.4 .  This ensures that all connection IDs
   used for the handshake are also authenticated by the cryptographic
   handshake.

   Each endpoint includes the value of the Source Connection ID field
   from the first Initial packet it sent in the
   initial_source_connection_id transport parameter; see Section 18.2 .
   A server includes the Destination Connection ID field from the first
   Initial packet it received from the client in the
   original_destination_connection_id transport parameter; if the server
   sent a Retry packet this refers to the first Initial packet received
   before sending the Retry packet.  If it sends a Retry packet, a
   server also includes the Source Connection ID field from the Retry
   packet in the retry_source_connection_id transport parameter.
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   The values provided by a peer for these transport parameters MUST
   match the values that an endpoint used in the Destination and Source
   Connection ID fields of Initial packets that it sent.  Including
   connection ID values in transport parameters and verifying them
   ensures that that an attacker cannot influence the choice of
   connection ID for a successful connection by injecting packets
   carrying attacker-chosen connection IDs during the handshake.

   An endpoint MUST treat absence of the initial_source_connection_id
   transport parameter from either endpoint or absence of the
   original_destination_connection_id transport parameter from the
   server as a connection error of type TRANSPORT_PARAMETER_ERROR.

   An endpoint MUST treat the following as a connection error of type
   TRANSPORT_PARAMETER_ERROR or PROTOCOL_VIOLATION:

   *  absence of the retry_source_connection_id transport parameter from
      the server after receiving a Retry packet,

   *  presence of the retry_source_connection_id transport parameter
      when no Retry packet was received, or

   *  a mismatch between values received from a peer in these transport
      parameters and the value sent in the corresponding Destination or
      Source Connection ID fields of Initial packets.

   If a zero-length connection ID is selected, the corresponding
   transport parameter is included with a zero-length value.

   Figure 6 shows the connection IDs (with DCID=Destination Connection
   ID, SCID=Source Connection ID) that are used in a complete handshake.
   The exchange of Initial packets is shown, plus the later exchange of
   1-RTT packets that includes the connection ID established during the
   handshake.

   Client                                                  Server

   Initial: DCID=S1, SCID=C1 ->
                                     <- Initial: DCID=C1, SCID=S3
                                ...
   1-RTT: DCID=S3 ->
                                                <- 1-RTT: DCID=C1

               Figure 6: Use of Connection IDs in a Handshake

   Figure 7 shows a similar handshake that includes a Retry packet.
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   Client                                                  Server

   Initial: DCID=S1, SCID=C1 ->
                                       <- Retry: DCID=C1, SCID=S2
   Initial: DCID=S2, SCID=C1 ->
                                     <- Initial: DCID=C1, SCID=S3
                                ...
   1-RTT: DCID=S3 ->
                                                <- 1-RTT: DCID=C1

         Figure 7: Use of Connection IDs in a Handshake with Retry

   In both cases (Figure 6 and Figure 7), the client sets the value of
   the initial_source_connection_id transport parameter to "C1".

   When the handshake does not include a Retry (Figure 6), the server
   sets original_destination_connection_id to "S1" and
   initial_source_connection_id to "S3".  In this case, the server does
   not include a retry_source_connection_id transport parameter.

   When the handshake includes a Retry (Figure 7), the server sets
   original_destination_connection_id to "S1",
   retry_source_connection_id to "S2", and initial_source_connection_id
   to "S3".

   Each endpoint validates transport parameters set by the peer.  The
   client confirms that the retry_source_connection_id transport
   parameter is absent if it did not process a Retry packet.

7.4 .  Transport Parameters

   During connection establishment, both endpoints make authenticated
   declarations of their transport parameters.  Endpoints are required
   to comply with the restrictions that each parameter defines; the
   description of each parameter includes rules for its handling.

   Transport parameters are declarations that are made unilaterally by
   each endpoint.  Each endpoint can choose values for transport
   parameters independent of the values chosen by its peer.

   The encoding of the transport parameters is detailed in Section 18 .

   QUIC includes the encoded transport parameters in the cryptographic
   handshake.  Once the handshake completes, the transport parameters
   declared by the peer are available.  Each endpoint validates the
   value provided by its peer.
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   Definitions for each of the defined transport parameters are included
   in Section 18.2 .

   An endpoint MUST treat receipt of a transport parameter with an
   invalid value as a connection error of type
   TRANSPORT_PARAMETER_ERROR.

   An endpoint MUST NOT send a parameter more than once in a given
   transport parameters extension.  An endpoint SHOULD treat receipt of
   duplicate transport parameters as a connection error of type
   TRANSPORT_PARAMETER_ERROR.

   Endpoints use transport parameters to authenticate the negotiation of
   connection IDs during the handshake; see Section 7.3 .

7.4.1 .  Values of Transport Parameters for 0-RTT

   Both endpoints store the value of the server transport parameters
   from a connection and apply them to any 0-RTT packets that are sent
   in subsequent connections to that peer, except for transport
   parameters that are explicitly excluded.  Remembered transport
   parameters apply to the new connection until the handshake completes
   and the client starts sending 1-RTT packets.  Once the handshake
   completes, the client uses the transport parameters established in
   the handshake.

   The definition of new transport parameters ( Section 7.4.2 ) MUST
   specify whether they MUST, MAY, or MUST NOT be stored for 0-RTT.  A
   client need not store a transport parameter it cannot process.

   A client MUST NOT use remembered values for the following parameters:
   ack_delay_exponent, max_ack_delay, initial_source_connection_id,
   original_destination_connection_id, preferred_address,
   retry_source_connection_id, and stateless_reset_token.  The client
   MUST use the server’s new values in the handshake instead, and absent
   new values from the server, the default value.

   A client that attempts to send 0-RTT data MUST remember all other
   transport parameters used by the server.  The server can remember
   these transport parameters, or store an integrity-protected copy of
   the values in the ticket and recover the information when accepting
   0-RTT data.  A server uses the transport parameters in determining
   whether to accept 0-RTT data.
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   If 0-RTT data is accepted by the server, the server MUST NOT reduce
   any limits or alter any values that might be violated by the client
   with its 0-RTT data.  In particular, a server that accepts 0-RTT data
   MUST NOT set values for the following parameters ( Section 18.2 ) that
   are smaller than the remembered value of the parameters.

   *  active_connection_id_limit

   *  initial_max_data

   *  initial_max_stream_data_bidi_local

   *  initial_max_stream_data_bidi_remote

   *  initial_max_stream_data_uni

   *  initial_max_streams_bidi

   *  initial_max_streams_uni

   Omitting or setting a zero value for certain transport parameters can
   result in 0-RTT data being enabled, but not usable.  The applicable
   subset of transport parameters that permit sending of application
   data SHOULD be set to non-zero values for 0-RTT.  This includes
   initial_max_data and either initial_max_streams_bidi and
   initial_max_stream_data_bidi_remote, or initial_max_streams_uni and
   initial_max_stream_data_uni.

   A server MUST either reject 0-RTT data or abort a handshake if the
   implied values for transport parameters cannot be supported.

   When sending frames in 0-RTT packets, a client MUST only use
   remembered transport parameters; importantly, it MUST NOT use updated
   values that it learns from the server’s updated transport parameters
   or from frames received in 1-RTT packets.  Updated values of
   transport parameters from the handshake apply only to 1-RTT packets.
   For instance, flow control limits from remembered transport
   parameters apply to all 0-RTT packets even if those values are
   increased by the handshake or by frames sent in 1-RTT packets.  A
   server MAY treat use of updated transport parameters in 0-RTT as a
   connection error of type PROTOCOL_VIOLATION.
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7.4.2 .  New Transport Parameters

   New transport parameters can be used to negotiate new protocol
   behavior.  An endpoint MUST ignore transport parameters that it does
   not support.  Absence of a transport parameter therefore disables any
   optional protocol feature that is negotiated using the parameter.  As
   described in Section 18.1 , some identifiers are reserved in order to
   exercise this requirement.

   New transport parameters can be registered according to the rules in
   Section 22.2 .

7.5 .  Cryptographic Message Buffering

   Implementations need to maintain a buffer of CRYPTO data received out
   of order.  Because there is no flow control of CRYPTO frames, an
   endpoint could potentially force its peer to buffer an unbounded
   amount of data.

   Implementations MUST support buffering at least 4096 bytes of data
   received in out of order CRYPTO frames.  Endpoints MAY choose to
   allow more data to be buffered during the handshake.  A larger limit
   during the handshake could allow for larger keys or credentials to be
   exchanged.  An endpoint’s buffer size does not need to remain
   constant during the life of the connection.

   Being unable to buffer CRYPTO frames during the handshake can lead to
   a connection failure.  If an endpoint’s buffer is exceeded during the
   handshake, it can expand its buffer temporarily to complete the
   handshake.  If an endpoint does not expand its buffer, it MUST close
   the connection with a CRYPTO_BUFFER_EXCEEDED error code.

   Once the handshake completes, if an endpoint is unable to buffer all
   data in a CRYPTO frame, it MAY discard that CRYPTO frame and all
   CRYPTO frames received in the future, or it MAY close the connection
   with a CRYPTO_BUFFER_EXCEEDED error code.  Packets containing
   discarded CRYPTO frames MUST be acknowledged because the packet has
   been received and processed by the transport even though the CRYPTO
   frame was discarded.

8.  Address Validation

   Address validation ensures that an endpoint cannot be used for a
   traffic amplification attack.  In such an attack, a packet is sent to
   a server with spoofed source address information that identifies a
   victim.  If a server generates more or larger packets in response to
   that packet, the attacker can use the server to send more data toward
   the victim than it would be able to send on its own.

Iyengar & Thomson       Expires 12 December 2020               [Page 46]



 
Internet-Draft           QUIC Transport Protocol               June 2020

   The primary defense against amplification attack is verifying that an
   endpoint is able to receive packets at the transport address that it
   claims.  Address validation is performed both during connection
   establishment (see Section 8.1 ) and during connection migration (see
   Section 8.2 ).

8.1 .  Address Validation During Connection Establishment

   Connection establishment implicitly provides address validation for
   both endpoints.  In particular, receipt of a packet protected with
   Handshake keys confirms that the client received the Initial packet
   from the server.  Once the server has successfully processed a
   Handshake packet from the client, it can consider the client address
   to have been validated.

   Prior to validating the client address, servers MUST NOT send more
   than three times as many bytes as the number of bytes they have
   received.  This limits the magnitude of any amplification attack that
   can be mounted using spoofed source addresses.  For the purposes of
   avoiding amplification prior to address validation, servers MUST
   count all of the payload bytes received in datagrams that are
   uniquely attributed to a single connection.  This includes datagrams
   that contain packets that are successfully processed and datagrams
   that contain packets that are all discarded.

   Clients MUST ensure that UDP datagrams containing Initial packets
   have UDP payloads of at least 1200 bytes, adding padding to packets
   in the datagram as necessary.  A client that sends padded datagrams
   allows the server to send more data prior to completing address
   validation.

   Loss of an Initial or Handshake packet from the server can cause a
   deadlock if the client does not send additional Initial or Handshake
   packets.  A deadlock could occur when the server reaches its anti-
   amplification limit and the client has received acknowledgements for
   all the data it has sent.  In this case, when the client has no
   reason to send additional packets, the server will be unable to send
   more data because it has not validated the client’s address.  To
   prevent this deadlock, clients MUST send a packet on a probe timeout
   (PTO, see Section 6.2 of [ QUIC-RECOVERY]).  Specifically, the client
   MUST send an Initial packet in a UDP datagram that contains at least
   1200 bytes if it does not have Handshake keys, and otherwise send a
   Handshake packet.
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   A server might wish to validate the client address before starting
   the cryptographic handshake.  QUIC uses a token in the Initial packet
   to provide address validation prior to completing the handshake.
   This token is delivered to the client during connection establishment
   with a Retry packet (see Section 8.1.2 ) or in a previous connection
   using the NEW_TOKEN frame (see Section 8.1.3 ).

   In addition to sending limits imposed prior to address validation,
   servers are also constrained in what they can send by the limits set
   by the congestion controller.  Clients are only constrained by the
   congestion controller.

8.1.1 .  Token Construction

   A token sent in a NEW_TOKEN frames or a Retry packet MUST be
   constructed in a way that allows the server to identify how it was
   provided to a client.  These tokens are carried in the same field,
   but require different handling from servers.

8.1.2 .  Address Validation using Retry Packets

   Upon receiving the client’s Initial packet, the server can request
   address validation by sending a Retry packet ( Section 17.2.5 )
   containing a token.  This token MUST be repeated by the client in all
   Initial packets it sends for that connection after it receives the
   Retry packet.  In response to processing an Initial containing a
   token, a server can either abort the connection or permit it to
   proceed.

   As long as it is not possible for an attacker to generate a valid
   token for its own address (see Section 8.1.4 ) and the client is able
   to return that token, it proves to the server that it received the
   token.

   A server can also use a Retry packet to defer the state and
   processing costs of connection establishment.  Requiring the server
   to provide a different connection ID, along with the
   original_destination_connection_id transport parameter defined in
   Section 18.2 , forces the server to demonstrate that it, or an entity
   it cooperates with, received the original Initial packet from the
   client.  Providing a different connection ID also grants a server
   some control over how subsequent packets are routed.  This can be
   used to direct connections to a different server instance.

   If a server receives a client Initial that can be unprotected but
   contains an invalid Retry token, it knows the client will not accept
   another Retry token.  The server can discard such a packet and allow
   the client to time out to detect handshake failure, but that could
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   impose a significant latency penalty on the client.  Instead, the
   server SHOULD immediately close ( Section 10.3 ) the connection with an
   INVALID_TOKEN error.  Note that a server has not established any
   state for the connection at this point and so does not enter the
   closing period.

   A flow showing the use of a Retry packet is shown in Figure 8.

   Client                                                  Server

   Initial[0]: CRYPTO[CH] ->

                                                   <- Retry+Token

   Initial+Token[1]: CRYPTO[CH] ->

                                    Initial[0]: CRYPTO[SH] ACK[1]
                          Handshake[0]: CRYPTO[EE, CERT, CV, FIN]
                                    <- 1-RTT[0]: STREAM[1, "..."]

                   Figure 8: Example Handshake with Retry

8.1.3 .  Address Validation for Future Connections

   A server MAY provide clients with an address validation token during
   one connection that can be used on a subsequent connection.  Address
   validation is especially important with 0-RTT because a server
   potentially sends a significant amount of data to a client in
   response to 0-RTT data.

   The server uses the NEW_TOKEN frame Section 19.7  to provide the
   client with an address validation token that can be used to validate
   future connections.  The client includes this token in Initial
   packets to provide address validation in a future connection.  The
   client MUST include the token in all Initial packets it sends, unless
   a Retry replaces the token with a newer one.  The client MUST NOT use
   the token provided in a Retry for future connections.  Servers MAY
   discard any Initial packet that does not carry the expected token.

   Unlike the token that is created for a Retry packet, which is used
   immediately, the token sent in the NEW_TOKEN frame might be used
   after some period of time has passed.  Thus, a token SHOULD have an
   expiration time, which could be either an explicit expiration time or
   an issued timestamp that can be used to dynamically calculate the
   expiration time.  A server can store the expiration time or include
   it in an encrypted form in the token.
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   A token issued with NEW_TOKEN MUST NOT include information that would
   allow values to be linked by an observer to the connection on which
   it was issued, unless the values are encrypted.  For example, it
   cannot include the previous connection ID or addressing information.
   A server MUST ensure that every NEW_TOKEN frame it sends is unique
   across all clients, with the exception of those sent to repair losses
   of previously sent NEW_TOKEN frames.  Information that allows the
   server to distinguish between tokens from Retry and NEW_TOKEN MAY be
   accessible to entities other than the server.

   It is unlikely that the client port number is the same on two
   different connections; validating the port is therefore unlikely to
   be successful.

   A token received in a NEW_TOKEN frame is applicable to any server
   that the connection is considered authoritative for (e.g., server
   names included in the certificate).  When connecting to a server for
   which the client retains an applicable and unused token, it SHOULD
   include that token in the Token field of its Initial packet.
   Including a token might allow the server to validate the client
   address without an additional round trip.  A client MUST NOT include
   a token that is not applicable to the server that it is connecting
   to, unless the client has the knowledge that the server that issued
   the token and the server the client is connecting to are jointly
   managing the tokens.  A client MAY use a token from any previous
   connection to that server.

   A token allows a server to correlate activity between the connection
   where the token was issued and any connection where it is used.
   Clients that want to break continuity of identity with a server MAY
   discard tokens provided using the NEW_TOKEN frame.  In comparison, a
   token obtained in a Retry packet MUST be used immediately during the
   connection attempt and cannot be used in subsequent connection
   attempts.

   A client SHOULD NOT reuse a NEW_TOKEN token for different connection
   attempts.  Reusing a token allows connections to be linked by
   entities on the network path; see Section 9.5 .

   Clients might receive multiple tokens on a single connection.  Aside
   from preventing linkability, any token can be used in any connection
   attempt.  Servers can send additional tokens to either enable address
   validation for multiple connection attempts or to replace older
   tokens that might become invalid.  For a client, this ambiguity means
   that sending the most recent unused token is most likely to be
   effective.  Though saving and using older tokens has no negative
   consequences, clients can regard older tokens as being less likely be
   useful to the server for address validation.
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   When a server receives an Initial packet with an address validation
   token, it MUST attempt to validate the token, unless it has already
   completed address validation.  If the token is invalid then the
   server SHOULD proceed as if the client did not have a validated
   address, including potentially sending a Retry.  A server SHOULD
   encode tokens provided with NEW_TOKEN frames and Retry packets
   differently, and validate the latter more strictly.  If the
   validation succeeds, the server SHOULD then allow the handshake to
   proceed.

   Note:  The rationale for treating the client as unvalidated rather
      than discarding the packet is that the client might have received
      the token in a previous connection using the NEW_TOKEN frame, and
      if the server has lost state, it might be unable to validate the
      token at all, leading to connection failure if the packet is
      discarded.

   In a stateless design, a server can use encrypted and authenticated
   tokens to pass information to clients that the server can later
   recover and use to validate a client address.  Tokens are not
   integrated into the cryptographic handshake and so they are not
   authenticated.  For instance, a client might be able to reuse a
   token.  To avoid attacks that exploit this property, a server can
   limit its use of tokens to only the information needed to validate
   client addresses.

   Clients MAY use tokens obtained on one connection for any connection
   attempt using the same version.  When selecting a token to use,
   clients do not need to consider other properties of the connection
   that is being attempted, including the choice of possible application
   protocols, session tickets, or other connection properties.

   Attackers could replay tokens to use servers as amplifiers in DDoS
   attacks.  To protect against such attacks, servers SHOULD ensure that
   tokens sent in Retry packets are only accepted for a short time.
   Tokens that are provided in NEW_TOKEN frames ( Section 19.7 ) need to
   be valid for longer, but SHOULD NOT be accepted multiple times in a
   short period.  Servers are encouraged to allow tokens to be used only
   once, if possible.

8.1.4 .  Address Validation Token Integrity

   An address validation token MUST be difficult to guess.  Including a
   large enough random value in the token would be sufficient, but this
   depends on the server remembering the value it sends to clients.
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   A token-based scheme allows the server to offload any state
   associated with validation to the client.  For this design to work,
   the token MUST be covered by integrity protection against
   modification or falsification by clients.  Without integrity
   protection, malicious clients could generate or guess values for
   tokens that would be accepted by the server.  Only the server
   requires access to the integrity protection key for tokens.

   There is no need for a single well-defined format for the token
   because the server that generates the token also consumes it.  Tokens
   sent in Retry packets SHOULD include information that allows the
   server to verify that the source IP address and port in client
   packets remain constant.

   Tokens sent in NEW_TOKEN frames MUST include information that allows
   the server to verify that the client IP address has not changed from
   when the token was issued.  Servers can use tokens from NEW_TOKEN in
   deciding not to send a Retry packet, even if the client address has
   changed.  If the client IP address has changed, the server MUST
   adhere to the anti-amplification limits found in Section 8.1 .  Note
   that in the presence of NAT, this requirement might be insufficient
   to protect other hosts that share the NAT from amplification attack.

   Servers MUST ensure that replay of tokens is prevented or limited.
   For instance, servers might limit the time over which a token is
   accepted.  Tokens provided in NEW_TOKEN frames might need to allow
   longer validity periods.  Tokens MAY include additional information
   about clients to further narrow applicability or reuse.

8.2 .  Path Validation

   Path validation is used during connection migration (see Section 9
   and Section 9.6 ) by the migrating endpoint to verify reachability of
   a peer from a new local address.  In path validation, endpoints test
   reachability between a specific local address and a specific peer
   address, where an address is the two-tuple of IP address and port.

   Path validation tests that packets (PATH_CHALLENGE) can be both sent
   to and received (PATH_RESPONSE) from a peer on the path.
   Importantly, it validates that the packets received from the
   migrating endpoint do not carry a spoofed source address.

   Path validation can be used at any time by either endpoint.  For
   instance, an endpoint might check that a peer is still in possession
   of its address after a period of quiescence.
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   Path validation is not designed as a NAT traversal mechanism.  Though
   the mechanism described here might be effective for the creation of
   NAT bindings that support NAT traversal, the expectation is that one
   or other peer is able to receive packets without first having sent a
   packet on that path.  Effective NAT traversal needs additional
   synchronization mechanisms that are not provided here.

   An endpoint MAY bundle PATH_CHALLENGE and PATH_RESPONSE frames that
   are used for path validation with other frames.  In particular, an
   endpoint may pad a packet carrying a PATH_CHALLENGE for PMTU
   discovery, or an endpoint may bundle a PATH_RESPONSE with its own
   PATH_CHALLENGE.

   When probing a new path, an endpoint might want to ensure that its
   peer has an unused connection ID available for responses.  The
   endpoint can send NEW_CONNECTION_ID and PATH_CHALLENGE frames in the
   same packet.  This ensures that an unused connection ID will be
   available to the peer when sending a response.

8.3 .  Initiating Path Validation

   To initiate path validation, an endpoint sends a PATH_CHALLENGE frame
   containing a random payload on the path to be validated.

   An endpoint MAY send multiple PATH_CHALLENGE frames to guard against
   packet loss.  However, an endpoint SHOULD NOT send multiple
   PATH_CHALLENGE frames in a single packet.  An endpoint SHOULD NOT
   send a PATH_CHALLENGE more frequently than it would an Initial
   packet, ensuring that connection migration is no more load on a new
   path than establishing a new connection.

   The endpoint MUST use unpredictable data in every PATH_CHALLENGE
   frame so that it can associate the peer’s response with the
   corresponding PATH_CHALLENGE.

8.4 .  Path Validation Responses

   On receiving a PATH_CHALLENGE frame, an endpoint MUST respond
   immediately by echoing the data contained in the PATH_CHALLENGE frame
   in a PATH_RESPONSE frame.

   An endpoint MUST NOT send more than one PATH_RESPONSE frame in
   response to one PATH_CHALLENGE frame; see Section 13.3 .  The peer is
   expected to send more PATH_CHALLENGE frames as necessary to evoke
   additional PATH_RESPONSE frames.
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8.5 .  Successful Path Validation

   A new address is considered valid when a PATH_RESPONSE frame is
   received that contains the data that was sent in a previous
   PATH_CHALLENGE.  Receipt of an acknowledgment for a packet containing
   a PATH_CHALLENGE frame is not adequate validation, since the
   acknowledgment can be spoofed by a malicious peer.

   Note that receipt on a different local address does not result in
   path validation failure, as it might be a result of a forwarded
   packet (see Section 9.3.3 ) or misrouting.  It is possible that a
   valid PATH_RESPONSE might be received in the future.

8.6 .  Failed Path Validation

   Path validation only fails when the endpoint attempting to validate
   the path abandons its attempt to validate the path.

   Endpoints SHOULD abandon path validation based on a timer.  When
   setting this timer, implementations are cautioned that the new path
   could have a longer round-trip time than the original.  A value of
   three times the larger of the current Probe Timeout (PTO) or the
   initial timeout (that is, 2*kInitialRtt) as defined in
   [ QUIC-RECOVERY] is RECOMMENDED.  That is:

      validation_timeout = max(3*PTO, 6*kInitialRtt)

   Note that the endpoint might receive packets containing other frames
   on the new path, but a PATH_RESPONSE frame with appropriate data is
   required for path validation to succeed.

   When an endpoint abandons path validation, it determines that the
   path is unusable.  This does not necessarily imply a failure of the
   connection - endpoints can continue sending packets over other paths
   as appropriate.  If no paths are available, an endpoint can wait for
   a new path to become available or close the connection.

   A path validation might be abandoned for other reasons besides
   failure.  Primarily, this happens if a connection migration to a new
   path is initiated while a path validation on the old path is in
   progress.

9.  Connection Migration

   The use of a connection ID allows connections to survive changes to
   endpoint addresses (IP address and port), such as those caused by an
   endpoint migrating to a new network.  This section describes the
   process by which an endpoint migrates to a new address.
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   The design of QUIC relies on endpoints retaining a stable address for
   the duration of the handshake.  An endpoint MUST NOT initiate
   connection migration before the handshake is confirmed, as defined in
   section 4.1.2 of [ QUIC-TLS ].

   If the peer sent the disable_active_migration transport parameter, an
   endpoint also MUST NOT send packets (including probing packets; see
   Section 9.1 ) from a different local address to the address the peer
   used during the handshake.  An endpoint that has sent this transport
   parameter, but detects that a peer has nonetheless migrated to a
   different remote address MUST either drop the incoming packets on
   that path without generating a stateless reset or proceed with path
   validation and allow the peer to migrate.  Generating a stateless
   reset or closing the connection would allow third parties in the
   network to cause connections to close by spoofing or otherwise
   manipulating observed traffic.

   Not all changes of peer address are intentional, or active,
   migrations.  The peer could experience NAT rebinding: a change of
   address due to a middlebox, usually a NAT, allocating a new outgoing
   port or even a new outgoing IP address for a flow.  An endpoint MUST
   perform path validation ( Section 8.2 ) if it detects any change to a
   peer’s address, unless it has previously validated that address.

   When an endpoint has no validated path on which to send packets, it
   MAY discard connection state.  An endpoint capable of connection
   migration MAY wait for a new path to become available before
   discarding connection state.

   This document limits migration of connections to new client
   addresses, except as described in Section 9.6 .  Clients are
   responsible for initiating all migrations.  Servers do not send non-
   probing packets (see Section 9.1 ) toward a client address until they
   see a non-probing packet from that address.  If a client receives
   packets from an unknown server address, the client MUST discard these
   packets.

9.1 .  Probing a New Path

   An endpoint MAY probe for peer reachability from a new local address
   using path validation Section 8.2  prior to migrating the connection
   to the new local address.  Failure of path validation simply means
   that the new path is not usable for this connection.  Failure to
   validate a path does not cause the connection to end unless there are
   no valid alternative paths available.
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   An endpoint uses a new connection ID for probes sent from a new local
   address; see Section 9.5  for further discussion.  An endpoint that
   uses a new local address needs to ensure that at least one new
   connection ID is available at the peer.  That can be achieved by
   including a NEW_CONNECTION_ID frame in the probe.

   Receiving a PATH_CHALLENGE frame from a peer indicates that the peer
   is probing for reachability on a path.  An endpoint sends a
   PATH_RESPONSE in response as per Section 8.2 .

   PATH_CHALLENGE, PATH_RESPONSE, NEW_CONNECTION_ID, and PADDING frames
   are "probing frames", and all other frames are "non-probing frames".
   A packet containing only probing frames is a "probing packet", and a
   packet containing any other frame is a "non-probing packet".

9.2 .  Initiating Connection Migration

   An endpoint can migrate a connection to a new local address by
   sending packets containing non-probing frames from that address.

   Each endpoint validates its peer’s address during connection
   establishment.  Therefore, a migrating endpoint can send to its peer
   knowing that the peer is willing to receive at the peer’s current
   address.  Thus an endpoint can migrate to a new local address without
   first validating the peer’s address.

   When migrating, the new path might not support the endpoint’s current
   sending rate.  Therefore, the endpoint resets its congestion
   controller, as described in Section 9.4 .

   The new path might not have the same ECN capability.  Therefore, the
   endpoint verifies ECN capability as described in Section 13.4 .

   Receiving acknowledgments for data sent on the new path serves as
   proof of the peer’s reachability from the new address.  Note that
   since acknowledgments may be received on any path, return
   reachability on the new path is not established.  To establish return
   reachability on the new path, an endpoint MAY concurrently initiate
   path validation Section 8.2  on the new path or it MAY choose to wait
   for the peer to send the next non-probing frame to its new address.

9.3 .  Responding to Connection Migration

   Receiving a packet from a new peer address containing a non-probing
   frame indicates that the peer has migrated to that address.
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   In response to such a packet, an endpoint MUST start sending
   subsequent packets to the new peer address and MUST initiate path
   validation ( Section 8.2 ) to verify the peer’s ownership of the
   unvalidated address.

   An endpoint MAY send data to an unvalidated peer address, but it MUST
   protect against potential attacks as described in Section 9.3.1  and
   Section 9.3.2 .  An endpoint MAY skip validation of a peer address if
   that address has been seen recently.  In particular, if an endpoint
   returns to a previously-validated path after detecting some form of
   spurious migration, skipping address validation and restoring loss
   detection and congestion state can reduce the performance impact of
   the attack.

   An endpoint only changes the address that it sends packets to in
   response to the highest-numbered non-probing packet.  This ensures
   that an endpoint does not send packets to an old peer address in the
   case that it receives reordered packets.

   After changing the address to which it sends non-probing packets, an
   endpoint could abandon any path validation for other addresses.

   Receiving a packet from a new peer address might be the result of a
   NAT rebinding at the peer.

   After verifying a new client address, the server SHOULD send new
   address validation tokens ( Section 8 ) to the client.

9.3.1 .  Peer Address Spoofing

   It is possible that a peer is spoofing its source address to cause an
   endpoint to send excessive amounts of data to an unwilling host.  If
   the endpoint sends significantly more data than the spoofing peer,
   connection migration might be used to amplify the volume of data that
   an attacker can generate toward a victim.

   As described in Section 9.3 , an endpoint is required to validate a
   peer’s new address to confirm the peer’s possession of the new
   address.  Until a peer’s address is deemed valid, an endpoint MUST
   limit the rate at which it sends data to this address.  The endpoint
   MUST NOT send more than a minimum congestion window’s worth of data
   per estimated round-trip time (kMinimumWindow, as defined in
   [ QUIC-RECOVERY]).  In the absence of this limit, an endpoint risks
   being used for a denial of service attack against an unsuspecting
   victim.  Note that since the endpoint will not have any round-trip
   time measurements to this address, the estimate SHOULD be the default
   initial value; see [ QUIC-RECOVERY].
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   If an endpoint skips validation of a peer address as described in
   Section 9.3 , it does not need to limit its sending rate.

9.3.2 .  On-Path Address Spoofing

   An on-path attacker could cause a spurious connection migration by
   copying and forwarding a packet with a spoofed address such that it
   arrives before the original packet.  The packet with the spoofed
   address will be seen to come from a migrating connection, and the
   original packet will be seen as a duplicate and dropped.  After a
   spurious migration, validation of the source address will fail
   because the entity at the source address does not have the necessary
   cryptographic keys to read or respond to the PATH_CHALLENGE frame
   that is sent to it even if it wanted to.

   To protect the connection from failing due to such a spurious
   migration, an endpoint MUST revert to using the last validated peer
   address when validation of a new peer address fails.

   If an endpoint has no state about the last validated peer address, it
   MUST close the connection silently by discarding all connection
   state.  This results in new packets on the connection being handled
   generically.  For instance, an endpoint MAY send a stateless reset in
   response to any further incoming packets.

   Note that receipt of packets with higher packet numbers from the
   legitimate peer address will trigger another connection migration.
   This will cause the validation of the address of the spurious
   migration to be abandoned.

9.3.3 .  Off-Path Packet Forwarding

   An off-path attacker that can observe packets might forward copies of
   genuine packets to endpoints.  If the copied packet arrives before
   the genuine packet, this will appear as a NAT rebinding.  Any genuine
   packet will be discarded as a duplicate.  If the attacker is able to
   continue forwarding packets, it might be able to cause migration to a
   path via the attacker.  This places the attacker on path, giving it
   the ability to observe or drop all subsequent packets.

   Unlike the attack described in Section 9.3.2 , the attacker can ensure
   that the new path is successfully validated.

   This style of attack relies on the attacker using a path that is
   approximately as fast as the direct path between endpoints.  The
   attack is more reliable if relatively few packets are sent or if
   packet loss coincides with the attempted attack.
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   A non-probing packet received on the original path that increases the
   maximum received packet number will cause the endpoint to move back
   to that path.  Eliciting packets on this path increases the
   likelihood that the attack is unsuccessful.  Therefore, mitigation of
   this attack relies on triggering the exchange of packets.

   In response to an apparent migration, endpoints MUST validate the
   previously active path using a PATH_CHALLENGE frame.  This induces
   the sending of new packets on that path.  If the path is no longer
   viable, the validation attempt will time out and fail; if the path is
   viable, but no longer desired, the validation will succeed, but only
   results in probing packets being sent on the path.

   An endpoint that receives a PATH_CHALLENGE on an active path SHOULD
   send a non-probing packet in response.  If the non-probing packet
   arrives before any copy made by an attacker, this results in the
   connection being migrated back to the original path.  Any subsequent
   migration to another path restarts this entire process.

   This defense is imperfect, but this is not considered a serious
   problem.  If the path via the attack is reliably faster than the
   original path despite multiple attempts to use that original path, it
   is not possible to distinguish between attack and an improvement in
   routing.

   An endpoint could also use heuristics to improve detection of this
   style of attack.  For instance, NAT rebinding is improbable if
   packets were recently received on the old path, similarly rebinding
   is rare on IPv6 paths.  Endpoints can also look for duplicated
   packets.  Conversely, a change in connection ID is more likely to
   indicate an intentional migration rather than an attack.

9.4 .  Loss Detection and Congestion Control

   The capacity available on the new path might not be the same as the
   old path.  Packets sent on the old path MUST NOT contribute to
   congestion control or RTT estimation for the new path.
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   On confirming a peer’s ownership of its new address, an endpoint MUST
   immediately reset the congestion controller and round-trip time
   estimator for the new path to initial values (see Sections A.3 and
   B.3 in [ QUIC-RECOVERY]) unless it has knowledge that a previous send
   rate or round-trip time estimate is valid for the new path.  For
   instance, an endpoint might infer that a change in only the client’s
   port number is indicative of a NAT rebinding, meaning that the new
   path is likely to have similar bandwidth and round-trip time.
   However, this determination will be imperfect.  If the determination
   is incorrect, the congestion controller and the RTT estimator are
   expected to adapt to the new path.  Generally, implementations are
   advised to be cautious when using previous values on a new path.

   There may be apparent reordering at the receiver when an endpoint
   sends data and probes from/to multiple addresses during the migration
   period, since the two resulting paths may have different round-trip
   times.  A receiver of packets on multiple paths will still send ACK
   frames covering all received packets.

   While multiple paths might be used during connection migration, a
   single congestion control context and a single loss recovery context
   (as described in [ QUIC-RECOVERY]) may be adequate.  For instance, an
   endpoint might delay switching to a new congestion control context
   until it is confirmed that an old path is no longer needed (such as
   the case in Section 9.3.3 ).

   A sender can make exceptions for probe packets so that their loss
   detection is independent and does not unduly cause the congestion
   controller to reduce its sending rate.  An endpoint might set a
   separate timer when a PATH_CHALLENGE is sent, which is cancelled if
   the corresponding PATH_RESPONSE is received.  If the timer fires
   before the PATH_RESPONSE is received, the endpoint might send a new
   PATH_CHALLENGE, and restart the timer for a longer period of time.
   This timer SHOULD be set as described in Section 6.2.1 of
   [ QUIC-RECOVERY] and MUST NOT be more aggressive.

9.5 .  Privacy Implications of Connection Migration

   Using a stable connection ID on multiple network paths allows a
   passive observer to correlate activity between those paths.  An
   endpoint that moves between networks might not wish to have their
   activity correlated by any entity other than their peer, so different
   connection IDs are used when sending from different local addresses,
   as discussed in Section 5.1 .  For this to be effective endpoints need
   to ensure that connection IDs they provide cannot be linked by any
   other entity.
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   At any time, endpoints MAY change the Destination Connection ID they
   send to a value that has not been used on another path.

   An endpoint MUST NOT reuse a connection ID when sending from more
   than one local address, for example when initiating connection
   migration as described in Section 9.2  or when probing a new network
   path as described in Section 9.1 .

   Similarly, an endpoint MUST NOT reuse a connection ID when sending to
   more than one destination address.  Due to network changes outside
   the control of its peer, an endpoint might receive packets from a new
   source address with the same destination connection ID, in which case
   it MAY continue to use the current connection ID with the new remote
   address while still sending from the same local address.

   These requirements regarding connection ID reuse apply only to the
   sending of packets, as unintentional changes in path without a change
   in connection ID are possible.  For example, after a period of
   network inactivity, NAT rebinding might cause packets to be sent on a
   new path when the client resumes sending.  An endpoint responds to
   such an event as described in Section 9.3 .

   Using different connection IDs for packets sent in both directions on
   each new network path eliminates the use of the connection ID for
   linking packets from the same connection across different network
   paths.  Header protection ensures that packet numbers cannot be used
   to correlate activity.  This does not prevent other properties of
   packets, such as timing and size, from being used to correlate
   activity.

   An endpoint SHOULD NOT initiate migration with a peer that has
   requested a zero-length connection ID, because traffic over the new
   path might be trivially linkable to traffic over the old one.  If the
   server is able to route packets with a zero-length connection ID to
   the right connection, it means that the server is using other
   information to demultiplex packets.  For example, a server might
   provide a unique address to every client, for instance using HTTP
   alternative services [ ALTSVC].  Information that might allow correct
   routing of packets across multiple network paths will also allow
   activity on those paths to be linked by entities other than the peer.
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   A client might wish to reduce linkability by employing a new
   connection ID and source UDP port when sending traffic after a period
   of inactivity.  Changing the UDP port from which it sends packets at
   the same time might cause the packet to appear as a connection
   migration.  This ensures that the mechanisms that support migration
   are exercised even for clients that don’t experience NAT rebindings
   or genuine migrations.  Changing port number can cause a peer to
   reset its congestion state (see Section 9.4 ), so the port SHOULD only
   be changed infrequently.

   An endpoint that exhausts available connection IDs cannot probe new
   paths or initiate migration, nor can it respond to probes or attempts
   by its peer to migrate.  To ensure that migration is possible and
   packets sent on different paths cannot be correlated, endpoints
   SHOULD provide new connection IDs before peers migrate; see
   Section 5.1.1 .  If a peer might have exhausted available connection
   IDs, a migrating endpoint could include a NEW_CONNECTION_ID frame in
   all packets sent on a new network path.

9.6 .  Server’s Preferred Address

   QUIC allows servers to accept connections on one IP address and
   attempt to transfer these connections to a more preferred address
   shortly after the handshake.  This is particularly useful when
   clients initially connect to an address shared by multiple servers
   but would prefer to use a unicast address to ensure connection
   stability.  This section describes the protocol for migrating a
   connection to a preferred server address.

   Migrating a connection to a new server address mid-connection is left
   for future work.  If a client receives packets from a new server
   address not indicated by the preferred_address transport parameter,
   the client SHOULD discard these packets.

9.6.1 .  Communicating a Preferred Address

   A server conveys a preferred address by including the
   preferred_address transport parameter in the TLS handshake.

   Servers MAY communicate a preferred address of each address family
   (IPv4 and IPv6) to allow clients to pick the one most suited to their
   network attachment.

   Once the handshake is confirmed, the client SHOULD select one of the
   two server’s preferred addresses and initiate path validation (see
   Section 8.2 ) of that address using any previously unused active
   connection ID, taken from either the preferred_address transport
   parameter or a NEW_CONNECTION_ID frame.
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   If path validation succeeds, the client SHOULD immediately begin
   sending all future packets to the new server address using the new
   connection ID and discontinue use of the old server address.  If path
   validation fails, the client MUST continue sending all future packets
   to the server’s original IP address.

9.6.2 .  Responding to Connection Migration

   A server might receive a packet addressed to its preferred IP address
   at any time after it accepts a connection.  If this packet contains a
   PATH_CHALLENGE frame, the server sends a PATH_RESPONSE frame as per
   Section 8.2 .  The server MUST send other non-probing frames from its
   original address until it receives a non-probing packet from the
   client at its preferred address and until the server has validated
   the new path.

   The server MUST probe on the path toward the client from its
   preferred address.  This helps to guard against spurious migration
   initiated by an attacker.

   Once the server has completed its path validation and has received a
   non-probing packet with a new largest packet number on its preferred
   address, the server begins sending non-probing packets to the client
   exclusively from its preferred IP address.  It SHOULD drop packets
   for this connection received on the old IP address, but MAY continue
   to process delayed packets.

   The addresses that a server provides in the preferred_address
   transport parameter are only valid for the connection in which they
   are provided.  A client MUST NOT use these for other connections,
   including connections that are resumed from the current connection.

9.6.3 .  Interaction of Client Migration and Preferred Address

   A client might need to perform a connection migration before it has
   migrated to the server’s preferred address.  In this case, the client
   SHOULD perform path validation to both the original and preferred
   server address from the client’s new address concurrently.

   If path validation of the server’s preferred address succeeds, the
   client MUST abandon validation of the original address and migrate to
   using the server’s preferred address.  If path validation of the
   server’s preferred address fails but validation of the server’s
   original address succeeds, the client MAY migrate to its new address
   and continue sending to the server’s original address.
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   If the connection to the server’s preferred address is not from the
   same client address, the server MUST protect against potential
   attacks as described in Section 9.3.1  and Section 9.3.2 .  In addition
   to intentional simultaneous migration, this might also occur because
   the client’s access network used a different NAT binding for the
   server’s preferred address.

   Servers SHOULD initiate path validation to the client’s new address
   upon receiving a probe packet from a different address.  Servers MUST
   NOT send more than a minimum congestion window’s worth of non-probing
   packets to the new address before path validation is complete.

   A client that migrates to a new address SHOULD use a preferred
   address from the same address family for the server.

   The connection ID provided in the preferred_address transport
   parameter is not specific to the addresses that are provided.  This
   connection ID is provided to ensure that the client has a connection
   ID available for migration, but the client MAY use this connection ID
   on any path.

9.7 .  Use of IPv6 Flow-Label and Migration

   Endpoints that send data using IPv6 SHOULD apply an IPv6 flow label
   in compliance with [ RFC6437], unless the local API does not allow
   setting IPv6 flow labels.

   The IPv6 flow label SHOULD be a pseudo-random function of the source
   and destination addresses, source and destination UDP ports, and the
   destination CID.  The flow label generation MUST be designed to
   minimize the chances of linkability with a previously used flow
   label, as this would enable correlating activity on multiple paths;
   see Section 9.5 .

   A possible implementation is to compute the flow label as a
   cryptographic hash function of the source and destination addresses,
   source and destination UDP ports, destination CID, and a local
   secret.

10.  Connection Termination

   An established QUIC connection can be terminated in one of three
   ways:

   *  idle timeout ( Section 10.2 )

   *  immediate close ( Section 10.3 )
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   *  stateless reset ( Section 10.4 )

   An endpoint MAY discard connection state if it does not have a
   validated path on which it can send packets; see Section 8.2 .

10.1 .  Closing and Draining Connection States

   The closing and draining connection states exist to ensure that
   connections close cleanly and that delayed or reordered packets are
   properly discarded.  These states SHOULD persist for at least three
   times the current Probe Timeout (PTO) interval as defined in
   [ QUIC-RECOVERY].

   An endpoint enters a closing period after initiating an immediate
   close; Section 10.3 .  While closing, an endpoint MUST NOT send
   packets unless they contain a CONNECTION_CLOSE frame; see
   Section 10.3  for details.  An endpoint retains only enough
   information to generate a packet containing a CONNECTION_CLOSE frame
   and to identify packets as belonging to the connection.  The
   endpoint’s selected connection ID and the QUIC version are sufficient
   information to identify packets for a closing connection; an endpoint
   can discard all other connection state.  An endpoint MAY retain
   packet protection keys for incoming packets to allow it to read and
   process a CONNECTION_CLOSE frame.

   The draining state is entered once an endpoint receives a signal that
   its peer is closing or draining.  While otherwise identical to the
   closing state, an endpoint in the draining state MUST NOT send any
   packets.  Retaining packet protection keys is unnecessary once a
   connection is in the draining state.

   An endpoint MAY transition from the closing period to the draining
   period if it receives a CONNECTION_CLOSE frame or stateless reset,
   both of which indicate that the peer is also closing or draining.
   The draining period SHOULD end when the closing period would have
   ended.  In other words, the endpoint can use the same end time, but
   cease retransmission of the closing packet.

   Disposing of connection state prior to the end of the closing or
   draining period could cause delayed or reordered packets to generate
   an unnecessary stateless reset.  Endpoints that have some alternative
   means to ensure that late-arriving packets on the connection do not
   induce a response, such as those that are able to close the UDP
   socket, MAY use an abbreviated draining period which can allow for
   faster resource recovery.  Servers that retain an open socket for
   accepting new connections SHOULD NOT exit the closing or draining
   period early.
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   Once the closing or draining period has ended, an endpoint SHOULD
   discard all connection state.  This results in new packets on the
   connection being handled generically.  For instance, an endpoint MAY
   send a stateless reset in response to any further incoming packets.

   The draining and closing periods do not apply when a stateless reset
   ( Section 10.4 ) is sent.

   An endpoint is not expected to handle key updates when it is closing
   or draining.  A key update might prevent the endpoint from moving
   from the closing state to draining, but it otherwise has no impact.

   While in the closing period, an endpoint could receive packets from a
   new source address, indicating a connection migration; Section 9 .  An
   endpoint in the closing state MUST strictly limit the number of
   packets it sends to this new address until the address is validated;
   see Section 8.2 .  A server in the closing state MAY instead choose to
   discard packets received from a new source address.

10.2 .  Idle Timeout

   If a max_idle_timeout is specified by either peer in its transport
   parameters ( Section 18.2 ), the connection is silently closed and its
   state is discarded when it remains idle for longer than the minimum
   of both peers max_idle_timeout values and three times the current
   Probe Timeout (PTO).

   Each endpoint advertises a max_idle_timeout, but the effective value
   at an endpoint is computed as the minimum of the two advertised
   values.  By announcing a max_idle_timeout, an endpoint commits to
   initiating an immediate close ( Section 10.3 ) if it abandons the
   connection prior to the effective value.

   An endpoint restarts its idle timer when a packet from its peer is
   received and processed successfully.  An endpoint also restarts its
   idle timer when sending an ack-eliciting packet if no other ack-
   eliciting packets have been sent since last receiving and processing
   a packet.  Restarting this timer when sending a packet ensures that
   connections are not closed after new activity is initiated.

10.2.1 .  Liveness Testing

   An endpoint that sends packets close to the effective timeout risks
   having them be discarded at the peer, since the peer might enter its
   draining state before these packets arrive.
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   An endpoint can send a PING or another ack-eliciting frame to test
   the connection for liveness if the peer could time out soon, such as
   within a PTO; see Section 6.2 of [ QUIC-RECOVERY].  This is especially
   useful if any available application data cannot be safely retried.
   Note that the application determines what data is safe to retry.

10.2.2 .  Deferring Idle Timeout

   An endpoint might need to send ack-eliciting packets to avoid an idle
   timeout if it is expecting response data, but does not have or is
   unable to send application data.

   An implementation of QUIC might provide applications with an option
   to defer an idle timeout.  This facility could be used when the
   application wishes to avoid losing state that has been associated
   with an open connection, but does not expect to exchange application
   data for some time.  With this option, an endpoint could send a PING
   frame periodically to defer an idle timeout; see Section 19.2 .

   Application protocols that use QUIC SHOULD provide guidance on when
   deferring an idle timeout is appropriate.  Unnecessary sending of
   PING frames could have a detrimental effect on performance.

   A connection will time out if no packets are sent or received for a
   period longer than the time negotiated using the max_idle_timeout
   transport parameter; see Section 10 .  However, state in middleboxes
   might time out earlier than that.  Though REQ-5 in [ RFC4787]
   recommends a 2 minute timeout interval, experience shows that sending
   packets every 15 to 30 seconds is necessary to prevent the majority
   of middleboxes from losing state for UDP flows.

10.3 .  Immediate Close

   An endpoint sends a CONNECTION_CLOSE frame ( Section 19.19 ) to
   terminate the connection immediately.  A CONNECTION_CLOSE frame
   causes all streams to immediately become closed; open streams can be
   assumed to be implicitly reset.

   After sending a CONNECTION_CLOSE frame, an endpoint immediately
   enters the closing state.

   During the closing period, an endpoint that sends a CONNECTION_CLOSE
   frame SHOULD respond to any incoming packet that can be decrypted
   with another packet containing a CONNECTION_CLOSE frame.  Such an
   endpoint SHOULD limit the number of packets it generates containing a
   CONNECTION_CLOSE frame.  For instance, an endpoint could wait for a
   progressively increasing number of received packets or amount of time
   before responding to a received packet.
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   An endpoint is allowed to drop the packet protection keys when
   entering the closing period ( Section 10.1 ) and send a packet
   containing a CONNECTION_CLOSE in response to any UDP datagram that is
   received.  However, an endpoint without the packet protection keys
   cannot identify and discard invalid packets.  To avoid creating an
   unwitting amplification attack, such endpoints MUST reduce the
   frequency with which it sends packets containing a CONNECTION_CLOSE
   frame.  To minimize the state that an endpoint maintains for a
   closing connection, endpoints MAY send the exact same packet.

   Note:  Allowing retransmission of a closing packet contradicts other
      advice in this document that recommends the creation of new packet
      numbers for every packet.  Sending new packet numbers is primarily
      of advantage to loss recovery and congestion control, which are
      not expected to be relevant for a closed connection.
      Retransmitting the final packet requires less state.

   New packets from unverified addresses could be used to create an
   amplification attack; see Section 8 .  To avoid this, endpoints MUST
   either limit transmission of CONNECTION_CLOSE frames to validated
   addresses or drop packets without response if the response would be
   more than three times larger than the received packet.

   After receiving a CONNECTION_CLOSE frame, endpoints enter the
   draining state.  An endpoint that receives a CONNECTION_CLOSE frame
   MAY send a single packet containing a CONNECTION_CLOSE frame before
   entering the draining state, using a CONNECTION_CLOSE frame and a
   NO_ERROR code if appropriate.  An endpoint MUST NOT send further
   packets, which could result in a constant exchange of
   CONNECTION_CLOSE frames until the closing period on either peer
   ended.

   An immediate close can be used after an application protocol has
   arranged to close a connection.  This might be after the application
   protocols negotiates a graceful shutdown.  The application protocol
   exchanges whatever messages that are needed to cause both endpoints
   to agree to close the connection, after which the application
   requests that the connection be closed.  The application protocol can
   use a CONNECTION_CLOSE frame with an appropriate error code to signal
   closure.
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10.3.1 .  Immediate Close During the Handshake

   When sending CONNECTION_CLOSE, the goal is to ensure that the peer
   will process the frame.  Generally, this means sending the frame in a
   packet with the highest level of packet protection to avoid the
   packet being discarded.  After the handshake is confirmed (see
   Section 4.1.2 of [ QUIC-TLS ]), an endpoint MUST send any
   CONNECTION_CLOSE frames in a 1-RTT packet.  However, prior to
   confirming the handshake, it is possible that more advanced packet
   protection keys are not available to the peer, so another
   CONNECTION_CLOSE frame MAY be sent in a packet that uses a lower
   packet protection level.  More specifically:

   *  A client will always know whether the server has Handshake keys
      (see Section 17.2.2.1 ), but it is possible that a server does not
      know whether the client has Handshake keys.  Under these
      circumstances, a server SHOULD send a CONNECTION_CLOSE frame in
      both Handshake and Initial packets to ensure that at least one of
      them is processable by the client.

   *  A client that sends CONNECTION_CLOSE in a 0-RTT packet cannot be
      assured of the server has accepted 0-RTT and so sending a
      CONNECTION_CLOSE frame in an Initial packet makes it more likely
      that the server can receive the close signal, even if the
      application error code might not be received.

   *  Prior to confirming the handshake, a peer might be unable to
      process 1-RTT packets, so an endpoint SHOULD send CONNECTION_CLOSE
      in both Handshake and 1-RTT packets.  A server SHOULD also send
      CONNECTION_CLOSE in an Initial packet.

   Sending a CONNECTION_CLOSE of type 0x1d in an Initial or Handshake
   packet could expose application state or be used to alter application
   state.  A CONNECTION_CLOSE of type 0x1d MUST be replaced by a
   CONNECTION_CLOSE of type 0x1c when sending the frame in Initial or
   Handshake packets.  Otherwise, information about the application
   state might be revealed.  Endpoints MUST clear the value of the
   Reason Phrase field and SHOULD use the APPLICATION_ERROR code when
   converting to a CONNECTION_CLOSE of type 0x1c.

   CONNECTION_CLOSE frames sent in multiple packet types can be
   coalesced into a single UDP datagram; see Section 12.2 .

   An endpoint might send a CONNECTION_CLOSE frame in an Initial packet
   or in response to unauthenticated information received in Initial or
   Handshake packets.  Such an immediate close might expose legitimate
   connections to a denial of service.  QUIC does not include defensive
   measures for on-path attacks during the handshake; see Section 21.1 .
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   However, at the cost of reducing feedback about errors for legitimate
   peers, some forms of denial of service can be made more difficult for
   an attacker if endpoints discard illegal packets rather than
   terminating a connection with CONNECTION_CLOSE.  For this reason,
   endpoints MAY discard packets rather than immediately close if errors
   are detected in packets that lack authentication.

   An endpoint that has not established state, such as a server that
   detects an error in an Initial packet, does not enter the closing
   state.  An endpoint that has no state for the connection does not
   enter a closing or draining period on sending a CONNECTION_CLOSE
   frame.

10.4 .  Stateless Reset

   A stateless reset is provided as an option of last resort for an
   endpoint that does not have access to the state of a connection.  A
   crash or outage might result in peers continuing to send data to an
   endpoint that is unable to properly continue the connection.  An
   endpoint MAY send a stateless reset in response to receiving a packet
   that it cannot associate with an active connection.

   A stateless reset is not appropriate for signaling error conditions.
   An endpoint that wishes to communicate a fatal connection error MUST
   use a CONNECTION_CLOSE frame if it has sufficient state to do so.

   To support this process, a token is sent by endpoints.  The token is
   carried in the Stateless Reset Token field of a NEW_CONNECTION_ID
   frame.  Servers can also specify a stateless_reset_token transport
   parameter during the handshake that applies to the connection ID that
   it selected during the handshake; clients cannot use this transport
   parameter because their transport parameters don’t have
   confidentiality protection.  These tokens are protected by
   encryption, so only client and server know their value.  Tokens are
   invalidated when their associated connection ID is retired via a
   RETIRE_CONNECTION_ID frame ( Section 19.16 ).

   An endpoint that receives packets that it cannot process sends a
   packet in the following layout:

   Stateless Reset {
     Fixed Bits (2) = 1,
     Unpredictable Bits (38..),
     Stateless Reset Token (128),
   }

                      Figure 9: Stateless Reset Packet
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   This design ensures that a stateless reset packet is - to the extent
   possible - indistinguishable from a regular packet with a short
   header.

   A stateless reset uses an entire UDP datagram, starting with the
   first two bits of the packet header.  The remainder of the first byte
   and an arbitrary number of bytes following it that are set to
   unpredictable values.  The last 16 bytes of the datagram contain a
   Stateless Reset Token.

   To entities other than its intended recipient, a stateless reset will
   appear to be a packet with a short header.  For the stateless reset
   to appear as a valid QUIC packet, the Unpredictable Bits field needs
   to include at least 38 bits of data (or 5 bytes, less the two fixed
   bits).

   A minimum size of 21 bytes does not guarantee that a stateless reset
   is difficult to distinguish from other packets if the recipient
   requires the use of a connection ID.  To prevent a resulting
   stateless reset from being trivially distinguishable from a valid
   packet, all packets sent by an endpoint SHOULD be padded to at least
   22 bytes longer than the minimum connection ID that the endpoint
   might use.  An endpoint that sends a stateless reset in response to a
   packet that is 43 bytes or less in length SHOULD send a stateless
   reset that is one byte shorter than the packet it responds to.

   These values assume that the Stateless Reset Token is the same length
   as the minimum expansion of the packet protection AEAD.  Additional
   unpredictable bytes are necessary if the endpoint could have
   negotiated a packet protection scheme with a larger minimum
   expansion.

   An endpoint MUST NOT send a stateless reset that is three times or
   more larger than the packet it receives to avoid being used for
   amplification.  Section 10.4.3  describes additional limits on
   stateless reset size.

   Endpoints MUST discard packets that are too small to be valid QUIC
   packets.  With the set of AEAD functions defined in [ QUIC-TLS ],
   packets that are smaller than 21 bytes are never valid.

   Endpoints MUST send stateless reset packets formatted as a packet
   with a short header.  However, endpoints MUST treat any packet ending
   in a valid stateless reset token as a stateless reset, as other QUIC
   versions might allow the use of a long header.
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   An endpoint MAY send a stateless reset in response to a packet with a
   long header.  Sending a stateless reset is not effective prior to the
   stateless reset token being available to a peer.  In this QUIC
   version, packets with a long header are only used during connection
   establishment.  Because the stateless reset token is not available
   until connection establishment is complete or near completion,
   ignoring an unknown packet with a long header might be as effective
   as sending a stateless reset.

   An endpoint cannot determine the Source Connection ID from a packet
   with a short header, therefore it cannot set the Destination
   Connection ID in the stateless reset packet.  The Destination
   Connection ID will therefore differ from the value used in previous
   packets.  A random Destination Connection ID makes the connection ID
   appear to be the result of moving to a new connection ID that was
   provided using a NEW_CONNECTION_ID frame ( Section 19.15 ).

   Using a randomized connection ID results in two problems:

   *  The packet might not reach the peer.  If the Destination
      Connection ID is critical for routing toward the peer, then this
      packet could be incorrectly routed.  This might also trigger
      another Stateless Reset in response; see Section 10.4.3 .  A
      Stateless Reset that is not correctly routed is an ineffective
      error detection and recovery mechanism.  In this case, endpoints
      will need to rely on other methods - such as timers - to detect
      that the connection has failed.

   *  The randomly generated connection ID can be used by entities other
      than the peer to identify this as a potential stateless reset.  An
      endpoint that occasionally uses different connection IDs might
      introduce some uncertainty about this.

   This stateless reset design is specific to QUIC version 1.  An
   endpoint that supports multiple versions of QUIC needs to generate a
   stateless reset that will be accepted by peers that support any
   version that the endpoint might support (or might have supported
   prior to losing state).  Designers of new versions of QUIC need to be
   aware of this and either reuse this design, or use a portion of the
   packet other than the last 16 bytes for carrying data.
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10.4.1 .  Detecting a Stateless Reset

   An endpoint detects a potential stateless reset using the trailing 16
   bytes of the UDP datagram.  An endpoint remembers all Stateless Reset
   Tokens associated with the connection IDs and remote addresses for
   datagrams it has recently sent.  This includes Stateless Reset Tokens
   from NEW_CONNECTION_ID frames and the server’s transport parameters
   but excludes Stateless Reset Tokens associated with connection IDs
   that are either unused or retired.  The endpoint identifies a
   received datagram as a stateless reset by comparing the last 16 bytes
   of the datagram with all Stateless Reset Tokens associated with the
   remote address on which the datagram was received.

   This comparison can be performed for every inbound datagram.
   Endpoints MAY skip this check if any packet from a datagram is
   successfully processed.  However, the comparison MUST be performed
   when the first packet in an incoming datagram either cannot be
   associated with a connection, or cannot be decrypted.

   An endpoint MUST NOT check for any Stateless Reset Tokens associated
   with connection IDs it has not used or for connection IDs that have
   been retired.

   When comparing a datagram to Stateless Reset Token values, endpoints
   MUST perform the comparison without leaking information about the
   value of the token.  For example, performing this comparison in
   constant time protects the value of individual Stateless Reset Tokens
   from information leakage through timing side channels.  Another
   approach would be to store and compare the transformed values of
   Stateless Reset Tokens instead of the raw token values, where the
   transformation is defined as a cryptographically-secure pseudo-random
   function using a secret key (e.g., block cipher, HMAC [ RFC2104]).  An
   endpoint is not expected to protect information about whether a
   packet was successfully decrypted, or the number of valid Stateless
   Reset Tokens.

   If the last 16 bytes of the datagram are identical in value to a
   Stateless Reset Token, the endpoint MUST enter the draining period
   and not send any further packets on this connection.
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10.4.2 .  Calculating a Stateless Reset Token

   The stateless reset token MUST be difficult to guess.  In order to
   create a Stateless Reset Token, an endpoint could randomly generate
   [ RFC4086] a secret for every connection that it creates.  However,
   this presents a coordination problem when there are multiple
   instances in a cluster or a storage problem for an endpoint that
   might lose state.  Stateless reset specifically exists to handle the
   case where state is lost, so this approach is suboptimal.

   A single static key can be used across all connections to the same
   endpoint by generating the proof using a second iteration of a
   preimage-resistant function that takes a static key and the
   connection ID chosen by the endpoint (see Section 5.1 ) as input.  An
   endpoint could use HMAC [ RFC2104] (for example, HMAC(static_key,
   connection_id)) or HKDF [ RFC5869] (for example, using the static key
   as input keying material, with the connection ID as salt).  The
   output of this function is truncated to 16 bytes to produce the
   Stateless Reset Token for that connection.

   An endpoint that loses state can use the same method to generate a
   valid Stateless Reset Token.  The connection ID comes from the packet
   that the endpoint receives.

   This design relies on the peer always sending a connection ID in its
   packets so that the endpoint can use the connection ID from a packet
   to reset the connection.  An endpoint that uses this design MUST
   either use the same connection ID length for all connections or
   encode the length of the connection ID such that it can be recovered
   without state.  In addition, it cannot provide a zero-length
   connection ID.

   Revealing the Stateless Reset Token allows any entity to terminate
   the connection, so a value can only be used once.  This method for
   choosing the Stateless Reset Token means that the combination of
   connection ID and static key MUST NOT be used for another connection.
   A denial of service attack is possible if the same connection ID is
   used by instances that share a static key, or if an attacker can
   cause a packet to be routed to an instance that has no state but the
   same static key; see Section 21.9 .  A connection ID from a connection
   that is reset by revealing the Stateless Reset Token MUST NOT be
   reused for new connections at nodes that share a static key.

   The same Stateless Reset Token MUST NOT be used for multiple
   connection IDs.  Endpoints are not required to compare new values
   against all previous values, but a duplicate value MAY be treated as
   a connection error of type PROTOCOL_VIOLATION.
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   Note that Stateless Reset packets do not have any cryptographic
   protection.

10.4.3 .  Looping

   The design of a Stateless Reset is such that without knowing the
   stateless reset token it is indistinguishable from a valid packet.
   For instance, if a server sends a Stateless Reset to another server
   it might receive another Stateless Reset in response, which could
   lead to an infinite exchange.

   An endpoint MUST ensure that every Stateless Reset that it sends is
   smaller than the packet which triggered it, unless it maintains state
   sufficient to prevent looping.  In the event of a loop, this results
   in packets eventually being too small to trigger a response.

   An endpoint can remember the number of Stateless Reset packets that
   it has sent and stop generating new Stateless Reset packets once a
   limit is reached.  Using separate limits for different remote
   addresses will ensure that Stateless Reset packets can be used to
   close connections when other peers or connections have exhausted
   limits.

   Reducing the size of a Stateless Reset below 41 bytes means that the
   packet could reveal to an observer that it is a Stateless Reset,
   depending upon the length of the peer’s connection IDs.  Conversely,
   refusing to send a Stateless Reset in response to a small packet
   might result in Stateless Reset not being useful in detecting cases
   of broken connections where only very small packets are sent; such
   failures might only be detected by other means, such as timers.

11.  Error Handling

   An endpoint that detects an error SHOULD signal the existence of that
   error to its peer.  Both transport-level and application-level errors
   can affect an entire connection; see Section 11.1 .  Only application-
   level errors can be isolated to a single stream; see Section 11.2 .

   The most appropriate error code ( Section 20 ) SHOULD be included in
   the frame that signals the error.  Where this specification
   identifies error conditions, it also identifies the error code that
   is used; though these are worded as requirements, different
   implementation strategies might lead to different errors being
   reported.  In particular, an endpoint MAY use any applicable error
   code when it detects an error condition; a generic error code (such
   as PROTOCOL_VIOLATION or INTERNAL_ERROR) can always be used in place
   of specific error codes.
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   A stateless reset ( Section 10.4 ) is not suitable for any error that
   can be signaled with a CONNECTION_CLOSE or RESET_STREAM frame.  A
   stateless reset MUST NOT be used by an endpoint that has the state
   necessary to send a frame on the connection.

11.1 .  Connection Errors

   Errors that result in the connection being unusable, such as an
   obvious violation of protocol semantics or corruption of state that
   affects an entire connection, MUST be signaled using a
   CONNECTION_CLOSE frame ( Section 19.19 ).  An endpoint MAY close the
   connection in this manner even if the error only affects a single
   stream.

   Application protocols can signal application-specific protocol errors
   using the application-specific variant of the CONNECTION_CLOSE frame.
   Errors that are specific to the transport, including all those
   described in this document, are carried in the QUIC-specific variant
   of the CONNECTION_CLOSE frame.

   A CONNECTION_CLOSE frame could be sent in a packet that is lost.  An
   endpoint SHOULD be prepared to retransmit a packet containing a
   CONNECTION_CLOSE frame if it receives more packets on a terminated
   connection.  Limiting the number of retransmissions and the time over
   which this final packet is sent limits the effort expended on
   terminated connections.

   An endpoint that chooses not to retransmit packets containing a
   CONNECTION_CLOSE frame risks a peer missing the first such packet.
   The only mechanism available to an endpoint that continues to receive
   data for a terminated connection is to use the stateless reset
   process ( Section 10.4 ).

11.2 .  Stream Errors

   If an application-level error affects a single stream, but otherwise
   leaves the connection in a recoverable state, the endpoint can send a
   RESET_STREAM frame ( Section 19.4 ) with an appropriate error code to
   terminate just the affected stream.

   Resetting a stream without the involvement of the application
   protocol could cause the application protocol to enter an
   unrecoverable state.  RESET_STREAM MUST only be instigated by the
   application protocol that uses QUIC.

   The semantics of the application error code carried in RESET_STREAM
   are defined by the application protocol.  Only the application
   protocol is able to cause a stream to be terminated.  A local
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   instance of the application protocol uses a direct API call and a
   remote instance uses the STOP_SENDING frame, which triggers an
   automatic RESET_STREAM.

   Application protocols SHOULD define rules for handling streams that
   are prematurely cancelled by either endpoint.

12.  Packets and Frames

   QUIC endpoints communicate by exchanging packets.  Packets have
   confidentiality and integrity protection; see Section 12.1 .  Packets
   are carried in UDP datagrams; see Section 12.2 .

   This version of QUIC uses the long packet header during connection
   establishment; see Section 17.2 .  Packets with the long header are
   Initial ( Section 17.2.2 ), 0-RTT ( Section 17.2.3 ), Handshake
   ( Section 17.2.4 ), and Retry ( Section 17.2.5 ).  Version negotiation
   uses a version-independent packet with a long header; see
   Section 17.2.1 .

   Packets with the short header are designed for minimal overhead and
   are used after a connection is established and 1-RTT keys are
   available; see Section 17.3 .

12.1 .  Protected Packets

   All QUIC packets except Version Negotiation packets use authenticated
   encryption with additional data (AEAD) [ RFC5116] to provide
   confidentiality and integrity protection.  Retry packets use AEAD to
   provide integrity protection.  Details of packet protection are found
   in [ QUIC-TLS ]; this section includes an overview of the process.

   Initial packets are protected using keys that are statically derived.
   This packet protection is not effective confidentiality protection.
   Initial protection only exists to ensure that the sender of the
   packet is on the network path.  Any entity that receives the Initial
   packet from a client can recover the keys necessary to remove packet
   protection or to generate packets that will be successfully
   authenticated.

   All other packets are protected with keys derived from the
   cryptographic handshake.  The type of the packet from the long header
   or key phase from the short header are used to identify which
   encryption keys are used.  Packets protected with 0-RTT and 1-RTT
   keys are expected to have confidentiality and data origin
   authentication; the cryptographic handshake ensures that only the
   communicating endpoints receive the corresponding keys.
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   The packet number field contains a packet number, which has
   additional confidentiality protection that is applied after packet
   protection is applied; see [ QUIC-TLS ] for details.  The underlying
   packet number increases with each packet sent in a given packet
   number space; see Section 12.3  for details.

12.2 .  Coalescing Packets

   Initial ( Section 17.2.2 ), 0-RTT ( Section 17.2.3 ), and Handshake
   ( Section 17.2.4 ) packets contain a Length field, which determines the
   end of the packet.  The length includes both the Packet Number and
   Payload fields, both of which are confidentiality protected and
   initially of unknown length.  The length of the Payload field is
   learned once header protection is removed.

   Using the Length field, a sender can coalesce multiple QUIC packets
   into one UDP datagram.  This can reduce the number of UDP datagrams
   needed to complete the cryptographic handshake and start sending
   data.  This can also be used to construct PMTU probes; see
   Section 14.4.1 .  Receivers MUST be able to process coalesced packets.

   Coalescing packets in order of increasing encryption levels (Initial,
   0-RTT, Handshake, 1-RTT; see Section 4.1.4 of [ QUIC-TLS ]) makes it
   more likely the receiver will be able to process all the packets in a
   single pass.  A packet with a short header does not include a length,
   so it can only be the last packet included in a UDP datagram.  An
   endpoint SHOULD NOT coalesce multiple packets at the same encryption
   level.

   Senders MUST NOT coalesce QUIC packets for different connections into
   a single UDP datagram.  Receivers SHOULD ignore any subsequent
   packets with a different Destination Connection ID than the first
   packet in the datagram.

   Every QUIC packet that is coalesced into a single UDP datagram is
   separate and complete.  The receiver of coalesced QUIC packets MUST
   individually process each QUIC packet and separately acknowledge
   them, as if they were received as the payload of different UDP
   datagrams.  For example, if decryption fails (because the keys are
   not available or any other reason), the receiver MAY either discard
   or buffer the packet for later processing and MUST attempt to process
   the remaining packets.
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   Retry packets ( Section 17.2.5 ), Version Negotiation packets
   ( Section 17.2.1 ), and packets with a short header ( Section 17.3 ) do
   not contain a Length field and so cannot be followed by other packets
   in the same UDP datagram.  Note also that there is no situation where
   a Retry or Version Negotiation packet is coalesced with another
   packet.

12.3 .  Packet Numbers

   The packet number is an integer in the range 0 to 2^62-1.  This
   number is used in determining the cryptographic nonce for packet
   protection.  Each endpoint maintains a separate packet number for
   sending and receiving.

   Packet numbers are limited to this range because they need to be
   representable in whole in the Largest Acknowledged field of an ACK
   frame ( Section 19.3 ).  When present in a long or short header
   however, packet numbers are reduced and encoded in 1 to 4 bytes; see
   Section 17.1 .

   Version Negotiation ( Section 17.2.1 ) and Retry ( Section 17.2.5 )
   packets do not include a packet number.

   Packet numbers are divided into 3 spaces in QUIC:

   *  Initial space: All Initial packets ( Section 17.2.2 ) are in this
      space.

   *  Handshake space: All Handshake packets ( Section 17.2.4 ) are in
      this space.

   *  Application data space: All 0-RTT and 1-RTT encrypted packets
      ( Section 12.1 ) are in this space.

   As described in [ QUIC-TLS ], each packet type uses different
   protection keys.

   Conceptually, a packet number space is the context in which a packet
   can be processed and acknowledged.  Initial packets can only be sent
   with Initial packet protection keys and acknowledged in packets which
   are also Initial packets.  Similarly, Handshake packets are sent at
   the Handshake encryption level and can only be acknowledged in
   Handshake packets.

   This enforces cryptographic separation between the data sent in the
   different packet number spaces.  Packet numbers in each space start
   at packet number 0.  Subsequent packets sent in the same packet
   number space MUST increase the packet number by at least one.
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   0-RTT and 1-RTT data exist in the same packet number space to make
   loss recovery algorithms easier to implement between the two packet
   types.

   A QUIC endpoint MUST NOT reuse a packet number within the same packet
   number space in one connection.  If the packet number for sending
   reaches 2^62 - 1, the sender MUST close the connection without
   sending a CONNECTION_CLOSE frame or any further packets; an endpoint
   MAY send a Stateless Reset ( Section 10.4 ) in response to further
   packets that it receives.

   A receiver MUST discard a newly unprotected packet unless it is
   certain that it has not processed another packet with the same packet
   number from the same packet number space.  Duplicate suppression MUST
   happen after removing packet protection for the reasons described in
   Section 9.3 of [ QUIC-TLS ].

   Endpoints that track all individual packets for the purposes of
   detecting duplicates are at risk of accumulating excessive state.
   The data required for detecting duplicates can be limited by
   maintaining a minimum packet number below which all packets are
   immediately dropped.  Any minimum needs to account for large
   variations in round trip time, which includes the possibility that a
   peer might probe network paths with a much larger round trip times;
   see Section 9 .

   Packet number encoding at a sender and decoding at a receiver are
   described in Section 17.1 .

12.4 .  Frames and Frame Types

   The payload of QUIC packets, after removing packet protection,
   consists of a sequence of complete frames, as shown in Figure 10.
   Version Negotiation, Stateless Reset, and Retry packets do not
   contain frames.

   Packet Payload {
     Frame (..) ...,
   }

                          Figure 10: QUIC Payload

   The payload of a packet that contains frames MUST contain at least
   one frame, and MAY contain multiple frames and multiple frame types.
   Frames always fit within a single QUIC packet and cannot span
   multiple packets.

Iyengar & Thomson       Expires 12 December 2020               [Page 80]



 
Internet-Draft           QUIC Transport Protocol               June 2020

   Each frame begins with a Frame Type, indicating its type, followed by
   additional type-dependent fields:

   Frame {
     Frame Type (i),
     Type-Dependent Fields (..),
   }

                      Figure 11: Generic Frame Layout

   The frame types defined in this specification are listed in Table 3.
   The Frame Type in ACK, STREAM, MAX_STREAMS, STREAMS_BLOCKED, and
   CONNECTION_CLOSE frames is used to carry other frame-specific flags.
   For all other frames, the Frame Type field simply identifies the
   frame.  These frames are explained in more detail in Section 19 .
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     +-------------+----------------------+---------------+---------+
     | Type Value  | Frame Type Name      | Definition    | Packets |
     +=============+======================+===============+=========+
     | 0x00        | PADDING              | Section 19.1   | IH01    |
     +-------------+----------------------+---------------+---------+
     | 0x01        | PING                 | Section 19.2   | IH01    |
     +-------------+----------------------+---------------+---------+
     | 0x02 - 0x03 | ACK                  | Section 19.3   | IH_1    |
     +-------------+----------------------+---------------+---------+
     | 0x04        | RESET_STREAM         | Section 19.4   | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x05        | STOP_SENDING         | Section 19.5   | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x06        | CRYPTO               | Section 19.6   | IH_1    |
     +-------------+----------------------+---------------+---------+
     | 0x07        | NEW_TOKEN            | Section 19.7   | ___1    |
     +-------------+----------------------+---------------+---------+
     | 0x08 - 0x0f | STREAM               | Section 19.8   | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x10        | MAX_DATA             | Section 19.9   | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x11        | MAX_STREAM_DATA      | Section 19.10  | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x12 - 0x13 | MAX_STREAMS          | Section 19.11  | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x14        | DATA_BLOCKED         | Section 19.12  | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x15        | STREAM_DATA_BLOCKED  | Section 19.13  | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x16 - 0x17 | STREAMS_BLOCKED      | Section 19.14  | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x18        | NEW_CONNECTION_ID    | Section 19.15  | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x19        | RETIRE_CONNECTION_ID | Section 19.16  | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x1a        | PATH_CHALLENGE       | Section 19.17  | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x1b        | PATH_RESPONSE        | Section 19.18  | __01    |
     +-------------+----------------------+---------------+---------+
     | 0x1c - 0x1d | CONNECTION_CLOSE     | Section 19.19  | ih01    |
     +-------------+----------------------+---------------+---------+
     | 0x1e        | HANDSHAKE_DONE       | Section 19.20  | ___1    |
     +-------------+----------------------+---------------+---------+

                           Table 3: Frame Types

Iyengar & Thomson       Expires 12 December 2020               [Page 82]



 
Internet-Draft           QUIC Transport Protocol               June 2020

   The "Packets" column in Table 3 does not form part of the IANA
   registry; see Section 22.3 .  This column lists the types of packets
   that each frame type could appear in, indicated by the following
   characters:

   I:  Initial ( Section 17.2.2 )

   H:  Handshake ( Section 17.2.4 )

   0:  0-RTT ( Section 17.2.3 )

   1:  1-RTT ( Section 17.3 )

   ih:  A CONNECTION_CLOSE frame of type 0x1d cannot appear in Initial
      or Handshake packets.

   Section 4 of [ QUIC-TLS ] provides more detail about these
   restrictions.  Note that all frames can appear in 1-RTT packets.

   An endpoint MUST treat the receipt of a frame of unknown type as a
   connection error of type FRAME_ENCODING_ERROR.

   All QUIC frames are idempotent in this version of QUIC.  That is, a
   valid frame does not cause undesirable side effects or errors when
   received more than once.

   The Frame Type field uses a variable length integer encoding (see
   Section 16 ) with one exception.  To ensure simple and efficient
   implementations of frame parsing, a frame type MUST use the shortest
   possible encoding.  For frame types defined in this document, this
   means a single-byte encoding, even though it is possible to encode
   these values as a two-, four- or eight-byte variable length integer.
   For instance, though 0x4001 is a legitimate two-byte encoding for a
   variable-length integer with a value of 1, PING frames are always
   encoded as a single byte with the value 0x01.  This rule applies to
   all current and future QUIC frame types.  An endpoint MAY treat the
   receipt of a frame type that uses a longer encoding than necessary as
   a connection error of type PROTOCOL_VIOLATION.

13.  Packetization and Reliability

   A sender bundles one or more frames in a QUIC packet; see
   Section 12.4 .

   A sender can minimize per-packet bandwidth and computational costs by
   including as many frames as possible in each QUIC packet.  A sender
   MAY wait for a short period of time to collect multiple frames before
   sending a packet that is not maximally packed, to avoid sending out
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   large numbers of small packets.  An implementation MAY use knowledge
   about application sending behavior or heuristics to determine whether
   and for how long to wait.  This waiting period is an implementation
   decision, and an implementation should be careful to delay
   conservatively, since any delay is likely to increase application-
   visible latency.

   Stream multiplexing is achieved by interleaving STREAM frames from
   multiple streams into one or more QUIC packets.  A single QUIC packet
   can include multiple STREAM frames from one or more streams.

   One of the benefits of QUIC is avoidance of head-of-line blocking
   across multiple streams.  When a packet loss occurs, only streams
   with data in that packet are blocked waiting for a retransmission to
   be received, while other streams can continue making progress.  Note
   that when data from multiple streams is included in a single QUIC
   packet, loss of that packet blocks all those streams from making
   progress.  Implementations are advised to include as few streams as
   necessary in outgoing packets without losing transmission efficiency
   to underfilled packets.

13.1 .  Packet Processing

   A packet MUST NOT be acknowledged until packet protection has been
   successfully removed and all frames contained in the packet have been
   processed.  For STREAM frames, this means the data has been enqueued
   in preparation to be received by the application protocol, but it
   does not require that data is delivered and consumed.

   Once the packet has been fully processed, a receiver acknowledges
   receipt by sending one or more ACK frames containing the packet
   number of the received packet.

   An endpoint SHOULD treat receipt of an acknowledgment for a packet it
   did not send as a connection error of type PROTOCOL_VIOLATION, if it
   is able to detect the condition.

13.2 .  Generating Acknowledgements

   Endpoints acknowledge all packets they receive and process.  However,
   only ack-eliciting packets cause an ACK frame to be sent within the
   maximum ack delay.  Packets that are not ack-eliciting are only
   acknowledged when an ACK frame is sent for other reasons.

   When sending a packet for any reason, an endpoint SHOULD attempt to
   bundle an ACK frame if one has not been sent recently.  Doing so
   helps with timely loss detection at the peer.
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   In general, frequent feedback from a receiver improves loss and
   congestion response, but this has to be balanced against excessive
   load generated by a receiver that sends an ACK frame in response to
   every ack-eliciting packet.  The guidance offered below seeks to
   strike this balance.

13.2.1 .  Sending ACK Frames

   Every packet SHOULD be acknowledged at least once, and ack-eliciting
   packets MUST be acknowledged at least once within the maximum ack
   delay.  An endpoint communicates its maximum delay using the
   max_ack_delay transport parameter; see Section 18.2 .  max_ack_delay
   declares an explicit contract: an endpoint promises to never
   intentionally delay acknowledgments of an ack-eliciting packet by
   more than the indicated value.  If it does, any excess accrues to the
   RTT estimate and could result in spurious or delayed retransmissions
   from the peer.  For Initial and Handshake packets, a max_ack_delay of
   0 is used.  The sender uses the receiver’s max_ack_delay value in
   determining timeouts for timer-based retransmission, as detailed in
   Section 6.2 of [ QUIC-RECOVERY].

   Since packets containing only ACK frames are not congestion
   controlled, an endpoint MUST NOT send more than one such packet in
   response to receiving an ack-eliciting packet.

   An endpoint MUST NOT send a non-ack-eliciting packet in response to a
   non-ack-eliciting packet, even if there are packet gaps which precede
   the received packet.  This avoids an infinite feedback loop of
   acknowledgements, which could prevent the connection from ever
   becoming idle.  Non-ack-eliciting packets are eventually acknowledged
   when the endpoint sends an ACK frame in response to other events.

   In order to assist loss detection at the sender, an endpoint SHOULD
   send an ACK frame immediately on receiving an ack-eliciting packet
   that is out of order.  The endpoint SHOULD NOT continue sending ACK
   frames immediately unless more ack-eliciting packets are received out
   of order.  If every subsequent ack-eliciting packet arrives out of
   order, then an ACK frame SHOULD be sent immediately for every
   received ack-eliciting packet.

   Similarly, packets marked with the ECN Congestion Experienced (CE)
   codepoint in the IP header SHOULD be acknowledged immediately, to
   reduce the peer’s response time to congestion events.

   The algorithms in [ QUIC-RECOVERY] are expected to be resilient to
   receivers that do not follow guidance offered above.  However, an
   implementer should only deviate from these requirements after careful
   consideration of the performance implications of doing so.
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   An endpoint that is only sending ACK frames will not receive
   acknowledgments from its peer unless those acknowledgements are
   included in packets with ack-eliciting frames.  An endpoint SHOULD
   bundle ACK frames with other frames when there are new ack-eliciting
   packets to acknowledge.  When only non-ack-eliciting packets need to
   be acknowledged, an endpoint MAY wait until an ack-eliciting packet
   has been received to bundle an ACK frame with outgoing frames.

13.2.2 .  Acknowledgement Frequency

   A receiver determines how frequently to send acknowledgements in
   response to ack-eliciting packets.  This determination involves a
   tradeoff.

   Endpoints rely on timely acknowledgment to detect loss; see Section 6
   of [ QUIC-RECOVERY].  Window-based congestion controllers, such as the
   one in Section 7 of [ QUIC-RECOVERY], rely on acknowledgments to
   manage their congestion window.  In both cases, delaying
   acknowledgments can adversely affect performance.

   On the other hand, reducing the frequency of packets that carry only
   acknowledgements reduces packet transmission and processing cost at
   both endpoints.  It can also improve connection throughput on
   severely asymmetric links; see Section 3 of [RFC3449] .

   A receiver SHOULD send an ACK frame after receiving at least two ack-
   eliciting packets.  This recommendation is general in nature and
   consistent with recommendations for TCP endpoint behavior [ RFC5681].
   Knowledge of network conditions, knowledge of the peer’s congestion
   controller, or further research and experimentation might suggest
   alternative acknowledgment strategies with better performance
   characteristics.

   A receiver MAY process multiple available packets before determining
   whether to send an ACK frame in response.

13.2.3 .  Managing ACK Ranges

   When an ACK frame is sent, one or more ranges of acknowledged packets
   are included.  Including older packets reduces the chance of spurious
   retransmits caused by losing previously sent ACK frames, at the cost
   of larger ACK frames.
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   ACK frames SHOULD always acknowledge the most recently received
   packets, and the more out-of-order the packets are, the more
   important it is to send an updated ACK frame quickly, to prevent the
   peer from declaring a packet as lost and spuriously retransmitting
   the frames it contains.  An ACK frame is expected to fit within a
   single QUIC packet.  If it does not, then older ranges (those with
   the smallest packet numbers) are omitted.

   Section 13.2.4  and Section 13.2.5  describe an exemplary approach for
   determining what packets to acknowledge in each ACK frame.  Though
   the goal of these algorithms is to generate an acknowledgment for
   every packet that is processed, it is still possible for
   acknowledgments to be lost.  A sender cannot expect to receive an
   acknowledgment for every packet that the receiver processes.

13.2.4 .  Receiver Tracking of ACK Frames

   When a packet containing an ACK frame is sent, the largest
   acknowledged in that frame may be saved.  When a packet containing an
   ACK frame is acknowledged, the receiver can stop acknowledging
   packets less than or equal to the largest acknowledged in the sent
   ACK frame.

   In cases without ACK frame loss, this algorithm allows for a minimum
   of 1 RTT of reordering.  In cases with ACK frame loss and reordering,
   this approach does not guarantee that every acknowledgement is seen
   by the sender before it is no longer included in the ACK frame.
   Packets could be received out of order and all subsequent ACK frames
   containing them could be lost.  In this case, the loss recovery
   algorithm could cause spurious retransmits, but the sender will
   continue making forward progress.

13.2.5 .  Limiting ACK Ranges

   A receiver limits the number of ACK Ranges ( Section 19.3.1 ) it
   remembers and sends in ACK frames, both to limit the size of ACK
   frames and to avoid resource exhaustion.  After receiving
   acknowledgments for an ACK frame, the receiver SHOULD stop tracking
   those acknowledged ACK Ranges.

   It is possible that retaining many ACK Ranges could cause an ACK
   frame to become too large.  A receiver can discard unacknowledged ACK
   Ranges to limit ACK frame size, at the cost of increased
   retransmissions from the sender.  This is necessary if an ACK frame
   would be too large to fit in a packet, however receivers MAY also
   limit ACK frame size further to preserve space for other frames.
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   A receiver MUST retain an ACK Range unless it can ensure that it will
   not subsequently accept packets with numbers in that range.
   Maintaining a minimum packet number that increases as ranges are
   discarded is one way to achieve this with minimal state.

   Receivers can discard all ACK Ranges, but they MUST retain the
   largest packet number that has been successfully processed as that is
   used to recover packet numbers from subsequent packets; see
   Section 17.1 .

   A receiver SHOULD include an ACK Range containing the largest
   received packet number in every ACK frame.  The Largest Acknowledged
   field is used in ECN validation at a sender and including a lower
   value than what was included in a previous ACK frame could cause ECN
   to be unnecessarily disabled; see Section 13.4.2 .

   A receiver that sends only non-ack-eliciting packets, such as ACK
   frames, might not receive an acknowledgement for a long period of
   time.  This could cause the receiver to maintain state for a large
   number of ACK frames for a long period of time, and ACK frames it
   sends could be unnecessarily large.  In such a case, a receiver could
   bundle a PING or other small ack-eliciting frame occasionally, such
   as once per round trip, to elicit an ACK from the peer.

   A receiver MUST NOT bundle an ack-eliciting frame with all packets
   that would otherwise be non-ack-eliciting, to avoid an infinite
   feedback loop of acknowledgements.

13.2.6 .  Measuring and Reporting Host Delay

   An endpoint measures the delays intentionally introduced between the
   time the packet with the largest packet number is received and the
   time an acknowledgment is sent.  The endpoint encodes this delay in
   the Ack Delay field of an ACK frame; see Section 19.3 .  This allows
   the receiver of the ACK to adjust for any intentional delays, which
   is important for getting a better estimate of the path RTT when
   acknowledgments are delayed.  A packet might be held in the OS kernel
   or elsewhere on the host before being processed.  An endpoint MUST
   NOT include delays that it does not control when populating the Ack
   Delay field in an ACK frame.

13.2.7 .  ACK Frames and Packet Protection

   ACK frames MUST only be carried in a packet that has the same packet
   number space as the packet being ACKed; see Section 12.1 .  For
   instance, packets that are protected with 1-RTT keys MUST be
   acknowledged in packets that are also protected with 1-RTT keys.
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   Packets that a client sends with 0-RTT packet protection MUST be
   acknowledged by the server in packets protected by 1-RTT keys.  This
   can mean that the client is unable to use these acknowledgments if
   the server cryptographic handshake messages are delayed or lost.
   Note that the same limitation applies to other data sent by the
   server protected by the 1-RTT keys.

13.2.8 .  PADDING Frames Consume Congestion Window

   Packets containing PADDING frames are considered to be in flight for
   congestion control purposes [ QUIC-RECOVERY].  Packets containing only
   PADDING frames therefore consume congestion window but do not
   generate acknowledgments that will open the congestion window.  To
   avoid a deadlock, a sender SHOULD ensure that other frames are sent
   periodically in addition to PADDING frames to elicit acknowledgments
   from the receiver.

13.3 .  Retransmission of Information

   QUIC packets that are determined to be lost are not retransmitted
   whole.  The same applies to the frames that are contained within lost
   packets.  Instead, the information that might be carried in frames is
   sent again in new frames as needed.

   New frames and packets are used to carry information that is
   determined to have been lost.  In general, information is sent again
   when a packet containing that information is determined to be lost
   and sending ceases when a packet containing that information is
   acknowledged.

   *  Data sent in CRYPTO frames is retransmitted according to the rules
      in [ QUIC-RECOVERY], until all data has been acknowledged.  Data in
      CRYPTO frames for Initial and Handshake packets is discarded when
      keys for the corresponding packet number space are discarded.

   *  Application data sent in STREAM frames is retransmitted in new
      STREAM frames unless the endpoint has sent a RESET_STREAM for that
      stream.  Once an endpoint sends a RESET_STREAM frame, no further
      STREAM frames are needed.

   *  ACK frames carry the most recent set of acknowledgements and the
      Ack Delay from the largest acknowledged packet, as described in
      Section 13.2.1 .  Delaying the transmission of packets containing
      ACK frames or sending old ACK frames can cause the peer to
      generate an inflated RTT sample or unnecessarily disable ECN.
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   *  Cancellation of stream transmission, as carried in a RESET_STREAM
      frame, is sent until acknowledged or until all stream data is
      acknowledged by the peer (that is, either the "Reset Recvd" or
      "Data Recvd" state is reached on the sending part of the stream).
      The content of a RESET_STREAM frame MUST NOT change when it is
      sent again.

   *  Similarly, a request to cancel stream transmission, as encoded in
      a STOP_SENDING frame, is sent until the receiving part of the
      stream enters either a "Data Recvd" or "Reset Recvd" state; see
      Section 3.5 .

   *  Connection close signals, including packets that contain
      CONNECTION_CLOSE frames, are not sent again when packet loss is
      detected, but as described in Section 10 .

   *  The current connection maximum data is sent in MAX_DATA frames.
      An updated value is sent in a MAX_DATA frame if the packet
      containing the most recently sent MAX_DATA frame is declared lost,
      or when the endpoint decides to update the limit.  Care is
      necessary to avoid sending this frame too often as the limit can
      increase frequently and cause an unnecessarily large number of
      MAX_DATA frames to be sent.

   *  The current maximum stream data offset is sent in MAX_STREAM_DATA
      frames.  Like MAX_DATA, an updated value is sent when the packet
      containing the most recent MAX_STREAM_DATA frame for a stream is
      lost or when the limit is updated, with care taken to prevent the
      frame from being sent too often.  An endpoint SHOULD stop sending
      MAX_STREAM_DATA frames when the receiving part of the stream
      enters a "Size Known" state.

   *  The limit on streams of a given type is sent in MAX_STREAMS
      frames.  Like MAX_DATA, an updated value is sent when a packet
      containing the most recent MAX_STREAMS for a stream type frame is
      declared lost or when the limit is updated, with care taken to
      prevent the frame from being sent too often.

   *  Blocked signals are carried in DATA_BLOCKED, STREAM_DATA_BLOCKED,
      and STREAMS_BLOCKED frames.  DATA_BLOCKED frames have connection
      scope, STREAM_DATA_BLOCKED frames have stream scope, and
      STREAMS_BLOCKED frames are scoped to a specific stream type.  New
      frames are sent if packets containing the most recent frame for a
      scope is lost, but only while the endpoint is blocked on the
      corresponding limit.  These frames always include the limit that
      is causing blocking at the time that they are transmitted.
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   *  A liveness or path validation check using PATH_CHALLENGE frames is
      sent periodically until a matching PATH_RESPONSE frame is received
      or until there is no remaining need for liveness or path
      validation checking.  PATH_CHALLENGE frames include a different
      payload each time they are sent.

   *  Responses to path validation using PATH_RESPONSE frames are sent
      just once.  The peer is expected to send more PATH_CHALLENGE
      frames as necessary to evoke additional PATH_RESPONSE frames.

   *  New connection IDs are sent in NEW_CONNECTION_ID frames and
      retransmitted if the packet containing them is lost.
      Retransmissions of this frame carry the same sequence number
      value.  Likewise, retired connection IDs are sent in
      RETIRE_CONNECTION_ID frames and retransmitted if the packet
      containing them is lost.

   *  NEW_TOKEN frames are retransmitted if the packet containing them
      is lost.  No special support is made for detecting reordered and
      duplicated NEW_TOKEN frames other than a direct comparison of the
      frame contents.

   *  PING and PADDING frames contain no information, so lost PING or
      PADDING frames do not require repair.

   *  The HANDSHAKE_DONE frame MUST be retransmitted until it is
      acknowledged.

   Endpoints SHOULD prioritize retransmission of data over sending new
   data, unless priorities specified by the application indicate
   otherwise; see Section 2.3 .

   Even though a sender is encouraged to assemble frames containing up-
   to-date information every time it sends a packet, it is not forbidden
   to retransmit copies of frames from lost packets.  A sender that
   retransmits copies of frames needs to handle decreases in available
   payload size due to change in packet number length, connection ID
   length, and path MTU.  A receiver MUST accept packets containing an
   outdated frame, such as a MAX_DATA frame carrying a smaller maximum
   data than one found in an older packet.

   Upon detecting losses, a sender MUST take appropriate congestion
   control action.  The details of loss detection and congestion control
   are described in [ QUIC-RECOVERY].
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13.4 .  Explicit Congestion Notification

   QUIC endpoints can use Explicit Congestion Notification (ECN)
   [ RFC3168] to detect and respond to network congestion.  ECN allows a
   network node to indicate congestion in the network by setting a
   codepoint in the IP header of a packet instead of dropping it.
   Endpoints react to congestion by reducing their sending rate in
   response, as described in [ QUIC-RECOVERY].

   To use ECN, QUIC endpoints first determine whether a path supports
   ECN marking and the peer is able to access the ECN codepoint in the
   IP header.  A network path does not support ECN if ECN marked packets
   get dropped or ECN markings are rewritten on the path.  An endpoint
   validates the use of ECN on the path, both during connection
   establishment and when migrating to a new path ( Section 9 ).

13.4.1 .  ECN Counts

   On receiving a QUIC packet with an ECT or CE codepoint, an ECN-
   enabled endpoint that can access the ECN codepoints from the
   enclosing IP packet increases the corresponding ECT(0), ECT(1), or CE
   count, and includes these counts in subsequent ACK frames; see
   Section 13.2  and Section 19.3 .  Note that this requires being able to
   read the ECN codepoints from the enclosing IP packet, which is not
   possible on all platforms.

   An IP packet that results in no QUIC packets being processed does not
   increase ECN counts.  A QUIC packet detected by a receiver as a
   duplicate does not affect the receiver’s local ECN codepoint counts;
   see Section 21.8  for relevant security concerns.

   If an endpoint receives a QUIC packet without an ECT or CE codepoint
   in the IP packet header, it responds per Section 13.2  with an ACK
   frame without increasing any ECN counts.  If an endpoint does not
   implement ECN support or does not have access to received ECN
   codepoints, it does not increase ECN counts.

   Coalesced packets (see Section 12.2 ) mean that several packets can
   share the same IP header.  The ECN counts for the ECN codepoint
   received in the associated IP header are incremented once for each
   QUIC packet, not per enclosing IP packet or UDP datagram.

   Each packet number space maintains separate acknowledgement state and
   separate ECN counts.  For example, if one each of an Initial, 0-RTT,
   Handshake, and 1-RTT QUIC packet are coalesced, the corresponding
   counts for the Initial and Handshake packet number space will be
   incremented by one and the counts for the 1-RTT packet number space
   will be increased by two.
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13.4.2 .  ECN Validation

   It is possible for faulty network devices to corrupt or erroneously
   drop packets with ECN markings.  To provide robust connectivity in
   the presence of such devices, each endpoint independently validates
   ECN counts and disables ECN if errors are detected.

   Endpoints validate ECN for packets sent on each network path
   independently.  An endpoint thus validates ECN on new connection
   establishment, when switching to a new server preferred address, and
   on active connection migration to a new path.  Appendix B  describes
   one possible algorithm for testing paths for ECN support.

   Even if an endpoint does not use ECN markings on packets it
   transmits, the endpoint MUST provide feedback about ECN markings
   received from the peer if they are accessible.  Failing to report ECN
   counts will cause the peer to disable ECN marking.

13.4.2.1 .  Sending ECN Markings

   To start ECN validation, an endpoint SHOULD do the following when
   sending packets on a new path to a peer:

   *  Set the ECT(0) codepoint in the IP header of early outgoing
      packets sent on a new path to the peer [ RFC8311].

   *  If all packets that were sent with the ECT(0) codepoint are
      eventually deemed lost [ QUIC-RECOVERY], validation is deemed to
      have failed.

   To reduce the chances of misinterpreting congestive loss as packets
   dropped by a faulty network element, an endpoint could set the ECT(0)
   codepoint for only the first ten outgoing packets on a path, or for a
   period of three RTTs, whichever occurs first.

   Other methods of probing paths for ECN support are possible, as are
   different marking strategies.  Implementations MAY use other methods
   defined in RFCs; see [ RFC8311].  Implementations that use the ECT(1)
   codepoint need to perform ECN validation using ECT(1) counts.

13.4.2.2 .  Receiving ACK Frames

   An endpoint that sets ECT(0) or ECT(1) codepoints on packets it
   transmits MUST use the following steps on receiving an ACK frame to
   validate ECN.
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   *  If this ACK frame newly acknowledges a packet that the endpoint
      sent with either ECT(0) or ECT(1) codepoints set, and if no ECN
      feedback is present in the ACK frame, validation fails.  This step
      protects against both a network element that zeroes out ECN bits
      and a peer that is unable to access ECN markings, since the peer
      could respond without ECN feedback in these cases.

   *  For validation to succeed, the total increase in ECT(0), ECT(1),
      and CE counts MUST be no smaller than the total number of QUIC
      packets sent with an ECT codepoint that are newly acknowledged in
      this ACK frame.  This step detects any network remarking from
      ECT(0), ECT(1), or CE codepoints to Not-ECT.

   *  Any increase in either ECT(0) or ECT(1) counts, plus any increase
      in the CE count, MUST be no smaller than the number of packets
      sent with the corresponding ECT codepoint that are newly
      acknowledged in this ACK frame.  This step detects any erroneous
      network remarking from ECT(0) to ECT(1) (or vice versa).

   Processing ECN counts out of order can result in validation failure.
   An endpoint SHOULD NOT perform this validation if this ACK frame does
   not advance the largest packet number acknowledged in this
   connection.

   An endpoint could miss acknowledgements for a packet when ACK frames
   are lost.  It is therefore possible for the total increase in ECT(0),
   ECT(1), and CE counts to be greater than the number of packets
   acknowledged in an ACK frame.  When this happens, and if validation
   succeeds, the local reference counts MUST be increased to match the
   counts in the ACK frame.

13.4.2.3 .  Validation Outcomes

   If validation fails, then the endpoint stops sending ECN markings in
   subsequent IP packets with the expectation that either the network
   path or the peer does not support ECN.

   Upon successful validation, an endpoint can continue to set ECT
   codepoints in subsequent packets with the expectation that the path
   is ECN-capable.  Network routing and path elements can change mid-
   connection however; an endpoint MUST disable ECN if validation fails
   at any point in the connection.

   Even if validation fails, an endpoint MAY revalidate ECN on the same
   path at any later time in the connection.
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14.  Packet Size

   The QUIC packet size includes the QUIC header and protected payload,
   but not the UDP or IP headers.

   QUIC depends upon a minimum IP packet size of at least 1280 bytes.
   This is the IPv6 minimum size [ RFC8200] and is also supported by most
   modern IPv4 networks.  Assuming the minimum IP header size, this
   results in a QUIC maximum packet size of 1232 bytes for IPv6 and 1252
   bytes for IPv4.

   The QUIC maximum packet size is the largest size of QUIC packet that
   can be sent across a network path using a single packet.  Any maximum
   packet size larger than 1200 bytes can be discovered using Path
   Maximum Transmission Unit Discovery (PMTUD; see Section 14.2.1 ) or
   Datagram Packetization Layer PMTU Discovery (DPLPMTUD; see
   Section 14.3 ).

   Enforcement of the max_udp_payload_size transport parameter
   ( Section 18.2 ) might act as an additional limit on the maximum packet
   size.  A sender can avoid exceeding this limit, once the value is
   known.  However, prior to learning the value of the transport
   parameter, endpoints risk datagrams being lost if they send packets
   larger than the smallest allowed maximum packet size of 1200 bytes.

   UDP datagrams MUST NOT be fragmented at the IP layer.  In IPv4
   [ IPv4 ], the DF bit MUST be set to prevent fragmentation on the path.

14.1 .  Initial Packet Size

   A client MUST expand the payload of all UDP datagrams carrying
   Initial packets to at least the smallest allowed maximum packet size
   (1200 bytes) by adding PADDING frames to the Initial packet or by
   coalescing the Initial packet; see Section 12.2 .  Sending a UDP
   datagram of this size ensures that the network path from the client
   to the server supports a reasonable Path Maximum Transmission Unit
   (PMTU).  This also helps reduce the amplitude of amplification
   attacks caused by server responses toward an unverified client
   address; see Section 8 .

   Datagrams containing Initial packets MAY exceed 1200 bytes if the
   client believes that the network path and peer both support the size
   that it chooses.
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   A server MUST discard an Initial packet that is carried in a UDP
   datagram with a payload that is less than the smallest allowed
   maximum packet size of 1200 bytes.  A server MAY also immediately
   close the connection by sending a CONNECTION_CLOSE frame with an
   error code of PROTOCOL_VIOLATION; see Section 10.3.1 .

   The server MUST also limit the number of bytes it sends before
   validating the address of the client; see Section 8 .

14.2 .  Path Maximum Transmission Unit (PMTU)

   The Path Maximum Transmission Unit (PMTU) is the maximum size of the
   entire IP packet including the IP header, UDP header, and UDP
   payload.  The UDP payload includes the QUIC packet header, protected
   payload, and any authentication fields.  The PMTU can depend on path
   characteristics, and can therefore change over time.  The largest UDP
   payload an endpoint sends at any given time is referred to as the
   endpoint’s maximum packet size.

   An endpoint SHOULD use DPLPMTUD ( Section 14.3 ) or PMTUD
   ( Section 14.2.1 ) to determine whether the path to a destination will
   support a desired maximum packet size without fragmentation.  In the
   absence of these mechanisms, QUIC endpoints SHOULD NOT send IP
   packets larger than the smallest allowed maximum packet size.

   Both DPLPMTUD and PMTUD send IP packets that are larger than the
   current maximum packet size.  We refer to these as PMTU probes.  All
   QUIC packets that are not sent in a PMTU probe SHOULD be sized to fit
   within the maximum packet size to avoid the packet being fragmented
   or dropped [ RFC8085].

   If a QUIC endpoint determines that the PMTU between any pair of local
   and remote IP addresses has fallen below the smallest allowed maximum
   packet size of 1200 bytes, it MUST immediately cease sending QUIC
   packets, except for those in PMTU probes or those containing
   CONNECTION_CLOSE frames, on the affected path.  An endpoint MAY
   terminate the connection if an alternative path cannot be found.

   Each pair of local and remote addresses could have a different PMTU.
   QUIC implementations that implement any kind of PMTU discovery
   therefore SHOULD maintain a maximum packet size for each combination
   of local and remote IP addresses.

   A QUIC implementation MAY be more conservative in computing the
   maximum packet size to allow for unknown tunnel overheads or IP
   header options/extensions.
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14.2.1 .  Handling of ICMP Messages by PMTUD

   Path Maximum Transmission Unit Discovery (PMTUD; [ RFC1191],
   [ RFC8201]) relies on reception of ICMP messages (e.g., IPv6 Packet
   Too Big messages) that indicate when a packet is dropped because it
   is larger than the local router MTU.  DPLPMTUD can also optionally
   use these messages.  This use of ICMP messages is potentially
   vulnerable to off-path attacks that successfully guess the addresses
   used on the path and reduce the PMTU to a bandwidth-inefficient
   value.

   An endpoint MUST ignore an ICMP message that claims the PMTU has
   decreased below the minimum QUIC packet size.

   The requirements for generating ICMP ([ RFC1812], [ RFC4443]) state
   that the quoted packet should contain as much of the original packet
   as possible without exceeding the minimum MTU for the IP version.
   The size of the quoted packet can actually be smaller, or the
   information unintelligible, as described in Section 1.1 of
   [ DPLPMTUD].

   QUIC endpoints using PMTUD SHOULD validate ICMP messages to protect
   from off-path injection as specified in [ RFC8201] and Section 5.2 of
   [RFC8085] .  This validation SHOULD use the quoted packet supplied in
   the payload of an ICMP message to associate the message with a
   corresponding transport connection (see Section 4.6.1 of [ DPLPMTUD]).
   ICMP message validation MUST include matching IP addresses and UDP
   ports [ RFC8085] and, when possible, connection IDs to an active QUIC
   session.  The endpoint SHOULD ignore all ICMP messages that fail
   validation.

   An endpoint MUST NOT increase PMTU based on ICMP messages; see
   Section 3 , clause 6 of [ DPLPMTUD].  Any reduction in the QUIC maximum
   packet size in response to ICMP messages MAY be provisional until
   QUIC’s loss detection algorithm determines that the quoted packet has
   actually been lost.

14.3 .  Datagram Packetization Layer PMTU Discovery

   Datagram Packetization Layer PMTU Discovery (DPLPMTUD; [ DPLPMTUD])
   relies on tracking loss or acknowledgment of QUIC packets that are
   carried in PMTU probes.  PMTU probes for DPLPMTUD that use the
   PADDING frame implement "Probing using padding data", as defined in
   Section 4.1 of [ DPLPMTUD].

   Endpoints SHOULD set the initial value of BASE_PMTU (see Section 5.1
   of [ DPLPMTUD]) to be consistent with the minimum QUIC packet size.
   The MIN_PLPMTU is the same as the BASE_PMTU.
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   QUIC endpoints implementing DPLPMTUD maintain a maximum packet size
   (DPLPMTUD MPS) for each combination of local and remote IP addresses.

14.3.1 .  DPLPMTUD and Initial Connectivity

   From the perspective of DPLPMTUD, QUIC transport is an acknowledged
   packetization layer (PL).  A sender can therefore enter the DPLPMTUD
   BASE state when the QUIC connection handshake has been completed.

14.3.2 .  Validating the QUIC Path with DPLPMTUD

   QUIC provides an acknowledged PL, therefore a sender does not
   implement the DPLPMTUD CONFIRMATION_TIMER while in the
   SEARCH_COMPLETE state; see Section 5.2 of [ DPLPMTUD].

14.3.3 .  Handling of ICMP Messages by DPLPMTUD

   An endpoint using DPLPMTUD requires the validation of any received
   ICMP Packet Too Big (PTB) message before using the PTB information,
   as defined in Section 4.6 of [ DPLPMTUD].  In addition to UDP port
   validation, QUIC validates an ICMP message by using other PL
   information (e.g., validation of connection IDs in the quoted packet
   of any received ICMP message).

   The considerations for processing ICMP messages described in
   Section 14.2.1  also apply if these messages are used by DPLPMTUD.

14.4 .  Sending QUIC PMTU Probes

   PMTU probes are ack-eliciting packets.

   Endpoints could limit the content of PMTU probes to PING and PADDING
   frames as packets that are larger than the current maximum packet
   size are more likely to be dropped by the network.  Loss of a QUIC
   packet that is carried in a PMTU probe is therefore not a reliable
   indication of congestion and SHOULD NOT trigger a congestion control
   reaction; see Section 3 , Bullet 7 of [ DPLPMTUD].  However, PMTU
   probes consume congestion window, which could delay subsequent
   transmission by an application.
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14.4.1 .  PMTU Probes Containing Source Connection ID

   Endpoints that rely on the destination connection ID for routing
   incoming QUIC packets are likely to require that the connection ID be
   included in PMTU probes to route any resulting ICMP messages
   ( Section 14.2.1 ) back to the correct endpoint.  However, only long
   header packets ( Section 17.2 ) contain the Source Connection ID field,
   and long header packets are not decrypted or acknowledged by the peer
   once the handshake is complete.

   One way to construct a PMTU probe is to coalesce (see Section 12.2 ) a
   packet with a long header, such as a Handshake or 0-RTT packet
   ( Section 17.2 ), with a short header packet in a single UDP datagram.
   If the resulting PMTU probe reaches the endpoint, the packet with the
   long header will be ignored, but the short header packet will be
   acknowledged.  If the PMTU probe causes an ICMP message to be sent,
   the first part of the probe will be quoted in that message.  If the
   Source Connection ID field is within the quoted portion of the probe,
   that could be used for routing or validation of the ICMP message.

   Note:  The purpose of using a packet with a long header is only to
      ensure that the quoted packet contained in the ICMP message
      contains a Source Connection ID field.  This packet does not need
      to be a valid packet and it can be sent even if there is no
      current use for packets of that type.

15.  Versions

   QUIC versions are identified using a 32-bit unsigned number.

   The version 0x00000000 is reserved to represent version negotiation.
   This version of the specification is identified by the number
   0x00000001.

   Other versions of QUIC might have different properties to this
   version.  The properties of QUIC that are guaranteed to be consistent
   across all versions of the protocol are described in
   [ QUIC-INVARIANTS ].

   Version 0x00000001 of QUIC uses TLS as a cryptographic handshake
   protocol, as described in [ QUIC-TLS ].

   Versions with the most significant 16 bits of the version number
   cleared are reserved for use in future IETF consensus documents.
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   Versions that follow the pattern 0x?a?a?a?a are reserved for use in
   forcing version negotiation to be exercised.  That is, any version
   number where the low four bits of all bytes is 1010 (in binary).  A
   client or server MAY advertise support for any of these reserved
   versions.

   Reserved version numbers will never represent a real protocol; a
   client MAY use one of these version numbers with the expectation that
   the server will initiate version negotiation; a server MAY advertise
   support for one of these versions and can expect that clients ignore
   the value.

   [[RFC editor: please remove the remainder of this section before
   publication.]]

   The version number for the final version of this specification
   (0x00000001), is reserved for the version of the protocol that is
   published as an RFC.

   Version numbers used to identify IETF drafts are created by adding
   the draft number to 0xff000000.  For example, draft-ietf-quic-
   transport-13  would be identified as 0xff00000D.

   Implementors are encouraged to register version numbers of QUIC that
   they are using for private experimentation on the GitHub wiki at
   https://github.com/quicwg/base-drafts/wiki/QUIC-Versions .

16.  Variable-Length Integer Encoding

   QUIC packets and frames commonly use a variable-length encoding for
   non-negative integer values.  This encoding ensures that smaller
   integer values need fewer bytes to encode.

   The QUIC variable-length integer encoding reserves the two most
   significant bits of the first byte to encode the base 2 logarithm of
   the integer encoding length in bytes.  The integer value is encoded
   on the remaining bits, in network byte order.

   This means that integers are encoded on 1, 2, 4, or 8 bytes and can
   encode 6, 14, 30, or 62 bit values respectively.  Table 4 summarizes
   the encoding properties.
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          +------+--------+-------------+-----------------------+
          | 2Bit | Length | Usable Bits | Range                 |
          +======+========+=============+=======================+
          | 00   | 1      | 6           | 0-63                  |
          +------+--------+-------------+-----------------------+
          | 01   | 2      | 14          | 0-16383               |
          +------+--------+-------------+-----------------------+
          | 10   | 4      | 30          | 0-1073741823          |
          +------+--------+-------------+-----------------------+
          | 11   | 8      | 62          | 0-4611686018427387903 |
          +------+--------+-------------+-----------------------+

                   Table 4: Summary of Integer Encodings

   For example, the eight byte sequence c2 19 7c 5e ff 14 e8 8c (in
   hexadecimal) decodes to the decimal value 151288809941952652; the
   four byte sequence 9d 7f 3e 7d decodes to 494878333; the two byte
   sequence 7b bd decodes to 15293; and the single byte 25 decodes to 37
   (as does the two byte sequence 40 25).

   Error codes ( Section 20 ) and versions ( Section 15 ) are described
   using integers, but do not use this encoding.

17.  Packet Formats

   All numeric values are encoded in network byte order (that is, big-
   endian) and all field sizes are in bits.  Hexadecimal notation is
   used for describing the value of fields.

17.1 .  Packet Number Encoding and Decoding

   Packet numbers are integers in the range 0 to 2^62-1 ( Section 12.3 ).
   When present in long or short packet headers, they are encoded in 1
   to 4 bytes.  The number of bits required to represent the packet
   number is reduced by including the least significant bits of the
   packet number.

   The encoded packet number is protected as described in Section 5.4 of
   [ QUIC-TLS ].
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   The sender MUST use a packet number size able to represent more than
   twice as large a range than the difference between the largest
   acknowledged packet and packet number being sent.  A peer receiving
   the packet will then correctly decode the packet number, unless the
   packet is delayed in transit such that it arrives after many higher-
   numbered packets have been received.  An endpoint SHOULD use a large
   enough packet number encoding to allow the packet number to be
   recovered even if the packet arrives after packets that are sent
   afterwards.

   As a result, the size of the packet number encoding is at least one
   bit more than the base-2 logarithm of the number of contiguous
   unacknowledged packet numbers, including the new packet.

   For example, if an endpoint has received an acknowledgment for packet
   0xabe8bc, sending a packet with a number of 0xac5c02 requires a
   packet number encoding with 16 bits or more; whereas the 24-bit
   packet number encoding is needed to send a packet with a number of
   0xace8fe.

   At a receiver, protection of the packet number is removed prior to
   recovering the full packet number.  The full packet number is then
   reconstructed based on the number of significant bits present, the
   value of those bits, and the largest packet number received on a
   successfully authenticated packet.  Recovering the full packet number
   is necessary to successfully remove packet protection.

   Once header protection is removed, the packet number is decoded by
   finding the packet number value that is closest to the next expected
   packet.  The next expected packet is the highest received packet
   number plus one.  For example, if the highest successfully
   authenticated packet had a packet number of 0xa82f30ea, then a packet
   containing a 16-bit value of 0x9b32 will be decoded as 0xa82f9b32.
   Example pseudo-code for packet number decoding can be found in
   Appendix A .

17.2 .  Long Header Packets
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   Long Header Packet {
     Header Form (1) = 1,
     Fixed Bit (1) = 1,
     Long Packet Type (2),
     Type-Specific Bits (4),
     Version (32),
     Destination Connection ID Length (8),
     Destination Connection ID (0..160),
     Source Connection ID Length (8),
     Source Connection ID (0..160),
   }

                    Figure 12: Long Header Packet Format

   Long headers are used for packets that are sent prior to the
   establishment of 1-RTT keys.  Once 1-RTT keys are available, a sender
   switches to sending packets using the short header ( Section 17.3 ).
   The long form allows for special packets - such as the Version
   Negotiation packet - to be represented in this uniform fixed-length
   packet format.  Packets that use the long header contain the
   following fields:

   Header Form:  The most significant bit (0x80) of byte 0 (the first
      byte) is set to 1 for long headers.

   Fixed Bit:  The next bit (0x40) of byte 0 is set to 1.  Packets
      containing a zero value for this bit are not valid packets in this
      version and MUST be discarded.

   Long Packet Type:  The next two bits (those with a mask of 0x30) of
      byte 0 contain a packet type.  Packet types are listed in Table 5.

   Type-Specific Bits:  The lower four bits (those with a mask of 0x0f)
      of byte 0 are type-specific.

   Version:  The QUIC Version is a 32-bit field that follows the first
      byte.  This field indicates which version of QUIC is in use and
      determines how the rest of the protocol fields are interpreted.

   Destination Connection ID Length:  The byte following the version
      contains the length in bytes of the Destination Connection ID
      field that follows it.  This length is encoded as an 8-bit
      unsigned integer.  In QUIC version 1, this value MUST NOT exceed
      20.  Endpoints that receive a version 1 long header with a value
      larger than 20 MUST drop the packet.  Servers SHOULD be able to
      read longer connection IDs from other QUIC versions in order to
      properly form a version negotiation packet.
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   Destination Connection ID:  The Destination Connection ID field
      follows the Destination Connection ID Length field and is between
      0 and 20 bytes in length.  Section 7.2  describes the use of this
      field in more detail.

   Source Connection ID Length:  The byte following the Destination
      Connection ID contains the length in bytes of the Source
      Connection ID field that follows it.  This length is encoded as a
      8-bit unsigned integer.  In QUIC version 1, this value MUST NOT
      exceed 20 bytes.  Endpoints that receive a version 1 long header
      with a value larger than 20 MUST drop the packet.  Servers SHOULD
      be able to read longer connection IDs from other QUIC versions in
      order to properly form a version negotiation packet.

   Source Connection ID:  The Source Connection ID field follows the
      Source Connection ID Length field and is between 0 and 20 bytes in
      length.  Section 7.2  describes the use of this field in more
      detail.

   In this version of QUIC, the following packet types with the long
   header are defined:

                   +------+-----------+----------------+
                   | Type | Name      | Section        |
                   +======+===========+================+
                   |  0x0 | Initial   | Section 17.2.2  |
                   +------+-----------+----------------+
                   |  0x1 | 0-RTT     | Section 17.2.3  |
                   +------+-----------+----------------+
                   |  0x2 | Handshake | Section 17.2.4  |
                   +------+-----------+----------------+
                   |  0x3 | Retry     | Section 17.2.5  |
                   +------+-----------+----------------+

                     Table 5: Long Header Packet Types

   The header form bit, connection ID lengths byte, Destination and
   Source Connection ID fields, and Version fields of a long header
   packet are version-independent.  The other fields in the first byte
   are version-specific.  See [ QUIC-INVARIANTS ] for details on how
   packets from different versions of QUIC are interpreted.

   The interpretation of the fields and the payload are specific to a
   version and packet type.  While type-specific semantics for this
   version are described in the following sections, several long-header
   packets in this version of QUIC contain these additional fields:

   Reserved Bits:  Two bits (those with a mask of 0x0c) of byte 0 are
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      reserved across multiple packet types.  These bits are protected
      using header protection; see Section 5.4 of [ QUIC-TLS ].  The value
      included prior to protection MUST be set to 0.  An endpoint MUST
      treat receipt of a packet that has a non-zero value for these
      bits, after removing both packet and header protection, as a
      connection error of type PROTOCOL_VIOLATION.  Discarding such a
      packet after only removing header protection can expose the
      endpoint to attacks; see Section 9.3 of [ QUIC-TLS ].

   Packet Number Length:  In packet types which contain a Packet Number
      field, the least significant two bits (those with a mask of 0x03)
      of byte 0 contain the length of the packet number, encoded as an
      unsigned, two-bit integer that is one less than the length of the
      packet number field in bytes.  That is, the length of the packet
      number field is the value of this field, plus one.  These bits are
      protected using header protection; see Section 5.4 of [ QUIC-TLS ].

   Length:  The length of the remainder of the packet (that is, the
      Packet Number and Payload fields) in bytes, encoded as a variable-
      length integer ( Section 16 ).

   Packet Number:  The packet number field is 1 to 4 bytes long.  The
      packet number has confidentiality protection separate from packet
      protection, as described in Section 5.4 of [ QUIC-TLS ].  The length
      of the packet number field is encoded in the Packet Number Length
      bits of byte 0; see above.

17.2.1 .  Version Negotiation Packet

   A Version Negotiation packet is inherently not version-specific.
   Upon receipt by a client, it will be identified as a Version
   Negotiation packet based on the Version field having a value of 0.

   The Version Negotiation packet is a response to a client packet that
   contains a version that is not supported by the server, and is only
   sent by servers.

   The layout of a Version Negotiation packet is:
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   Version Negotiation Packet {
     Header Form (1) = 1,
     Unused (7),
     Version (32) = 0,
     Destination Connection ID Length (8),
     Destination Connection ID (0..2040),
     Source Connection ID Length (8),
     Source Connection ID (0..2040),
     Supported Version (32) ...,
   }

                   Figure 13: Version Negotiation Packet

   The value in the Unused field is selected randomly by the server.
   Clients MUST ignore the value of this field.  Servers SHOULD set the
   most significant bit of this field (0x40) to 1 so that Version
   Negotiation packets appear to have the Fixed Bit field.

   The Version field of a Version Negotiation packet MUST be set to
   0x00000000.

   The server MUST include the value from the Source Connection ID field
   of the packet it receives in the Destination Connection ID field.
   The value for Source Connection ID MUST be copied from the
   Destination Connection ID of the received packet, which is initially
   randomly selected by a client.  Echoing both connection IDs gives
   clients some assurance that the server received the packet and that
   the Version Negotiation packet was not generated by an off-path
   attacker.

   As future versions of QUIC may support Connection IDs larger than the
   version 1 limit, Version Negotiation packets could carry Connection
   IDs that are longer than 20 bytes.

   The remainder of the Version Negotiation packet is a list of 32-bit
   versions which the server supports.

   A Version Negotiation packet cannot be explicitly acknowledged in an
   ACK frame by a client.  Receiving another Initial packet implicitly
   acknowledges a Version Negotiation packet.

   The Version Negotiation packet does not include the Packet Number and
   Length fields present in other packets that use the long header form.
   Consequently, a Version Negotiation packet consumes an entire UDP
   datagram.

   A server MUST NOT send more than one Version Negotiation packet in
   response to a single UDP datagram.
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   See Section 6  for a description of the version negotiation process.

17.2.2 .  Initial Packet

   An Initial packet uses long headers with a type value of 0x0.  It
   carries the first CRYPTO frames sent by the client and server to
   perform key exchange, and carries ACKs in either direction.

   Initial Packet {
     Header Form (1) = 1,
     Fixed Bit (1) = 1,
     Long Packet Type (2) = 0,
     Reserved Bits (2),
     Packet Number Length (2),
     Version (32),
     Destination Connection ID Length (8),
     Destination Connection ID (0..160),
     Source Connection ID Length (8),
     Source Connection ID (0..160),
     Token Length (i),
     Token (..),
     Length (i),
     Packet Number (8..32),
     Packet Payload (..),
   }

                         Figure 14: Initial Packet

   The Initial packet contains a long header as well as the Length and
   Packet Number fields.  The first byte contains the Reserved and
   Packet Number Length bits.  Between the Source Connection ID and
   Length fields, there are two additional fields specific to the
   Initial packet.

   Token Length:  A variable-length integer specifying the length of the
      Token field, in bytes.  This value is zero if no token is present.
      Initial packets sent by the server MUST set the Token Length field
      to zero; clients that receive an Initial packet with a non-zero
      Token Length field MUST either discard the packet or generate a
      connection error of type PROTOCOL_VIOLATION.

   Token:  The value of the token that was previously provided in a
      Retry packet or NEW_TOKEN frame.

   Packet Payload:  The payload of the packet.
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   In order to prevent tampering by version-unaware middleboxes, Initial
   packets are protected with connection- and version-specific keys
   (Initial keys) as described in [ QUIC-TLS ].  This protection does not
   provide confidentiality or integrity against on-path attackers, but
   provides some level of protection against off-path attackers.

   The client and server use the Initial packet type for any packet that
   contains an initial cryptographic handshake message.  This includes
   all cases where a new packet containing the initial cryptographic
   message needs to be created, such as the packets sent after receiving
   a Retry packet ( Section 17.2.5 ).

   A server sends its first Initial packet in response to a client
   Initial.  A server may send multiple Initial packets.  The
   cryptographic key exchange could require multiple round trips or
   retransmissions of this data.

   The payload of an Initial packet includes a CRYPTO frame (or frames)
   containing a cryptographic handshake message, ACK frames, or both.
   PING, PADDING, and CONNECTION_CLOSE frames of type 0x1c are also
   permitted.  An endpoint that receives an Initial packet containing
   other frames can either discard the packet as spurious or treat it as
   a connection error.

   The first packet sent by a client always includes a CRYPTO frame that
   contains the start or all of the first cryptographic handshake
   message.  The first CRYPTO frame sent always begins at an offset of
   0; see Section 7 .

   Note that if the server sends a HelloRetryRequest, the client will
   send another series of Initial packets.  These Initial packets will
   continue the cryptographic handshake and will contain CRYPTO frames
   starting at an offset matching the size of the CRYPTO frames sent in
   the first flight of Initial packets.

17.2.2.1 .  Abandoning Initial Packets

   A client stops both sending and processing Initial packets when it
   sends its first Handshake packet.  A server stops sending and
   processing Initial packets when it receives its first Handshake
   packet.  Though packets might still be in flight or awaiting
   acknowledgment, no further Initial packets need to be exchanged
   beyond this point.  Initial packet protection keys are discarded (see
   Section 4.11.1 of [ QUIC-TLS ]) along with any loss recovery and
   congestion control state; see Section 6.4 of [ QUIC-RECOVERY].

   Any data in CRYPTO frames is discarded - and no longer retransmitted
   - when Initial keys are discarded.
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17.2.3 .  0-RTT

   A 0-RTT packet uses long headers with a type value of 0x1, followed
   by the Length and Packet Number fields.  The first byte contains the
   Reserved and Packet Number Length bits.  It is used to carry "early"
   data from the client to the server as part of the first flight, prior
   to handshake completion.  As part of the TLS handshake, the server
   can accept or reject this early data.

   See Section 2.3 of [ TLS13] for a discussion of 0-RTT data and its
   limitations.

   0-RTT Packet {
     Header Form (1) = 1,
     Fixed Bit (1) = 1,
     Long Packet Type (2) = 1,
     Reserved Bits (2),
     Packet Number Length (2),
     Version (32),
     Destination Connection ID Length (8),
     Destination Connection ID (0..160),
     Source Connection ID Length (8),
     Source Connection ID (0..160),
     Length (i),
     Packet Number (8..32),
     Packet Payload (..),
   }

                          Figure 15: 0-RTT Packet

   Packet numbers for 0-RTT protected packets use the same space as
   1-RTT protected packets.

   After a client receives a Retry packet, 0-RTT packets are likely to
   have been lost or discarded by the server.  A client SHOULD attempt
   to resend data in 0-RTT packets after it sends a new Initial packet.

   A client MUST NOT reset the packet number it uses for 0-RTT packets,
   since the keys used to protect 0-RTT packets will not change as a
   result of responding to a Retry packet.  Sending packets with the
   same packet number in that case is likely to compromise the packet
   protection for all 0-RTT packets because the same key and nonce could
   be used to protect different content.

   A client only receives acknowledgments for its 0-RTT packets once the
   handshake is complete.  Consequently, a server might expect 0-RTT
   packets to start with a packet number of 0.  Therefore, in
   determining the length of the packet number encoding for 0-RTT
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   packets, a client MUST assume that all packets up to the current
   packet number are in flight, starting from a packet number of 0.
   Thus, 0-RTT packets could need to use a longer packet number
   encoding.

   A client MUST NOT send 0-RTT packets once it starts processing 1-RTT
   packets from the server.  This means that 0-RTT packets cannot
   contain any response to frames from 1-RTT packets.  For instance, a
   client cannot send an ACK frame in a 0-RTT packet, because that can
   only acknowledge a 1-RTT packet.  An acknowledgment for a 1-RTT
   packet MUST be carried in a 1-RTT packet.

   A server SHOULD treat a violation of remembered limits as a
   connection error of an appropriate type (for instance, a
   FLOW_CONTROL_ERROR for exceeding stream data limits).

17.2.4 .  Handshake Packet

   A Handshake packet uses long headers with a type value of 0x2,
   followed by the Length and Packet Number fields.  The first byte
   contains the Reserved and Packet Number Length bits.  It is used to
   carry acknowledgments and cryptographic handshake messages from the
   server and client.

   Handshake Packet {
     Header Form (1) = 1,
     Fixed Bit (1) = 1,
     Long Packet Type (2) = 2,
     Reserved Bits (2),
     Packet Number Length (2),
     Version (32),
     Destination Connection ID Length (8),
     Destination Connection ID (0..160),
     Source Connection ID Length (8),
     Source Connection ID (0..160),
     Length (i),
     Packet Number (8..32),
     Packet Payload (..),
   }

                   Figure 16: Handshake Protected Packet

   Once a client has received a Handshake packet from a server, it uses
   Handshake packets to send subsequent cryptographic handshake messages
   and acknowledgments to the server.
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   The Destination Connection ID field in a Handshake packet contains a
   connection ID that is chosen by the recipient of the packet; the
   Source Connection ID includes the connection ID that the sender of
   the packet wishes to use; see Section 7.2 .

   Handshake packets are their own packet number space, and thus the
   first Handshake packet sent by a server contains a packet number of
   0.

   The payload of this packet contains CRYPTO frames and could contain
   PING, PADDING, or ACK frames.  Handshake packets MAY contain
   CONNECTION_CLOSE frames of type 0x1c.  Endpoints MUST treat receipt
   of Handshake packets with other frames as a connection error.

   Like Initial packets (see Section 17.2.2.1 ), data in CRYPTO frames
   for Handshake packets is discarded - and no longer retransmitted -
   when Handshake protection keys are discarded.

17.2.5 .  Retry Packet

   A Retry packet uses a long packet header with a type value of 0x3.
   It carries an address validation token created by the server.  It is
   used by a server that wishes to perform a retry; see Section 8.1 .

   Retry Packet {
     Header Form (1) = 1,
     Fixed Bit (1) = 1,
     Long Packet Type (2) = 3,
     Unused (4),
     Version (32),
     Destination Connection ID Length (8),
     Destination Connection ID (0..160),
     Source Connection ID Length (8),
     Source Connection ID (0..160),
     Retry Token (..),
     Retry Integrity Tag (128),
   }

                          Figure 17: Retry Packet

   A Retry packet (shown in Figure 17) does not contain any protected
   fields.  The value in the Unused field is selected randomly by the
   server.  In addition to the fields from the long header, it contains
   these additional fields:

   Retry Token:  An opaque token that the server can use to validate the
      client’s address.
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   Retry Integrity Tag:  See the Retry Packet Integrity section of
      [ QUIC-TLS ].

17.2.5.1 .  Sending a Retry Packet

   The server populates the Destination Connection ID with the
   connection ID that the client included in the Source Connection ID of
   the Initial packet.

   The server includes a connection ID of its choice in the Source
   Connection ID field.  This value MUST NOT be equal to the Destination
   Connection ID field of the packet sent by the client.  A client MUST
   discard a Retry packet that contains a Source Connection ID field
   that is identical to the Destination Connection ID field of its
   Initial packet.  The client MUST use the value from the Source
   Connection ID field of the Retry packet in the Destination Connection
   ID field of subsequent packets that it sends.

   A server MAY send Retry packets in response to Initial and 0-RTT
   packets.  A server can either discard or buffer 0-RTT packets that it
   receives.  A server can send multiple Retry packets as it receives
   Initial or 0-RTT packets.  A server MUST NOT send more than one Retry
   packet in response to a single UDP datagram.

17.2.5.2 .  Handling a Retry Packet

   A client MUST accept and process at most one Retry packet for each
   connection attempt.  After the client has received and processed an
   Initial or Retry packet from the server, it MUST discard any
   subsequent Retry packets that it receives.

   Clients MUST discard Retry packets that have a Retry Integrity Tag
   that cannot be validated, see the Retry Packet Integrity section of
   [ QUIC-TLS ].  This diminishes an off-path attacker’s ability to inject
   a Retry packet and protects against accidental corruption of Retry
   packets.  A client MUST discard a Retry packet with a zero-length
   Retry Token field.

   The client responds to a Retry packet with an Initial packet that
   includes the provided Retry Token to continue connection
   establishment.
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   A client sets the Destination Connection ID field of this Initial
   packet to the value from the Source Connection ID in the Retry
   packet.  Changing Destination Connection ID also results in a change
   to the keys used to protect the Initial packet.  It also sets the
   Token field to the token provided in the Retry.  The client MUST NOT
   change the Source Connection ID because the server could include the
   connection ID as part of its token validation logic; see
   Section 8.1.4 .

   A Retry packet does not include a packet number and cannot be
   explicitly acknowledged by a client.

17.2.5.3 .  Continuing a Handshake After Retry

   The next Initial packet from the client uses the connection ID and
   token values from the Retry packet; see Section 7.2 .  Aside from
   this, the Initial packet sent by the client is subject to the same
   restrictions as the first Initial packet.  A client MUST use the same
   cryptographic handshake message it includes in this packet.  A server
   MAY treat a packet that contains a different cryptographic handshake
   message as a connection error or discard it.

   A client MAY attempt 0-RTT after receiving a Retry packet by sending
   0-RTT packets to the connection ID provided by the server.  A client
   MUST NOT change the cryptographic handshake message it sends in
   response to receiving a Retry.

   A client MUST NOT reset the packet number for any packet number space
   after processing a Retry packet; Section 17.2.3  contains more
   information on this.

   A server acknowledges the use of a Retry packet for a connection
   using the retry_source_connection_id transport parameter; see
   Section 18.2 .  If the server sends a Retry packet, it also
   subsequently includes the value of the Source Connection ID field
   from the Retry packet in its retry_source_connection_id transport
   parameter.

   If the client received and processed a Retry packet, it MUST validate
   that the retry_source_connection_id transport parameter is present
   and correct; otherwise, it MUST validate that the transport parameter
   is absent.  A client MUST treat a failed validation as a connection
   error of type PROTOCOL_VIOLATION.

17.3 .  Short Header Packets

   This version of QUIC defines a single packet type which uses the
   short packet header.
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   Short Header Packet {
     Header Form (1) = 0,
     Fixed Bit (1) = 1,
     Spin Bit (1),
     Reserved Bits (2),
     Key Phase (1),
     Packet Number Length (2),
     Destination Connection ID (0..160),
     Packet Number (8..32),
     Packet Payload (..),
   }

                   Figure 18: Short Header Packet Format

   The short header can be used after the version and 1-RTT keys are
   negotiated.  Packets that use the short header contain the following
   fields:

   Header Form:  The most significant bit (0x80) of byte 0 is set to 0
      for the short header.

   Fixed Bit:  The next bit (0x40) of byte 0 is set to 1.  Packets
      containing a zero value for this bit are not valid packets in this
      version and MUST be discarded.

   Spin Bit:  The third most significant bit (0x20) of byte 0 is the
      latency spin bit, set as described in Section 17.3.1 .

   Reserved Bits:  The next two bits (those with a mask of 0x18) of byte
      0 are reserved.  These bits are protected using header protection;
      see Section 5.4 of [ QUIC-TLS ].  The value included prior to
      protection MUST be set to 0.  An endpoint MUST treat receipt of a
      packet that has a non-zero value for these bits, after removing
      both packet and header protection, as a connection error of type
      PROTOCOL_VIOLATION.  Discarding such a packet after only removing
      header protection can expose the endpoint to attacks; see
      Section 9.3 of [ QUIC-TLS ].

   Key Phase:  The next bit (0x04) of byte 0 indicates the key phase,
      which allows a recipient of a packet to identify the packet
      protection keys that are used to protect the packet.  See
      [ QUIC-TLS ] for details.  This bit is protected using header
      protection; see Section 5.4 of [ QUIC-TLS ].

   Packet Number Length:  The least significant two bits (those with a
      mask of 0x03) of byte 0 contain the length of the packet number,
      encoded as an unsigned, two-bit integer that is one less than the
      length of the packet number field in bytes.  That is, the length
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      of the packet number field is the value of this field, plus one.
      These bits are protected using header protection; see Section 5.4
      of [ QUIC-TLS ].

   Destination Connection ID:  The Destination Connection ID is a
      connection ID that is chosen by the intended recipient of the
      packet.  See Section 5.1  for more details.

   Packet Number:  The packet number field is 1 to 4 bytes long.  The
      packet number has confidentiality protection separate from packet
      protection, as described in Section 5.4 of [ QUIC-TLS ].  The length
      of the packet number field is encoded in Packet Number Length
      field.  See Section 17.1  for details.

   Packet Payload:  Packets with a short header always include a 1-RTT
      protected payload.

   The header form bit and the connection ID field of a short header
   packet are version-independent.  The remaining fields are specific to
   the selected QUIC version.  See [ QUIC-INVARIANTS ] for details on how
   packets from different versions of QUIC are interpreted.

17.3.1 .  Latency Spin Bit

   The latency spin bit enables passive latency monitoring from
   observation points on the network path throughout the duration of a
   connection.  The spin bit is only present in the short packet header,
   since it is possible to measure the initial RTT of a connection by
   observing the handshake.  Therefore, the spin bit is available after
   version negotiation and connection establishment are completed.  On-
   path measurement and use of the latency spin bit is further discussed
   in [ QUIC-MANAGEABILITY].

   The spin bit is an OPTIONAL feature of QUIC.  A QUIC stack that
   chooses to support the spin bit MUST implement it as specified in
   this section.

   Each endpoint unilaterally decides if the spin bit is enabled or
   disabled for a connection.  Implementations MUST allow administrators
   of clients and servers to disable the spin bit either globally or on
   a per-connection basis.  Even when the spin bit is not disabled by
   the administrator, endpoints MUST disable their use of the spin bit
   for a random selection of at least one in every 16 network paths, or
   for one in every 16 connection IDs.  As each endpoint disables the
   spin bit independently, this ensures that the spin bit signal is
   disabled on approximately one in eight network paths.
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   When the spin bit is disabled, endpoints MAY set the spin bit to any
   value, and MUST ignore any incoming value.  It is RECOMMENDED that
   endpoints set the spin bit to a random value either chosen
   independently for each packet or chosen independently for each
   connection ID.

   If the spin bit is enabled for the connection, the endpoint maintains
   a spin value and sets the spin bit in the short header to the
   currently stored value when a packet with a short header is sent out.
   The spin value is initialized to 0 in the endpoint at connection
   start.  Each endpoint also remembers the highest packet number seen
   from its peer on the connection.

   When a server receives a short header packet that increments the
   highest packet number seen by the server from the client, it sets the
   spin value to be equal to the spin bit in the received packet.

   When a client receives a short header packet that increments the
   highest packet number seen by the client from the server, it sets the
   spin value to the inverse of the spin bit in the received packet.

   An endpoint resets its spin value to zero when sending the first
   packet of a given connection with a new connection ID.  This reduces
   the risk that transient spin bit state can be used to link flows
   across connection migration or ID change.

   With this mechanism, the server reflects the spin value received,
   while the client ’spins’ it after one RTT.  On-path observers can
   measure the time between two spin bit toggle events to estimate the
   end-to-end RTT of a connection.

18.  Transport Parameter Encoding

   The extension_data field of the quic_transport_parameters extension
   defined in [ QUIC-TLS ] contains the QUIC transport parameters.  They
   are encoded as a sequence of transport parameters, as shown in
   Figure 19:

   Transport Parameters {
     Transport Parameter (..) ...,
   }

                Figure 19: Sequence of Transport Parameters

   Each transport parameter is encoded as an (identifier, length, value)
   tuple, as shown in Figure 20:
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   Transport Parameter {
     Transport Parameter ID (i),
     Transport Parameter Length (i),
     Transport Parameter Value (..),
   }

                  Figure 20: Transport Parameter Encoding

   The Transport Parameter Length field contains the length of the
   Transport Parameter Value field.

   QUIC encodes transport parameters into a sequence of bytes, which are
   then included in the cryptographic handshake.

18.1 .  Reserved Transport Parameters

   Transport parameters with an identifier of the form "31 * N + 27" for
   integer values of N are reserved to exercise the requirement that
   unknown transport parameters be ignored.  These transport parameters
   have no semantics, and may carry arbitrary values.

18.2 .  Transport Parameter Definitions

   This section details the transport parameters defined in this
   document.

   Many transport parameters listed here have integer values.  Those
   transport parameters that are identified as integers use a variable-
   length integer encoding; see Section 16 .  Transport parameters have a
   default value of 0 if the transport parameter is absent unless
   otherwise stated.

   The following transport parameters are defined:

   original_destination_connection_id (0x00):  The value of the
      Destination Connection ID field from the first Initial packet sent
      by the client; see Section 7.3 .  This transport parameter is only
      sent by a server.

   max_idle_timeout (0x01):  The max idle timeout is a value in
      milliseconds that is encoded as an integer; see ( Section 10.2 ).
      Idle timeout is disabled when both endpoints omit this transport
      parameter or specify a value of 0.

   stateless_reset_token (0x02):  A stateless reset token is used in
      verifying a stateless reset; see Section 10.4 .  This parameter is
      a sequence of 16 bytes.  This transport parameter MUST NOT be sent
      by a client, but MAY be sent by a server.  A server that does not

Iyengar & Thomson       Expires 12 December 2020              [Page 117]



 
Internet-Draft           QUIC Transport Protocol               June 2020

      send this transport parameter cannot use stateless reset
      ( Section 10.4 ) for the connection ID negotiated during the
      handshake.

   max_udp_payload_size (0x03):  The maximum UDP payload size parameter
      is an integer value that limits the size of UDP payloads that the
      endpoint is willing to receive.  UDP packets with payloads larger
      than this limit are not likely to be processed by the receiver.

      The default for this parameter is the maximum permitted UDP
      payload of 65527.  Values below 1200 are invalid.

      This limit does act as an additional constraint on datagram size
      in the same way as the path MTU, but it is a property of the
      endpoint and not the path; see Section 14 .  It is expected that
      this is the space an endpoint dedicates to holding incoming
      packets.

   initial_max_data (0x04):  The initial maximum data parameter is an
      integer value that contains the initial value for the maximum
      amount of data that can be sent on the connection.  This is
      equivalent to sending a MAX_DATA ( Section 19.9 ) for the connection
      immediately after completing the handshake.

   initial_max_stream_data_bidi_local (0x05):  This parameter is an
      integer value specifying the initial flow control limit for
      locally-initiated bidirectional streams.  This limit applies to
      newly created bidirectional streams opened by the endpoint that
      sends the transport parameter.  In client transport parameters,
      this applies to streams with an identifier with the least
      significant two bits set to 0x0; in server transport parameters,
      this applies to streams with the least significant two bits set to
      0x1.

   initial_max_stream_data_bidi_remote (0x06):  This parameter is an
      integer value specifying the initial flow control limit for peer-
      initiated bidirectional streams.  This limit applies to newly
      created bidirectional streams opened by the endpoint that receives
      the transport parameter.  In client transport parameters, this
      applies to streams with an identifier with the least significant
      two bits set to 0x1; in server transport parameters, this applies
      to streams with the least significant two bits set to 0x0.

   initial_max_stream_data_uni (0x07):  This parameter is an integer
      value specifying the initial flow control limit for unidirectional
      streams.  This limit applies to newly created unidirectional
      streams opened by the endpoint that receives the transport
      parameter.  In client transport parameters, this applies to
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      streams with an identifier with the least significant two bits set
      to 0x3; in server transport parameters, this applies to streams
      with the least significant two bits set to 0x2.

   initial_max_streams_bidi (0x08):  The initial maximum bidirectional
      streams parameter is an integer value that contains the initial
      maximum number of bidirectional streams the peer may initiate.  If
      this parameter is absent or zero, the peer cannot open
      bidirectional streams until a MAX_STREAMS frame is sent.  Setting
      this parameter is equivalent to sending a MAX_STREAMS
      ( Section 19.11 ) of the corresponding type with the same value.

   initial_max_streams_uni (0x09):  The initial maximum unidirectional
      streams parameter is an integer value that contains the initial
      maximum number of unidirectional streams the peer may initiate.
      If this parameter is absent or zero, the peer cannot open
      unidirectional streams until a MAX_STREAMS frame is sent.  Setting
      this parameter is equivalent to sending a MAX_STREAMS
      ( Section 19.11 ) of the corresponding type with the same value.

   ack_delay_exponent (0x0a):  The ACK delay exponent is an integer
      value indicating an exponent used to decode the ACK Delay field in
      the ACK frame ( Section 19.3 ).  If this value is absent, a default
      value of 3 is assumed (indicating a multiplier of 8).  Values
      above 20 are invalid.

   max_ack_delay (0x0b):  The maximum ACK delay is an integer value
      indicating the maximum amount of time in milliseconds by which the
      endpoint will delay sending acknowledgments.  This value SHOULD
      include the receiver’s expected delays in alarms firing.  For
      example, if a receiver sets a timer for 5ms and alarms commonly
      fire up to 1ms late, then it should send a max_ack_delay of 6ms.
      If this value is absent, a default of 25 milliseconds is assumed.
      Values of 2^14 or greater are invalid.

   disable_active_migration (0x0c):  The disable active migration
      transport parameter is included if the endpoint does not support
      active connection migration ( Section 9 ) on the address being used
      during the handshake.  When a peer sets this transport parameter,
      an endpoint MUST NOT use a new local address when sending to the
      address that the peer used during the handshake.  This transport
      parameter does not prohibit connection migration after a client
      has acted on a preferred_address transport parameter.  This
      parameter is a zero-length value.

   preferred_address (0x0d):  The server’s preferred address is used to
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      effect a change in server address at the end of the handshake, as
      described in Section 9.6 .  The format of this transport parameter
      is shown in Figure 21.  This transport parameter is only sent by a
      server.  Servers MAY choose to only send a preferred address of
      one address family by sending an all-zero address and port
      (0.0.0.0:0 or ::.0) for the other family.  IP addresses are
      encoded in network byte order.

      The Connection ID field and the Stateless Reset Token field
      contain an alternative connection ID that has a sequence number of
      1; see Section 5.1.1 .  Having these values bundled with the
      preferred address ensures that there will be at least one unused
      active connection ID when the client initiates migration to the
      preferred address.

      The Connection ID and Stateless Reset Token fields of a preferred
      address are identical in syntax and semantics to the corresponding
      fields of a NEW_CONNECTION_ID frame ( Section 19.15 ).  A server
      that chooses a zero-length connection ID MUST NOT provide a
      preferred address.  Similarly, a server MUST NOT include a zero-
      length connection ID in this transport parameter.  A client MUST
      treat violation of these requirements as a connection error of
      type TRANSPORT_PARAMETER_ERROR.

   Preferred Address {
     IPv4 Address (32),
     IPv4 Port (16),
     IPv6 Address (128),
     IPv6 Port (16),
     CID Length (8),
     Connection ID (..),
     Stateless Reset Token (128),
   }

                    Figure 21: Preferred Address format

   active_connection_id_limit (0x0e):  The active connection ID limit is
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      an integer value specifying the maximum number of connection IDs
      from the peer that an endpoint is willing to store.  This value
      includes the connection ID received during the handshake, that
      received in the preferred_address transport parameter, and those
      received in NEW_CONNECTION_ID frames.  The value of the
      active_connection_id_limit parameter MUST be at least 2.  An
      endpoint that receives a value less than 2 MUST close the
      connection with an error of type TRANSPORT_PARAMETER_ERROR.  If
      this transport parameter is absent, a default of 2 is assumed.  If
      an endpoint issues a zero-length connection ID, it will never send
      a NEW_CONNECTION_ID frame and therefore ignores the
      active_connection_id_limit value received from its peer.

   initial_source_connection_id (0x0f):  The value that the endpoint
      included in the Source Connection ID field of the first Initial
      packet it sends for the connection; see Section 7.3 .

   retry_source_connection_id (0x10):  The value that the server
      included in the Source Connection ID field of a Retry packet; see
      Section 7.3 .  This transport parameter is only sent by a server.

   If present, transport parameters that set initial flow control limits
   (initial_max_stream_data_bidi_local,
   initial_max_stream_data_bidi_remote, and initial_max_stream_data_uni)
   are equivalent to sending a MAX_STREAM_DATA frame ( Section 19.10 ) on
   every stream of the corresponding type immediately after opening.  If
   the transport parameter is absent, streams of that type start with a
   flow control limit of 0.

   A client MUST NOT include any server-only transport parameter:
   original_destination_connection_id, preferred_address,
   retry_source_connection_id, or stateless_reset_token.  A server MUST
   treat receipt of any of these transport parameters as a connection
   error of type TRANSPORT_PARAMETER_ERROR.

19.  Frame Types and Formats

   As described in Section 12.4 , packets contain one or more frames.
   This section describes the format and semantics of the core QUIC
   frame types.

19.1 .  PADDING Frame

   The PADDING frame (type=0x00) has no semantic value.  PADDING frames
   can be used to increase the size of a packet.  Padding can be used to
   increase an initial client packet to the minimum required size, or to
   provide protection against traffic analysis for protected packets.
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   As shown in Figure 22, a PADDING frame has no content.  That is, a
   PADDING frame consists of the single byte that identifies the frame
   as a PADDING frame.

   PADDING Frame {
     Type (i) = 0x00,
   }

                      Figure 22: PADDING Frame Format

19.2 .  PING Frame

   Endpoints can use PING frames (type=0x01) to verify that their peers
   are still alive or to check reachability to the peer.  As shown in
   Figure 23 a PING frame contains no content.

   PING Frame {
     Type (i) = 0x01,
   }

                        Figure 23: PING Frame Format

   The receiver of a PING frame simply needs to acknowledge the packet
   containing this frame.

   The PING frame can be used to keep a connection alive when an
   application or application protocol wishes to prevent the connection
   from timing out; see Section 10.2.2 .

19.3 .  ACK Frames

   Receivers send ACK frames (types 0x02 and 0x03) to inform senders of
   packets they have received and processed.  The ACK frame contains one
   or more ACK Ranges.  ACK Ranges identify acknowledged packets.  If
   the frame type is 0x03, ACK frames also contain the sum of QUIC
   packets with associated ECN marks received on the connection up until
   this point.  QUIC implementations MUST properly handle both types
   and, if they have enabled ECN for packets they send, they SHOULD use
   the information in the ECN section to manage their congestion state.

   QUIC acknowledgements are irrevocable.  Once acknowledged, a packet
   remains acknowledged, even if it does not appear in a future ACK
   frame.  This is unlike TCP SACKs ([ RFC2018]).
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   Packets from different packet number spaces can be identified using
   the same numeric value.  An acknowledgment for a packet needs to
   indicate both a packet number and a packet number space.  This is
   accomplished by having each ACK frame only acknowledge packet numbers
   in the same space as the packet in which the ACK frame is contained.

   Version Negotiation and Retry packets cannot be acknowledged because
   they do not contain a packet number.  Rather than relying on ACK
   frames, these packets are implicitly acknowledged by the next Initial
   packet sent by the client.

   An ACK frame is shown in Figure 24.

   ACK Frame {
     Type (i) = 0x02..0x03,
     Largest Acknowledged (i),
     ACK Delay (i),
     ACK Range Count (i),
     First ACK Range (i),
     ACK Range (..) ...,
     [ECN Counts (..)],
   }

                        Figure 24: ACK Frame Format

   ACK frames contain the following fields:

   Largest Acknowledged:  A variable-length integer representing the
      largest packet number the peer is acknowledging; this is usually
      the largest packet number that the peer has received prior to
      generating the ACK frame.  Unlike the packet number in the QUIC
      long or short header, the value in an ACK frame is not truncated.

   ACK Delay:  A variable-length integer representing the time delta in
      microseconds between when this ACK was sent and when the largest
      acknowledged packet, as indicated in the Largest Acknowledged
      field, was received by this peer.  The value of the ACK Delay
      field is scaled by multiplying the encoded value by 2 to the power
      of the value of the ack_delay_exponent transport parameter set by
      the sender of the ACK frame; see Section 18.2 .  Scaling in this
      fashion allows for a larger range of values with a shorter
      encoding at the cost of lower resolution.  Because the receiver
      doesn’t use the ACK Delay for Initial and Handshake packets, a
      sender SHOULD send a value of 0.

   ACK Range Count:  A variable-length integer specifying the number of
      Gap and ACK Range fields in the frame.
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   First ACK Range:  A variable-length integer indicating the number of
      contiguous packets preceding the Largest Acknowledged that are
      being acknowledged.  The First ACK Range is encoded as an ACK
      Range; see Section 19.3.1  starting from the Largest Acknowledged.
      That is, the smallest packet acknowledged in the range is
      determined by subtracting the First ACK Range value from the
      Largest Acknowledged.

   ACK Ranges:  Contains additional ranges of packets which are
      alternately not acknowledged (Gap) and acknowledged (ACK Range);
      see Section 19.3.1 .

   ECN Counts:  The three ECN Counts; see Section 19.3.2 .

19.3.1 .  ACK Ranges

   Each ACK Range consists of alternating Gap and ACK Range values in
   descending packet number order.  ACK Ranges can be repeated.  The
   number of Gap and ACK Range values is determined by the ACK Range
   Count field; one of each value is present for each value in the ACK
   Range Count field.

   ACK Ranges are structured as shown in Figure 25.

   ACK Range {
     Gap (i),
     ACK Range Length (i),
   }

                           Figure 25: ACK Ranges

   The fields that form each ACK Range are:

   Gap:  A variable-length integer indicating the number of contiguous
      unacknowledged packets preceding the packet number one lower than
      the smallest in the preceding ACK Range.

   ACK Range Length:  A variable-length integer indicating the number of
      contiguous acknowledged packets preceding the largest packet
      number, as determined by the preceding Gap.

   Gap and ACK Range value use a relative integer encoding for
   efficiency.  Though each encoded value is positive, the values are
   subtracted, so that each ACK Range describes progressively lower-
   numbered packets.
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   Each ACK Range acknowledges a contiguous range of packets by
   indicating the number of acknowledged packets that precede the
   largest packet number in that range.  A value of zero indicates that
   only the largest packet number is acknowledged.  Larger ACK Range
   values indicate a larger range, with corresponding lower values for
   the smallest packet number in the range.  Thus, given a largest
   packet number for the range, the smallest value is determined by the
   formula:

      smallest = largest - ack_range

   An ACK Range acknowledges all packets between the smallest packet
   number and the largest, inclusive.

   The largest value for an ACK Range is determined by cumulatively
   subtracting the size of all preceding ACK Ranges and Gaps.

   Each Gap indicates a range of packets that are not being
   acknowledged.  The number of packets in the gap is one higher than
   the encoded value of the Gap field.

   The value of the Gap field establishes the largest packet number
   value for the subsequent ACK Range using the following formula:

      largest = previous_smallest - gap - 2

   If any computed packet number is negative, an endpoint MUST generate
   a connection error of type FRAME_ENCODING_ERROR.

19.3.2 .  ECN Counts

   The ACK frame uses the least significant bit (that is, type 0x03) to
   indicate ECN feedback and report receipt of QUIC packets with
   associated ECN codepoints of ECT(0), ECT(1), or CE in the packet’s IP
   header.  ECN Counts are only present when the ACK frame type is 0x03.

   ECN Counts are only parsed when the ACK frame type is 0x03.  There
   are 3 ECN counts, as shown in Figure 26.

   ECN Counts {
     ECT0 Count (i),
     ECT1 Count (i),
     ECN-CE Count (i),
   }

                        Figure 26: ECN Count Format

   The three ECN Counts are:
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   ECT0 Count:  A variable-length integer representing the total number
      of packets received with the ECT(0) codepoint in the packet number
      space of the ACK frame.

   ECT1 Count:  A variable-length integer representing the total number
      of packets received with the ECT(1) codepoint in the packet number
      space of the ACK frame.

   CE Count:  A variable-length integer representing the total number of
      packets received with the CE codepoint in the packet number space
      of the ACK frame.

   ECN counts are maintained separately for each packet number space.

19.4 .  RESET_STREAM Frame

   An endpoint uses a RESET_STREAM frame (type=0x04) to abruptly
   terminate the sending part of a stream.

   After sending a RESET_STREAM, an endpoint ceases transmission and
   retransmission of STREAM frames on the identified stream.  A receiver
   of RESET_STREAM can discard any data that it already received on that
   stream.

   An endpoint that receives a RESET_STREAM frame for a send-only stream
   MUST terminate the connection with error STREAM_STATE_ERROR.

   The RESET_STREAM frame is shown in Figure 27.

   RESET_STREAM Frame {
     Type (i) = 0x04,
     Stream ID (i),
     Application Protocol Error Code (i),
     Final Size (i),
   }

                    Figure 27: RESET_STREAM Frame Format

   RESET_STREAM frames contain the following fields:

   Stream ID:  A variable-length integer encoding of the Stream ID of
      the stream being terminated.

   Application Protocol Error Code:  A variable-length integer
      containing the application protocol error code (see Section 20.1 )
      which indicates why the stream is being closed.

   Final Size:  A variable-length integer indicating the final size of
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      the stream by the RESET_STREAM sender, in unit of bytes.

19.5 .  STOP_SENDING Frame

   An endpoint uses a STOP_SENDING frame (type=0x05) to communicate that
   incoming data is being discarded on receipt at application request.
   STOP_SENDING requests that a peer cease transmission on a stream.

   A STOP_SENDING frame can be sent for streams in the Recv or Size
   Known states; see Section 3.1 .  Receiving a STOP_SENDING frame for a
   locally-initiated stream that has not yet been created MUST be
   treated as a connection error of type STREAM_STATE_ERROR.  An
   endpoint that receives a STOP_SENDING frame for a receive-only stream
   MUST terminate the connection with error STREAM_STATE_ERROR.

   The STOP_SENDING frame is shown in Figure 28.

   STOP_SENDING Frame {
     Type (i) = 0x05,
     Stream ID (i),
     Application Protocol Error Code (i),
   }

                    Figure 28: STOP_SENDING Frame Format

   STOP_SENDING frames contain the following fields:

   Stream ID:  A variable-length integer carrying the Stream ID of the
      stream being ignored.

   Application Protocol Error Code:  A variable-length integer
      containing the application-specified reason the sender is ignoring
      the stream; see Section 20.1 .

19.6 .  CRYPTO Frame

   The CRYPTO frame (type=0x06) is used to transmit cryptographic
   handshake messages.  It can be sent in all packet types except 0-RTT.
   The CRYPTO frame offers the cryptographic protocol an in-order stream
   of bytes.  CRYPTO frames are functionally identical to STREAM frames,
   except that they do not bear a stream identifier; they are not flow
   controlled; and they do not carry markers for optional offset,
   optional length, and the end of the stream.

   The CRYPTO frame is shown in Figure 29.
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   CRYPTO Frame {
     Type (i) = 0x06,
     Offset (i),
     Length (i),
     Crypto Data (..),
   }

                       Figure 29: CRYPTO Frame Format

   CRYPTO frames contain the following fields:

   Offset:  A variable-length integer specifying the byte offset in the
      stream for the data in this CRYPTO frame.

   Length:  A variable-length integer specifying the length of the
      Crypto Data field in this CRYPTO frame.

   Crypto Data:  The cryptographic message data.

   There is a separate flow of cryptographic handshake data in each
   encryption level, each of which starts at an offset of 0.  This
   implies that each encryption level is treated as a separate CRYPTO
   stream of data.

   The largest offset delivered on a stream - the sum of the offset and
   data length - cannot exceed 2^62-1.  Receipt of a frame that exceeds
   this limit MUST be treated as a connection error of type
   FRAME_ENCODING_ERROR or CRYPTO_BUFFER_EXCEEDED.

   Unlike STREAM frames, which include a Stream ID indicating to which
   stream the data belongs, the CRYPTO frame carries data for a single
   stream per encryption level.  The stream does not have an explicit
   end, so CRYPTO frames do not have a FIN bit.

19.7 .  NEW_TOKEN Frame

   A server sends a NEW_TOKEN frame (type=0x07) to provide the client
   with a token to send in the header of an Initial packet for a future
   connection.

   The NEW_TOKEN frame is shown in Figure 30.

   NEW_TOKEN Frame {
     Type (i) = 0x07,
     Token Length (i),
     Token (..),
   }
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                     Figure 30: NEW_TOKEN Frame Format

   NEW_TOKEN frames contain the following fields:

   Token Length:  A variable-length integer specifying the length of the
      token in bytes.

   Token:  An opaque blob that the client may use with a future Initial
      packet.  The token MUST NOT be empty.  An endpoint MUST treat
      receipt of a NEW_TOKEN frame with an empty Token field as a
      connection error of type FRAME_ENCODING_ERROR.

   An endpoint might receive multiple NEW_TOKEN frames that contain the
   same token value if packets containing the frame are incorrectly
   determined to be lost.  Endpoints are responsible for discarding
   duplicate values, which might be used to link connection attempts;
   see Section 8.1.3 .

   Clients MUST NOT send NEW_TOKEN frames.  Servers MUST treat receipt
   of a NEW_TOKEN frame as a connection error of type
   PROTOCOL_VIOLATION.

19.8 .  STREAM Frames

   STREAM frames implicitly create a stream and carry stream data.  The
   STREAM frame takes the form 0b00001XXX (or the set of values from
   0x08 to 0x0f).  The value of the three low-order bits of the frame
   type determines the fields that are present in the frame.

   *  The OFF bit (0x04) in the frame type is set to indicate that there
      is an Offset field present.  When set to 1, the Offset field is
      present.  When set to 0, the Offset field is absent and the Stream
      Data starts at an offset of 0 (that is, the frame contains the
      first bytes of the stream, or the end of a stream that includes no
      data).

   *  The LEN bit (0x02) in the frame type is set to indicate that there
      is a Length field present.  If this bit is set to 0, the Length
      field is absent and the Stream Data field extends to the end of
      the packet.  If this bit is set to 1, the Length field is present.

   *  The FIN bit (0x01) of the frame type is set only on frames that
      contain the final size of the stream.  Setting this bit indicates
      that the frame marks the end of the stream.
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   An endpoint MUST terminate the connection with error
   STREAM_STATE_ERROR if it receives a STREAM frame for a locally-
   initiated stream that has not yet been created, or for a send-only
   stream.

   The STREAM frames are shown in Figure 31.

   STREAM Frame {
     Type (i) = 0x08..0x0f,
     Stream ID (i),
     [Offset (i)],
     [Length (i)],
     Stream Data (..),
   }

                       Figure 31: STREAM Frame Format

   STREAM frames contain the following fields:

   Stream ID:  A variable-length integer indicating the stream ID of the
      stream; see Section 2.1 .

   Offset:  A variable-length integer specifying the byte offset in the
      stream for the data in this STREAM frame.  This field is present
      when the OFF bit is set to 1.  When the Offset field is absent,
      the offset is 0.

   Length:  A variable-length integer specifying the length of the
      Stream Data field in this STREAM frame.  This field is present
      when the LEN bit is set to 1.  When the LEN bit is set to 0, the
      Stream Data field consumes all the remaining bytes in the packet.

   Stream Data:  The bytes from the designated stream to be delivered.

   When a Stream Data field has a length of 0, the offset in the STREAM
   frame is the offset of the next byte that would be sent.

   The first byte in the stream has an offset of 0.  The largest offset
   delivered on a stream - the sum of the offset and data length -
   cannot exceed 2^62-1, as it is not possible to provide flow control
   credit for that data.  Receipt of a frame that exceeds this limit
   MUST be treated as a connection error of type FRAME_ENCODING_ERROR or
   FLOW_CONTROL_ERROR.
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19.9 .  MAX_DATA Frame

   The MAX_DATA frame (type=0x10) is used in flow control to inform the
   peer of the maximum amount of data that can be sent on the connection
   as a whole.

   The MAX_DATA frame is shown in Figure 32.

   MAX_DATA Frame {
     Type (i) = 0x10,
     Maximum Data (i),
   }

                      Figure 32: MAX_DATA Frame Format

   MAX_DATA frames contain the following fields:

   Maximum Data:  A variable-length integer indicating the maximum
      amount of data that can be sent on the entire connection, in units
      of bytes.

   All data sent in STREAM frames counts toward this limit.  The sum of
   the largest received offsets on all streams - including streams in
   terminal states - MUST NOT exceed the value advertised by a receiver.
   An endpoint MUST terminate a connection with a FLOW_CONTROL_ERROR
   error if it receives more data than the maximum data value that it
   has sent, unless this is a result of a change in the initial limits;
   see Section 7.4.1 .

19.10 .  MAX_STREAM_DATA Frame

   The MAX_STREAM_DATA frame (type=0x11) is used in flow control to
   inform a peer of the maximum amount of data that can be sent on a
   stream.

   A MAX_STREAM_DATA frame can be sent for streams in the Recv state;
   see Section 3.1 .  Receiving a MAX_STREAM_DATA frame for a locally-
   initiated stream that has not yet been created MUST be treated as a
   connection error of type STREAM_STATE_ERROR.  An endpoint that
   receives a MAX_STREAM_DATA frame for a receive-only stream MUST
   terminate the connection with error STREAM_STATE_ERROR.

   The MAX_STREAM_DATA frame is shown in Figure 33.
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   MAX_STREAM_DATA Frame {
     Type (i) = 0x11,
     Stream ID (i),
     Maximum Stream Data (i),
   }

                  Figure 33: MAX_STREAM_DATA Frame Format

   MAX_STREAM_DATA frames contain the following fields:

   Stream ID:  The stream ID of the stream that is affected encoded as a
      variable-length integer.

   Maximum Stream Data:  A variable-length integer indicating the
      maximum amount of data that can be sent on the identified stream,
      in units of bytes.

   When counting data toward this limit, an endpoint accounts for the
   largest received offset of data that is sent or received on the
   stream.  Loss or reordering can mean that the largest received offset
   on a stream can be greater than the total size of data received on
   that stream.  Receiving STREAM frames might not increase the largest
   received offset.

   The data sent on a stream MUST NOT exceed the largest maximum stream
   data value advertised by the receiver.  An endpoint MUST terminate a
   connection with a FLOW_CONTROL_ERROR error if it receives more data
   than the largest maximum stream data that it has sent for the
   affected stream, unless this is a result of a change in the initial
   limits; see Section 7.4.1 .

19.11 .  MAX_STREAMS Frames

   The MAX_STREAMS frames (type=0x12 and 0x13) inform the peer of the
   cumulative number of streams of a given type it is permitted to open.
   A MAX_STREAMS frame with a type of 0x12 applies to bidirectional
   streams, and a MAX_STREAMS frame with a type of 0x13 applies to
   unidirectional streams.

   The MAX_STREAMS frames are shown in Figure 34;

   MAX_STREAMS Frame {
     Type (i) = 0x12..0x13,
     Maximum Streams (i),
   }

                    Figure 34: MAX_STREAMS Frame Format
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   MAX_STREAMS frames contain the following fields:

   Maximum Streams:  A count of the cumulative number of streams of the
      corresponding type that can be opened over the lifetime of the
      connection.  This value cannot exceed 2^60, as it is not possible
      to encode stream IDs larger than 2^62-1.  Receipt of a frame that
      permits opening of a stream larger than this limit MUST be treated
      as a FRAME_ENCODING_ERROR.

   Loss or reordering can cause a MAX_STREAMS frame to be received which
   states a lower stream limit than an endpoint has previously received.
   MAX_STREAMS frames which do not increase the stream limit MUST be
   ignored.

   An endpoint MUST NOT open more streams than permitted by the current
   stream limit set by its peer.  For instance, a server that receives a
   unidirectional stream limit of 3 is permitted to open stream 3, 7,
   and 11, but not stream 15.  An endpoint MUST terminate a connection
   with a STREAM_LIMIT_ERROR error if a peer opens more streams than was
   permitted.

   Note that these frames (and the corresponding transport parameters)
   do not describe the number of streams that can be opened
   concurrently.  The limit includes streams that have been closed as
   well as those that are open.

19.12 .  DATA_BLOCKED Frame

   A sender SHOULD send a DATA_BLOCKED frame (type=0x14) when it wishes
   to send data, but is unable to due to connection-level flow control;
   see Section 4 .  DATA_BLOCKED frames can be used as input to tuning of
   flow control algorithms; see Section 4.2 .

   The DATA_BLOCKED frame is shown in Figure 35.

   DATA_BLOCKED Frame {
     Type (i) = 0x14,
     Maximum Data (i),
   }

                    Figure 35: DATA_BLOCKED Frame Format

   DATA_BLOCKED frames contain the following fields:

   Maximum Data:  A variable-length integer indicating the connection-
      level limit at which blocking occurred.
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19.13 .  STREAM_DATA_BLOCKED Frame

   A sender SHOULD send a STREAM_DATA_BLOCKED frame (type=0x15) when it
   wishes to send data, but is unable to due to stream-level flow
   control.  This frame is analogous to DATA_BLOCKED ( Section 19.12 ).

   An endpoint that receives a STREAM_DATA_BLOCKED frame for a send-only
   stream MUST terminate the connection with error STREAM_STATE_ERROR.

   The STREAM_DATA_BLOCKED frame is shown in Figure 36.

   STREAM_DATA_BLOCKED Frame {
     Type (i) = 0x15,
     Stream ID (i),
     Maximum Stream Data (i),
   }

                Figure 36: STREAM_DATA_BLOCKED Frame Format

   STREAM_DATA_BLOCKED frames contain the following fields:

   Stream ID:  A variable-length integer indicating the stream which is
      flow control blocked.

   Maximum Stream Data:  A variable-length integer indicating the offset
      of the stream at which the blocking occurred.

19.14 .  STREAMS_BLOCKED Frames

   A sender SHOULD send a STREAMS_BLOCKED frame (type=0x16 or 0x17) when
   it wishes to open a stream, but is unable to due to the maximum
   stream limit set by its peer; see Section 19.11 .  A STREAMS_BLOCKED
   frame of type 0x16 is used to indicate reaching the bidirectional
   stream limit, and a STREAMS_BLOCKED frame of type 0x17 indicates
   reaching the unidirectional stream limit.

   A STREAMS_BLOCKED frame does not open the stream, but informs the
   peer that a new stream was needed and the stream limit prevented the
   creation of the stream.

   The STREAMS_BLOCKED frames are shown in Figure 37.

   STREAMS_BLOCKED Frame {
     Type (i) = 0x16..0x17,
     Maximum Streams (i),
   }

                  Figure 37: STREAMS_BLOCKED Frame Format
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   STREAMS_BLOCKED frames contain the following fields:

   Maximum Streams:  A variable-length integer indicating the maximum
      number of streams allowed at the time the frame was sent.  This
      value cannot exceed 2^60, as it is not possible to encode stream
      IDs larger than 2^62-1.  Receipt of a frame that encodes a larger
      stream ID MUST be treated as a STREAM_LIMIT_ERROR or a
      FRAME_ENCODING_ERROR.

19.15 .  NEW_CONNECTION_ID Frame

   An endpoint sends a NEW_CONNECTION_ID frame (type=0x18) to provide
   its peer with alternative connection IDs that can be used to break
   linkability when migrating connections; see Section 9.5 .

   The NEW_CONNECTION_ID frame is shown in Figure 38.

   NEW_CONNECTION_ID Frame {
     Type (i) = 0x18,
     Sequence Number (i),
     Retire Prior To (i),
     Length (8),
     Connection ID (8..160),
     Stateless Reset Token (128),
   }

                 Figure 38: NEW_CONNECTION_ID Frame Format

   NEW_CONNECTION_ID frames contain the following fields:

   Sequence Number:  The sequence number assigned to the connection ID
      by the sender.  See Section 5.1.1 .

   Retire Prior To:  A variable-length integer indicating which
      connection IDs should be retired; see Section 5.1.2 .

   Length:  An 8-bit unsigned integer containing the length of the
      connection ID.  Values less than 1 and greater than 20 are invalid
      and MUST be treated as a connection error of type
      FRAME_ENCODING_ERROR.

   Connection ID:  A connection ID of the specified length.

   Stateless Reset Token:  A 128-bit value that will be used for a
      stateless reset when the associated connection ID is used; see
      Section 10.4 .
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   An endpoint MUST NOT send this frame if it currently requires that
   its peer send packets with a zero-length Destination Connection ID.
   Changing the length of a connection ID to or from zero-length makes
   it difficult to identify when the value of the connection ID changed.
   An endpoint that is sending packets with a zero-length Destination
   Connection ID MUST treat receipt of a NEW_CONNECTION_ID frame as a
   connection error of type PROTOCOL_VIOLATION.

   Transmission errors, timeouts and retransmissions might cause the
   same NEW_CONNECTION_ID frame to be received multiple times.  Receipt
   of the same frame multiple times MUST NOT be treated as a connection
   error.  A receiver can use the sequence number supplied in the
   NEW_CONNECTION_ID frame to identify new connection IDs from old ones.

   If an endpoint receives a NEW_CONNECTION_ID frame that repeats a
   previously issued connection ID with a different Stateless Reset
   Token or a different sequence number, or if a sequence number is used
   for different connection IDs, the endpoint MAY treat that receipt as
   a connection error of type PROTOCOL_VIOLATION.

   The Retire Prior To field counts connection IDs established during
   connection setup and the preferred_address transport parameter; see
   Section 5.1.2 .  The Retire Prior To field MUST be less than or equal
   to the Sequence Number field.  Receiving a value greater than the
   Sequence Number MUST be treated as a connection error of type
   FRAME_ENCODING_ERROR.

   Once a sender indicates a Retire Prior To value, smaller values sent
   in subsequent NEW_CONNECTION_ID frames have no effect.  A receiver
   MUST ignore any Retire Prior To fields that do not increase the
   largest received Retire Prior To value.

   An endpoint that receives a NEW_CONNECTION_ID frame with a sequence
   number smaller than the Retire Prior To field of a previously
   received NEW_CONNECTION_ID frame MUST send a corresponding
   RETIRE_CONNECTION_ID frame that retires the newly received connection
   ID, unless it has already done so for that sequence number.

19.16 .  RETIRE_CONNECTION_ID Frame

   An endpoint sends a RETIRE_CONNECTION_ID frame (type=0x19) to
   indicate that it will no longer use a connection ID that was issued
   by its peer.  This may include the connection ID provided during the
   handshake.  Sending a RETIRE_CONNECTION_ID frame also serves as a
   request to the peer to send additional connection IDs for future use;
   see Section 5.1 .  New connection IDs can be delivered to a peer using
   the NEW_CONNECTION_ID frame ( Section 19.15 ).
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   Retiring a connection ID invalidates the stateless reset token
   associated with that connection ID.

   The RETIRE_CONNECTION_ID frame is shown in Figure 39.

   RETIRE_CONNECTION_ID Frame {
     Type (i) = 0x19,
     Sequence Number (i),
   }

                Figure 39: RETIRE_CONNECTION_ID Frame Format

   RETIRE_CONNECTION_ID frames contain the following fields:

   Sequence Number:  The sequence number of the connection ID being
      retired; see Section 5.1.2 .

   Receipt of a RETIRE_CONNECTION_ID frame containing a sequence number
   greater than any previously sent to the peer MUST be treated as a
   connection error of type PROTOCOL_VIOLATION.

   The sequence number specified in a RETIRE_CONNECTION_ID frame MUST
   NOT refer to the Destination Connection ID field of the packet in
   which the frame is contained.  The peer MAY treat this as a
   connection error of type FRAME_ENCODING_ERROR.

   An endpoint cannot send this frame if it was provided with a zero-
   length connection ID by its peer.  An endpoint that provides a zero-
   length connection ID MUST treat receipt of a RETIRE_CONNECTION_ID
   frame as a connection error of type PROTOCOL_VIOLATION.

19.17 .  PATH_CHALLENGE Frame

   Endpoints can use PATH_CHALLENGE frames (type=0x1a) to check
   reachability to the peer and for path validation during connection
   migration.

   The PATH_CHALLENGE frame is shown in Figure 40.

   PATH_CHALLENGE Frame {
     Type (i) = 0x1a,
     Data (64),
   }

                   Figure 40: PATH_CHALLENGE Frame Format

   PATH_CHALLENGE frames contain the following fields:
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   Data:  This 8-byte field contains arbitrary data.

   A PATH_CHALLENGE frame containing 8 bytes that are hard to guess is
   sufficient to ensure that it is easier to receive the packet than it
   is to guess the value correctly.

   The recipient of this frame MUST generate a PATH_RESPONSE frame
   ( Section 19.18 ) containing the same Data.

19.18 .  PATH_RESPONSE Frame

   The PATH_RESPONSE frame (type=0x1b) is sent in response to a
   PATH_CHALLENGE frame.  Its format, shown in Figure 41 is identical to
   the PATH_CHALLENGE frame ( Section 19.17 ).

   PATH_RESPONSE Frame {
     Type (i) = 0x1b,
     Data (64),
   }

                   Figure 41: PATH_RESPONSE Frame Format

   If the content of a PATH_RESPONSE frame does not match the content of
   a PATH_CHALLENGE frame previously sent by the endpoint, the endpoint
   MAY generate a connection error of type PROTOCOL_VIOLATION.

19.19 .  CONNECTION_CLOSE Frames

   An endpoint sends a CONNECTION_CLOSE frame (type=0x1c or 0x1d) to
   notify its peer that the connection is being closed.  The
   CONNECTION_CLOSE with a frame type of 0x1c is used to signal errors
   at only the QUIC layer, or the absence of errors (with the NO_ERROR
   code).  The CONNECTION_CLOSE frame with a type of 0x1d is used to
   signal an error with the application that uses QUIC.

   If there are open streams that haven’t been explicitly closed, they
   are implicitly closed when the connection is closed.

   The CONNECTION_CLOSE frames are shown in Figure 42.

   CONNECTION_CLOSE Frame {
     Type (i) = 0x1c..0x1d,
     Error Code (i),
     [Frame Type (i)],
     Reason Phrase Length (i),
     Reason Phrase (..),
   }
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                  Figure 42: CONNECTION_CLOSE Frame Format

   CONNECTION_CLOSE frames contain the following fields:

   Error Code:  A variable length integer error code which indicates the
      reason for closing this connection.  A CONNECTION_CLOSE frame of
      type 0x1c uses codes from the space defined in Section 20 .  A
      CONNECTION_CLOSE frame of type 0x1d uses codes from the
      application protocol error code space; see Section 20.1 .

   Frame Type:  A variable-length integer encoding the type of frame
      that triggered the error.  A value of 0 (equivalent to the mention
      of the PADDING frame) is used when the frame type is unknown.  The
      application-specific variant of CONNECTION_CLOSE (type 0x1d) does
      not include this field.

   Reason Phrase Length:  A variable-length integer specifying the
      length of the reason phrase in bytes.  Because a CONNECTION_CLOSE
      frame cannot be split between packets, any limits on packet size
      will also limit the space available for a reason phrase.

   Reason Phrase:  A human-readable explanation for why the connection
      was closed.  This can be zero length if the sender chooses to not
      give details beyond the Error Code.  This SHOULD be a UTF-8
      encoded string [ RFC3629].

   The application-specific variant of CONNECTION_CLOSE (type 0x1d) can
   only be sent using 0-RTT or 1-RTT packets; see Section 4 of
   [ QUIC-TLS ].  When an application wishes to abandon a connection
   during the handshake, an endpoint can send a CONNECTION_CLOSE frame
   (type 0x1c) with an error code of APPLICATION_ERROR in an Initial or
   a Handshake packet.

19.20 .  HANDSHAKE_DONE frame

   The server uses the HANDSHAKE_DONE frame (type=0x1e) to signal
   confirmation of the handshake to the client.  As shown in Figure 43,
   a HANDSHAKE_DONE frame has no content.

   HANDSHAKE_DONE Frame {
     Type (i) = 0x1e,
   }

                   Figure 43: HANDSHAKE_DONE Frame Format
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   A HANDSHAKE_DONE frame can only be sent by the server.  Servers MUST
   NOT send a HANDSHAKE_DONE frame before completing the handshake.  A
   server MUST treat receipt of a HANDSHAKE_DONE frame as a connection
   error of type PROTOCOL_VIOLATION.

19.21 .  Extension Frames

   QUIC frames do not use a self-describing encoding.  An endpoint
   therefore needs to understand the syntax of all frames before it can
   successfully process a packet.  This allows for efficient encoding of
   frames, but it means that an endpoint cannot send a frame of a type
   that is unknown to its peer.

   An extension to QUIC that wishes to use a new type of frame MUST
   first ensure that a peer is able to understand the frame.  An
   endpoint can use a transport parameter to signal its willingness to
   receive one or more extension frame types with the one transport
   parameter.

   Extensions that modify or replace core protocol functionality
   (including frame types) will be difficult to combine with other
   extensions which modify or replace the same functionality unless the
   behavior of the combination is explicitly defined.  Such extensions
   SHOULD define their interaction with previously-defined extensions
   modifying the same protocol components.

   Extension frames MUST be congestion controlled and MUST cause an ACK
   frame to be sent.  The exception is extension frames that replace or
   supplement the ACK frame.  Extension frames are not included in flow
   control unless specified in the extension.

   An IANA registry is used to manage the assignment of frame types; see
   Section 22.3 .

20.  Transport Error Codes

   QUIC error codes are 62-bit unsigned integers.

   This section lists the defined QUIC transport error codes that may be
   used in a CONNECTION_CLOSE frame.  These errors apply to the entire
   connection.

   NO_ERROR (0x0):  An endpoint uses this with CONNECTION_CLOSE to
      signal that the connection is being closed abruptly in the absence
      of any error.

   INTERNAL_ERROR (0x1):  The endpoint encountered an internal error and
      cannot continue with the connection.
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   CONNECTION_REFUSED (0x2):  The server refused to accept a new
      connection.

   FLOW_CONTROL_ERROR (0x3):  An endpoint received more data than it
      permitted in its advertised data limits; see Section 4 .

   STREAM_LIMIT_ERROR (0x4):  An endpoint received a frame for a stream
      identifier that exceeded its advertised stream limit for the
      corresponding stream type.

   STREAM_STATE_ERROR (0x5):  An endpoint received a frame for a stream
      that was not in a state that permitted that frame; see Section 3 .

   FINAL_SIZE_ERROR (0x6):  An endpoint received a STREAM frame
      containing data that exceeded the previously established final
      size.  Or an endpoint received a STREAM frame or a RESET_STREAM
      frame containing a final size that was lower than the size of
      stream data that was already received.  Or an endpoint received a
      STREAM frame or a RESET_STREAM frame containing a different final
      size to the one already established.

   FRAME_ENCODING_ERROR (0x7):  An endpoint received a frame that was
      badly formatted.  For instance, a frame of an unknown type, or an
      ACK frame that has more acknowledgment ranges than the remainder
      of the packet could carry.

   TRANSPORT_PARAMETER_ERROR (0x8):  An endpoint received transport
      parameters that were badly formatted, included an invalid value,
      was absent even though it is mandatory, was present though it is
      forbidden, or is otherwise in error.

   CONNECTION_ID_LIMIT_ERROR (0x9):  The number of connection IDs
      provided by the peer exceeds the advertised
      active_connection_id_limit.

   PROTOCOL_VIOLATION (0xA):  An endpoint detected an error with
      protocol compliance that was not covered by more specific error
      codes.

   INVALID_TOKEN (0xB):  A server received a Retry Token in a client
      Initial that is invalid.

   APPLICATION_ERROR (0xC):  The application or application protocol
      caused the connection to be closed.

   CRYPTO_BUFFER_EXCEEDED (0xD):  An endpoint has received more data in
      CRYPTO frames than it can buffer.

Iyengar & Thomson       Expires 12 December 2020              [Page 141]



 
Internet-Draft           QUIC Transport Protocol               June 2020

   CRYPTO_ERROR (0x1XX):  The cryptographic handshake failed.  A range
      of 256 values is reserved for carrying error codes specific to the
      cryptographic handshake that is used.  Codes for errors occurring
      when TLS is used for the crypto handshake are described in
      Section 4.8 of [ QUIC-TLS ].

   See Section 22.4  for details of registering new error codes.

   In defining these error codes, several principles are applied.  Error
   conditions that might require specific action on the part of a
   recipient are given unique codes.  Errors that represent common
   conditions are given specific codes.  Absent either of these
   conditions, error codes are used to identify a general function of
   the stack, like flow control or transport parameter handling.
   Finally, generic errors are provided for conditions where
   implementations are unable or unwilling to use more specific codes.

20.1 .  Application Protocol Error Codes

   Application protocol error codes are 62-bit unsigned integers, but
   the management of application error codes is left to application
   protocols.  Application protocol error codes are used for the
   RESET_STREAM frame ( Section 19.4 ), the STOP_SENDING frame
   ( Section 19.5 ), and the CONNECTION_CLOSE frame with a type of 0x1d
   ( Section 19.19 ).

21.  Security Considerations

21.1 .  Handshake Denial of Service

   As an encrypted and authenticated transport QUIC provides a range of
   protections against denial of service.  Once the cryptographic
   handshake is complete, QUIC endpoints discard most packets that are
   not authenticated, greatly limiting the ability of an attacker to
   interfere with existing connections.

   Once a connection is established QUIC endpoints might accept some
   unauthenticated ICMP packets (see Section 14.2.1 ), but the use of
   these packets is extremely limited.  The only other type of packet
   that an endpoint might accept is a stateless reset ( Section 10.4 )
   which relies on the token being kept secret until it is used.

   During the creation of a connection, QUIC only provides protection
   against attack from off the network path.  All QUIC packets contain
   proof that the recipient saw a preceding packet from its peer.

   Addresses cannot change during the handshake, so endpoints can
   discard packets that are received on a different network path.
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   The Source and Destination Connection ID fields are the primary means
   of protection against off-path attack during the handshake.  These
   are required to match those set by a peer.  Except for an Initial and
   stateless reset packets, an endpoint only accepts packets that
   include a Destination Connection ID field that matches a value the
   endpoint previously chose.  This is the only protection offered for
   Version Negotiation packets.

   The Destination Connection ID field in an Initial packet is selected
   by a client to be unpredictable, which serves an additional purpose.
   The packets that carry the cryptographic handshake are protected with
   a key that is derived from this connection ID and salt specific to
   the QUIC version.  This allows endpoints to use the same process for
   authenticating packets that they receive as they use after the
   cryptographic handshake completes.  Packets that cannot be
   authenticated are discarded.  Protecting packets in this fashion
   provides a strong assurance that the sender of the packet saw the
   Initial packet and understood it.

   These protections are not intended to be effective against an
   attacker that is able to receive QUIC packets prior to the connection
   being established.  Such an attacker can potentially send packets
   that will be accepted by QUIC endpoints.  This version of QUIC
   attempts to detect this sort of attack, but it expects that endpoints
   will fail to establish a connection rather than recovering.  For the
   most part, the cryptographic handshake protocol [ QUIC-TLS ] is
   responsible for detecting tampering during the handshake.

   Endpoints are permitted to use other methods to detect and attempt to
   recover from interference with the handshake.  Invalid packets may be
   identified and discarded using other methods, but no specific method
   is mandated in this document.

21.2 .  Amplification Attack

   An attacker might be able to receive an address validation token
   ( Section 8 ) from a server and then release the IP address it used to
   acquire that token.  At a later time, the attacker may initiate a
   0-RTT connection with a server by spoofing this same address, which
   might now address a different (victim) endpoint.  The attacker can
   thus potentially cause the server to send an initial congestion
   window’s worth of data towards the victim.

   Servers SHOULD provide mitigations for this attack by limiting the
   usage and lifetime of address validation tokens; see Section 8.1.3 .
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21.3 .  Optimistic ACK Attack

   An endpoint that acknowledges packets it has not received might cause
   a congestion controller to permit sending at rates beyond what the
   network supports.  An endpoint MAY skip packet numbers when sending
   packets to detect this behavior.  An endpoint can then immediately
   close the connection with a connection error of type
   PROTOCOL_VIOLATION; see Section 10.3 .

21.4 .  Slowloris Attacks

   The attacks commonly known as Slowloris [ SLOWLORIS] try to keep many
   connections to the target endpoint open and hold them open as long as
   possible.  These attacks can be executed against a QUIC endpoint by
   generating the minimum amount of activity necessary to avoid being
   closed for inactivity.  This might involve sending small amounts of
   data, gradually opening flow control windows in order to control the
   sender rate, or manufacturing ACK frames that simulate a high loss
   rate.

   QUIC deployments SHOULD provide mitigations for the Slowloris
   attacks, such as increasing the maximum number of clients the server
   will allow, limiting the number of connections a single IP address is
   allowed to make, imposing restrictions on the minimum transfer speed
   a connection is allowed to have, and restricting the length of time
   an endpoint is allowed to stay connected.

21.5 .  Stream Fragmentation and Reassembly Attacks

   An adversarial sender might intentionally send fragments of stream
   data in order to cause disproportionate receive buffer memory
   commitment and/or creation of a large and inefficient data structure.

   An adversarial receiver might intentionally not acknowledge packets
   containing stream data in order to force the sender to store the
   unacknowledged stream data for retransmission.

   The attack on receivers is mitigated if flow control windows
   correspond to available memory.  However, some receivers will over-
   commit memory and advertise flow control offsets in the aggregate
   that exceed actual available memory.  The over-commitment strategy
   can lead to better performance when endpoints are well behaved, but
   renders endpoints vulnerable to the stream fragmentation attack.
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   QUIC deployments SHOULD provide mitigations against stream
   fragmentation attacks.  Mitigations could consist of avoiding over-
   committing memory, limiting the size of tracking data structures,
   delaying reassembly of STREAM frames, implementing heuristics based
   on the age and duration of reassembly holes, or some combination.

21.6 .  Stream Commitment Attack

   An adversarial endpoint can open lots of streams, exhausting state on
   an endpoint.  The adversarial endpoint could repeat the process on a
   large number of connections, in a manner similar to SYN flooding
   attacks in TCP.

   Normally, clients will open streams sequentially, as explained in
   Section 2.1 .  However, when several streams are initiated at short
   intervals, loss or reordering may cause STREAM frames that open
   streams to be received out of sequence.  On receiving a higher-
   numbered stream ID, a receiver is required to open all intervening
   streams of the same type; see Section 3.2 .  Thus, on a new
   connection, opening stream 4000000 opens 1 million and 1 client-
   initiated bidirectional streams.

   The number of active streams is limited by the
   initial_max_streams_bidi and initial_max_streams_uni transport
   parameters, as explained in Section 4.5 .  If chosen judiciously,
   these limits mitigate the effect of the stream commitment attack.
   However, setting the limit too low could affect performance when
   applications expect to open large number of streams.

21.7 .  Peer Denial of Service

   QUIC and TLS both contain frames or messages that have legitimate
   uses in some contexts, but that can be abused to cause a peer to
   expend processing resources without having any observable impact on
   the state of the connection.

   Messages can also be used to change and revert state in small or
   inconsequential ways, such as by sending small increments to flow
   control limits.

   If processing costs are disproportionately large in comparison to
   bandwidth consumption or effect on state, then this could allow a
   malicious peer to exhaust processing capacity.
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   While there are legitimate uses for all messages, implementations
   SHOULD track cost of processing relative to progress and treat
   excessive quantities of any non-productive packets as indicative of
   an attack.  Endpoints MAY respond to this condition with a connection
   error, or by dropping packets.

21.8 .  Explicit Congestion Notification Attacks

   An on-path attacker could manipulate the value of ECN codepoints in
   the IP header to influence the sender’s rate.  [ RFC3168] discusses
   manipulations and their effects in more detail.

   An on-the-side attacker can duplicate and send packets with modified
   ECN codepoints to affect the sender’s rate.  If duplicate packets are
   discarded by a receiver, an off-path attacker will need to race the
   duplicate packet against the original to be successful in this
   attack.  Therefore, QUIC endpoints ignore the ECN codepoint field on
   an IP packet unless at least one QUIC packet in that IP packet is
   successfully processed; see Section 13.4 .

21.9 .  Stateless Reset Oracle

   Stateless resets create a possible denial of service attack analogous
   to a TCP reset injection.  This attack is possible if an attacker is
   able to cause a stateless reset token to be generated for a
   connection with a selected connection ID.  An attacker that can cause
   this token to be generated can reset an active connection with the
   same connection ID.

   If a packet can be routed to different instances that share a static
   key, for example by changing an IP address or port, then an attacker
   can cause the server to send a stateless reset.  To defend against
   this style of denial service, endpoints that share a static key for
   stateless reset (see Section 10.4.2 ) MUST be arranged so that packets
   with a given connection ID always arrive at an instance that has
   connection state, unless that connection is no longer active.

   In the case of a cluster that uses dynamic load balancing, it’s
   possible that a change in load balancer configuration could happen
   while an active instance retains connection state; even if an
   instance retains connection state, the change in routing and
   resulting stateless reset will result in the connection being
   terminated.  If there is no chance in the packet being routed to the
   correct instance, it is better to send a stateless reset than wait
   for connections to time out.  However, this is acceptable only if the
   routing cannot be influenced by an attacker.
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21.10 .  Version Downgrade

   This document defines QUIC Version Negotiation packets in Section 6 ,
   which can be used to negotiate the QUIC version used between two
   endpoints.  However, this document does not specify how this
   negotiation will be performed between this version and subsequent
   future versions.  In particular, Version Negotiation packets do not
   contain any mechanism to prevent version downgrade attacks.  Future
   versions of QUIC that use Version Negotiation packets MUST define a
   mechanism that is robust against version downgrade attacks.

21.11 .  Targeted Attacks by Routing

   Deployments should limit the ability of an attacker to target a new
   connection to a particular server instance.  This means that client-
   controlled fields, such as the initial Destination Connection ID used
   on Initial and 0-RTT packets SHOULD NOT be used by themselves to make
   routing decisions.  Ideally, routing decisions are made independently
   of client-selected values; a Source Connection ID can be selected to
   route later packets to the same server.

21.12 .  Overview of Security Properties

   A complete security analysis of QUIC is outside the scope of this
   document.  This section provides an informal description of the
   desired security properties as an aid to implementors and to help
   guide protocol analysis.

   QUIC assumes the threat model described in [ SEC-CONS] and provides
   protections against many of the attacks that arise from that model.

   For this purpose, attacks are divided into passive and active
   attacks.  Passive attackers have the capability to read packets from
   the network, while active attackers also have the capability to write
   packets into the network.  However, a passive attack may involve an
   attacker with the ability to cause a routing change or other
   modification in the path taken by packets that comprise a connection.

   Attackers are additionally categorized as either on-path attackers or
   off-path attackers; see Section 3.5 of [ SEC-CONS].  An on-path
   attacker can read, modify, or remove any packet it observes such that
   it no longer reaches its destination, while an off-path attacker
   observes the packets, but cannot prevent the original packet from
   reaching its intended destination.  An off-path attacker can also
   transmit arbitrary packets.

   Properties of the handshake, protected packets, and connection
   migration are considered separately.
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21.12.1 .  Handshake

   The QUIC handshake incorporates the TLS 1.3 handshake and inherits
   the cryptographic properties described in Appendix E.1  of [ TLS13].
   Many of the security properties of QUIC depend on the TLS handshake
   providing these properties.  Any attack on the TLS handshake could
   affect QUIC.

   Any attack on the TLS handshake that compromises the secrecy or
   uniqueness of session keys affects other security guarantees provided
   by QUIC that depends on these keys.  For instance, migration
   ( Section 9 ) depends on the efficacy of confidentiality protections,
   both for the negotiation of keys using the TLS handshake and for QUIC
   packet protection, to avoid linkability across network paths.

   An attack on the integrity of the TLS handshake might allow an
   attacker to affect the selection of application protocol or QUIC
   version.

   In addition to the properties provided by TLS, the QUIC handshake
   provides some defense against DoS attacks on the handshake.

21.12.1.1 .  Anti-Amplification

   Address validation ( Section 8 ) is used to verify that an entity that
   claims a given address is able to receive packets at that address.
   Address validation limits amplification attack targets to addresses
   for which an attacker is either on-path or off-path.

   Prior to validation, endpoints are limited in what they are able to
   send.  During the handshake, a server cannot send more than three
   times the data it receives; clients that initiate new connections or
   migrate to a new network path are limited.

21.12.1.2 .  Server-Side DoS

   Computing the server’s first flight for a full handshake is
   potentially expensive, requiring both a signature and a key exchange
   computation.  In order to prevent computational DoS attacks, the
   Retry packet provides a cheap token exchange mechanism which allows
   servers to validate a client’s IP address prior to doing any
   expensive computations at the cost of a single round trip.  After a
   successful handshake, servers can issue new tokens to a client which
   will allow new connection establishment without incurring this cost.
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21.12.1.3 .  On-Path Handshake Termination

   An on-path or off-path attacker can force a handshake to fail by
   replacing or racing Initial packets.  Once valid Initial packets have
   been exchanged, subsequent Handshake packets are protected with the
   handshake keys and an on-path attacker cannot force handshake failure
   other than by dropping packets to cause endpoints to abandon the
   attempt.

   An on-path attacker can also replace the addresses of packets on
   either side and therefore cause the client or server to have an
   incorrect view of the remote addresses.  Such an attack is
   indistinguishable from the functions performed by a NAT.

21.12.1.4 .  Parameter Negotiation

   The entire handshake is cryptographically protected, with the Initial
   packets being encrypted with per-version keys and the Handshake and
   later packets being encrypted with keys derived from the TLS key
   exchange.  Further, parameter negotiation is folded into the TLS
   transcript and thus provides the same integrity guarantees as
   ordinary TLS negotiation.  An attacker can observe the client’s
   transport parameters (as long as it knows the version-specific keys)
   but cannot observe the server’s transport parameters and cannot
   influence parameter negotiation.

   Connection IDs are unencrypted but integrity protected in all
   packets.

   This version of QUIC does not incorporate a version negotiation
   mechanism; implementations of incompatible versions will simply fail
   to establish a connection.

21.12.2 .  Protected Packets

   Packet protection ( Section 12.1 ) provides authentication and
   encryption of all packets except Version Negotiation packets, though
   Initial and Retry packets have limited encryption and authentication
   based on version-specific keys; see [ QUIC-TLS ] for more details.
   This section considers passive and active attacks against protected
   packets.

   Both on-path and off-path attackers can mount a passive attack in
   which they save observed packets for an offline attack against packet
   protection at a future time; this is true for any observer of any
   packet on any network.
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   A blind attacker, one who injects packets without being able to
   observe valid packets for a connection, is unlikely to be successful,
   since packet protection ensures that valid packets are only generated
   by endpoints which possess the key material established during the
   handshake; see Section 7  and Section 21.12.1 .  Similarly, any active
   attacker that observes packets and attempts to insert new data or
   modify existing data in those packets should not be able to generate
   packets deemed valid by the receiving endpoint.

   A spoofing attack, in which an active attacker rewrites unprotected
   parts of a packet that it forwards or injects, such as the source or
   destination address, is only effective if the attacker can forward
   packets to the original endpoint.  Packet protection ensures that the
   packet payloads can only be processed by the endpoints that completed
   the handshake, and invalid packets are ignored by those endpoints.

   An attacker can also modify the boundaries between packets and UDP
   datagrams, causing multiple packets to be coalesced into a single
   datagram, or splitting coalesced packets into multiple datagrams.
   Aside from datagrams containing Initial packets, which require
   padding, modification of how packets are arranged in datagrams has no
   functional effect on a connection, although it might change some
   performance characteristics.

21.12.3 .  Connection Migration

   Connection Migration ( Section 9 ) provides endpoints with the ability
   to transition between IP addresses and ports on multiple paths, using
   one path at a time for transmission and receipt of non-probing
   frames.  Path validation ( Section 8.2 ) establishes that a peer is
   both willing and able to receive packets sent on a particular path.
   This helps reduce the effects of address spoofing by limiting the
   number of packets sent to a spoofed address.

   This section describes the intended security properties of connection
   migration when under various types of DoS attacks.

21.12.3.1 .  On-Path Active Attacks

   An attacker that can cause a packet it observes to no longer reach
   its intended destination is considered an on-path attacker.  When an
   attacker is present between a client and server, endpoints are
   required to send packets through the attacker to establish
   connectivity on a given path.

   An on-path attacker can:

   *  Inspect packets
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   *  Modify IP and UDP packet headers

   *  Inject new packets

   *  Delay packets

   *  Reorder packets

   *  Drop packets

   *  Split and merge datagrams along packet boundaries

   An on-path attacker cannot:

   *  Modify an authenticated portion of a packet and cause the
      recipient to accept that packet

   An on-path attacker has the opportunity to modify the packets that it
   observes, however any modifications to an authenticated portion of a
   packet will cause it to be dropped by the receiving endpoint as
   invalid, as packet payloads are both authenticated and encrypted.

   In the presence of an on-path attacker, QUIC aims to provide the
   following properties:

   1.  An on-path attacker can prevent use of a path for a connection,
       causing it to fail if it cannot use a different path that does
       not contain the attacker.  This can be achieved by dropping all
       packets, modifying them so that they fail to decrypt, or other
       methods.

   2.  An on-path attacker can prevent migration to a new path for which
       the attacker is also on-path by causing path validation to fail
       on the new path.

   3.  An on-path attacker cannot prevent a client from migrating to a
       path for which the attacker is not on-path.

   4.  An on-path attacker can reduce the throughput of a connection by
       delaying packets or dropping them.

   5.  An on-path attacker cannot cause an endpoint to accept a packet
       for which it has modified an authenticated portion of that
       packet.
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21.12.3.2 .  Off-Path Active Attacks

   An off-path attacker is not directly on the path between a client and
   server, but could be able to obtain copies of some or all packets
   sent between the client and the server.  It is also able to send
   copies of those packets to either endpoint.

   An off-path attacker can:

   *  Inspect packets

   *  Inject new packets

   *  Reorder injected packets

   An off-path attacker cannot:

   *  Modify any part of a packet

   *  Delay packets

   *  Drop packets

   *  Reorder original packets

   An off-path attacker can modify packets that it has observed and
   inject them back into the network, potentially with spoofed source
   and destination addresses.

   For the purposes of this discussion, it is assumed that an off-path
   attacker has the ability to observe, modify, and re-inject a packet
   into the network that will reach the destination endpoint prior to
   the arrival of the original packet observed by the attacker.  In
   other words, an attacker has the ability to consistently "win" a race
   with the legitimate packets between the endpoints, potentially
   causing the original packet to be ignored by the recipient.

   It is also assumed that an attacker has the resources necessary to
   affect NAT state, potentially both causing an endpoint to lose its
   NAT binding, and an attacker to obtain the same port for use with its
   traffic.

   In the presence of an off-path attacker, QUIC aims to provide the
   following properties:

   1.  An off-path attacker can race packets and attempt to become a
       "limited" on-path attacker.
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   2.  An off-path attacker can cause path validation to succeed for
       forwarded packets with the source address listed as the off-path
       attacker as long as it can provide improved connectivity between
       the client and the server.

   3.  An off-path attacker cannot cause a connection to close once the
       handshake has completed.

   4.  An off-path attacker cannot cause migration to a new path to fail
       if it cannot observe the new path.

   5.  An off-path attacker can become a limited on-path attacker during
       migration to a new path for which it is also an off-path
       attacker.

   6.  An off-path attacker can become a limited on-path attacker by
       affecting shared NAT state such that it sends packets to the
       server from the same IP address and port that the client
       originally used.

21.12.3.3 .  Limited On-Path Active Attacks

   A limited on-path attacker is an off-path attacker that has offered
   improved routing of packets by duplicating and forwarding original
   packets between the server and the client, causing those packets to
   arrive before the original copies such that the original packets are
   dropped by the destination endpoint.

   A limited on-path attacker differs from an on-path attacker in that
   it is not on the original path between endpoints, and therefore the
   original packets sent by an endpoint are still reaching their
   destination.  This means that a future failure to route copied
   packets to the destination faster than their original path will not
   prevent the original packets from reaching the destination.

   A limited on-path attacker can:

   *  Inspect packets

   *  Inject new packets

   *  Modify unencrypted packet headers

   *  Reorder packets

   A limited on-path attacker cannot:
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   *  Delay packets so that they arrive later than packets sent on the
      original path

   *  Drop packets

   *  Modify the authenticated and encrypted portion of a packet and
      cause the recipient to accept that packet

   A limited on-path attacker can only delay packets up to the point
   that the original packets arrive before the duplicate packets,
   meaning that it cannot offer routing with worse latency than the
   original path.  If a limited on-path attacker drops packets, the
   original copy will still arrive at the destination endpoint.

   In the presence of a limited on-path attacker, QUIC aims to provide
   the following properties:

   1.  A limited on-path attacker cannot cause a connection to close
       once the handshake has completed.

   2.  A limited on-path attacker cannot cause an idle connection to
       close if the client is first to resume activity.

   3.  A limited on-path attacker can cause an idle connection to be
       deemed lost if the server is the first to resume activity.

   Note that these guarantees are the same guarantees provided for any
   NAT, for the same reasons.

22.  IANA Considerations

   This document establishes several registries for the management of
   codepoints in QUIC.  These registries operate on a common set of
   policies as defined in Section 22.1 .

22.1 .  Registration Policies for QUIC Registries

   All QUIC registries allow for both provisional and permanent
   registration of codepoints.  This section documents policies that are
   common to these registries.

22.1.1 .  Provisional Registrations

   Provisional registration of codepoints are intended to allow for
   private use and experimentation with extensions to QUIC.  Provisional
   registrations only require the inclusion of the codepoint value and
   contact information.  However, provisional registrations could be
   reclaimed and reassigned for another purpose.
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   Provisional registrations require Expert Review, as defined in
   Section 4.5 of [RFC8126] .  Designated expert(s) are advised that only
   registrations for an excessive proportion of remaining codepoint
   space or the very first unassigned value (see Section 22.1.2 ) can be
   rejected.

   Provisional registrations will include a date field that indicates
   when the registration was last updated.  A request to update the date
   on any provisional registration can be made without review from the
   designated expert(s).

   All QUIC registries include the following fields to support
   provisional registration:

   Value:  The assigned codepoint.

   Status:  "Permanent" or "Provisional".

   Specification:  A reference to a publicly available specification for
      the value.

   Date:  The date of last update to the registration.

   Contact:  Contact details for the registrant.

   Notes:  Supplementary notes about the registration.

   Provisional registrations MAY omit the Specification and Notes
   fields, plus any additional fields that might be required for a
   permanent registration.  The Date field is not required as part of
   requesting a registration as it is set to the date the registration
   is created or updated.

22.1.2 .  Selecting Codepoints

   New uses of codepoints from QUIC registries SHOULD use a randomly
   selected codepoint that excludes both existing allocations and the
   first unallocated codepoint in the selected space.  Requests for
   multiple codepoints MAY use a contiguous range.  This minimizes the
   risk that differing semantics are attributed to the same codepoint by
   different implementations.  Use of the first codepoint in a range is
   intended for use by specifications that are developed through the
   standards process [ STD] and its allocation MUST be negotiated with
   IANA before use.
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   For codepoints that are encoded in variable-length integers
   ( Section 16 ), such as frame types, codepoints that encode to four or
   eight bytes (that is, values 2^14 and above) SHOULD be used unless
   the usage is especially sensitive to having a longer encoding.

   Applications to register codepoints in QUIC registries MAY include a
   codepoint as part of the registration.  IANA MUST allocate the
   selected codepoint unless that codepoint is already assigned or the
   codepoint is the first unallocated codepoint in the registry.

22.1.3 .  Reclaiming Provisional Codepoints

   A request might be made to remove an unused provisional registration
   from the registry to reclaim space in a registry, or portion of the
   registry (such as the 64-16383 range for codepoints that use
   variable-length encodings).  This SHOULD be done only for the
   codepoints with the earliest recorded date and entries that have been
   updated less than a year prior SHOULD NOT be reclaimed.

   A request to remove a codepoint MUST be reviewed by the designated
   expert(s).  The expert(s) MUST attempt to determine whether the
   codepoint is still in use.  Experts are advised to contact the listed
   contacts for the registration, plus as wide a set of protocol
   implementers as possible in order to determine whether any use of the
   codepoint is known.  The expert(s) are advised to allow at least four
   weeks for responses.

   If any use of the codepoints is identified by this search or a
   request to update the registration is made, the codepoint MUST NOT be
   reclaimed.  Instead, the date on the registration is updated.  A note
   might be added for the registration recording relevant information
   that was learned.

   If no use of the codepoint was identified and no request was made to
   update the registration, the codepoint MAY be removed from the
   registry.

   This process also applies to requests to change a provisional
   registration into a permanent registration, except that the goal is
   not to determine whether there is no use of the codepoint, but to
   determine that the registration is an accurate representation of any
   deployed usage.
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22.1.4 .  Permanent Registrations

   Permanent registrations in QUIC registries use the Specification
   Required policy [ RFC8126], unless otherwise specified.  The
   designated expert(s) verify that a specification exists and is
   readily accessible.  Expert(s) are encouraged to be biased towards
   approving registrations unless they are abusive, frivolous, or
   actively harmful (not merely aesthetically displeasing, or
   architecturally dubious).  The creation of a registry MAY specify
   additional constraints on permanent registrations.

   The creation of a registries MAY identify a range of codepoints where
   registrations are governed by a different registration policy.  For
   instance, the registries for 62-bit codepoints in this document have
   stricter policies for codepoints in the range from 0 to 63.

   Any stricter requirements for permanent registrations do not prevent
   provisional registrations for affected codepoints.  For instance, a
   provisional registration for a frame type Section 22.3  of 61 could be
   requested.

   All registrations made by Standards Track publications MUST be
   permanent.

   All registrations in this document are assigned a permanent status
   and list as contact both the IESG (ietf@ietf.org) and the QUIC
   working group (quic@ietf.org (mailto:quic@ietf.org)).

22.2 .  QUIC Transport Parameter Registry

   IANA [SHALL add/has added] a registry for "QUIC Transport Parameters"
   under a "QUIC" heading.

   The "QUIC Transport Parameters" registry governs a 62-bit space.
   This registry follows the registration policy from Section 22.1 .
   Permanent registrations in this registry are assigned using the
   Specification Required policy [ RFC8126].

   In addition to the fields in Section 22.1.1 , permanent registrations
   in this registry MUST include the following fields:

   Parameter Name:  A short mnemonic for the parameter.

   The initial contents of this registry are shown in Table 6.
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      +-------+-------------------------------------+---------------+
      | Value | Parameter Name                      | Specification |
      +=======+=====================================+===============+
      | 0x00  | original_destination_connection_id  | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x01  | max_idle_timeout                    | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x02  | stateless_reset_token               | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x03  | max_udp_payload_size                | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x04  | initial_max_data                    | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x05  | initial_max_stream_data_bidi_local  | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x06  | initial_max_stream_data_bidi_remote | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x07  | initial_max_stream_data_uni         | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x08  | initial_max_streams_bidi            | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x09  | initial_max_streams_uni             | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x0a  | ack_delay_exponent                  | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x0b  | max_ack_delay                       | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x0c  | disable_active_migration            | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x0d  | preferred_address                   | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x0e  | active_connection_id_limit          | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x0f  | initial_source_connection_id        | Section 18.2   |
      +-------+-------------------------------------+---------------+
      | 0x10  | retry_source_connection_id          | Section 18.2   |
      +-------+-------------------------------------+---------------+

             Table 6: Initial QUIC Transport Parameters Entries

   Additionally, each value of the format "31 * N + 27" for integer
   values of N (that is, 27, 58, 89, ...) are reserved and MUST NOT be
   assigned by IANA.

22.3 .  QUIC Frame Type Registry

   IANA [SHALL add/has added] a registry for "QUIC Frame Types" under a
   "QUIC" heading.
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   The "QUIC Frame Types" registry governs a 62-bit space.  This
   registry follows the registration policy from Section 22.1 .
   Permanent registrations in this registry are assigned using the
   Specification Required policy [ RFC8126], except for values between
   0x00 and 0x3f (in hexadecimal; inclusive), which are assigned using
   Standards Action or IESG Approval as defined in Section 4.9  and 4.10
   of [ RFC8126].

   In addition to the fields in Section 22.1.1 , permanent registrations
   in this registry MUST include the following fields:

   Frame Name:  A short mnemonic for the frame type.

   In addition to the advice in Section 22.1 , specifications for new
   permanent registrations SHOULD describe the means by which an
   endpoint might determine that it can send the identified type of
   frame.  An accompanying transport parameter registration is expected
   for most registrations; see Section 22.2 .  Specifications for
   permanent registrations also needs to describe the format and
   assigned semantics of any fields in the frame.

   The initial contents of this registry are tabulated in Table 3.

22.4 .  QUIC Transport Error Codes Registry

   IANA [SHALL add/has added] a registry for "QUIC Transport Error
   Codes" under a "QUIC" heading.

   The "QUIC Transport Error Codes" registry governs a 62-bit space.
   This space is split into three spaces that are governed by different
   policies.  Permanent registrations in this registry are assigned
   using the Specification Required policy [ RFC8126], except for values
   between 0x00 and 0x3f (in hexadecimal; inclusive), which are assigned
   using Standards Action or IESG Approval as defined in Section 4.9  and
   4.10 of [ RFC8126].

   In addition to the fields in Section 22.1.1 , permanent registrations
   in this registry MUST include the following fields:

   Code:  A short mnemonic for the parameter.

   Description:  A brief description of the error code semantics, which
      MAY be a summary if a specification reference is provided.

   The initial contents of this registry are shown in Table 7.
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   +------+---------------------------+----------------+---------------+
   |Value | Error                     | Description    | Specification |
   +======+===========================+================+===============+
   | 0x0  | NO_ERROR                  | No error       | Section 20     |
   +------+---------------------------+----------------+---------------+
   | 0x1  | INTERNAL_ERROR            | Implementation | Section 20     |
   |      |                           | error          |               |
   +------+---------------------------+----------------+---------------+
   | 0x2  | CONNECTION_REFUSED_ERROR  |Server refuses a| Section 20     |
   |      |                           | connection     |               |
   +------+---------------------------+----------------+---------------+
   | 0x3  | FLOW_CONTROL_ERROR        | Flow control   | Section 20     |
   |      |                           | error          |               |
   +------+---------------------------+----------------+---------------+
   | 0x4  | STREAM_LIMIT_ERROR        |Too many streams| Section 20     |
   |      |                           | opened         |               |
   +------+---------------------------+----------------+---------------+
   | 0x5  | STREAM_STATE_ERROR        | Frame received | Section 20     |
   |      |                           | in invalid     |               |
   |      |                           | stream state   |               |
   +------+---------------------------+----------------+---------------+
   | 0x6  | FINAL_SIZE_ERROR          |Change to final | Section 20     |
   |      |                           | size           |               |
   +------+---------------------------+----------------+---------------+
   | 0x7  | FRAME_ENCODING_ERROR      | Frame encoding | Section 20     |
   |      |                           | error          |               |
   +------+---------------------------+----------------+---------------+
   | 0x8  | TRANSPORT_PARAMETER_ERROR | Error in       | Section 20     |
   |      |                           | transport      |               |
   |      |                           | parameters     |               |
   +------+---------------------------+----------------+---------------+
   | 0x9  | CONNECTION_ID_LIMIT_ERROR | Too many       | Section 20     |
   |      |                           | connection IDs |               |
   |      |                           | received       |               |
   +------+---------------------------+----------------+---------------+
   | 0xA  | PROTOCOL_VIOLATION        |Generic protocol| Section 20     |
   |      |                           | violation      |               |
   +------+---------------------------+----------------+---------------+
   | 0xB  | INVALID_TOKEN             | Invalid Token  | Section 20     |
   |      |                           | Received       |               |
   +------+---------------------------+----------------+---------------+
   | 0xC  | APPLICATION_ERROR         | Application    | Section 20     |
   |      |                           | error          |               |
   +------+---------------------------+----------------+---------------+
   | 0xD  | CRYPTO_BUFFER_EXCEEDED    | CRYPTO data    | Section 20     |
   |      |                           | buffer         |               |
   |      |                           | overflowed     |               |
   +------+---------------------------+----------------+---------------+

Iyengar & Thomson       Expires 12 December 2020              [Page 160]



 
Internet-Draft           QUIC Transport Protocol               June 2020

            Table 7: Initial QUIC Transport Error Codes Entries
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Appendix A .  Sample Packet Number Decoding Algorithm

   The pseudo-code in Figure 44 shows how an implementation can decode
   packet numbers after header protection has been removed.

Iyengar & Thomson       Expires 12 December 2020              [Page 164]

https://tools.ietf.org/pdf/bcp127
https://tools.ietf.org/pdf/rfc4787
https://www.rfc-editor.org/info/rfc4787
https://tools.ietf.org/pdf/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://tools.ietf.org/pdf/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://tools.ietf.org/pdf/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://tools.ietf.org/pdf/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://tools.ietf.org/pdf/bcp72
https://tools.ietf.org/pdf/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://web.archive.org/web/20150315054838/
http://ha.ckers.org/slowloris/
https://tools.ietf.org/pdf/bcp9
https://tools.ietf.org/pdf/rfc2026
https://www.rfc-editor.org/info/rfc2026


 
Internet-Draft           QUIC Transport Protocol               June 2020

   DecodePacketNumber(largest_pn, truncated_pn, pn_nbits):
      expected_pn  = largest_pn + 1
      pn_win       = 1 << pn_nbits
      pn_hwin      = pn_win / 2
      pn_mask      = pn_win - 1
      // The incoming packet number should be greater than
      // expected_pn - pn_hwin and less than or equal to
      // expected_pn + pn_hwin
      //
      // This means we can’t just strip the trailing bits from
      // expected_pn and add the truncated_pn because that might
      // yield a value outside the window.
      //
      // The following code calculates a candidate value and
      // makes sure it’s within the packet number window.
      // Note the extra checks to prevent overflow and underflow.
      candidate_pn = (expected_pn & ~pn_mask) | truncated_pn
      if candidate_pn <= expected_pn - pn_hwin and
         candidate_pn < (1 << 62) - pn_win:
         return candidate_pn + pn_win
      if candidate_pn > expected_pn + pn_hwin and
         candidate_pn >= pn_win:
         return candidate_pn - pn_win
      return candidate_pn

             Figure 44: Sample Packet Number Decoding Algorithm

Appendix B .  Sample ECN Validation Algorithm

   Each time an endpoint commences sending on a new network path, it
   determines whether the path supports ECN; see Section 13.4 .  If the
   path supports ECN, the goal is to use ECN.  Endpoints might also
   periodically reassess a path that was determined to not support ECN.

   This section describes one method for testing new paths.  This
   algorithm is intended to show how a path might be tested for ECN
   support.  Endpoints can implement different methods.

   The path is assigned an ECN state that is one of "testing",
   "unknown", "failed", or "capable".  On paths with a "testing" or
   "capable" state the endpoint sends packets with an ECT marking, by
   default ECT(0); otherwise, the endpoint sends unmarked packets.

   To start testing a path, the ECN state is set to "testing" and
   existing ECN counts are remembered as a baseline.
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   The testing period runs for a number of packets or round-trip times,
   as determined by the endpoint.  The goal is not to limit the duration
   of the testing period, but to ensure that enough marked packets are
   sent for received ECN counts to provide a clear indication of how the
   path treats marked packets.  Section 13.4.2.2  suggests limiting this
   to 10 packets or 3 round-trip times.

   After the testing period ends, the ECN state for the path becomes
   "unknown".  From the "unknown" state, successful validation of the
   ECN counts an ACK frame (see Section 13.4.2.2 ) causes the ECN state
   for the path to become "capable", unless no marked packet has been
   acknowledged.

   If validation of ECN counts fails at any time, the ECN state for the
   affected path becomes "failed".  An endpoint can also mark the ECN
   state for a path as "failed" if marked packets are all declared lost
   or if they are all CE marked.

   Following this algorithm ensures that ECN is rarely disabled for
   paths that properly support ECN.  Any path that incorrectly modifies
   markings will cause ECN to be disabled.  For those rare cases where
   marked packets are discarded by the path, the short duration of the
   testing period limits the number of losses incurred.

Appendix C .  Change Log

      *RFC Editor’s Note:* Please remove this section prior to
      publication of a final version of this document.

   Issue and pull request numbers are listed with a leading octothorp.

C.1 .  Since draft-ietf-quic-transport-28

   *  Made SERVER_BUSY error (0x2) more generic, now CONNECTION_REFUSED
      (#3709, #3690, #3694)

   *  Allow TRANSPORT_PARAMETER_ERROR when validating connection IDs
      (#3703, #3691)

   *  Integrate QUIC-specific language from draft-ietf-tsvwg-datagram-
      plpmtud  (#3695, #3702)

   *  disable_active_migration does not apply to the addresses offered
      in server_preferred_address (#3608, #3670)

C.2 .  Since draft-ietf-quic-transport-27
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   *  Allowed CONNECTION_CLOSE in any packet number space, with a
      requirement to use a new transport-level error for application-
      specific errors in Initial and Handshake packets (#3430, #3435,
      #3440)

   *  Clearer requirements for address validation (#2125, #3327)

   *  Security analysis of handshake and migration (#2143, #2387, #2925)

   *  The entire payload of a datagram is used when counting bytes for
      mitigating amplification attacks (#3333, #3470)

   *  Connection IDs can be used at any time, including in the handshake
      (#3348, #3560, #3438, #3565)

   *  Only one ACK should be sent for each instance of reordering
      (#3357, #3361)

   *  Remove text allowing a server to proceed with a bad Retry token
      (#3396, #3398)

   *  Ignore active_connection_id_limit with a zero-length connection ID
      (#3427, #3426)

   *  Require active_connection_id_limit be remembered for 0-RTT (#3423,
      #3425)

   *  Require ack_delay not be remembered for 0-RTT (#3433, #3545)

   *  Redefined max_packet_size to max_udp_datagram_size (#3471, #3473)

   *  Guidance on limiting outstanding attempts to retire connection IDs
      (#3489, #3509, #3557, #3547)

   *  Restored text on dropping bogus Version Negotiation packets
      (#3532, #3533)

   *  Clarified that largest acknowledged needs to be saved, but not
      necessarily signaled in all cases (#3541, #3581)

   *  Addressed linkability risk with the use of preferred_address
      (#3559, #3563)

   *  Added authentication of handshake connection IDs (#3439, #3499)

   *  Opening a stream in the wrong direction is an error (#3527)
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C.3 .  Since draft-ietf-quic-transport-26

   *  Change format of transport parameters to use varints (#3294,
      #3169)

C.4 .  Since draft-ietf-quic-transport-25

   *  Define the use of CONNECTION_CLOSE prior to establishing
      connection state (#3269, #3297, #3292)

   *  Allow use of address validation tokens after client address
      changes (#3307, #3308)

   *  Define the timer for address validation (#2910, #3339)

C.5 .  Since draft-ietf-quic-transport-24

   *  Added HANDSHAKE_DONE to signal handshake confirmation (#2863,
      #3142, #3145)

   *  Add integrity check to Retry packets (#3014, #3274, #3120)

   *  Specify handling of reordered NEW_CONNECTION_ID frames (#3194,
      #3202)

   *  Require checking of sequence numbers in RETIRE_CONNECTION_ID
      (#3037, #3036)

   *  active_connection_id_limit is enforced (#3193, #3197, #3200,
      #3201)

   *  Correct overflow in packet number decode algorithm (#3187, #3188)

   *  Allow use of CRYPTO_BUFFER_EXCEEDED for CRYPTO frame errors
      (#3258, #3186)

   *  Define applicability and scope of NEW_TOKEN (#3150, #3152, #3155,
      #3156)

   *  Tokens from Retry and NEW_TOKEN must be differentiated (#3127,
      #3128)

   *  Allow CONNECTION_CLOSE in response to invalid token (#3168, #3107)

   *  Treat an invalid CONNECTION_CLOSE as an invalid frame (#2475,
      #3230, #3231)
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   *  Throttle when sending CONNECTION_CLOSE after discarding state
      (#3095, #3157)

   *  Application-variant of CONNECTION_CLOSE can only be sent in 0-RTT
      or 1-RTT packets (#3158, #3164)

   *  Advise sending while blocked to avoid idle timeout (#2744, #3266)

   *  Define error codes for invalid frames (#3027, #3042)

   *  Idle timeout is symmetric (#2602, #3099)

   *  Prohibit IP fragmentation (#3243, #3280)

   *  Define the use of provisional registration for all registries
      (#3109, #3020, #3102, #3170)

   *  Packets on one path must not adjust values for a different path
      (#2909, #3139)

C.6 .  Since draft-ietf-quic-transport-23

   *  Allow ClientHello to span multiple packets (#2928, #3045)

   *  Client Initial size constraints apply to UDP datagram payload
      (#3053, #3051)

   *  Stateless reset changes (#2152, #2993)

      -  tokens need to be compared in constant time

      -  detection uses UDP datagrams, not packets

      -  tokens cannot be reused (#2785, #2968)

   *  Clearer rules for sharing of UDP ports and use of connection IDs
      when doing so (#2844, #2851)

   *  A new connection ID is necessary when responding to migration
      (#2778, #2969)

   *  Stronger requirements for connection ID retirement (#3046, #3096)

   *  NEW_TOKEN cannot be empty (#2978, #2977)

   *  PING can be sent at any encryption level (#3034, #3035)

   *  CONNECTION_CLOSE is not ack-eliciting (#3097, #3098)
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   *  Frame encoding error conditions updated (#3027, #3042)

   *  Non-ack-eliciting packets cannot be sent in response to non-ack-
      eliciting packets (#3100, #3104)

   *  Servers have to change connection IDs in Retry (#2837, #3147)

C.7 .  Since draft-ietf-quic-transport-22

   *  Rules for preventing correlation by connection ID tightened
      (#2084, #2929)

   *  Clarified use of CONNECTION_CLOSE in Handshake packets (#2151,
      #2541, #2688)

   *  Discourage regressions of largest acknowledged in ACK (#2205,
      #2752)

   *  Improved robustness of validation process for ECN counts (#2534,
      #2752)

   *  Require endpoints to ignore spurious migration attempts (#2342,
      #2893)

   *  Transport parameter for disabling migration clarified to allow NAT
      rebinding (#2389, #2893)

   *  Document principles for defining new error codes (#2388, #2880)

   *  Reserve transport parameters for greasing (#2550, #2873)

   *  A maximum ACK delay of 0 is used for handshake packet number
      spaces (#2646, #2638)

   *  Improved rules for use of congestion control state on new paths
      (#2685, #2918)

   *  Removed recommendation to coordinate spin for multiple connections
      that share a path (#2763, #2882)

   *  Allow smaller stateless resets and recommend a smaller minimum on
      packets that might trigger a stateless reset (#2770, #2869, #2927,
      #3007).

   *  Provide guidance around the interface to QUIC as used by
      application protocols (#2805, #2857)
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   *  Frames other than STREAM can cause STREAM_LIMIT_ERROR (#2825,
      #2826)

   *  Tighter rules about processing of rejected 0-RTT packets (#2829,
      #2840, #2841)

   *  Explanation of the effect of Retry on 0-RTT packets (#2842, #2852)

   *  Cryptographic handshake needs to provide server transport
      parameter encryption (#2920, #2921)

   *  Moved ACK generation guidance from recovery draft to transport
      draft (#1860, #2916).

C.8 .  Since draft-ietf-quic-transport-21

   *  Connection ID lengths are now one octet, but limited in version 1
      to 20 octets of length (#2736, #2749)

C.9 .  Since draft-ietf-quic-transport-20

   *  Error codes are encoded as variable-length integers (#2672, #2680)

   *  NEW_CONNECTION_ID includes a request to retire old connection IDs
      (#2645, #2769)

   *  Tighter rules for generating and explicitly eliciting ACK frames
      (#2546, #2794)

   *  Recommend having only one packet per encryption level in a
      datagram (#2308, #2747)

   *  More normative language about use of stateless reset (#2471,
      #2574)

   *  Allow reuse of stateless reset tokens (#2732, #2733)

   *  Allow, but not require, enforcing non-duplicate transport
      parameters (#2689, #2691)

   *  Added an active_connection_id_limit transport parameter (#1994,
      #1998)

   *  max_ack_delay transport parameter defaults to 0 (#2638, #2646)

   *  When sending 0-RTT, only remembered transport parameters apply
      (#2458, #2360, #2466, #2461)
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   *  Define handshake completion and confirmation; define clearer rules
      when it encryption keys should be discarded (#2214, #2267, #2673)

   *  Prohibit path migration prior to handshake confirmation (#2309,
      #2370)

   *  PATH_RESPONSE no longer needs to be received on the validated path
      (#2582, #2580, #2579, #2637)

   *  PATH_RESPONSE frames are not stored and retransmitted (#2724,
      #2729)

   *  Document hack for enabling routing of ICMP when doing PMTU probing
      (#1243, #2402)

C.10 .  Since draft-ietf-quic-transport-19

   *  Refine discussion of 0-RTT transport parameters (#2467, #2464)

   *  Fewer transport parameters need to be remembered for 0-RTT (#2624,
      #2467)

   *  Spin bit text incorporated (#2564)

   *  Close the connection when maximum stream ID in MAX_STREAMS exceeds
      2^62 - 1 (#2499, #2487)

   *  New connection ID required for intentional migration (#2414,
      #2413)

   *  Connection ID issuance can be rate-limited (#2436, #2428)

   *  The "QUIC bit" is ignored in Version Negotiation (#2400, #2561)

   *  Initial packets from clients need to be padded to 1200 unless a
      Handshake packet is sent as well (#2522, #2523)

   *  CRYPTO frames can be discarded if too much data is buffered
      (#1834, #2524)

   *  Stateless reset uses a short header packet (#2599, #2600)

C.11 .  Since draft-ietf-quic-transport-18

   *  Removed version negotiation; version negotiation, including
      authentication of the result, will be addressed in the next
      version of QUIC (#1773, #2313)
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   *  Added discussion of the use of IPv6 flow labels (#2348, #2399)

   *  A connection ID can’t be retired in a packet that uses that
      connection ID (#2101, #2420)

   *  Idle timeout transport parameter is in milliseconds (from seconds)
      (#2453, #2454)

   *  Endpoints are required to use new connection IDs when they use new
      network paths (#2413, #2414)

   *  Increased the set of permissible frames in 0-RTT (#2344, #2355)

C.12 .  Since draft-ietf-quic-transport-17

   *  Stream-related errors now use STREAM_STATE_ERROR (#2305)

   *  Endpoints discard initial keys as soon as handshake keys are
      available (#1951, #2045)

   *  Expanded conditions for ignoring ICMP packet too big messages
      (#2108, #2161)

   *  Remove rate control from PATH_CHALLENGE/PATH_RESPONSE (#2129,
      #2241)

   *  Endpoints are permitted to discard malformed initial packets
      (#2141)

   *  Clarified ECN implementation and usage requirements (#2156, #2201)

   *  Disable ECN count verification for packets that arrive out of
      order (#2198, #2215)

   *  Use Probe Timeout (PTO) instead of RTO (#2206, #2238)

   *  Loosen constraints on retransmission of ACK ranges (#2199, #2245)

   *  Limit Retry and Version Negotiation to once per datagram (#2259,
      #2303)

   *  Set a maximum value for max_ack_delay transport parameter (#2282,
      #2301)

   *  Allow server preferred address for both IPv4 and IPv6 (#2122,
      #2296)
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   *  Corrected requirements for migration to a preferred address
      (#2146, #2349)

   *  ACK of non-existent packet is illegal (#2298, #2302)

C.13 .  Since draft-ietf-quic-transport-16

   *  Stream limits are defined as counts, not maximums (#1850, #1906)

   *  Require amplification attack defense after closing (#1905, #1911)

   *  Remove reservation of application error code 0 for STOPPING
      (#1804, #1922)

   *  Renumbered frames (#1945)

   *  Renumbered transport parameters (#1946)

   *  Numeric transport parameters are expressed as varints (#1608,
      #1947, #1955)

   *  Reorder the NEW_CONNECTION_ID frame (#1952, #1963)

   *  Rework the first byte (#2006)

      -  Fix the 0x40 bit

      -  Change type values for long header

      -  Add spin bit to short header (#631, #1988)

      -  Encrypt the remainder of the first byte (#1322)

      -  Move packet number length to first byte

      -  Move ODCIL to first byte of retry packets

      -  Simplify packet number protection (#1575)

   *  Allow STOP_SENDING to open a remote bidirectional stream (#1797,
      #2013)

   *  Added mitigation for off-path migration attacks (#1278, #1749,
      #2033)

   *  Don’t let the PMTU to drop below 1280 (#2063, #2069)

   *  Require peers to replace retired connection IDs (#2085)
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   *  Servers are required to ignore Version Negotiation packets (#2088)

   *  Tokens are repeated in all Initial packets (#2089)

   *  Clarified how PING frames are sent after loss (#2094)

   *  Initial keys are discarded once Handshake are available (#1951,
      #2045)

   *  ICMP PTB validation clarifications (#2161, #2109, #2108)

C.14 .  Since draft-ietf-quic-transport-15

   Substantial editorial reorganization; no technical changes.

C.15 .  Since draft-ietf-quic-transport-14

   *  Merge ACK and ACK_ECN (#1778, #1801)

   *  Explicitly communicate max_ack_delay (#981, #1781)

   *  Validate original connection ID after Retry packets (#1710, #1486,
      #1793)

   *  Idle timeout is optional and has no specified maximum (#1765)

   *  Update connection ID handling; add RETIRE_CONNECTION_ID type
      (#1464, #1468, #1483, #1484, #1486, #1495, #1729, #1742, #1799,
      #1821)

   *  Include a Token in all Initial packets (#1649, #1794)

   *  Prevent handshake deadlock (#1764, #1824)

C.16 .  Since draft-ietf-quic-transport-13

   *  Streams open when higher-numbered streams of the same type open
      (#1342, #1549)

   *  Split initial stream flow control limit into 3 transport
      parameters (#1016, #1542)

   *  All flow control transport parameters are optional (#1610)

   *  Removed UNSOLICITED_PATH_RESPONSE error code (#1265, #1539)

   *  Permit stateless reset in response to any packet (#1348, #1553)
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   *  Recommended defense against stateless reset spoofing (#1386,
      #1554)

   *  Prevent infinite stateless reset exchanges (#1443, #1627)

   *  Forbid processing of the same packet number twice (#1405, #1624)

   *  Added a packet number decoding example (#1493)

   *  More precisely define idle timeout (#1429, #1614, #1652)

   *  Corrected format of Retry packet and prevented looping (#1492,
      #1451, #1448, #1498)

   *  Permit 0-RTT after receiving Version Negotiation or Retry (#1507,
      #1514, #1621)

   *  Permit Retry in response to 0-RTT (#1547, #1552)

   *  Looser verification of ECN counters to account for ACK loss
      (#1555, #1481, #1565)

   *  Remove frame type field from APPLICATION_CLOSE (#1508, #1528)

C.17 .  Since draft-ietf-quic-transport-12

   *  Changes to integration of the TLS handshake (#829, #1018, #1094,
      #1165, #1190, #1233, #1242, #1252, #1450, #1458)

      -  The cryptographic handshake uses CRYPTO frames, not stream 0

      -  QUIC packet protection is used in place of TLS record
         protection

      -  Separate QUIC packet number spaces are used for the handshake

      -  Changed Retry to be independent of the cryptographic handshake

      -  Added NEW_TOKEN frame and Token fields to Initial packet

      -  Limit the use of HelloRetryRequest to address TLS needs (like
         key shares)

   *  Enable server to transition connections to a preferred address
      (#560, #1251, #1373)

   *  Added ECN feedback mechanisms and handling; new ACK_ECN frame
      (#804, #805, #1372)
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   *  Changed rules and recommendations for use of new connection IDs
      (#1258, #1264, #1276, #1280, #1419, #1452, #1453, #1465)

   *  Added a transport parameter to disable intentional connection
      migration (#1271, #1447)

   *  Packets from different connection ID can’t be coalesced (#1287,
      #1423)

   *  Fixed sampling method for packet number encryption; the length
      field in long headers includes the packet number field in addition
      to the packet payload (#1387, #1389)

   *  Stateless Reset is now symmetric and subject to size constraints
      (#466, #1346)

   *  Added frame type extension mechanism (#58, #1473)

C.18 .  Since draft-ietf-quic-transport-11

   *  Enable server to transition connections to a preferred address
      (#560, #1251)

   *  Packet numbers are encrypted (#1174, #1043, #1048, #1034, #850,
      #990, #734, #1317, #1267, #1079)

   *  Packet numbers use a variable-length encoding (#989, #1334)

   *  STREAM frames can now be empty (#1350)

C.19 .  Since draft-ietf-quic-transport-10

   *  Swap payload length and packed number fields in long header
      (#1294)

   *  Clarified that CONNECTION_CLOSE is allowed in Handshake packet
      (#1274)

   *  Spin bit reserved (#1283)

   *  Coalescing multiple QUIC packets in a UDP datagram (#1262, #1285)

   *  A more complete connection migration (#1249)

   *  Refine opportunistic ACK defense text (#305, #1030, #1185)

   *  A Stateless Reset Token isn’t mandatory (#818, #1191)
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   *  Removed implicit stream opening (#896, #1193)

   *  An empty STREAM frame can be used to open a stream without sending
      data (#901, #1194)

   *  Define stream counts in transport parameters rather than a maximum
      stream ID (#1023, #1065)

   *  STOP_SENDING is now prohibited before streams are used (#1050)

   *  Recommend including ACK in Retry packets and allow PADDING (#1067,
      #882)

   *  Endpoints now become closing after an idle timeout (#1178, #1179)

   *  Remove implication that Version Negotiation is sent when a packet
      of the wrong version is received (#1197)

C.20 .  Since draft-ietf-quic-transport-09

   *  Added PATH_CHALLENGE and PATH_RESPONSE frames to replace PING with
      Data and PONG frame.  Changed ACK frame type from 0x0e to 0x0d.
      (#1091, #725, #1086)

   *  A server can now only send 3 packets without validating the client
      address (#38, #1090)

   *  Delivery order of stream data is no longer strongly specified
      (#252, #1070)

   *  Rework of packet handling and version negotiation (#1038)

   *  Stream 0 is now exempt from flow control until the handshake
      completes (#1074, #725, #825, #1082)

   *  Improved retransmission rules for all frame types: information is
      retransmitted, not packets or frames (#463, #765, #1095, #1053)

   *  Added an error code for server busy signals (#1137)

   *  Endpoints now set the connection ID that their peer uses.
      Connection IDs are variable length.  Removed the
      omit_connection_id transport parameter and the corresponding short
      header flag. (#1089, #1052, #1146, #821, #745, #821, #1166, #1151)
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C.21 .  Since draft-ietf-quic-transport-08

   *  Clarified requirements for BLOCKED usage (#65, #924)

   *  BLOCKED frame now includes reason for blocking (#452, #924, #927,
      #928)

   *  GAP limitation in ACK Frame (#613)

   *  Improved PMTUD description (#614, #1036)

   *  Clarified stream state machine (#634, #662, #743, #894)

   *  Reserved versions don’t need to be generated deterministically
      (#831, #931)

   *  You don’t always need the draining period (#871)

   *  Stateless reset clarified as version-specific (#930, #986)

   *  initial_max_stream_id_x transport parameters are optional (#970,
      #971)

   *  Ack Delay assumes a default value during the handshake (#1007,
      #1009)

   *  Removed transport parameters from NewSessionTicket (#1015)

C.22 .  Since draft-ietf-quic-transport-07

   *  The long header now has version before packet number (#926, #939)

   *  Rename and consolidate packet types (#846, #822, #847)

   *  Packet types are assigned new codepoints and the Connection ID
      Flag is inverted (#426, #956)

   *  Removed type for Version Negotiation and use Version 0 (#963,
      #968)

   *  Streams are split into unidirectional and bidirectional (#643,
      #656, #720, #872, #175, #885)

      -  Stream limits now have separate uni- and bi-directional
         transport parameters (#909, #958)

      -  Stream limit transport parameters are now optional and default
         to 0 (#970, #971)
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   *  The stream state machine has been split into read and write (#634,
      #894)

   *  Employ variable-length integer encodings throughout (#595)

   *  Improvements to connection close

      -  Added distinct closing and draining states (#899, #871)

      -  Draining period can terminate early (#869, #870)

      -  Clarifications about stateless reset (#889, #890)

   *  Address validation for connection migration (#161, #732, #878)

   *  Clearly defined retransmission rules for BLOCKED (#452, #65, #924)

   *  negotiated_version is sent in server transport parameters (#710,
      #959)

   *  Increased the range over which packet numbers are randomized
      (#864, #850, #964)

C.23 .  Since draft-ietf-quic-transport-06

   *  Replaced FNV-1a with AES-GCM for all "Cleartext" packets (#554)

   *  Split error code space between application and transport (#485)

   *  Stateless reset token moved to end (#820)

   *  1-RTT-protected long header types removed (#848)

   *  No acknowledgments during draining period (#852)

   *  Remove "application close" as a separate close type (#854)

   *  Remove timestamps from the ACK frame (#841)

   *  Require transport parameters to only appear once (#792)

C.24 .  Since draft-ietf-quic-transport-05

   *  Stateless token is server-only (#726)

   *  Refactor section on connection termination (#733, #748, #328,
      #177)
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   *  Limit size of Version Negotiation packet (#585)

   *  Clarify when and what to ack (#736)

   *  Renamed STREAM_ID_NEEDED to STREAM_ID_BLOCKED

   *  Clarify Keep-alive requirements (#729)

C.25 .  Since draft-ietf-quic-transport-04

   *  Introduce STOP_SENDING frame, RESET_STREAM only resets in one
      direction (#165)

   *  Removed GOAWAY; application protocols are responsible for graceful
      shutdown (#696)

   *  Reduced the number of error codes (#96, #177, #184, #211)

   *  Version validation fields can’t move or change (#121)

   *  Removed versions from the transport parameters in a
      NewSessionTicket message (#547)

   *  Clarify the meaning of "bytes in flight" (#550)

   *  Public reset is now stateless reset and not visible to the path
      (#215)

   *  Reordered bits and fields in STREAM frame (#620)

   *  Clarifications to the stream state machine (#572, #571)

   *  Increased the maximum length of the Largest Acknowledged field in
      ACK frames to 64 bits (#629)

   *  truncate_connection_id is renamed to omit_connection_id (#659)

   *  CONNECTION_CLOSE terminates the connection like TCP RST (#330,
      #328)

   *  Update labels used in HKDF-Expand-Label to match TLS 1.3 (#642)

C.26 .  Since draft-ietf-quic-transport-03

   *  Change STREAM and RESET_STREAM layout

   *  Add MAX_STREAM_ID settings
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C.27 .  Since draft-ietf-quic-transport-02

   *  The size of the initial packet payload has a fixed minimum (#267,
      #472)

   *  Define when Version Negotiation packets are ignored (#284, #294,
      #241, #143, #474)

   *  The 64-bit FNV-1a algorithm is used for integrity protection of
      unprotected packets (#167, #480, #481, #517)

   *  Rework initial packet types to change how the connection ID is
      chosen (#482, #442, #493)

   *  No timestamps are forbidden in unprotected packets (#542, #429)

   *  Cryptographic handshake is now on stream 0 (#456)

   *  Remove congestion control exemption for cryptographic handshake
      (#248, #476)

   *  Version 1 of QUIC uses TLS; a new version is needed to use a
      different handshake protocol (#516)

   *  STREAM frames have a reduced number of offset lengths (#543, #430)

   *  Split some frames into separate connection- and stream- level
      frames (#443)

      -  WINDOW_UPDATE split into MAX_DATA and MAX_STREAM_DATA (#450)

      -  BLOCKED split to match WINDOW_UPDATE split (#454)

      -  Define STREAM_ID_NEEDED frame (#455)

   *  A NEW_CONNECTION_ID frame supports connection migration without
      linkability (#232, #491, #496)

   *  Transport parameters for 0-RTT are retained from a previous
      connection (#405, #513, #512)

      -  A client in 0-RTT no longer required to reset excess streams
         (#425, #479)

   *  Expanded security considerations (#440, #444, #445, #448)

C.28 .  Since draft-ietf-quic-transport-01
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   *  Defined short and long packet headers (#40, #148, #361)

   *  Defined a versioning scheme and stable fields (#51, #361)

   *  Define reserved version values for "greasing" negotiation (#112,
      #278)

   *  The initial packet number is randomized (#35, #283)

   *  Narrow the packet number encoding range requirement (#67, #286,
      #299, #323, #356)

   *  Defined client address validation (#52, #118, #120, #275)

   *  Define transport parameters as a TLS extension (#49, #122)

   *  SCUP and COPT parameters are no longer valid (#116, #117)

   *  Transport parameters for 0-RTT are either remembered from before,
      or assume default values (#126)

   *  The server chooses connection IDs in its final flight (#119, #349,
      #361)

   *  The server echoes the Connection ID and packet number fields when
      sending a Version Negotiation packet (#133, #295, #244)

   *  Defined a minimum packet size for the initial handshake packet
      from the client (#69, #136, #139, #164)

   *  Path MTU Discovery (#64, #106)

   *  The initial handshake packet from the client needs to fit in a
      single packet (#338)

   *  Forbid acknowledgment of packets containing only ACK and PADDING
      (#291)

   *  Require that frames are processed when packets are acknowledged
      (#381, #341)

   *  Removed the STOP_WAITING frame (#66)

   *  Don’t require retransmission of old timestamps for lost ACK frames
      (#308)

   *  Clarified that frames are not retransmitted, but the information
      in them can be (#157, #298)
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   *  Error handling definitions (#335)

   *  Split error codes into four sections (#74)

   *  Forbid the use of Public Reset where CONNECTION_CLOSE is possible
      (#289)

   *  Define packet protection rules (#336)

   *  Require that stream be entirely delivered or reset, including
      acknowledgment of all STREAM frames or the RESET_STREAM, before it
      closes (#381)

   *  Remove stream reservation from state machine (#174, #280)

   *  Only stream 1 does not contribute to connection-level flow control
      (#204)

   *  Stream 1 counts towards the maximum concurrent stream limit (#201,
      #282)

   *  Remove connection-level flow control exclusion for some streams
      (except 1) (#246)

   *  RESET_STREAM affects connection-level flow control (#162, #163)

   *  Flow control accounting uses the maximum data offset on each
      stream, rather than bytes received (#378)

   *  Moved length-determining fields to the start of STREAM and ACK
      (#168, #277)

   *  Added the ability to pad between frames (#158, #276)

   *  Remove error code and reason phrase from GOAWAY (#352, #355)

   *  GOAWAY includes a final stream number for both directions (#347)

   *  Error codes for RESET_STREAM and CONNECTION_CLOSE are now at a
      consistent offset (#249)

   *  Defined priority as the responsibility of the application protocol
      (#104, #303)

C.29 .  Since draft-ietf-quic-transport-00

   *  Replaced DIVERSIFICATION_NONCE flag with KEY_PHASE flag
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   *  Defined versioning

   *  Reworked description of packet and frame layout

   *  Error code space is divided into regions for each component

   *  Use big endian for all numeric values

C.30 .  Since draft-hamilton-quic-transport-protocol-01

   *  Adopted as base for draft-ietf-quic-tls

   *  Updated authors/editors list

   *  Added IANA Considerations section

   *  Moved Contributors and Acknowledgments to appendices
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