
QUIC M. Thomson, Ed.
Internet-Draft Mozilla
Intended status: Standards Track S. Turner, Ed.
Expires: 16 June 2021 sn3rd
 13 December 2020

 Using TLS to Secure QUIC
 draft-ietf-quic-tls-33

Abstract

 This document describes how Transport Layer Security (TLS) is used to
 secure QUIC.

Note to Readers

 Discussion of this draft takes place on the QUIC working group
 mailing list (quic@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/search/?email_list=quic .

 Working Group information can be found at https://github .com/quicwg;
 source code and issues list for this draft can be found at
 https://github.com/quicwg/base-drafts/labels/-tls .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 16 June 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Thomson & Turner Expires 16 June 2021 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=quic
https://github/
https://github.com/quicwg/base-drafts/labels/-tls
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Using TLS to Secure QUIC December 2020

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Notational Conventions 4
 2.1 . TLS Overview . 5
 3. Protocol Overview . 7
 4. Carrying TLS Messages . 8
 4.1 . Interface to TLS . 9
 4.1.1 . Handshake Complete 10
 4.1.2 . Handshake Confirmed 10
 4.1.3 . Sending and Receiving Handshake Messages 10
 4.1.4 . Encryption Level Changes 12
 4.1.5 . TLS Interface Summary 14
 4.2 . TLS Version . 15
 4.3 . ClientHello Size . 15
 4.4 . Peer Authentication 16
 4.5 . Session Resumption 17
 4.6 . 0-RTT . 17
 4.6.1 . Enabling 0-RTT 18
 4.6.2 . Accepting and Rejecting 0-RTT 18
 4.6.3 . Validating 0-RTT Configuration 19
 4.7 . HelloRetryRequest . 19
 4.8 . TLS Errors . 19
 4.9 . Discarding Unused Keys 20
 4.9.1 . Discarding Initial Keys 20
 4.9.2 . Discarding Handshake Keys 21
 4.9.3 . Discarding 0-RTT Keys 21
 5. Packet Protection . 21
 5.1 . Packet Protection Keys 22
 5.2 . Initial Secrets . 23
 5.3 . AEAD Usage . 24
 5.4 . Header Protection . 25
 5.4.1 . Header Protection Application 26
 5.4.2 . Header Protection Sample 27
 5.4.3 . AES-Based Header Protection 29
 5.4.4 . ChaCha20-Based Header Protection 29
 5.5 . Receiving Protected Packets 30
 5.6 . Use of 0-RTT Keys . 30
 5.7 . Receiving Out-of-Order Protected Packets 31

Thomson & Turner Expires 16 June 2021 [Page 2]

https://tools.ietf.org/pdf/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft Using TLS to Secure QUIC December 2020

 5.8 . Retry Packet Integrity 32
 6. Key Update . 33
 6.1 . Initiating a Key Update 35
 6.2 . Responding to a Key Update 36
 6.3 . Timing of Receive Key Generation 36
 6.4 . Sending with Updated Keys 37
 6.5 . Receiving with Different Keys 37
 6.6 . Limits on AEAD Usage 38
 6.7 . Key Update Error Code 40
 7. Security of Initial Messages 40
 8. QUIC-Specific Adjustments to the TLS Handshake 40
 8.1 . Protocol Negotiation 41
 8.2 . QUIC Transport Parameters Extension 41
 8.3 . Removing the EndOfEarlyData Message 42
 8.4 . Prohibit TLS Middlebox Compatibility Mode 42
 9. Security Considerations 43
 9.1 . Session Linkability 43
 9.2 . Replay Attacks with 0-RTT 43
 9.3 . Packet Reflection Attack Mitigation 44
 9.4 . Header Protection Analysis 44
 9.5 . Header Protection Timing Side-Channels 45
 9.6 . Key Diversity . 46
 9.7 . Randomness . 46
 10. IANA Considerations . 46
 11. References . 47
 11.1 . Normative References 47
 11.2 . Informative References 48
 Appendix A . Sample Packet Protection 50
 A.1 . Keys . 50
 A.2 . Client Initial . 51
 A.3 . Server Initial . 53
 A.4 . Retry . 54
 A.5 . ChaCha20-Poly1305 Short Header Packet 54
 Appendix B . AEAD Algorithm Analysis 56
 B.1. Analysis of AEAD_AES_128_GCM and AEAD_AES_256_GCM Usage
 Limits . 57
 B.1.1 . Confidentiality Limit 57
 B.1.2 . Integrity Limit 57
 B.2 . Analysis of AEAD_AES_128_CCM Usage Limits 58
 Appendix C . Change Log . 59
 C.1 . Since draft-ietf-quic-tls-32 59
 C.2 . Since draft-ietf-quic-tls-31 59
 C.3 . Since draft-ietf-quic-tls-30 59
 C.4 . Since draft-ietf-quic-tls-29 59
 C.5 . Since draft-ietf-quic-tls-28 60
 C.6 . Since draft-ietf-quic-tls-27 60
 C.7 . Since draft-ietf-quic-tls-26 60
 C.8 . Since draft-ietf-quic-tls-25 60

Thomson & Turner Expires 16 June 2021 [Page 3]

https://tools.ietf.org/pdf/draft-ietf-quic-tls-32
https://tools.ietf.org/pdf/draft-ietf-quic-tls-31
https://tools.ietf.org/pdf/draft-ietf-quic-tls-30
https://tools.ietf.org/pdf/draft-ietf-quic-tls-29
https://tools.ietf.org/pdf/draft-ietf-quic-tls-28
https://tools.ietf.org/pdf/draft-ietf-quic-tls-27
https://tools.ietf.org/pdf/draft-ietf-quic-tls-26
https://tools.ietf.org/pdf/draft-ietf-quic-tls-25

Internet-Draft Using TLS to Secure QUIC December 2020

 C.9 . Since draft-ietf-quic-tls-24 60
 C.10 . Since draft-ietf-quic-tls-23 60
 C.11 . Since draft-ietf-quic-tls-22 61
 C.12 . Since draft-ietf-quic-tls-21 61
 C.13 . Since draft-ietf-quic-tls-20 61
 C.14 . Since draft-ietf-quic-tls-18 61
 C.15 . Since draft-ietf-quic-tls-17 61
 C.16 . Since draft-ietf-quic-tls-14 61
 C.17 . Since draft-ietf-quic-tls-13 62
 C.18 . Since draft-ietf-quic-tls-12 62
 C.19 . Since draft-ietf-quic-tls-11 62
 C.20 . Since draft-ietf-quic-tls-10 62
 C.21 . Since draft-ietf-quic-tls-09 62
 C.22 . Since draft-ietf-quic-tls-08 62
 C.23 . Since draft-ietf-quic-tls-07 62
 C.24 . Since draft-ietf-quic-tls-05 63
 C.25 . Since draft-ietf-quic-tls-04 63
 C.26 . Since draft-ietf-quic-tls-03 63
 C.27 . Since draft-ietf-quic-tls-02 63
 C.28 . Since draft-ietf-quic-tls-01 63
 C.29 . Since draft-ietf-quic-tls-00 63
 C.30 . Since draft-thomson-quic-tls-01 64
 Contributors . 64
 Authors’ Addresses . 65

1. Introduction

 This document describes how QUIC [QUIC-TRANSPORT] is secured using
 TLS [TLS13].

 TLS 1.3 provides critical latency improvements for connection
 establishment over previous versions. Absent packet loss, most new
 connections can be established and secured within a single round
 trip; on subsequent connections between the same client and server,
 the client can often send application data immediately, that is,
 using a zero round trip setup.

 This document describes how TLS acts as a security component of QUIC.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the terminology established in [QUIC-TRANSPORT].

Thomson & Turner Expires 16 June 2021 [Page 4]

https://tools.ietf.org/pdf/draft-ietf-quic-tls-24
https://tools.ietf.org/pdf/draft-ietf-quic-tls-23
https://tools.ietf.org/pdf/draft-ietf-quic-tls-22
https://tools.ietf.org/pdf/draft-ietf-quic-tls-21
https://tools.ietf.org/pdf/draft-ietf-quic-tls-20
https://tools.ietf.org/pdf/draft-ietf-quic-tls-18
https://tools.ietf.org/pdf/draft-ietf-quic-tls-17
https://tools.ietf.org/pdf/draft-ietf-quic-tls-14
https://tools.ietf.org/pdf/draft-ietf-quic-tls-13
https://tools.ietf.org/pdf/draft-ietf-quic-tls-12
https://tools.ietf.org/pdf/draft-ietf-quic-tls-11
https://tools.ietf.org/pdf/draft-ietf-quic-tls-10
https://tools.ietf.org/pdf/draft-ietf-quic-tls-09
https://tools.ietf.org/pdf/draft-ietf-quic-tls-08
https://tools.ietf.org/pdf/draft-ietf-quic-tls-07
https://tools.ietf.org/pdf/draft-ietf-quic-tls-05
https://tools.ietf.org/pdf/draft-ietf-quic-tls-04
https://tools.ietf.org/pdf/draft-ietf-quic-tls-03
https://tools.ietf.org/pdf/draft-ietf-quic-tls-02
https://tools.ietf.org/pdf/draft-ietf-quic-tls-01
https://tools.ietf.org/pdf/draft-ietf-quic-tls-00
https://tools.ietf.org/pdf/draft-thomson-quic-tls-01
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc8174

Internet-Draft Using TLS to Secure QUIC December 2020

 For brevity, the acronym TLS is used to refer to TLS 1.3, though a
 newer version could be used; see Section 4.2 .

2.1 . TLS Overview

 TLS provides two endpoints with a way to establish a means of
 communication over an untrusted medium (that is, the Internet). TLS
 enables authentication of peers and provides confidentiality and
 integrity protection for messages that endpoints exchange.

 Internally, TLS is a layered protocol, with the structure shown in
 Figure 1.

 +-------------+------------+--------------+---------+
 Handshake | | | Application | |
 Layer | Handshake | Alerts | Data | ... |
 | | | | |
 +-------------+------------+--------------+---------+
 Record | |
 Layer | Records |
 | |
 +---+

 Figure 1: TLS Layers

 Each Handshake layer message (e.g., Handshake, Alerts, and
 Application Data) is carried as a series of typed TLS records by the
 Record layer. Records are individually cryptographically protected
 and then transmitted over a reliable transport (typically TCP), which
 provides sequencing and guaranteed delivery.

 The TLS authenticated key exchange occurs between two endpoints:
 client and server. The client initiates the exchange and the server
 responds. If the key exchange completes successfully, both client
 and server will agree on a secret. TLS supports both pre-shared key
 (PSK) and Diffie-Hellman over either finite fields or elliptic curves
 ((EC)DHE) key exchanges. PSK is the basis for Early Data (0-RTT);
 the latter provides perfect forward secrecy (PFS) when the (EC)DHE
 keys are destroyed.

 After completing the TLS handshake, the client will have learned and
 authenticated an identity for the server and the server is optionally
 able to learn and authenticate an identity for the client. TLS
 supports X.509 [RFC5280] certificate-based authentication for both
 server and client.

Thomson & Turner Expires 16 June 2021 [Page 5]

https://tools.ietf.org/pdf/rfc5280

Internet-Draft Using TLS to Secure QUIC December 2020

 The TLS key exchange is resistant to tampering by attackers and it
 produces shared secrets that cannot be controlled by either
 participating peer.

 TLS provides two basic handshake modes of interest to QUIC:

 * A full 1-RTT handshake, in which the client is able to send
 Application Data after one round trip and the server immediately
 responds after receiving the first handshake message from the
 client.

 * A 0-RTT handshake, in which the client uses information it has
 previously learned about the server to send Application Data
 immediately. This Application Data can be replayed by an attacker
 so 0-RTT is not suitable for carrying instructions that might
 initiate any action that could cause unwanted effects if replayed.

 A simplified TLS handshake with 0-RTT application data is shown in
 Figure 2.

 Client Server

 ClientHello
 (0-RTT Application Data) -------->
 ServerHello
 {EncryptedExtensions}
 {Finished}
 <-------- [Application Data]
 {Finished} -------->

 [Application Data] <-------> [Application Data]

 () Indicates messages protected by Early Data (0-RTT) Keys
 {} Indicates messages protected using Handshake Keys
 [] Indicates messages protected using Application Data
 (1-RTT) Keys

 Figure 2: TLS Handshake with 0-RTT

 Figure 2 omits the EndOfEarlyData message, which is not used in QUIC;
 see Section 8.3 . Likewise, neither ChangeCipherSpec nor KeyUpdate
 messages are used by QUIC. ChangeCipherSpec is redundant in TLS 1.3;
 see Section 8.4 . QUIC has its own key update mechanism; see
 Section 6 .

 Data is protected using a number of encryption levels:

 * Initial Keys

Thomson & Turner Expires 16 June 2021 [Page 6]

Internet-Draft Using TLS to Secure QUIC December 2020

 * Early Data (0-RTT) Keys

 * Handshake Keys

 * Application Data (1-RTT) Keys

 Application Data may appear only in the Early Data and Application
 Data levels. Handshake and Alert messages may appear in any level.

 The 0-RTT handshake is only possible if the client and server have
 previously communicated. In the 1-RTT handshake, the client is
 unable to send protected Application Data until it has received all
 of the Handshake messages sent by the server.

3. Protocol Overview

 QUIC [QUIC-TRANSPORT] assumes responsibility for the confidentiality
 and integrity protection of packets. For this it uses keys derived
 from a TLS handshake [TLS13], but instead of carrying TLS records
 over QUIC (as with TCP), TLS Handshake and Alert messages are carried
 directly over the QUIC transport, which takes over the
 responsibilities of the TLS record layer, as shown in Figure 3.

 +--------------+--------------+ +-------------+
TLS	TLS		QUIC
Handshake	Alerts		Applications
			(h3, etc.)
+--------------+--------------+-+-------------+			
QUIC Transport			
(streams, reliability, congestion, etc.)			
+---+			
QUIC Packet Protection			
 +---+

 Figure 3: QUIC Layers

 QUIC also relies on TLS for authentication and negotiation of
 parameters that are critical to security and performance.

 Rather than a strict layering, these two protocols cooperate: QUIC
 uses the TLS handshake; TLS uses the reliability, ordered delivery,
 and record layer provided by QUIC.

Thomson & Turner Expires 16 June 2021 [Page 7]

Internet-Draft Using TLS to Secure QUIC December 2020

 At a high level, there are two main interactions between the TLS and
 QUIC components:

 * The TLS component sends and receives messages via the QUIC
 component, with QUIC providing a reliable stream abstraction to
 TLS.

 * The TLS component provides a series of updates to the QUIC
 component, including (a) new packet protection keys to install (b)
 state changes such as handshake completion, the server
 certificate, etc.

 Figure 4 shows these interactions in more detail, with the QUIC
 packet protection being called out specially.

 +------------+ +------------+
	<---- Handshake Messages ----->	
	<- Validate 0-RTT parameters ->	
	<--------- 0-RTT Keys ---------	
QUIC	<------- Handshake Keys -------	TLS
	<--------- 1-RTT Keys ---------	
	<------- Handshake Done -------	
 +------------+ +------------+
 | ^
 | Protect | Protected
 v | Packet
 +------------+
 | QUIC |
 | Packet |
 | Protection |
 +------------+

 Figure 4: QUIC and TLS Interactions

 Unlike TLS over TCP, QUIC applications that want to send data do not
 send it through TLS "application_data" records. Rather, they send it
 as QUIC STREAM frames or other frame types, which are then carried in
 QUIC packets.

4. Carrying TLS Messages

 QUIC carries TLS handshake data in CRYPTO frames, each of which
 consists of a contiguous block of handshake data identified by an
 offset and length. Those frames are packaged into QUIC packets and
 encrypted under the current TLS encryption level. As with TLS over
 TCP, once TLS handshake data has been delivered to QUIC, it is QUIC’s
 responsibility to deliver it reliably. Each chunk of data that is
 produced by TLS is associated with the set of keys that TLS is

Thomson & Turner Expires 16 June 2021 [Page 8]

Internet-Draft Using TLS to Secure QUIC December 2020

 currently using. If QUIC needs to retransmit that data, it MUST use
 the same keys even if TLS has already updated to newer keys.

 One important difference between TLS records (used with TCP) and QUIC
 CRYPTO frames is that in QUIC multiple frames may appear in the same
 QUIC packet as long as they are associated with the same packet
 number space. For instance, an endpoint can bundle a Handshake
 message and an ACK for some Handshake data into the same packet.
 Some frames are prohibited in different packet number spaces; see
 Section 12.5 of [QUIC-TRANSPORT].

 Because packets could be reordered on the wire, QUIC uses the packet
 type to indicate which keys were used to protect a given packet, as
 shown in Table 1. When packets of different types need to be sent,
 endpoints SHOULD use coalesced packets to send them in the same UDP
 datagram.

 +=====================+=================+==================+
 | Packet Type | Encryption Keys | PN Space |
 +=====================+=================+==================+
 | Initial | Initial secrets | Initial |
 +---------------------+-----------------+------------------+
 | 0-RTT Protected | 0-RTT | Application data |
 +---------------------+-----------------+------------------+
 | Handshake | Handshake | Handshake |
 +---------------------+-----------------+------------------+
 | Retry | Retry | N/A |
 +---------------------+-----------------+------------------+
 | Version Negotiation | N/A | N/A |
 +---------------------+-----------------+------------------+
 | Short Header | 1-RTT | Application data |
 +---------------------+-----------------+------------------+

 Table 1: Encryption Keys by Packet Type

 Section 17 of [QUIC-TRANSPORT] shows how packets at the various
 encryption levels fit into the handshake process.

4.1 . Interface to TLS

 As shown in Figure 4, the interface from QUIC to TLS consists of four
 primary functions:

 * Sending and receiving handshake messages

 * Processing stored transport and application state from a resumed
 session and determining if it is valid to accept early data

Thomson & Turner Expires 16 June 2021 [Page 9]

Internet-Draft Using TLS to Secure QUIC December 2020

 * Rekeying (both transmit and receive)

 * Handshake state updates

 Additional functions might be needed to configure TLS.

4.1.1 . Handshake Complete

 In this document, the TLS handshake is considered complete when the
 TLS stack has reported that the handshake is complete. This happens
 when the TLS stack has both sent a Finished message and verified the
 peer’s Finished message. Verifying the peer’s Finished provides the
 endpoints with an assurance that previous handshake messages have not
 been modified. Note that the handshake does not complete at both
 endpoints simultaneously. Consequently, any requirement that is
 based on the completion of the handshake depends on the perspective
 of the endpoint in question.

4.1.2 . Handshake Confirmed

 In this document, the TLS handshake is considered confirmed at the
 server when the handshake completes. At the client, the handshake is
 considered confirmed when a HANDSHAKE_DONE frame is received.

 A client MAY consider the handshake to be confirmed when it receives
 an acknowledgement for a 1-RTT packet. This can be implemented by
 recording the lowest packet number sent with 1-RTT keys, and
 comparing it to the Largest Acknowledged field in any received 1-RTT
 ACK frame: once the latter is greater than or equal to the former,
 the handshake is confirmed.

4.1.3 . Sending and Receiving Handshake Messages

 In order to drive the handshake, TLS depends on being able to send
 and receive handshake messages. There are two basic functions on
 this interface: one where QUIC requests handshake messages and one
 where QUIC provides bytes that comprise handshake messages.

 Before starting the handshake QUIC provides TLS with the transport
 parameters (see Section 8.2) that it wishes to carry.

 A QUIC client starts TLS by requesting TLS handshake bytes from TLS.
 The client acquires handshake bytes before sending its first packet.
 A QUIC server starts the process by providing TLS with the client’s
 handshake bytes.

Thomson & Turner Expires 16 June 2021 [Page 10]

Internet-Draft Using TLS to Secure QUIC December 2020

 At any time, the TLS stack at an endpoint will have a current sending
 encryption level and receiving encryption level. Encryption levels
 determine the packet type and keys that are used for protecting data.

 Each encryption level is associated with a different sequence of
 bytes, which is reliably transmitted to the peer in CRYPTO frames.
 When TLS provides handshake bytes to be sent, they are appended to
 the handshake bytes for the current encryption level. The encryption
 level then determines the type of packet that the resulting CRYPTO
 frame is carried in; see Table 1.

 Four encryption levels are used, producing keys for Initial, 0-RTT,
 Handshake, and 1-RTT packets. CRYPTO frames are carried in just
 three of these levels, omitting the 0-RTT level. These four levels
 correspond to three packet number spaces: Initial and Handshake
 encrypted packets use their own separate spaces; 0-RTT and 1-RTT
 packets use the application data packet number space.

 QUIC takes the unprotected content of TLS handshake records as the
 content of CRYPTO frames. TLS record protection is not used by QUIC.
 QUIC assembles CRYPTO frames into QUIC packets, which are protected
 using QUIC packet protection.

 QUIC is only capable of conveying TLS handshake records in CRYPTO
 frames. TLS alerts are turned into QUIC CONNECTION_CLOSE error
 codes; see Section 4.8 . TLS application data and other message types
 cannot be carried by QUIC at any encryption level; it is an error if
 they are received from the TLS stack.

 When an endpoint receives a QUIC packet containing a CRYPTO frame
 from the network, it proceeds as follows:

 * If the packet uses the current TLS receiving encryption level,
 sequence the data into the input flow as usual. As with STREAM
 frames, the offset is used to find the proper location in the data
 sequence. If the result of this process is that new data is
 available, then it is delivered to TLS in order.

 * If the packet is from a previously installed encryption level, it
 MUST NOT contain data that extends past the end of previously
 received data in that flow. Implementations MUST treat any
 violations of this requirement as a connection error of type
 PROTOCOL_VIOLATION.

Thomson & Turner Expires 16 June 2021 [Page 11]

Internet-Draft Using TLS to Secure QUIC December 2020

 * If the packet is from a new encryption level, it is saved for
 later processing by TLS. Once TLS moves to receiving from this
 encryption level, saved data can be provided to TLS. When TLS
 provides keys for a higher encryption level, if there is data from
 a previous encryption level that TLS has not consumed, this MUST
 be treated as a connection error of type PROTOCOL_VIOLATION.

 Each time that TLS is provided with new data, new handshake bytes are
 requested from TLS. TLS might not provide any bytes if the handshake
 messages it has received are incomplete or it has no data to send.

 The content of CRYPTO frames might either be processed incrementally
 by TLS or buffered until complete messages or flights are available.
 TLS is responsible for buffering handshake bytes that have arrived in
 order. QUIC is responsible for buffering handshake bytes that arrive
 out of order or for encryption levels that are not yet ready. QUIC
 does not provide any means of flow control for CRYPTO frames; see
 Section 7.5 of [QUIC-TRANSPORT].

 Once the TLS handshake is complete, this is indicated to QUIC along
 with any final handshake bytes that TLS needs to send. TLS also
 provides QUIC with the transport parameters that the peer advertised
 during the handshake.

 Once the handshake is complete, TLS becomes passive. TLS can still
 receive data from its peer and respond in kind, but it will not need
 to send more data unless specifically requested - either by an
 application or QUIC. One reason to send data is that the server
 might wish to provide additional or updated session tickets to a
 client.

 When the handshake is complete, QUIC only needs to provide TLS with
 any data that arrives in CRYPTO streams. In the same way that is
 done during the handshake, new data is requested from TLS after
 providing received data.

4.1.4 . Encryption Level Changes

 As keys at a given encryption level become available to TLS, TLS
 indicates to QUIC that reading or writing keys at that encryption
 level are available.

 The availability of new keys is always a result of providing inputs
 to TLS. TLS only provides new keys after being initialized (by a
 client) or when provided with new handshake data.

Thomson & Turner Expires 16 June 2021 [Page 12]

Internet-Draft Using TLS to Secure QUIC December 2020

 However, a TLS implementation could perform some of its processing
 asynchronously. In particular, the process of validating a
 certificate can take some time. While waiting for TLS processing to
 complete, an endpoint SHOULD buffer received packets if they might be
 processed using keys that aren’t yet available. These packets can be
 processed once keys are provided by TLS. An endpoint SHOULD continue
 to respond to packets that can be processed during this time.

 After processing inputs, TLS might produce handshake bytes, keys for
 new encryption levels, or both.

 TLS provides QUIC with three items as a new encryption level becomes
 available:

 * A secret

 * An Authenticated Encryption with Associated Data (AEAD) function

 * A Key Derivation Function (KDF)

 These values are based on the values that TLS negotiates and are used
 by QUIC to generate packet and header protection keys; see Section 5
 and Section 5.4 .

 If 0-RTT is possible, it is ready after the client sends a TLS
 ClientHello message or the server receives that message. After
 providing a QUIC client with the first handshake bytes, the TLS stack
 might signal the change to 0-RTT keys. On the server, after
 receiving handshake bytes that contain a ClientHello message, a TLS
 server might signal that 0-RTT keys are available.

 Although TLS only uses one encryption level at a time, QUIC may use
 more than one level. For instance, after sending its Finished
 message (using a CRYPTO frame at the Handshake encryption level) an
 endpoint can send STREAM data (in 1-RTT encryption). If the Finished
 message is lost, the endpoint uses the Handshake encryption level to
 retransmit the lost message. Reordering or loss of packets can mean
 that QUIC will need to handle packets at multiple encryption levels.
 During the handshake, this means potentially handling packets at
 higher and lower encryption levels than the current encryption level
 used by TLS.

 In particular, server implementations need to be able to read packets
 at the Handshake encryption level at the same time as the 0-RTT
 encryption level. A client could interleave ACK frames that are
 protected with Handshake keys with 0-RTT data and the server needs to
 process those acknowledgments in order to detect lost Handshake
 packets.

Thomson & Turner Expires 16 June 2021 [Page 13]

Internet-Draft Using TLS to Secure QUIC December 2020

 QUIC also needs access to keys that might not ordinarily be available
 to a TLS implementation. For instance, a client might need to
 acknowledge Handshake packets before it is ready to send CRYPTO
 frames at that encryption level. TLS therefore needs to provide keys
 to QUIC before it might produce them for its own use.

4.1.5 . TLS Interface Summary

 Figure 5 summarizes the exchange between QUIC and TLS for both client
 and server. Solid arrows indicate packets that carry handshake data;
 dashed arrows show where application data can be sent. Each arrow is
 tagged with the encryption level used for that transmission.

 Client Server
 ====== ======

 Get Handshake
 Initial ------------->
 Install tx 0-RTT Keys
 0-RTT - - - - - - - ->

 Handshake Received
 Get Handshake
 <------------- Initial
 Install rx 0-RTT keys
 Install Handshake keys
 Get Handshake
 <----------- Handshake
 Install tx 1-RTT keys
 <- - - - - - - - 1-RTT

 Handshake Received (Initial)
 Install Handshake keys
 Handshake Received (Handshake)
 Get Handshake
 Handshake ----------->
 Handshake Complete
 Install 1-RTT keys
 1-RTT - - - - - - - ->

 Handshake Received
 Handshake Complete
 Install rx 1-RTT keys

 Figure 5: Interaction Summary between QUIC and TLS

Thomson & Turner Expires 16 June 2021 [Page 14]

Internet-Draft Using TLS to Secure QUIC December 2020

 Figure 5 shows the multiple packets that form a single "flight" of
 messages being processed individually, to show what incoming messages
 trigger different actions. New handshake messages are requested
 after incoming packets have been processed. This process varies
 based on the structure of endpoint implementations and the order in
 which packets arrive; this is intended to illustrate the steps
 involved in a single handshake exchange.

4.2 . TLS Version

 This document describes how TLS 1.3 [TLS13] is used with QUIC.

 In practice, the TLS handshake will negotiate a version of TLS to
 use. This could result in a newer version of TLS than 1.3 being
 negotiated if both endpoints support that version. This is
 acceptable provided that the features of TLS 1.3 that are used by
 QUIC are supported by the newer version.

 Clients MUST NOT offer TLS versions older than 1.3. A badly
 configured TLS implementation could negotiate TLS 1.2 or another
 older version of TLS. An endpoint MUST terminate the connection if a
 version of TLS older than 1.3 is negotiated.

4.3 . ClientHello Size

 The first Initial packet from a client contains the start or all of
 its first cryptographic handshake message, which for TLS is the
 ClientHello. Servers might need to parse the entire ClientHello
 (e.g., to access extensions such as Server Name Identification (SNI)
 or Application Layer Protocol Negotiation (ALPN)) in order to decide
 whether to accept the new incoming QUIC connection. If the
 ClientHello spans multiple Initial packets, such servers would need
 to buffer the first received fragments, which could consume excessive
 resources if the client’s address has not yet been validated. To
 avoid this, servers MAY use the Retry feature (see Section 8.1 of
 [QUIC-TRANSPORT]) to only buffer partial ClientHello messages from
 clients with a validated address.

 QUIC packet and framing add at least 36 bytes of overhead to the
 ClientHello message. That overhead increases if the client chooses a
 source connection ID longer than zero bytes. Overheads also do not
 include the token or a destination connection ID longer than 8 bytes,
 both of which might be required if a server sends a Retry packet.

 A typical TLS ClientHello can easily fit into a 1200-byte packet.
 However, in addition to the overheads added by QUIC, there are
 several variables that could cause this limit to be exceeded. Large
 session tickets, multiple or large key shares, and long lists of

Thomson & Turner Expires 16 June 2021 [Page 15]

Internet-Draft Using TLS to Secure QUIC December 2020

 supported ciphers, signature algorithms, versions, QUIC transport
 parameters, and other negotiable parameters and extensions could
 cause this message to grow.

 For servers, in addition to connection IDs and tokens, the size of
 TLS session tickets can have an effect on a client’s ability to
 connect efficiently. Minimizing the size of these values increases
 the probability that clients can use them and still fit their
 ClientHello message in their first Initial packet.

 The TLS implementation does not need to ensure that the ClientHello
 is sufficiently large. QUIC PADDING frames are added to increase the
 size of the packet as necessary.

4.4 . Peer Authentication

 The requirements for authentication depend on the application
 protocol that is in use. TLS provides server authentication and
 permits the server to request client authentication.

 A client MUST authenticate the identity of the server. This
 typically involves verification that the identity of the server is
 included in a certificate and that the certificate is issued by a
 trusted entity (see for example [RFC2818]).

 Note: Where servers provide certificates for authentication, the
 size of the certificate chain can consume a large number of bytes.
 Controlling the size of certificate chains is critical to
 performance in QUIC as servers are limited to sending 3 bytes for
 every byte received prior to validating the client address; see
 Section 8.1 of [QUIC-TRANSPORT]. The size of a certificate chain
 can be managed by limiting the number of names or extensions;
 using keys with small public key representations, like ECDSA; or
 by using certificate compression [COMPRESS].

 A server MAY request that the client authenticate during the
 handshake. A server MAY refuse a connection if the client is unable
 to authenticate when requested. The requirements for client
 authentication vary based on application protocol and deployment.

 A server MUST NOT use post-handshake client authentication (as
 defined in Section 4.6.2 of [TLS13]), because the multiplexing
 offered by QUIC prevents clients from correlating the certificate
 request with the application-level event that triggered it (see
 [HTTP2-TLS13]). More specifically, servers MUST NOT send post-
 handshake TLS CertificateRequest messages and clients MUST treat
 receipt of such messages as a connection error of type
 PROTOCOL_VIOLATION.

Thomson & Turner Expires 16 June 2021 [Page 16]

https://tools.ietf.org/pdf/rfc2818

Internet-Draft Using TLS to Secure QUIC December 2020

4.5 . Session Resumption

 QUIC can use the session resumption feature of TLS 1.3. It does this
 by carrying NewSessionTicket messages in CRYPTO frames after the
 handshake is complete. Session resumption is the basis of 0-RTT, but
 can be used without also enabling 0-RTT.

 Endpoints that use session resumption might need to remember some
 information about the current connection when creating a resumed
 connection. TLS requires that some information be retained; see
 Section 4.6.1 of [TLS13]. QUIC itself does not depend on any state
 being retained when resuming a connection, unless 0-RTT is also used;
 see Section 4.6.1 and Section 7.4.1 of [QUIC-TRANSPORT]. Application
 protocols could depend on state that is retained between resumed
 connections.

 Clients can store any state required for resumption along with the
 session ticket. Servers can use the session ticket to help carry
 state.

 Session resumption allows servers to link activity on the original
 connection with the resumed connection, which might be a privacy
 issue for clients. Clients can choose not to enable resumption to
 avoid creating this correlation. Clients SHOULD NOT reuse tickets as
 that allows entities other than the server to correlate connections;
 see Section C.4 of [TLS13].

4.6 . 0-RTT

 The 0-RTT feature in QUIC allows a client to send application data
 before the handshake is complete. This is made possible by reusing
 negotiated parameters from a previous connection. To enable this,
 0-RTT depends on the client remembering critical parameters and
 providing the server with a TLS session ticket that allows the server
 to recover the same information.

 This information includes parameters that determine TLS state, as
 governed by [TLS13], QUIC transport parameters, the chosen
 application protocol, and any information the application protocol
 might need; see Section 4.6.3 . This information determines how 0-RTT
 packets and their contents are formed.

 To ensure that the same information is available to both endpoints,
 all information used to establish 0-RTT comes from the same
 connection. Endpoints cannot selectively disregard information that
 might alter the sending or processing of 0-RTT.

Thomson & Turner Expires 16 June 2021 [Page 17]

Internet-Draft Using TLS to Secure QUIC December 2020

 [TLS13] sets a limit of 7 days on the time between the original
 connection and any attempt to use 0-RTT. There are other constraints
 on 0-RTT usage, notably those caused by the potential exposure to
 replay attack; see Section 9.2 .

4.6.1 . Enabling 0-RTT

 To communicate their willingness to process 0-RTT data, servers send
 a NewSessionTicket message that contains the early_data extension
 with a max_early_data_size of 0xffffffff. The TLS
 max_early_data_size parameter is not used in QUIC. The amount of
 data that the client can send in 0-RTT is controlled by the
 initial_max_data transport parameter supplied by the server.

 Servers MUST NOT send the early_data extension with a
 max_early_data_size field set to any value other than 0xffffffff. A
 client MUST treat receipt of a NewSessionTicket that contains an
 early_data extension with any other value as a connection error of
 type PROTOCOL_VIOLATION.

 A client that wishes to send 0-RTT packets uses the early_data
 extension in the ClientHello message of a subsequent handshake; see
 Section 4.2.10 of [TLS13]. It then sends application data in 0-RTT
 packets.

 A client that attempts 0-RTT might also provide an address validation
 token if the server has sent a NEW_TOKEN frame; see Section 8.1 of
 [QUIC-TRANSPORT].

4.6.2 . Accepting and Rejecting 0-RTT

 A server accepts 0-RTT by sending an early_data extension in the
 EncryptedExtensions; see Section 4.2.10 of [TLS13]. The server then
 processes and acknowledges the 0-RTT packets that it receives.

 A server rejects 0-RTT by sending the EncryptedExtensions without an
 early_data extension. A server will always reject 0-RTT if it sends
 a TLS HelloRetryRequest. When rejecting 0-RTT, a server MUST NOT
 process any 0-RTT packets, even if it could. When 0-RTT was
 rejected, a client SHOULD treat receipt of an acknowledgement for a
 0-RTT packet as a connection error of type PROTOCOL_VIOLATION, if it
 is able to detect the condition.

 When 0-RTT is rejected, all connection characteristics that the
 client assumed might be incorrect. This includes the choice of
 application protocol, transport parameters, and any application
 configuration. The client therefore MUST reset the state of all
 streams, including application state bound to those streams.

Thomson & Turner Expires 16 June 2021 [Page 18]

Internet-Draft Using TLS to Secure QUIC December 2020

 A client MAY reattempt 0-RTT if it receives a Retry or Version
 Negotiation packet. These packets do not signify rejection of 0-RTT.

4.6.3 . Validating 0-RTT Configuration

 When a server receives a ClientHello with the early_data extension,
 it has to decide whether to accept or reject early data from the
 client. Some of this decision is made by the TLS stack (e.g.,
 checking that the cipher suite being resumed was included in the
 ClientHello; see Section 4.2.10 of [TLS13]). Even when the TLS stack
 has no reason to reject early data, the QUIC stack or the application
 protocol using QUIC might reject early data because the configuration
 of the transport or application associated with the resumed session
 is not compatible with the server’s current configuration.

 QUIC requires additional transport state to be associated with a
 0-RTT session ticket. One common way to implement this is using
 stateless session tickets and storing this state in the session
 ticket. Application protocols that use QUIC might have similar
 requirements regarding associating or storing state. This associated
 state is used for deciding whether early data must be rejected. For
 example, HTTP/3 ([QUIC-HTTP]) settings determine how early data from
 the client is interpreted. Other applications using QUIC could have
 different requirements for determining whether to accept or reject
 early data.

4.7 . HelloRetryRequest

 The HelloRetryRequest message (see Section 4.1.4 of [TLS13]) can be
 used to request that a client provide new information, such as a key
 share, or to validate some characteristic of the client. From the
 perspective of QUIC, HelloRetryRequest is not differentiated from
 other cryptographic handshake messages that are carried in Initial
 packets. Although it is in principle possible to use this feature
 for address verification, QUIC implementations SHOULD instead use the
 Retry feature; see Section 8.1 of [QUIC-TRANSPORT].

4.8 . TLS Errors

 If TLS experiences an error, it generates an appropriate alert as
 defined in Section 6 of [TLS13].

 A TLS alert is converted into a QUIC connection error. The alert
 description is added to 0x100 to produce a QUIC error code from the
 range reserved for CRYPTO_ERROR. The resulting value is sent in a
 QUIC CONNECTION_CLOSE frame of type 0x1c.

Thomson & Turner Expires 16 June 2021 [Page 19]

Internet-Draft Using TLS to Secure QUIC December 2020

 The alert level of all TLS alerts is "fatal"; a TLS stack MUST NOT
 generate alerts at the "warning" level.

 QUIC permits the use of a generic code in place of a specific error
 code; see Section 11 of [QUIC-TRANSPORT]. For TLS alerts, this
 includes replacing any alert with a generic alert, such as
 handshake_failure (0x128 in QUIC). Endpoints MAY use a generic error
 code to avoid possibly exposing confidential information.

4.9 . Discarding Unused Keys

 After QUIC moves to a new encryption level, packet protection keys
 for previous encryption levels can be discarded. This occurs several
 times during the handshake, as well as when keys are updated; see
 Section 6 .

 Packet protection keys are not discarded immediately when new keys
 are available. If packets from a lower encryption level contain
 CRYPTO frames, frames that retransmit that data MUST be sent at the
 same encryption level. Similarly, an endpoint generates
 acknowledgements for packets at the same encryption level as the
 packet being acknowledged. Thus, it is possible that keys for a
 lower encryption level are needed for a short time after keys for a
 newer encryption level are available.

 An endpoint cannot discard keys for a given encryption level unless
 it has both received and acknowledged all CRYPTO frames for that
 encryption level and when all CRYPTO frames for that encryption level
 have been acknowledged by its peer. However, this does not guarantee
 that no further packets will need to be received or sent at that
 encryption level because a peer might not have received all the
 acknowledgements necessary to reach the same state.

 Though an endpoint might retain older keys, new data MUST be sent at
 the highest currently-available encryption level. Only ACK frames
 and retransmissions of data in CRYPTO frames are sent at a previous
 encryption level. These packets MAY also include PADDING frames.

4.9.1 . Discarding Initial Keys

 Packets protected with Initial secrets (Section 5.2) are not
 authenticated, meaning that an attacker could spoof packets with the
 intent to disrupt a connection. To limit these attacks, Initial
 packet protection keys are discarded more aggressively than other
 keys.

Thomson & Turner Expires 16 June 2021 [Page 20]

Internet-Draft Using TLS to Secure QUIC December 2020

 The successful use of Handshake packets indicates that no more
 Initial packets need to be exchanged, as these keys can only be
 produced after receiving all CRYPTO frames from Initial packets.
 Thus, a client MUST discard Initial keys when it first sends a
 Handshake packet and a server MUST discard Initial keys when it first
 successfully processes a Handshake packet. Endpoints MUST NOT send
 Initial packets after this point.

 This results in abandoning loss recovery state for the Initial
 encryption level and ignoring any outstanding Initial packets.

4.9.2 . Discarding Handshake Keys

 An endpoint MUST discard its handshake keys when the TLS handshake is
 confirmed (Section 4.1.2). The server MUST send a HANDSHAKE_DONE
 frame as soon as it completes the handshake.

4.9.3 . Discarding 0-RTT Keys

 0-RTT and 1-RTT packets share the same packet number space, and
 clients do not send 0-RTT packets after sending a 1-RTT packet
 (Section 5.6).

 Therefore, a client SHOULD discard 0-RTT keys as soon as it installs
 1-RTT keys, since they have no use after that moment.

 Additionally, a server MAY discard 0-RTT keys as soon as it receives
 a 1-RTT packet. However, due to packet reordering, a 0-RTT packet
 could arrive after a 1-RTT packet. Servers MAY temporarily retain
 0-RTT keys to allow decrypting reordered packets without requiring
 their contents to be retransmitted with 1-RTT keys. After receiving
 a 1-RTT packet, servers MUST discard 0-RTT keys within a short time;
 the RECOMMENDED time period is three times the Probe Timeout (PTO,
 see [QUIC-RECOVERY]). A server MAY discard 0-RTT keys earlier if it
 determines that it has received all 0-RTT packets, which can be done
 by keeping track of missing packet numbers.

5. Packet Protection

 As with TLS over TCP, QUIC protects packets with keys derived from
 the TLS handshake, using the AEAD algorithm [AEAD] negotiated by TLS.

 QUIC packets have varying protections depending on their type:

 * Version Negotiation packets have no cryptographic protection.

Thomson & Turner Expires 16 June 2021 [Page 21]

Internet-Draft Using TLS to Secure QUIC December 2020

 * Retry packets use AEAD_AES_128_GCM to provide protection against
 accidental modification or insertion by off-path adversaries; see
 Section 5.8 .

 * Initial packets use AEAD_AES_128_GCM with keys derived from the
 Destination Connection ID field of the first Initial packet sent
 by the client; see Section 5.2 .

 * All other packets have strong cryptographic protections for
 confidentiality and integrity, using keys and algorithms
 negotiated by TLS.

 This section describes how packet protection is applied to Handshake
 packets, 0-RTT packets, and 1-RTT packets. The same packet
 protection process is applied to Initial packets. However, as it is
 trivial to determine the keys used for Initial packets, these packets
 are not considered to have confidentiality or integrity protection.
 Retry packets use a fixed key and so similarly lack confidentiality
 and integrity protection.

5.1 . Packet Protection Keys

 QUIC derives packet protection keys in the same way that TLS derives
 record protection keys.

 Each encryption level has separate secret values for protection of
 packets sent in each direction. These traffic secrets are derived by
 TLS (see Section 7.1 of [TLS13]) and are used by QUIC for all
 encryption levels except the Initial encryption level. The secrets
 for the Initial encryption level are computed based on the client’s
 initial Destination Connection ID, as described in Section 5.2 .

 The keys used for packet protection are computed from the TLS secrets
 using the KDF provided by TLS. In TLS 1.3, the HKDF-Expand-Label
 function described in Section 7.1 of [TLS13] is used, using the hash
 function from the negotiated cipher suite. Note that labels, which
 are described using strings, are encoded as bytes using ASCII [ASCII]
 without quotes or any trailing NUL byte. Other versions of TLS MUST
 provide a similar function in order to be used with QUIC.

 The current encryption level secret and the label "quic key" are
 input to the KDF to produce the AEAD key; the label "quic iv" is used
 to derive the Initialization Vector (IV); see Section 5.3 . The
 header protection key uses the "quic hp" label; see Section 5.4 .
 Using these labels provides key separation between QUIC and TLS; see
 Section 9.6 .

Thomson & Turner Expires 16 June 2021 [Page 22]

Internet-Draft Using TLS to Secure QUIC December 2020

 The KDF used for initial secrets is always the HKDF-Expand-Label
 function from TLS 1.3; see Section 5.2 .

5.2 . Initial Secrets

 Initial packets apply the packet protection process, but use a secret
 derived from the Destination Connection ID field from the client’s
 first Initial packet.

 This secret is determined by using HKDF-Extract (see Section 2.2 of
 [HKDF]) with a salt of 0x38762cf7f55934b34d179ae6a4c80cadccbb7f0a and
 a IKM of the Destination Connection ID field. This produces an
 intermediate pseudorandom key (PRK) that is used to derive two
 separate secrets for sending and receiving.

 The secret used by clients to construct Initial packets uses the PRK
 and the label "client in" as input to the HKDF-Expand-Label function
 from TLS [TLS13] to produce a 32-byte secret. Packets constructed by
 the server use the same process with the label "server in". The hash
 function for HKDF when deriving initial secrets and keys is SHA-256
 [SHA].

 This process in pseudocode is:

 initial_salt = 0x38762cf7f55934b34d179ae6a4c80cadccbb7f0a
 initial_secret = HKDF-Extract(initial_salt,
 client_dst_connection_id)

 client_initial_secret = HKDF-Expand-Label(initial_secret,
 "client in", "",
 Hash.length)
 server_initial_secret = HKDF-Expand-Label(initial_secret,
 "server in", "",
 Hash.length)

 The connection ID used with HKDF-Expand-Label is the Destination
 Connection ID in the Initial packet sent by the client. This will be
 a randomly-selected value unless the client creates the Initial
 packet after receiving a Retry packet, where the Destination
 Connection ID is selected by the server.

 Future versions of QUIC SHOULD generate a new salt value, thus
 ensuring that the keys are different for each version of QUIC. This
 prevents a middlebox that recognizes only one version of QUIC from
 seeing or modifying the contents of packets from future versions.

Thomson & Turner Expires 16 June 2021 [Page 23]

Internet-Draft Using TLS to Secure QUIC December 2020

 The HKDF-Expand-Label function defined in TLS 1.3 MUST be used for
 Initial packets even where the TLS versions offered do not include
 TLS 1.3.

 The secrets used for constructing Initial packets change when a
 server sends a Retry packet to use the connection ID value selected
 by the server. The secrets do not change when a client changes the
 Destination Connection ID it uses in response to an Initial packet
 from the server.

 Note: The Destination Connection ID field could be any length up to
 20 bytes, including zero length if the server sends a Retry packet
 with a zero-length Source Connection ID field. After a Retry, the
 Initial keys provide the client no assurance that the server
 received its packet, so the client has to rely on the exchange
 that included the Retry packet to validate the server address; see
 Section 8.1 of [QUIC-TRANSPORT].

 Appendix A contains sample Initial packets.

5.3 . AEAD Usage

 The Authenticated Encryption with Associated Data (AEAD; see [AEAD])
 function used for QUIC packet protection is the AEAD that is
 negotiated for use with the TLS connection. For example, if TLS is
 using the TLS_AES_128_GCM_SHA256 cipher suite, the AEAD_AES_128_GCM
 function is used.

 QUIC can use any of the cipher suites defined in [TLS13] with the
 exception of TLS_AES_128_CCM_8_SHA256. A cipher suite MUST NOT be
 negotiated unless a header protection scheme is defined for the
 cipher suite. This document defines a header protection scheme for
 all cipher suites defined in [TLS13] aside from
 TLS_AES_128_CCM_8_SHA256. These cipher suites have a 16-byte
 authentication tag and produce an output 16 bytes larger than their
 input.

 Note: An endpoint MUST NOT reject a ClientHello that offers a cipher
 suite that it does not support, or it would be impossible to
 deploy a new cipher suite. This also applies to
 TLS_AES_128_CCM_8_SHA256.

 When constructing packets, the AEAD function is applied prior to
 applying header protection; see Section 5.4 . The unprotected packet
 header is part of the associated data (A). When processing packets,
 an endpoint first removes the header protection.

Thomson & Turner Expires 16 June 2021 [Page 24]

Internet-Draft Using TLS to Secure QUIC December 2020

 The key and IV for the packet are computed as described in
 Section 5.1 . The nonce, N, is formed by combining the packet
 protection IV with the packet number. The 62 bits of the
 reconstructed QUIC packet number in network byte order are left-
 padded with zeros to the size of the IV. The exclusive OR of the
 padded packet number and the IV forms the AEAD nonce.

 The associated data, A, for the AEAD is the contents of the QUIC
 header, starting from the first byte of either the short or long
 header, up to and including the unprotected packet number.

 The input plaintext, P, for the AEAD is the payload of the QUIC
 packet, as described in [QUIC-TRANSPORT].

 The output ciphertext, C, of the AEAD is transmitted in place of P.

 Some AEAD functions have limits for how many packets can be encrypted
 under the same key and IV; see Section 6.6 . This might be lower than
 the packet number limit. An endpoint MUST initiate a key update
 (Section 6) prior to exceeding any limit set for the AEAD that is in
 use.

5.4 . Header Protection

 Parts of QUIC packet headers, in particular the Packet Number field,
 are protected using a key that is derived separately from the packet
 protection key and IV. The key derived using the "quic hp" label is
 used to provide confidentiality protection for those fields that are
 not exposed to on-path elements.

 This protection applies to the least-significant bits of the first
 byte, plus the Packet Number field. The four least-significant bits
 of the first byte are protected for packets with long headers; the
 five least significant bits of the first byte are protected for
 packets with short headers. For both header forms, this covers the
 reserved bits and the Packet Number Length field; the Key Phase bit
 is also protected for packets with a short header.

 The same header protection key is used for the duration of the
 connection, with the value not changing after a key update (see
 Section 6). This allows header protection to be used to protect the
 key phase.

 This process does not apply to Retry or Version Negotiation packets,
 which do not contain a protected payload or any of the fields that
 are protected by this process.

Thomson & Turner Expires 16 June 2021 [Page 25]

Internet-Draft Using TLS to Secure QUIC December 2020

5.4.1 . Header Protection Application

 Header protection is applied after packet protection is applied (see
 Section 5.3). The ciphertext of the packet is sampled and used as
 input to an encryption algorithm. The algorithm used depends on the
 negotiated AEAD.

 The output of this algorithm is a 5-byte mask that is applied to the
 protected header fields using exclusive OR. The least significant
 bits of the first byte of the packet are masked by the least
 significant bits of the first mask byte, and the packet number is
 masked with the remaining bytes. Any unused bytes of mask that might
 result from a shorter packet number encoding are unused.

 Figure 6 shows a sample algorithm for applying header protection.
 Removing header protection only differs in the order in which the
 packet number length (pn_length) is determined.

 mask = header_protection(hp_key, sample)

 pn_length = (packet[0] & 0x03) + 1
 if (packet[0] & 0x80) == 0x80:
 # Long header: 4 bits masked
 packet[0] ^= mask[0] & 0x0f
 else:
 # Short header: 5 bits masked
 packet[0] ^= mask[0] & 0x1f

 # pn_offset is the start of the Packet Number field.
 packet[pn_offset:pn_offset+pn_length] ^= mask[1:1+pn_length]

 Figure 6: Header Protection Pseudocode

 Specific header protection functions are defined based on the
 selected cipher suite; see Section 5.4.3 and Section 5.4.4 .

 Figure 7 shows an example long header packet (Initial) and a short
 header packet (1-RTT). Figure 7 shows the fields in each header that
 are covered by header protection and the portion of the protected
 packet payload that is sampled.

Thomson & Turner Expires 16 June 2021 [Page 26]

Internet-Draft Using TLS to Secure QUIC December 2020

 Initial Packet {
 Header Form (1) = 1,
 Fixed Bit (1) = 1,
 Long Packet Type (2) = 0,
 Reserved Bits (2), # Protected
 Packet Number Length (2), # Protected
 Version (32),
 DCID Len (8),
 Destination Connection ID (0..160),
 SCID Len (8),
 Source Connection ID (0..160),
 Token Length (i),
 Token (..),
 Length (i),
 Packet Number (8..32), # Protected
 Protected Payload (0..24), # Skipped Part
 Protected Payload (128), # Sampled Part
 Protected Payload (..) # Remainder
 }

 1-RTT Packet {
 Header Form (1) = 0,
 Fixed Bit (1) = 1,
 Spin Bit (1),
 Reserved Bits (2), # Protected
 Key Phase (1), # Protected
 Packet Number Length (2), # Protected
 Destination Connection ID (0..160),
 Packet Number (8..32), # Protected
 Protected Payload (0..24), # Skipped Part
 Protected Payload (128), # Sampled Part
 Protected Payload (..), # Remainder
 }

 Figure 7: Header Protection and Ciphertext Sample

 Before a TLS cipher suite can be used with QUIC, a header protection
 algorithm MUST be specified for the AEAD used with that cipher suite.
 This document defines algorithms for AEAD_AES_128_GCM,
 AEAD_AES_128_CCM, AEAD_AES_256_GCM (all these AES AEADs are defined
 in [AEAD]), and AEAD_CHACHA20_POLY1305 (defined in [CHACHA]). Prior
 to TLS selecting a cipher suite, AES header protection is used
 (Section 5.4.3), matching the AEAD_AES_128_GCM packet protection.

5.4.2 . Header Protection Sample

 The header protection algorithm uses both the header protection key
 and a sample of the ciphertext from the packet Payload field.

Thomson & Turner Expires 16 June 2021 [Page 27]

Internet-Draft Using TLS to Secure QUIC December 2020

 The same number of bytes are always sampled, but an allowance needs
 to be made for the endpoint removing protection, which will not know
 the length of the Packet Number field. In sampling the packet
 ciphertext, the Packet Number field is assumed to be 4 bytes long
 (its maximum possible encoded length).

 An endpoint MUST discard packets that are not long enough to contain
 a complete sample.

 To ensure that sufficient data is available for sampling, packets are
 padded so that the combined lengths of the encoded packet number and
 protected payload is at least 4 bytes longer than the sample required
 for header protection. The cipher suites defined in [TLS13] - other
 than TLS_AES_128_CCM_8_SHA256, for which a header protection scheme
 is not defined in this document - have 16-byte expansions and 16-byte
 header protection samples. This results in needing at least 3 bytes
 of frames in the unprotected payload if the packet number is encoded
 on a single byte, or 2 bytes of frames for a 2-byte packet number
 encoding.

 The sampled ciphertext can be determined by the following pseudocode:

 # pn_offset is the start of the Packet Number field.
 sample_offset = pn_offset + 4

 sample = packet[sample_offset..sample_offset+sample_length]

 where the packet number offset of a short header packet can be
 calculated as:

 pn_offset = 1 + len(connection_id)

 and the packet number offset of a long header packet can be
 calculated as:

 pn_offset = 7 + len(destination_connection_id) +
 len(source_connection_id) +
 len(payload_length)
 if packet_type == Initial:
 pn_offset += len(token_length) +
 len(token)

 For example, for a packet with a short header, an 8-byte connection
 ID, and protected with AEAD_AES_128_GCM, the sample takes bytes 13 to
 28 inclusive (using zero-based indexing).

 Multiple QUIC packets might be included in the same UDP datagram.
 Each packet is handled separately.

Thomson & Turner Expires 16 June 2021 [Page 28]

Internet-Draft Using TLS to Secure QUIC December 2020

5.4.3 . AES-Based Header Protection

 This section defines the packet protection algorithm for
 AEAD_AES_128_GCM, AEAD_AES_128_CCM, and AEAD_AES_256_GCM.
 AEAD_AES_128_GCM and AEAD_AES_128_CCM use 128-bit AES in electronic
 code-book (ECB) mode. AEAD_AES_256_GCM uses 256-bit AES in ECB mode.
 AES is defined in [AES].

 This algorithm samples 16 bytes from the packet ciphertext. This
 value is used as the input to AES-ECB. In pseudocode, the header
 protection function is defined as:

 header_protection(hp_key, sample):
 mask = AES-ECB(hp_key, sample)

5.4.4 . ChaCha20-Based Header Protection

 When AEAD_CHACHA20_POLY1305 is in use, header protection uses the raw
 ChaCha20 function as defined in Section 2.4 of [CHACHA]. This uses a
 256-bit key and 16 bytes sampled from the packet protection output.

 The first 4 bytes of the sampled ciphertext are the block counter. A
 ChaCha20 implementation could take a 32-bit integer in place of a
 byte sequence, in which case the byte sequence is interpreted as a
 little-endian value.

 The remaining 12 bytes are used as the nonce. A ChaCha20
 implementation might take an array of three 32-bit integers in place
 of a byte sequence, in which case the nonce bytes are interpreted as
 a sequence of 32-bit little-endian integers.

 The encryption mask is produced by invoking ChaCha20 to protect 5
 zero bytes. In pseudocode, the header protection function is defined
 as:

 header_protection(hp_key, sample):
 counter = sample[0..3]
 nonce = sample[4..15]
 mask = ChaCha20(hp_key, counter, nonce, {0,0,0,0,0})

Thomson & Turner Expires 16 June 2021 [Page 29]

Internet-Draft Using TLS to Secure QUIC December 2020

5.5 . Receiving Protected Packets

 Once an endpoint successfully receives a packet with a given packet
 number, it MUST discard all packets in the same packet number space
 with higher packet numbers if they cannot be successfully unprotected
 with either the same key, or - if there is a key update - the next
 packet protection key (see Section 6). Similarly, a packet that
 appears to trigger a key update, but cannot be unprotected
 successfully MUST be discarded.

 Failure to unprotect a packet does not necessarily indicate the
 existence of a protocol error in a peer or an attack. The truncated
 packet number encoding used in QUIC can cause packet numbers to be
 decoded incorrectly if they are delayed significantly.

5.6 . Use of 0-RTT Keys

 If 0-RTT keys are available (see Section 4.6.1), the lack of replay
 protection means that restrictions on their use are necessary to
 avoid replay attacks on the protocol.

 Of the frames defined in [QUIC-TRANSPORT], the STREAM, RESET_STREAM,
 and CONNECTION_CLOSE frames are potentially unsafe for use with 0-RTT
 as they carry application data. Application data that is received in
 0-RTT could cause an application at the server to process the data
 multiple times rather than just once. Additional actions taken by a
 server as a result of processing replayed application data could have
 unwanted consequences. A client therefore MUST NOT use 0-RTT for
 application data unless specifically requested by the application
 that is in use.

 An application protocol that uses QUIC MUST include a profile that
 defines acceptable use of 0-RTT; otherwise, 0-RTT can only be used to
 carry QUIC frames that do not carry application data. For example, a
 profile for HTTP is described in [HTTP-REPLAY] and used for HTTP/3;
 see Section 10.9 of [QUIC-HTTP].

 Though replaying packets might result in additional connection
 attempts, the effect of processing replayed frames that do not carry
 application data is limited to changing the state of the affected
 connection. A TLS handshake cannot be successfully completed using
 replayed packets.

 A client MAY wish to apply additional restrictions on what data it
 sends prior to the completion of the TLS handshake.

Thomson & Turner Expires 16 June 2021 [Page 30]

Internet-Draft Using TLS to Secure QUIC December 2020

 A client otherwise treats 0-RTT keys as equivalent to 1-RTT keys,
 except that it cannot send certain frames with 0-RTT keys; see
 Section 12.5 of [QUIC-TRANSPORT].

 A client that receives an indication that its 0-RTT data has been
 accepted by a server can send 0-RTT data until it receives all of the
 server’s handshake messages. A client SHOULD stop sending 0-RTT data
 if it receives an indication that 0-RTT data has been rejected.

 A server MUST NOT use 0-RTT keys to protect packets; it uses 1-RTT
 keys to protect acknowledgements of 0-RTT packets. A client MUST NOT
 attempt to decrypt 0-RTT packets it receives and instead MUST discard
 them.

 Once a client has installed 1-RTT keys, it MUST NOT send any more
 0-RTT packets.

 Note: 0-RTT data can be acknowledged by the server as it receives
 it, but any packets containing acknowledgments of 0-RTT data
 cannot have packet protection removed by the client until the TLS
 handshake is complete. The 1-RTT keys necessary to remove packet
 protection cannot be derived until the client receives all server
 handshake messages.

5.7 . Receiving Out-of-Order Protected Packets

 Due to reordering and loss, protected packets might be received by an
 endpoint before the final TLS handshake messages are received. A
 client will be unable to decrypt 1-RTT packets from the server,
 whereas a server will be able to decrypt 1-RTT packets from the
 client. Endpoints in either role MUST NOT decrypt 1-RTT packets from
 their peer prior to completing the handshake.

 Even though 1-RTT keys are available to a server after receiving the
 first handshake messages from a client, it is missing assurances on
 the client state:

 * The client is not authenticated, unless the server has chosen to
 use a pre-shared key and validated the client’s pre-shared key
 binder; see Section 4.2.11 of [TLS13].

 * The client has not demonstrated liveness, unless the server has
 validated the client’s address with a Retry packet or other means;
 see Section 8.1 of [QUIC-TRANSPORT].

 * Any received 0-RTT data that the server responds to might be due
 to a replay attack.

Thomson & Turner Expires 16 June 2021 [Page 31]

Internet-Draft Using TLS to Secure QUIC December 2020

 Therefore, the server’s use of 1-RTT keys before the handshake is
 complete is limited to sending data. A server MUST NOT process
 incoming 1-RTT protected packets before the TLS handshake is
 complete. Because sending acknowledgments indicates that all frames
 in a packet have been processed, a server cannot send acknowledgments
 for 1-RTT packets until the TLS handshake is complete. Received
 packets protected with 1-RTT keys MAY be stored and later decrypted
 and used once the handshake is complete.

 Note: TLS implementations might provide all 1-RTT secrets prior to
 handshake completion. Even where QUIC implementations have 1-RTT
 read keys, those keys cannot be used prior to completing the
 handshake.

 The requirement for the server to wait for the client Finished
 message creates a dependency on that message being delivered. A
 client can avoid the potential for head-of-line blocking that this
 implies by sending its 1-RTT packets coalesced with a Handshake
 packet containing a copy of the CRYPTO frame that carries the
 Finished message, until one of the Handshake packets is acknowledged.
 This enables immediate server processing for those packets.

 A server could receive packets protected with 0-RTT keys prior to
 receiving a TLS ClientHello. The server MAY retain these packets for
 later decryption in anticipation of receiving a ClientHello.

 A client generally receives 1-RTT keys at the same time as the
 handshake completes. Even if it has 1-RTT secrets, a client MUST NOT
 process incoming 1-RTT protected packets before the TLS handshake is
 complete.

5.8 . Retry Packet Integrity

 Retry packets (see the Retry Packet section of [QUIC-TRANSPORT])
 carry a Retry Integrity Tag that provides two properties: it allows
 discarding packets that have accidentally been corrupted by the
 network, and it diminishes off-path attackers’ ability to send valid
 Retry packets.

 The Retry Integrity Tag is a 128-bit field that is computed as the
 output of AEAD_AES_128_GCM ([AEAD]) used with the following inputs:

 * The secret key, K, is 128 bits equal to
 0xbe0c690b9f66575a1d766b54e368c84e.

 * The nonce, N, is 96 bits equal to 0x461599d35d632bf2239825bb.

 * The plaintext, P, is empty.

Thomson & Turner Expires 16 June 2021 [Page 32]

Internet-Draft Using TLS to Secure QUIC December 2020

 * The associated data, A, is the contents of the Retry Pseudo-
 Packet, as illustrated in Figure 8:

 The secret key and the nonce are values derived by calling HKDF-
 Expand-Label using
 0xd9c9943e6101fd200021506bcc02814c73030f25c79d71ce876eca876e6fca8e as
 the secret, with labels being "quic key" and "quic iv" (Section 5.1).

 Retry Pseudo-Packet {
 ODCID Length (8),
 Original Destination Connection ID (0..160),
 Header Form (1) = 1,
 Fixed Bit (1) = 1,
 Long Packet Type (2) = 3,
 Type-Specific Bits (4),
 Version (32),
 DCID Len (8),
 Destination Connection ID (0..160),
 SCID Len (8),
 Source Connection ID (0..160),
 Retry Token (..),
 }

 Figure 8: Retry Pseudo-Packet

 The Retry Pseudo-Packet is not sent over the wire. It is computed by
 taking the transmitted Retry packet, removing the Retry Integrity Tag
 and prepending the two following fields:

 ODCID Length: The ODCID Length field contains the length in bytes of
 the Original Destination Connection ID field that follows it,
 encoded as an 8-bit unsigned integer.

 Original Destination Connection ID: The Original Destination
 Connection ID contains the value of the Destination Connection ID
 from the Initial packet that this Retry is in response to. The
 length of this field is given in ODCID Length. The presence of
 this field mitigates an off-path attacker’s ability to inject a
 Retry packet.

6. Key Update

 Once the handshake is confirmed (see Section 4.1.2), an endpoint MAY
 initiate a key update.

Thomson & Turner Expires 16 June 2021 [Page 33]

Internet-Draft Using TLS to Secure QUIC December 2020

 The Key Phase bit indicates which packet protection keys are used to
 protect the packet. The Key Phase bit is initially set to 0 for the
 first set of 1-RTT packets and toggled to signal each subsequent key
 update.

 The Key Phase bit allows a recipient to detect a change in keying
 material without needing to receive the first packet that triggered
 the change. An endpoint that notices a changed Key Phase bit updates
 keys and decrypts the packet that contains the changed value.

 This mechanism replaces the key update mechanism of TLS, which relies
 on KeyUpdate messages sent using 1-RTT encryption keys. Endpoints
 MUST NOT send a TLS KeyUpdate message. Endpoints MUST treat the
 receipt of a TLS KeyUpdate message in a 1-RTT packet as a connection
 error of type 0x10a, equivalent to a fatal TLS alert of
 unexpected_message; see Section 4.8 .

 Figure 9 shows a key update process, where the initial set of keys
 used (identified with @M) are replaced by updated keys (identified
 with @N). The value of the Key Phase bit is indicated in brackets
 [].

 Initiating Peer Responding Peer

 @M [0] QUIC Packets

 ... Update to @N
 @N [1] QUIC Packets
 -------->
 Update to @N ...
 QUIC Packets [1] @N
 <--------
 QUIC Packets [1] @N
 containing ACK
 <--------
 ... Key Update Permitted

 @N [1] QUIC Packets
 containing ACK for @N packets
 -------->
 Key Update Permitted ...

 Figure 9: Key Update

Thomson & Turner Expires 16 June 2021 [Page 34]

Internet-Draft Using TLS to Secure QUIC December 2020

6.1 . Initiating a Key Update

 Endpoints maintain separate read and write secrets for packet
 protection. An endpoint initiates a key update by updating its
 packet protection write secret and using that to protect new packets.
 The endpoint creates a new write secret from the existing write
 secret as performed in Section 7.2 of [TLS13]. This uses the KDF
 function provided by TLS with a label of "quic ku". The
 corresponding key and IV are created from that secret as defined in
 Section 5.1 . The header protection key is not updated.

 For example, to update write keys with TLS 1.3, HKDF-Expand-Label is
 used as:

 secret_<n+1> = HKDF-Expand-Label(secret_<n>, "quic ku",
 "", Hash.length)

 The endpoint toggles the value of the Key Phase bit and uses the
 updated key and IV to protect all subsequent packets.

 An endpoint MUST NOT initiate a key update prior to having confirmed
 the handshake (Section 4.1.2). An endpoint MUST NOT initiate a
 subsequent key update unless it has received an acknowledgment for a
 packet that was sent protected with keys from the current key phase.
 This ensures that keys are available to both peers before another key
 update can be initiated. This can be implemented by tracking the
 lowest packet number sent with each key phase, and the highest
 acknowledged packet number in the 1-RTT space: once the latter is
 higher than or equal to the former, another key update can be
 initiated.

 Note: Keys of packets other than the 1-RTT packets are never
 updated; their keys are derived solely from the TLS handshake
 state.

 The endpoint that initiates a key update also updates the keys that
 it uses for receiving packets. These keys will be needed to process
 packets the peer sends after updating.

 An endpoint MUST retain old keys until it has successfully
 unprotected a packet sent using the new keys. An endpoint SHOULD
 retain old keys for some time after unprotecting a packet sent using
 the new keys. Discarding old keys too early can cause delayed
 packets to be discarded. Discarding packets will be interpreted as
 packet loss by the peer and could adversely affect performance.

Thomson & Turner Expires 16 June 2021 [Page 35]

Internet-Draft Using TLS to Secure QUIC December 2020

6.2 . Responding to a Key Update

 A peer is permitted to initiate a key update after receiving an
 acknowledgement of a packet in the current key phase. An endpoint
 detects a key update when processing a packet with a key phase that
 differs from the value used to protect the last packet it sent. To
 process this packet, the endpoint uses the next packet protection key
 and IV. See Section 6.3 for considerations about generating these
 keys.

 If a packet is successfully processed using the next key and IV, then
 the peer has initiated a key update. The endpoint MUST update its
 send keys to the corresponding key phase in response, as described in
 Section 6.1 . Sending keys MUST be updated before sending an
 acknowledgement for the packet that was received with updated keys.
 By acknowledging the packet that triggered the key update in a packet
 protected with the updated keys, the endpoint signals that the key
 update is complete.

 An endpoint can defer sending the packet or acknowledgement according
 to its normal packet sending behaviour; it is not necessary to
 immediately generate a packet in response to a key update. The next
 packet sent by the endpoint will use the updated keys. The next
 packet that contains an acknowledgement will cause the key update to
 be completed. If an endpoint detects a second update before it has
 sent any packets with updated keys containing an acknowledgement for
 the packet that initiated the key update, it indicates that its peer
 has updated keys twice without awaiting confirmation. An endpoint
 MAY treat consecutive key updates as a connection error of type
 KEY_UPDATE_ERROR.

 An endpoint that receives an acknowledgement that is carried in a
 packet protected with old keys where any acknowledged packet was
 protected with newer keys MAY treat that as a connection error of
 type KEY_UPDATE_ERROR. This indicates that a peer has received and
 acknowledged a packet that initiates a key update, but has not
 updated keys in response.

6.3 . Timing of Receive Key Generation

 Endpoints responding to an apparent key update MUST NOT generate a
 timing side-channel signal that might indicate that the Key Phase bit
 was invalid (see Section 9.4). Endpoints can use dummy packet
 protection keys in place of discarded keys when key updates are not
 yet permitted. Using dummy keys will generate no variation in the
 timing signal produced by attempting to remove packet protection, and
 results in all packets with an invalid Key Phase bit being rejected.

Thomson & Turner Expires 16 June 2021 [Page 36]

Internet-Draft Using TLS to Secure QUIC December 2020

 The process of creating new packet protection keys for receiving
 packets could reveal that a key update has occurred. An endpoint MAY
 perform this process as part of packet processing, but this creates a
 timing signal that can be used by an attacker to learn when key
 updates happen and thus the value of the Key Phase bit in certain
 packets. Endpoints MAY instead defer the creation of the next set of
 receive packet protection keys until some time after a key update
 completes, up to three times the PTO; see Section 6.5 .

 Once generated, the next set of packet protection keys SHOULD be
 retained, even if the packet that was received was subsequently
 discarded. Packets containing apparent key updates are easy to forge
 and - while the process of key update does not require significant
 effort - triggering this process could be used by an attacker for
 DoS.

 For this reason, endpoints MUST be able to retain two sets of packet
 protection keys for receiving packets: the current and the next.
 Retaining the previous keys in addition to these might improve
 performance, but this is not essential.

6.4 . Sending with Updated Keys

 An endpoint never sends packets that are protected with old keys.
 Only the current keys are used. Keys used for protecting packets can
 be discarded immediately after switching to newer keys.

 Packets with higher packet numbers MUST be protected with either the
 same or newer packet protection keys than packets with lower packet
 numbers. An endpoint that successfully removes protection with old
 keys when newer keys were used for packets with lower packet numbers
 MUST treat this as a connection error of type KEY_UPDATE_ERROR.

6.5 . Receiving with Different Keys

 For receiving packets during a key update, packets protected with
 older keys might arrive if they were delayed by the network.
 Retaining old packet protection keys allows these packets to be
 successfully processed.

 As packets protected with keys from the next key phase use the same
 Key Phase value as those protected with keys from the previous key
 phase, it can be necessary to distinguish between the two. This can
 be done using packet numbers. A recovered packet number that is
 lower than any packet number from the current key phase uses the
 previous packet protection keys; a recovered packet number that is
 higher than any packet number from the current key phase requires the
 use of the next packet protection keys.

Thomson & Turner Expires 16 June 2021 [Page 37]

Internet-Draft Using TLS to Secure QUIC December 2020

 Some care is necessary to ensure that any process for selecting
 between previous, current, and next packet protection keys does not
 expose a timing side channel that might reveal which keys were used
 to remove packet protection. See Section 9.5 for more information.

 Alternatively, endpoints can retain only two sets of packet
 protection keys, swapping previous for next after enough time has
 passed to allow for reordering in the network. In this case, the Key
 Phase bit alone can be used to select keys.

 An endpoint MAY allow a period of approximately the Probe Timeout
 (PTO; see [QUIC-RECOVERY]) after receiving a packet that uses the new
 key generation before it creates the next set of packet protection
 keys. These updated keys MAY replace the previous keys at that time.
 With the caveat that PTO is a subjective measure - that is, a peer
 could have a different view of the RTT - this time is expected to be
 long enough that any reordered packets would be declared lost by a
 peer even if they were acknowledged and short enough to allow for
 subsequent key updates.

 Endpoints need to allow for the possibility that a peer might not be
 able to decrypt packets that initiate a key update during the period
 when it retains old keys. Endpoints SHOULD wait three times the PTO
 before initiating a key update after receiving an acknowledgment that
 confirms that the previous key update was received. Failing to allow
 sufficient time could lead to packets being discarded.

 An endpoint SHOULD retain old read keys for no more than three times
 the PTO after having received a packet protected using the new keys.
 After this period, old read keys and their corresponding secrets
 SHOULD be discarded.

6.6 . Limits on AEAD Usage

 This document sets usage limits for AEAD algorithms to ensure that
 overuse does not give an adversary a disproportionate advantage in
 attacking the confidentiality and integrity of communications when
 using QUIC.

 The usage limits defined in TLS 1.3 exist for protection against
 attacks on confidentiality and apply to successful applications of
 AEAD protection. The integrity protections in authenticated
 encryption also depend on limiting the number of attempts to forge
 packets. TLS achieves this by closing connections after any record
 fails an authentication check. In comparison, QUIC ignores any
 packet that cannot be authenticated, allowing multiple forgery
 attempts.

Thomson & Turner Expires 16 June 2021 [Page 38]

Internet-Draft Using TLS to Secure QUIC December 2020

 QUIC accounts for AEAD confidentiality and integrity limits
 separately. The confidentiality limit applies to the number of
 packets encrypted with a given key. The integrity limit applies to
 the number of packets decrypted within a given connection. Details
 on enforcing these limits for each AEAD algorithm follow below.

 Endpoints MUST count the number of encrypted packets for each set of
 keys. If the total number of encrypted packets with the same key
 exceeds the confidentiality limit for the selected AEAD, the endpoint
 MUST stop using those keys. Endpoints MUST initiate a key update
 before sending more protected packets than the confidentiality limit
 for the selected AEAD permits. If a key update is not possible or
 integrity limits are reached, the endpoint MUST stop using the
 connection and only send stateless resets in response to receiving
 packets. It is RECOMMENDED that endpoints immediately close the
 connection with a connection error of type AEAD_LIMIT_REACHED before
 reaching a state where key updates are not possible.

 For AEAD_AES_128_GCM and AEAD_AES_256_GCM, the confidentiality limit
 is 2^23 encrypted packets; see Appendix B.1 . For
 AEAD_CHACHA20_POLY1305, the confidentiality limit is greater than the
 number of possible packets (2^62) and so can be disregarded. For
 AEAD_AES_128_CCM, the confidentiality limit is 2^21.5 encrypted
 packets; see Appendix B.2 . Applying a limit reduces the probability
 that an attacker can distinguish the AEAD in use from a random
 permutation; see [AEBounds], [ROBUST], and [GCM-MU].

 In addition to counting packets sent, endpoints MUST count the number
 of received packets that fail authentication during the lifetime of a
 connection. If the total number of received packets that fail
 authentication within the connection, across all keys, exceeds the
 integrity limit for the selected AEAD, the endpoint MUST immediately
 close the connection with a connection error of type
 AEAD_LIMIT_REACHED and not process any more packets.

 For AEAD_AES_128_GCM and AEAD_AES_256_GCM, the integrity limit is
 2^52 invalid packets; see Appendix B.1 . For AEAD_CHACHA20_POLY1305,
 the integrity limit is 2^36 invalid packets; see [AEBounds]. For
 AEAD_AES_128_CCM, the integrity limit is 2^21.5 invalid packets; see
 Appendix B.2 . Applying this limit reduces the probability that an
 attacker can successfully forge a packet; see [AEBounds], [ROBUST],
 and [GCM-MU].

 Endpoints that limit the size of packets MAY use higher
 confidentiality and integrity limits; see Appendix B for details.

 Future analyses and specifications MAY relax confidentiality or
 integrity limits for an AEAD.

Thomson & Turner Expires 16 June 2021 [Page 39]

Internet-Draft Using TLS to Secure QUIC December 2020

 Note: These limits were originally calculated using assumptions
 about the limits on TLS record size. The maximum size of a TLS
 record is 2^14 bytes. In comparison, QUIC packets can be up to
 2^16 bytes. However, it is expected that QUIC packets will
 generally be smaller than TLS records. Where packets might be
 larger than 2^14 bytes in length, smaller limits might be needed.

 Any TLS cipher suite that is specified for use with QUIC MUST define
 limits on the use of the associated AEAD function that preserves
 margins for confidentiality and integrity. That is, limits MUST be
 specified for the number of packets that can be authenticated and for
 the number of packets that can fail authentication. Providing a
 reference to any analysis upon which values are based - and any
 assumptions used in that analysis - allows limits to be adapted to
 varying usage conditions.

6.7 . Key Update Error Code

 The KEY_UPDATE_ERROR error code (0xe) is used to signal errors
 related to key updates.

7. Security of Initial Messages

 Initial packets are not protected with a secret key, so they are
 subject to potential tampering by an attacker. QUIC provides
 protection against attackers that cannot read packets, but does not
 attempt to provide additional protection against attacks where the
 attacker can observe and inject packets. Some forms of tampering --
 such as modifying the TLS messages themselves -- are detectable, but
 some -- such as modifying ACKs -- are not.

 For example, an attacker could inject a packet containing an ACK
 frame that makes it appear that a packet had not been received or to
 create a false impression of the state of the connection (e.g., by
 modifying the ACK Delay). Note that such a packet could cause a
 legitimate packet to be dropped as a duplicate. Implementations
 SHOULD use caution in relying on any data that is contained in
 Initial packets that is not otherwise authenticated.

 It is also possible for the attacker to tamper with data that is
 carried in Handshake packets, but because that tampering requires
 modifying TLS handshake messages, that tampering will cause the TLS
 handshake to fail.

8. QUIC-Specific Adjustments to the TLS Handshake

 Certain aspects of the TLS handshake are different when used with
 QUIC.

Thomson & Turner Expires 16 June 2021 [Page 40]

Internet-Draft Using TLS to Secure QUIC December 2020

 QUIC also requires additional features from TLS. In addition to
 negotiation of cryptographic parameters, the TLS handshake carries
 and authenticates values for QUIC transport parameters.

8.1 . Protocol Negotiation

 QUIC requires that the cryptographic handshake provide authenticated
 protocol negotiation. TLS uses Application Layer Protocol
 Negotiation ([ALPN]) to select an application protocol. Unless
 another mechanism is used for agreeing on an application protocol,
 endpoints MUST use ALPN for this purpose.

 When using ALPN, endpoints MUST immediately close a connection (see
 Section 10.2 of [QUIC-TRANSPORT]) with a no_application_protocol TLS
 alert (QUIC error code 0x178; see Section 4.8) if an application
 protocol is not negotiated. While [ALPN] only specifies that servers
 use this alert, QUIC clients MUST use error 0x178 to terminate a
 connection when ALPN negotiation fails.

 An application protocol MAY restrict the QUIC versions that it can
 operate over. Servers MUST select an application protocol compatible
 with the QUIC version that the client has selected. The server MUST
 treat the inability to select a compatible application protocol as a
 connection error of type 0x178 (no_application_protocol). Similarly,
 a client MUST treat the selection of an incompatible application
 protocol by a server as a connection error of type 0x178.

8.2 . QUIC Transport Parameters Extension

 QUIC transport parameters are carried in a TLS extension. Different
 versions of QUIC might define a different method for negotiating
 transport configuration.

 Including transport parameters in the TLS handshake provides
 integrity protection for these values.

 enum {
 quic_transport_parameters(0x39), (65535)
 } ExtensionType;

 The extension_data field of the quic_transport_parameters extension
 contains a value that is defined by the version of QUIC that is in
 use.

 The quic_transport_parameters extension is carried in the ClientHello
 and the EncryptedExtensions messages during the handshake. Endpoints
 MUST send the quic_transport_parameters extension; endpoints that
 receive ClientHello or EncryptedExtensions messages without the

Thomson & Turner Expires 16 June 2021 [Page 41]

Internet-Draft Using TLS to Secure QUIC December 2020

 quic_transport_parameters extension MUST close the connection with an
 error of type 0x16d (equivalent to a fatal TLS missing_extension
 alert, see Section 4.8).

 While the transport parameters are technically available prior to the
 completion of the handshake, they cannot be fully trusted until the
 handshake completes, and reliance on them should be minimized.
 However, any tampering with the parameters will cause the handshake
 to fail.

 Endpoints MUST NOT send this extension in a TLS connection that does
 not use QUIC (such as the use of TLS with TCP defined in [TLS13]). A
 fatal unsupported_extension alert MUST be sent by an implementation
 that supports this extension if the extension is received when the
 transport is not QUIC.

8.3 . Removing the EndOfEarlyData Message

 The TLS EndOfEarlyData message is not used with QUIC. QUIC does not
 rely on this message to mark the end of 0-RTT data or to signal the
 change to Handshake keys.

 Clients MUST NOT send the EndOfEarlyData message. A server MUST
 treat receipt of a CRYPTO frame in a 0-RTT packet as a connection
 error of type PROTOCOL_VIOLATION.

 As a result, EndOfEarlyData does not appear in the TLS handshake
 transcript.

8.4 . Prohibit TLS Middlebox Compatibility Mode

 Appendix D.4 of [TLS13] describes an alteration to the TLS 1.3
 handshake as a workaround for bugs in some middleboxes. The TLS 1.3
 middlebox compatibility mode involves setting the legacy_session_id
 field to a 32-byte value in the ClientHello and ServerHello, then
 sending a change_cipher_spec record. Both field and record carry no
 semantic content and are ignored.

 This mode has no use in QUIC as it only applies to middleboxes that
 interfere with TLS over TCP. QUIC also provides no means to carry a
 change_cipher_spec record. A client MUST NOT request the use of the
 TLS 1.3 compatibility mode. A server SHOULD treat the receipt of a
 TLS ClientHello with a non-empty legacy_session_id field as a
 connection error of type PROTOCOL_VIOLATION.

Thomson & Turner Expires 16 June 2021 [Page 42]

Internet-Draft Using TLS to Secure QUIC December 2020

9. Security Considerations

 All of the security considerations that apply to TLS also apply to
 the use of TLS in QUIC. Reading all of [TLS13] and its appendices is
 the best way to gain an understanding of the security properties of
 QUIC.

 This section summarizes some of the more important security aspects
 specific to the TLS integration, though there are many security-
 relevant details in the remainder of the document.

9.1 . Session Linkability

 Use of TLS session tickets allows servers and possibly other entities
 to correlate connections made by the same client; see Section 4.5 for
 details.

9.2 . Replay Attacks with 0-RTT

 As described in Section 8 of [TLS13], use of TLS early data comes
 with an exposure to replay attack. The use of 0-RTT in QUIC is
 similarly vulnerable to replay attack.

 Endpoints MUST implement and use the replay protections described in
 [TLS13], however it is recognized that these protections are
 imperfect. Therefore, additional consideration of the risk of replay
 is needed.

 QUIC is not vulnerable to replay attack, except via the application
 protocol information it might carry. The management of QUIC protocol
 state based on the frame types defined in [QUIC-TRANSPORT] is not
 vulnerable to replay. Processing of QUIC frames is idempotent and
 cannot result in invalid connection states if frames are replayed,
 reordered or lost. QUIC connections do not produce effects that last
 beyond the lifetime of the connection, except for those produced by
 the application protocol that QUIC serves.

 Note: TLS session tickets and address validation tokens are used to
 carry QUIC configuration information between connections.
 Specifically, to enable a server to efficiently recover state that
 is used in connection establishment and address validation. These
 MUST NOT be used to communicate application semantics between
 endpoints; clients MUST treat them as opaque values. The
 potential for reuse of these tokens means that they require
 stronger protections against replay.

Thomson & Turner Expires 16 June 2021 [Page 43]

Internet-Draft Using TLS to Secure QUIC December 2020

 A server that accepts 0-RTT on a connection incurs a higher cost than
 accepting a connection without 0-RTT. This includes higher
 processing and computation costs. Servers need to consider the
 probability of replay and all associated costs when accepting 0-RTT.

 Ultimately, the responsibility for managing the risks of replay
 attacks with 0-RTT lies with an application protocol. An application
 protocol that uses QUIC MUST describe how the protocol uses 0-RTT and
 the measures that are employed to protect against replay attack. An
 analysis of replay risk needs to consider all QUIC protocol features
 that carry application semantics.

 Disabling 0-RTT entirely is the most effective defense against replay
 attack.

 QUIC extensions MUST describe how replay attacks affect their
 operation, or prohibit their use in 0-RTT. Application protocols
 MUST either prohibit the use of extensions that carry application
 semantics in 0-RTT or provide replay mitigation strategies.

9.3 . Packet Reflection Attack Mitigation

 A small ClientHello that results in a large block of handshake
 messages from a server can be used in packet reflection attacks to
 amplify the traffic generated by an attacker.

 QUIC includes three defenses against this attack. First, the packet
 containing a ClientHello MUST be padded to a minimum size. Second,
 if responding to an unverified source address, the server is
 forbidden to send more than three times as many bytes as the number
 of bytes it has received (see Section 8.1 of [QUIC-TRANSPORT]).
 Finally, because acknowledgements of Handshake packets are
 authenticated, a blind attacker cannot forge them. Put together,
 these defenses limit the level of amplification.

9.4 . Header Protection Analysis

 [NAN] analyzes authenticated encryption algorithms that provide nonce
 privacy, referred to as "Hide Nonce" (HN) transforms. The general
 header protection construction in this document is one of those
 algorithms (HN1). Header protection uses the output of the packet
 protection AEAD to derive "sample", and then encrypts the header
 field using a pseudorandom function (PRF) as follows:

 protected_field = field XOR PRF(hp_key, sample)

Thomson & Turner Expires 16 June 2021 [Page 44]

Internet-Draft Using TLS to Secure QUIC December 2020

 The header protection variants in this document use a pseudorandom
 permutation (PRP) in place of a generic PRF. However, since all PRPs
 are also PRFs [IMC], these variants do not deviate from the HN1
 construction.

 As "hp_key" is distinct from the packet protection key, it follows
 that header protection achieves AE2 security as defined in [NAN] and
 therefore guarantees privacy of "field", the protected packet header.
 Future header protection variants based on this construction MUST use
 a PRF to ensure equivalent security guarantees.

 Use of the same key and ciphertext sample more than once risks
 compromising header protection. Protecting two different headers
 with the same key and ciphertext sample reveals the exclusive OR of
 the protected fields. Assuming that the AEAD acts as a PRF, if L
 bits are sampled, the odds of two ciphertext samples being identical
 approach 2^(-L/2), that is, the birthday bound. For the algorithms
 described in this document, that probability is one in 2^64.

 To prevent an attacker from modifying packet headers, the header is
 transitively authenticated using packet protection; the entire packet
 header is part of the authenticated additional data. Protected
 fields that are falsified or modified can only be detected once the
 packet protection is removed.

9.5 . Header Protection Timing Side-Channels

 An attacker could guess values for packet numbers or Key Phase and
 have an endpoint confirm guesses through timing side channels.
 Similarly, guesses for the packet number length can be tried and
 exposed. If the recipient of a packet discards packets with
 duplicate packet numbers without attempting to remove packet
 protection they could reveal through timing side-channels that the
 packet number matches a received packet. For authentication to be
 free from side-channels, the entire process of header protection
 removal, packet number recovery, and packet protection removal MUST
 be applied together without timing and other side-channels.

 For the sending of packets, construction and protection of packet
 payloads and packet numbers MUST be free from side-channels that
 would reveal the packet number or its encoded size.

 During a key update, the time taken to generate new keys could reveal
 through timing side-channels that a key update has occurred.
 Alternatively, where an attacker injects packets this side-channel
 could reveal the value of the Key Phase on injected packets. After
 receiving a key update, an endpoint SHOULD generate and save the next
 set of receive packet protection keys, as described in Section 6.3 .

Thomson & Turner Expires 16 June 2021 [Page 45]

Internet-Draft Using TLS to Secure QUIC December 2020

 By generating new keys before a key update is received, receipt of
 packets will not create timing signals that leak the value of the Key
 Phase.

 This depends on not doing this key generation during packet
 processing and it can require that endpoints maintain three sets of
 packet protection keys for receiving: for the previous key phase, for
 the current key phase, and for the next key phase. Endpoints can
 instead choose to defer generation of the next receive packet
 protection keys until they discard old keys so that only two sets of
 receive keys need to be retained at any point in time.

9.6 . Key Diversity

 In using TLS, the central key schedule of TLS is used. As a result
 of the TLS handshake messages being integrated into the calculation
 of secrets, the inclusion of the QUIC transport parameters extension
 ensures that handshake and 1-RTT keys are not the same as those that
 might be produced by a server running TLS over TCP. To avoid the
 possibility of cross-protocol key synchronization, additional
 measures are provided to improve key separation.

 The QUIC packet protection keys and IVs are derived using a different
 label than the equivalent keys in TLS.

 To preserve this separation, a new version of QUIC SHOULD define new
 labels for key derivation for packet protection key and IV, plus the
 header protection keys. This version of QUIC uses the string "quic".
 Other versions can use a version-specific label in place of that
 string.

 The initial secrets use a key that is specific to the negotiated QUIC
 version. New QUIC versions SHOULD define a new salt value used in
 calculating initial secrets.

9.7 . Randomness

 QUIC depends on endpoints being able to generate secure random
 numbers, both directly for protocol values such as the connection ID,
 and transitively via TLS. See [RFC4086] for guidance on secure
 random number generation.

10. IANA Considerations

 IANA has registered a codepoint of 57 (or 0x39) for the
 quic_transport_parameters extension (defined in Section 8.2) in the
 TLS ExtensionType Values Registry [TLS-REGISTRIES].

Thomson & Turner Expires 16 June 2021 [Page 46]

https://tools.ietf.org/pdf/rfc4086

Internet-Draft Using TLS to Secure QUIC December 2020

 The Recommended column for this extension is marked Yes. The TLS 1.3
 Column includes CH and EE.

11. References

11.1 . Normative References

 [AEAD] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116 , DOI 10.17487/RFC5116, January 2008,
 < https://www.rfc-editor.org/info/rfc5116 >.

 [AES] "Advanced encryption standard (AES)", National Institute
 of Standards and Technology report,
 DOI 10.6028/nist.fips.197, November 2001,
 < https://doi.org/10.6028/nist.fips.197 >.

 [ALPN] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301 , DOI 10.17487/RFC7301,
 July 2014, < https://www.rfc-editor.org/info/rfc7301 >.

 [CHACHA] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 8439 , DOI 10.17487/RFC8439, June 2018,
 < https://www.rfc-editor.org/info/rfc8439 >.

 [HKDF] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869 ,
 DOI 10.17487/RFC5869, May 2010,
 < https://www.rfc-editor.org/info/rfc5869 >.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", Work in Progress, Internet-Draft,
 draft-ietf-quic-recovery-33 , 13 December 2020,
 < https://tools.ietf.org/html/draft-ietf-quic-recovery-33 >.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", Work in Progress,
 Internet-Draft, draft-ietf-quic-transport-33 , 13 December
 2020, < https://tools.ietf.org/html/draft-ietf-quic-
 transport-33 >.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 ,
 DOI 10.17487/RFC2119, March 1997,
 < https://www.rfc-editor.org/info/rfc2119 >.

Thomson & Turner Expires 16 June 2021 [Page 47]

https://tools.ietf.org/pdf/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://doi.org/10.6028/nist.fips.197
https://tools.ietf.org/pdf/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://tools.ietf.org/pdf/rfc8439
https://www.rfc-editor.org/info/rfc8439
https://tools.ietf.org/pdf/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://tools.ietf.org/pdf/draft-ietf-quic-recovery-33
https://tools.ietf.org/html/draft-ietf-quic-recovery-33
https://tools.ietf.org/pdf/draft-ietf-quic-transport-33
https://tools.ietf.org/html/draft-ietf-quic-transport-33
https://tools.ietf.org/html/draft-ietf-quic-transport-33
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://www.rfc-editor.org/info/rfc2119

Internet-Draft Using TLS to Secure QUIC December 2020

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106 , RFC 4086 ,
 DOI 10.17487/RFC4086, June 2005,
 < https://www.rfc-editor.org/info/rfc4086 >.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14 , RFC 8174 , DOI 10.17487/RFC8174,
 May 2017, < https://www.rfc-editor.org/info/rfc8174 >.

 [SHA] Dang, Q., "Secure Hash Standard", National Institute of
 Standards and Technology report,
 DOI 10.6028/nist.fips.180-4, July 2015,
 < https://doi.org/10.6028/nist.fips.180-4 >.

 [TLS-REGISTRIES]
 Salowey, J. and S. Turner, "IANA Registry Updates for TLS
 and DTLS", RFC 8447 , DOI 10.17487/RFC8447, August 2018,
 < https://www.rfc-editor.org/info/rfc8447 >.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446 , DOI 10.17487/RFC8446, August 2018,
 < https://www.rfc-editor.org/info/rfc8446 >.

11.2 . Informative References

 [AEBounds] Luykx, A. and K. Paterson, "Limits on Authenticated
 Encryption Use in TLS", 8 March 2016,
 < http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf >.

 [ASCII] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20 , DOI 10.17487/RFC0020, October 1969,
 < https://www.rfc-editor.org/info/rfc20 >.

 [CCM-ANALYSIS]
 Jonsson, J., "On the Security of CTR + CBC-MAC", Selected
 Areas in Cryptography pp. 76-93,
 DOI 10.1007/3-540-36492-7_7, 2003,
 < https://doi.org/10.1007/3-540-36492-7_7 >.

 [COMPRESS] Ghedini, A. and V. Vasiliev, "TLS Certificate
 Compression", Work in Progress, Internet-Draft, draft-
 ietf-tls-certificate-compression-10 , 6 January 2020,
 < http://www.ietf.org/internet-drafts/draft-ietf-tls-
 certificate-compression-10.txt >.

 [GCM-MU] Hoang, V., Tessaro, S., and A. Thiruvengadam, "The Multi-
 user Security of GCM, Revisited: Tight Bounds for Nonce
 Randomization", Proceedings of the 2018 ACM SIGSAC

Thomson & Turner Expires 16 June 2021 [Page 48]

https://tools.ietf.org/pdf/bcp106
https://tools.ietf.org/pdf/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://doi.org/10.6028/nist.fips.180-4
https://tools.ietf.org/pdf/rfc8447
https://www.rfc-editor.org/info/rfc8447
https://tools.ietf.org/pdf/rfc8446
https://www.rfc-editor.org/info/rfc8446
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://tools.ietf.org/pdf/rfc20
https://www.rfc-editor.org/info/rfc20
https://doi.org/10.1007/3-540-36492-7_7
https://tools.ietf.org/pdf/draft-ietf-tls-certificate-compression-10
https://tools.ietf.org/pdf/draft-ietf-tls-certificate-compression-10
http://www.ietf.org/internet-drafts/draft-ietf-tls-certificate-compression-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-certificate-compression-10.txt

Internet-Draft Using TLS to Secure QUIC December 2020

 Conference on Computer and Communications Security,
 DOI 10.1145/3243734.3243816, January 2018,
 < https://doi.org/10.1145/3243734.3243816 >.

 [HTTP-REPLAY]
 Thomson, M., Nottingham, M., and W. Tarreau, "Using Early
 Data in HTTP", RFC 8470 , DOI 10.17487/RFC8470, September
 2018, < https://www.rfc-editor.org/info/rfc8470 >.

 [HTTP2-TLS13]
 Benjamin, D., "Using TLS 1.3 with HTTP/2", RFC 8740 ,
 DOI 10.17487/RFC8740, February 2020,
 < https://www.rfc-editor.org/info/rfc8740 >.

 [IMC] Katz, J. and Y. Lindell, "Introduction to Modern
 Cryptography, Second Edition", ISBN 978-1466570269, 6
 November 2014.

 [NAN] Bellare, M., Ng, R., and B. Tackmann, "Nonces Are Noticed:
 AEAD Revisited", Advances in Cryptology - CRYPTO 2019 pp.
 235-265, DOI 10.1007/978-3-030-26948-7_9, 2019,
 < https://doi.org/10.1007/978-3-030-26948-7_9 >.

 [QUIC-HTTP]
 Bishop, M., Ed., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-
 quic-http-32 , 13 December 2020,
 < https://tools.ietf.org/html/draft-ietf-quic-http-32 >.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818 ,
 DOI 10.17487/RFC2818, May 2000,
 < https://www.rfc-editor.org/info/rfc2818 >.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280 , DOI 10.17487/RFC5280, May 2008,
 < https://www.rfc-editor.org/info/rfc5280 >.

 [ROBUST] Fischlin, M., GÃ¼nther, F., and C. Janson, "Robust
 Channels: Handling Unreliable Networks in the Record
 Layers of QUIC and DTLS 1.3", 16 May 2020,
 < https://eprint.iacr.org/2020/718 >.

Thomson & Turner Expires 16 June 2021 [Page 49]

https://doi.org/10.1145/3243734.3243816
https://tools.ietf.org/pdf/rfc8470
https://www.rfc-editor.org/info/rfc8470
https://tools.ietf.org/pdf/rfc8740
https://www.rfc-editor.org/info/rfc8740
https://doi.org/10.1007/978-3-030-26948-7_9
https://tools.ietf.org/pdf/draft-ietf-quic-http-32
https://tools.ietf.org/pdf/draft-ietf-quic-http-32
https://tools.ietf.org/html/draft-ietf-quic-http-32
https://tools.ietf.org/pdf/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://tools.ietf.org/pdf/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://eprint.iacr.org/2020/718

Internet-Draft Using TLS to Secure QUIC December 2020

Appendix A . Sample Packet Protection

 This section shows examples of packet protection so that
 implementations can be verified incrementally. Samples of Initial
 packets from both client and server, plus a Retry packet are defined.
 These packets use an 8-byte client-chosen Destination Connection ID
 of 0x8394c8f03e515708. Some intermediate values are included. All
 values are shown in hexadecimal.

A.1 . Keys

 The labels generated during the execution of the HKDF-Expand-Label
 function and given to the HKDF-Expand function in order to produce
 its output are:

 client in: 00200f746c73313320636c69656e7420696e00

 server in: 00200f746c7331332073657276657220696e00

 quic key: 00100e746c7331332071756963206b657900

 quic iv: 000c0d746c733133207175696320697600

 quic hp: 00100d746c733133207175696320687000

 The initial secret is common:

 initial_secret = HKDF-Extract(initial_salt, cid)
 = 7db5df06e7a69e432496adedb0085192
 3595221596ae2ae9fb8115c1e9ed0a44

 The secrets for protecting client packets are:

 client_initial_secret
 = HKDF-Expand-Label(initial_secret, "client in", _, 32)
 = c00cf151ca5be075ed0ebfb5c80323c4
 2d6b7db67881289af4008f1f6c357aea

 key = HKDF-Expand-Label(client_initial_secret, "quic key", _, 16)
 = 1f369613dd76d5467730efcbe3b1a22d

 iv = HKDF-Expand-Label(client_initial_secret, "quic iv", _, 12)
 = fa044b2f42a3fd3b46fb255c

 hp = HKDF-Expand-Label(client_initial_secret, "quic hp", _, 16)
 = 9f50449e04a0e810283a1e9933adedd2

 The secrets for protecting server packets are:

Thomson & Turner Expires 16 June 2021 [Page 50]

Internet-Draft Using TLS to Secure QUIC December 2020

 server_initial_secret
 = HKDF-Expand-Label(initial_secret, "server in", _, 32)
 = 3c199828fd139efd216c155ad844cc81
 fb82fa8d7446fa7d78be803acdda951b

 key = HKDF-Expand-Label(server_initial_secret, "quic key", _, 16)
 = cf3a5331653c364c88f0f379b6067e37

 iv = HKDF-Expand-Label(server_initial_secret, "quic iv", _, 12)
 = 0ac1493ca1905853b0bba03e

 hp = HKDF-Expand-Label(server_initial_secret, "quic hp", _, 16)
 = c206b8d9b9f0f37644430b490eeaa314

A.2 . Client Initial

 The client sends an Initial packet. The unprotected payload of this
 packet contains the following CRYPTO frame, plus enough PADDING
 frames to make a 1162 byte payload:

 060040f1010000ed0303ebf8fa56f129 39b9584a3896472ec40bb863cfd3e868
 04fe3a47f06a2b69484c000004130113 02010000c000000010000e00000b6578
 616d706c652e636f6dff01000100000a 00080006001d00170018001000070005
 04616c706e0005000501000000000033 00260024001d00209370b2c9caa47fba
 baf4559fedba753de171fa71f50f1ce1 5d43e994ec74d748002b000302030400
 0d0010000e0403050306030203080408 050806002d00020101001c0002400100
 3900320408ffffffffffffffff050480 00ffff07048000ffff08011001048000
 75300901100f088394c8f03e51570806 048000ffff

 The unprotected header includes the connection ID and a 4-byte packet
 number encoding for a packet number of 2:

 c300000001088394c8f03e5157080000449e00000002

 Protecting the payload produces output that is sampled for header
 protection. Because the header uses a 4-byte packet number encoding,
 the first 16 bytes of the protected payload is sampled, then applied
 to the header:

Thomson & Turner Expires 16 June 2021 [Page 51]

Internet-Draft Using TLS to Secure QUIC December 2020

 sample = d1b1c98dd7689fb8ec11d242b123dc9b

 mask = AES-ECB(hp, sample)[0..4]
 = 437b9aec36

 header[0] ^= mask[0] & 0x0f
 = c0
 header[18..21] ^= mask[1..4]
 = 7b9aec34
 header = c000000001088394c8f03e5157080000449e7b9aec34

 The resulting protected packet is:

Thomson & Turner Expires 16 June 2021 [Page 52]

Internet-Draft Using TLS to Secure QUIC December 2020

 c000000001088394c8f03e5157080000 449e7b9aec34d1b1c98dd7689fb8ec11
 d242b123dc9bd8bab936b47d92ec356c 0bab7df5976d27cd449f63300099f399
 1c260ec4c60d17b31f8429157bb35a12 82a643a8d2262cad67500cadb8e7378c
 8eb7539ec4d4905fed1bee1fc8aafba1 7c750e2c7ace01e6005f80fcb7df6212
 30c83711b39343fa028cea7f7fb5ff89 eac2308249a02252155e2347b63d58c5
 457afd84d05dfffdb20392844ae81215 4682e9cf012f9021a6f0be17ddd0c208
 4dce25ff9b06cde535d0f920a2db1bf3 62c23e596d11a4f5a6cf3948838a3aec
 4e15daf8500a6ef69ec4e3feb6b1d98e 610ac8b7ec3faf6ad760b7bad1db4ba3
 485e8a94dc250ae3fdb41ed15fb6a8e5 eba0fc3dd60bc8e30c5c4287e53805db
 059ae0648db2f64264ed5e39be2e20d8 2df566da8dd5998ccabdae053060ae6c
 7b4378e846d29f37ed7b4ea9ec5d82e7 961b7f25a9323851f681d582363aa5f8
 9937f5a67258bf63ad6f1a0b1d96dbd4 faddfcefc5266ba6611722395c906556
 be52afe3f565636ad1b17d508b73d874 3eeb524be22b3dcbc2c7468d54119c74
 68449a13d8e3b95811a198f3491de3e7 fe942b330407abf82a4ed7c1b311663a
 c69890f4157015853d91e923037c227a 33cdd5ec281ca3f79c44546b9d90ca00
 f064c99e3dd97911d39fe9c5d0b23a22 9a234cb36186c4819e8b9c5927726632
 291d6a418211cc2962e20fe47feb3edf 330f2c603a9d48c0fcb5699dbfe58964
 25c5bac4aee82e57a85aaf4e2513e4f0 5796b07ba2ee47d80506f8d2c25e50fd
 14de71e6c418559302f939b0e1abd576 f279c4b2e0feb85c1f28ff18f58891ff
 ef132eef2fa09346aee33c28eb130ff2 8f5b766953334113211996d20011a198
 e3fc433f9f2541010ae17c1bf202580f 6047472fb36857fe843b19f5984009dd
 c324044e847a4f4a0ab34f719595de37 252d6235365e9b84392b061085349d73
 203a4a13e96f5432ec0fd4a1ee65accd d5e3904df54c1da510b0ff20dcc0c77f
 cb2c0e0eb605cb0504db87632cf3d8b4 dae6e705769d1de354270123cb11450e
 fc60ac47683d7b8d0f811365565fd98c 4c8eb936bcab8d069fc33bd801b03ade
 a2e1fbc5aa463d08ca19896d2bf59a07 1b851e6c239052172f296bfb5e724047
 90a2181014f3b94a4e97d117b4381303 68cc39dbb2d198065ae3986547926cd2
 162f40a29f0c3c8745c0f50fba3852e5 66d44575c29d39a03f0cda721984b6f4
 40591f355e12d439ff150aab7613499d bd49adabc8676eef023b15b65bfc5ca0
 6948109f23f350db82123535eb8a7433 bdabcb909271a6ecbcb58b936a88cd4e
 8f2e6ff5800175f113253d8fa9ca8885 c2f552e657dc603f252e1a8e308f76f0
 be79e2fb8f5d5fbbe2e30ecadd220723 c8c0aea8078cdfcb3868263ff8f09400
 54da48781893a7e49ad5aff4af300cd8 04a6b6279ab3ff3afb64491c85194aab
 760d58a606654f9f4400e8b38591356f bf6425aca26dc85244259ff2b19c41b9
 f96f3ca9ec1dde434da7d2d392b905dd f3d1f9af93d1af5950bd493f5aa731b4
 056df31bd267b6b90a079831aaf579be 0a39013137aac6d404f518cfd4684064
 7e78bfe706ca4cf5e9c5453e9f7cfd2b 8b4c8d169a44e55c88d4a9a7f9474241
 e221af44860018ab0856972e194cd934

A.3 . Server Initial

 The server sends the following payload in response, including an ACK
 frame, a CRYPTO frame, and no PADDING frames:

 02000000000600405a020000560303ee fce7f7b37ba1d1632e96677825ddf739
 88cfc79825df566dc5430b9a045a1200 130100002e00330024001d00209d3c94
 0d89690b84d08a60993c144eca684d10 81287c834d5311bcf32bb9da1a002b00
 020304

Thomson & Turner Expires 16 June 2021 [Page 53]

Internet-Draft Using TLS to Secure QUIC December 2020

 The header from the server includes a new connection ID and a 2-byte
 packet number encoding for a packet number of 1:

 c1000000010008f067a5502a4262b50040750001

 As a result, after protection, the header protection sample is taken
 starting from the third protected octet:

 sample = 2cd0991cd25b0aac406a5816b6394100
 mask = 2ec0d8356a
 header = cf000000010008f067a5502a4262b5004075c0d9

 The final protected packet is then:

 cf000000010008f067a5502a4262b500 4075c0d95a482cd0991cd25b0aac406a
 5816b6394100f37a1c69797554780bb3 8cc5a99f5ede4cf73c3ec2493a1839b3
 dbcba3f6ea46c5b7684df3548e7ddeb9 c3bf9c73cc3f3bded74b562bfb19fb84
 022f8ef4cdd93795d77d06edbb7aaf2f 58891850abbdca3d20398c276456cbc4
 2158407dd074ee

A.4 . Retry

 This shows a Retry packet that might be sent in response to the
 Initial packet in Appendix A.2 . The integrity check includes the
 client-chosen connection ID value of 0x8394c8f03e515708, but that
 value is not included in the final Retry packet:

 ff000000010008f067a5502a4262b574 6f6b656e04a265ba2eff4d829058fb3f
 0f2496ba

A.5 . ChaCha20-Poly1305 Short Header Packet

 This example shows some of the steps required to protect a packet
 with a short header. This example uses AEAD_CHACHA20_POLY1305.

 In this example, TLS produces an application write secret from which
 a server uses HKDF-Expand-Label to produce four values: a key, an IV,
 a header protection key, and the secret that will be used after keys
 are updated (this last value is not used further in this example).

Thomson & Turner Expires 16 June 2021 [Page 54]

Internet-Draft Using TLS to Secure QUIC December 2020

 secret
 = 9ac312a7f877468ebe69422748ad00a1
 5443f18203a07d6060f688f30f21632b

 key = HKDF-Expand-Label(secret, "quic key", _, 32)
 = c6d98ff3441c3fe1b2182094f69caa2e
 d4b716b65488960a7a984979fb23e1c8

 iv = HKDF-Expand-Label(secret, "quic iv", _, 12)
 = e0459b3474bdd0e44a41c144

 hp = HKDF-Expand-Label(secret, "quic hp", _, 32)
 = 25a282b9e82f06f21f488917a4fc8f1b
 73573685608597d0efcb076b0ab7a7a4

 ku = HKDF-Expand-Label(secret, "quic ku", _, 32)
 = 1223504755036d556342ee9361d25342
 1a826c9ecdf3c7148684b36b714881f9

 The following shows the steps involved in protecting a minimal packet
 with an empty Destination Connection ID. This packet contains a
 single PING frame (that is, a payload of just 0x01) and has a packet
 number of 654360564. In this example, using a packet number of
 length 3 (that is, 49140 is encoded) avoids having to pad the payload
 of the packet; PADDING frames would be needed if the packet number is
 encoded on fewer octets.

 pn = 654360564 (decimal)
 nonce = e0459b3474bdd0e46d417eb0
 unprotected header = 4200bff4
 payload plaintext = 01
 payload ciphertext = 655e5cd55c41f69080575d7999c25a5bfb

 The resulting ciphertext is the minimum size possible. One byte is
 skipped to produce the sample for header protection.

 sample = 5e5cd55c41f69080575d7999c25a5bfb
 mask = aefefe7d03
 header = 4cfe4189

 The protected packet is the smallest possible packet size of 21
 bytes.

 packet = 4cfe4189655e5cd55c41f69080575d7999c25a5bfb

Thomson & Turner Expires 16 June 2021 [Page 55]

Internet-Draft Using TLS to Secure QUIC December 2020

Appendix B . AEAD Algorithm Analysis

 This section documents analyses used in deriving AEAD algorithm
 limits for AEAD_AES_128_GCM, AEAD_AES_128_CCM, and AEAD_AES_256_GCM.
 The analyses that follow use symbols for multiplication (*), division
 (/), and exponentiation (^), plus parentheses for establishing
 precedence. The following symbols are also used:

 t: The size of the authentication tag in bits. For these ciphers, t
 is 128.

 n: The size of the block function in bits. For these ciphers, n is
 128.

 k: The size of the key in bits. This is 128 for AEAD_AES_128_GCM
 and AEAD_AES_128_CCM; 256 for AEAD_AES_256_GCM.

 l: The number of blocks in each packet (see below).

 q: The number of genuine packets created and protected by endpoints.
 This value is the bound on the number of packets that can be
 protected before updating keys.

 v: The number of forged packets that endpoints will accept. This
 value is the bound on the number of forged packets that an
 endpoint can reject before updating keys.

 o: The amount of offline ideal cipher queries made by an adversary.

 The analyses that follow rely on a count of the number of block
 operations involved in producing each message. This analysis is
 performed for packets of size up to 2^11 (l = 2^7) and 2^16 (l =
 2^12). A size of 2^11 is expected to be a limit that matches common
 deployment patterns, whereas the 2^16 is the maximum possible size of
 a QUIC packet. Only endpoints that strictly limit packet size can
 use the larger confidentiality and integrity limits that are derived
 using the smaller packet size.

 For AEAD_AES_128_GCM and AEAD_AES_256_GCM, the message length (l) is
 the length of the associated data in blocks plus the length of the
 plaintext in blocks.

 For AEAD_AES_128_CCM, the total number of block cipher operations is
 the sum of: the length of the associated data in blocks, the length
 of the ciphertext in blocks, the length of the plaintext in blocks,
 plus 1. In this analysis, this is simplified to a value of twice the
 length of the packet in blocks (that is, "2l = 2^8" for packets that
 are limited to 2^11 bytes, or "2l = 2^13" otherwise). This

Thomson & Turner Expires 16 June 2021 [Page 56]

Internet-Draft Using TLS to Secure QUIC December 2020

 simplification is based on the packet containing all of the
 associated data and ciphertext. This results in a 1 to 3 block
 overestimation of the number of operations per packet.

B.1 . Analysis of AEAD_AES_128_GCM and AEAD_AES_256_GCM Usage Limits

 [GCM-MU] specify concrete bounds for AEAD_AES_128_GCM and
 AEAD_AES_256_GCM as used in TLS 1.3 and QUIC. This section documents
 this analysis using several simplifying assumptions:

 * The number of ciphertext blocks an attacker uses in forgery
 attempts is bounded by v * l, the number of forgery attempts and
 the size of each packet (in blocks).

 * The amount of offline work done by an attacker does not dominate
 other factors in the analysis.

 The bounds in [GCM-MU] are tighter and more complete than those used
 in [AEBounds], which allows for larger limits than those described in
 [TLS13].

B.1.1 . Confidentiality Limit

 For confidentiality, Theorum (4.3) in [GCM-MU] establishes that - for
 a single user that does not repeat nonces - the dominant term in
 determining the distinguishing advantage between a real and random
 AEAD algorithm gained by an attacker is:

 2 * (q * l)^2 / 2^n

 For a target advantage of 2^-57, this results in the relation:

 q <= 2^35 / l

 Thus, endpoints that do not send packets larger than 2^11 bytes
 cannot protect more than 2^28 packets in a single connection without
 causing an attacker to gain an larger advantage than the target of
 2^-57. The limit for endpoints that allow for the packet size to be
 as large as 2^16 is instead 2^23.

B.1.2 . Integrity Limit

 For integrity, Theorem (4.3) in [GCM-MU] establishes that an attacker
 gains an advantage in successfully forging a packet of no more than:

 (1 / 2^(8 * n)) + ((2 * v) / 2^(2 * n))
 + ((2 * o * v) / 2^(k + n)) + (n * (v + (v * l)) / 2^k)

Thomson & Turner Expires 16 June 2021 [Page 57]

Internet-Draft Using TLS to Secure QUIC December 2020

 The goal is to limit this advantage to 2^-57. For AEAD_AES_128_GCM,
 the fourth term in this inequality dominates the rest, so the others
 can be removed without significant effect on the result. This
 produces the following approximation:

 v <= 2^64 / l

 Endpoints that do not attempt to remove protection from packets
 larger than 2^11 bytes can attempt to remove protection from at most
 2^57 packets. Endpoints that do not restrict the size of processed
 packets can attempt to remove protection from at most 2^52 packets.

 For AEAD_AES_256_GCM, the same term dominates, but the larger value
 of k produces the following approximation:

 v <= 2^192 / l

 This is substantially larger than the limit for AEAD_AES_128_GCM.
 However, this document recommends that the same limit be applied to
 both functions as either limit is acceptably large.

B.2 . Analysis of AEAD_AES_128_CCM Usage Limits

 TLS [TLS13] and [AEBounds] do not specify limits on usage for
 AEAD_AES_128_CCM. However, any AEAD that is used with QUIC requires
 limits on use that ensure that both confidentiality and integrity are
 preserved. This section documents that analysis.

 [CCM-ANALYSIS] is used as the basis of this analysis. The results of
 that analysis are used to derive usage limits that are based on those
 chosen in [TLS13].

 For confidentiality, Theorem 2 in [CCM-ANALYSIS] establishes that an
 attacker gains a distinguishing advantage over an ideal pseudorandom
 permutation (PRP) of no more than:

 (2l * q)^2 / 2^n

 The integrity limit in Theorem 1 in [CCM-ANALYSIS] provides an
 attacker a strictly higher advantage for the same number of messages.
 As the targets for the confidentiality advantage and the integrity
 advantage are the same, only Theorem 1 needs to be considered.

 Theorem 1 establishes that an attacker gains an advantage over an
 ideal PRP of no more than:

 v / 2^t + (2l * (v + q))^2 / 2^n

Thomson & Turner Expires 16 June 2021 [Page 58]

Internet-Draft Using TLS to Secure QUIC December 2020

 As "t" and "n" are both 128, the first term is negligible relative to
 the second, so that term can be removed without a significant effect
 on the result.

 This produces a relation that combines both encryption and decryption
 attempts with the same limit as that produced by the theorem for
 confidentiality alone. For a target advantage of 2^-57, this results
 in:

 v + q <= 2^34.5 / l

 By setting "q = v", values for both confidentiality and integrity
 limits can be produced. Endpoints that limit packets to 2^11 bytes
 therefore have both confidentiality and integrity limits of 2^26.5
 packets. Endpoints that do not restrict packet size have a limit of
 2^21.5.

Appendix C . Change Log

 RFC Editor’s Note: Please remove this section prior to
 publication of a final version of this document.

 Issue and pull request numbers are listed with a leading octothorp.

C.1 . Since draft-ietf-quic-tls-32

 * Added final values for Initial key derivation, Retry
 authentication, and TLS extension type for the QUIC Transport
 Parameters extension (#4431) (#4431)

 * Corrected rules for handling of 0-RTT (#4393, #4394)

C.2 . Since draft-ietf-quic-tls-31

 * Packet protection limits are based on maximum-sized packets;
 improved analysis (#3701, #4175)

C.3 . Since draft-ietf-quic-tls-30

 * Add a new error code for AEAD_LIMIT_REACHED code to avoid conflict
 (#4087, #4088)

C.4 . Since draft-ietf-quic-tls-29

 * Updated limits on packet protection (#3788, #3789)

 * Allow for packet processing to continue while waiting for TLS to
 provide keys (#3821, #3874)

Thomson & Turner Expires 16 June 2021 [Page 59]

https://tools.ietf.org/pdf/draft-ietf-quic-tls-32
https://tools.ietf.org/pdf/draft-ietf-quic-tls-31
https://tools.ietf.org/pdf/draft-ietf-quic-tls-30
https://tools.ietf.org/pdf/draft-ietf-quic-tls-29

Internet-Draft Using TLS to Secure QUIC December 2020

C.5 . Since draft-ietf-quic-tls-28

 * Defined limits on the number of packets that can be protected with
 a single key and limits on the number of packets that can fail
 authentication (#3619, #3620)

 * Update Initial salt, Retry keys, and samples (#3711)

C.6 . Since draft-ietf-quic-tls-27

 * Allowed CONNECTION_CLOSE in any packet number space, with
 restrictions on use of the application-specific variant (#3430,
 #3435, #3440)

 * Prohibit the use of the compatibility mode from TLS 1.3 (#3594,
 #3595)

C.7 . Since draft-ietf-quic-tls-26

 * No changes

C.8 . Since draft-ietf-quic-tls-25

 * No changes

C.9 . Since draft-ietf-quic-tls-24

 * Rewrite key updates (#3050)

 - Allow but don’t recommend deferring key updates (#2792, #3263)

 - More completely define received behavior (#2791)

 - Define the label used with HKDF-Expand-Label (#3054)

C.10 . Since draft-ietf-quic-tls-23

 * Key update text update (#3050):

 - Recommend constant-time key replacement (#2792)

 - Provide explicit labels for key update key derivation (#3054)

 * Allow first Initial from a client to span multiple packets (#2928,
 #3045)

 * PING can be sent at any encryption level (#3034, #3035)

Thomson & Turner Expires 16 June 2021 [Page 60]

https://tools.ietf.org/pdf/draft-ietf-quic-tls-28
https://tools.ietf.org/pdf/draft-ietf-quic-tls-27
https://tools.ietf.org/pdf/draft-ietf-quic-tls-26
https://tools.ietf.org/pdf/draft-ietf-quic-tls-25
https://tools.ietf.org/pdf/draft-ietf-quic-tls-24
https://tools.ietf.org/pdf/draft-ietf-quic-tls-23

Internet-Draft Using TLS to Secure QUIC December 2020

C.11 . Since draft-ietf-quic-tls-22

 * Update the salt used for Initial secrets (#2887, #2980)

C.12 . Since draft-ietf-quic-tls-21

 * No changes

C.13 . Since draft-ietf-quic-tls-20

 * Mandate the use of the QUIC transport parameters extension (#2528,
 #2560)

 * Define handshake completion and confirmation; define clearer rules
 when it encryption keys should be discarded (#2214, #2267, #2673)

C.14 . Since draft-ietf-quic-tls-18

 * Increased the set of permissible frames in 0-RTT (#2344, #2355)

 * Transport parameter extension is mandatory (#2528, #2560)

C.15 . Since draft-ietf-quic-tls-17

 * Endpoints discard initial keys as soon as handshake keys are
 available (#1951, #2045)

 * Use of ALPN or equivalent is mandatory (#2263, #2284)

C.16 . Since draft-ietf-quic-tls-14

 * Update the salt used for Initial secrets (#1970)

 * Clarify that TLS_AES_128_CCM_8_SHA256 isn’t supported (#2019)

 * Change header protection

 - Sample from a fixed offset (#1575, #2030)

 - Cover part of the first byte, including the key phase (#1322,
 #2006)

 * TLS provides an AEAD and KDF function (#2046)

 - Clarify that the TLS KDF is used with TLS (#1997)

 - Change the labels for calculation of QUIC keys (#1845, #1971,
 #1991)

Thomson & Turner Expires 16 June 2021 [Page 61]

https://tools.ietf.org/pdf/draft-ietf-quic-tls-22
https://tools.ietf.org/pdf/draft-ietf-quic-tls-21
https://tools.ietf.org/pdf/draft-ietf-quic-tls-20
https://tools.ietf.org/pdf/draft-ietf-quic-tls-18
https://tools.ietf.org/pdf/draft-ietf-quic-tls-17
https://tools.ietf.org/pdf/draft-ietf-quic-tls-14

Internet-Draft Using TLS to Secure QUIC December 2020

 * Initial keys are discarded once Handshake keys are available
 (#1951, #2045)

C.17 . Since draft-ietf-quic-tls-13

 * Updated to TLS 1.3 final (#1660)

C.18 . Since draft-ietf-quic-tls-12

 * Changes to integration of the TLS handshake (#829, #1018, #1094,
 #1165, #1190, #1233, #1242, #1252, #1450)

 - The cryptographic handshake uses CRYPTO frames, not stream 0

 - QUIC packet protection is used in place of TLS record
 protection

 - Separate QUIC packet number spaces are used for the handshake

 - Changed Retry to be independent of the cryptographic handshake

 - Limit the use of HelloRetryRequest to address TLS needs (like
 key shares)

 * Changed codepoint of TLS extension (#1395, #1402)

C.19 . Since draft-ietf-quic-tls-11

 * Encrypted packet numbers.

C.20 . Since draft-ietf-quic-tls-10

 * No significant changes.

C.21 . Since draft-ietf-quic-tls-09

 * Cleaned up key schedule and updated the salt used for handshake
 packet protection (#1077)

C.22 . Since draft-ietf-quic-tls-08

 * Specify value for max_early_data_size to enable 0-RTT (#942)

 * Update key derivation function (#1003, #1004)

C.23 . Since draft-ietf-quic-tls-07

Thomson & Turner Expires 16 June 2021 [Page 62]

https://tools.ietf.org/pdf/draft-ietf-quic-tls-13
https://tools.ietf.org/pdf/draft-ietf-quic-tls-12
https://tools.ietf.org/pdf/draft-ietf-quic-tls-11
https://tools.ietf.org/pdf/draft-ietf-quic-tls-10
https://tools.ietf.org/pdf/draft-ietf-quic-tls-09
https://tools.ietf.org/pdf/draft-ietf-quic-tls-08
https://tools.ietf.org/pdf/draft-ietf-quic-tls-07

Internet-Draft Using TLS to Secure QUIC December 2020

 * Handshake errors can be reported with CONNECTION_CLOSE (#608,
 #891)

C.24 . Since draft-ietf-quic-tls-05

 No significant changes.

C.25 . Since draft-ietf-quic-tls-04

 * Update labels used in HKDF-Expand-Label to match TLS 1.3 (#642)

C.26 . Since draft-ietf-quic-tls-03

 No significant changes.

C.27 . Since draft-ietf-quic-tls-02

 * Updates to match changes in transport draft

C.28 . Since draft-ietf-quic-tls-01

 * Use TLS alerts to signal TLS errors (#272, #374)

 * Require ClientHello to fit in a single packet (#338)

 * The second client handshake flight is now sent in the clear (#262,
 #337)

 * The QUIC header is included as AEAD Associated Data (#226, #243,
 #302)

 * Add interface necessary for client address validation (#275)

 * Define peer authentication (#140)

 * Require at least TLS 1.3 (#138)

 * Define transport parameters as a TLS extension (#122)

 * Define handling for protected packets before the handshake
 completes (#39)

 * Decouple QUIC version and ALPN (#12)

C.29 . Since draft-ietf-quic-tls-00

 * Changed bit used to signal key phase

Thomson & Turner Expires 16 June 2021 [Page 63]

https://tools.ietf.org/pdf/draft-ietf-quic-tls-05
https://tools.ietf.org/pdf/draft-ietf-quic-tls-04
https://tools.ietf.org/pdf/draft-ietf-quic-tls-03
https://tools.ietf.org/pdf/draft-ietf-quic-tls-02
https://tools.ietf.org/pdf/draft-ietf-quic-tls-01
https://tools.ietf.org/pdf/draft-ietf-quic-tls-00

Internet-Draft Using TLS to Secure QUIC December 2020

 * Updated key phase markings during the handshake

 * Added TLS interface requirements section

 * Moved to use of TLS exporters for key derivation

 * Moved TLS error code definitions into this document

C.30 . Since draft-thomson-quic-tls-01

 * Adopted as base for draft-ietf-quic-tls

 * Updated authors/editors list

 * Added status note

Contributors

 The IETF QUIC Working Group received an enormous amount of support
 from many people. The following people provided substantive
 contributions to this document:

 * Adam Langley

 * Alessandro Ghedini

 * Christian Huitema

 * Christopher Wood

 * David Schinazi

 * Dragana Damjanovic

 * Eric Rescorla

 * Felix Guenther

 * Ian Swett

 * Jana Iyengar

 * å¥¥ ä¸ç© (Kazuho Oku)

 * Marten Seemann

 * Martin Duke

Thomson & Turner Expires 16 June 2021 [Page 64]

https://tools.ietf.org/pdf/draft-thomson-quic-tls-01
https://tools.ietf.org/pdf/draft-ietf-quic-tls

Internet-Draft Using TLS to Secure QUIC December 2020

 * Mike Bishop

 * Mikkel FahnÃ¸e JÃ¸rgensen

 * Nick Banks

 * Nick Harper

 * Roberto Peon

 * Rui Paulo

 * Ryan Hamilton

 * Victor Vasiliev

Authors’ Addresses

 Martin Thomson (editor)
 Mozilla

 Email: mt@lowentropy.net

 Sean Turner (editor)
 sn3rd

 Email: sean@sn3rd.com

Thomson & Turner Expires 16 June 2021 [Page 65]

